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1. Cell cycle control and circadian rhythms

The cell division cycle is the process by which the eukanyoéll duplicates its DNA content and
then divides itself in two daughter cells. This process ismally controlled by various physio-
logical mechanisms that ensure homeostasis of healthueBsghat control genome integrity (e.g.
cyclins and cdks, p53, repair enzymes, etc.), launchingraramed cell death (apoptosis) if the
DNA is irreversibly damaged (see [19] for a complete prestgon). The system of control has
been extensively studied and modeled (see e.g. [13, 15,rZPAP using ordinary differential
equations. The cell division can be modeled through bramgcprocesses (see [2]), integral equa-
tions, delay differential equations (see [4]) and also n&tnyctured PDE models (for an overview,
see [1, 3, 17]) where the structuring variables can be a@d)([&@ze ([22]) or more recently cyclin
content ([5, 6, 10]).

Most living organisms exhibit circadian rhythms (from Lmatirca diem “roughly a day”)
which allow them to adapt to an environment that varies wipeaodicity of 24h. These rhythms
can be observed even in the smallest biological functioni] the cell. The problem we are study-
ing is the growth of cell populations (undergoing the celision cycle described above) under the
pressure of circadian rhythms. Circadian rhythm effectthencell cycle turn out to be important
in tumor proliferation. This is observed by several experits involving a major disruption of
circadian rhythms in mice. In these experiments it can be Hes the growth of tumors is signif-
icantly enhanced in mice in which the pacemaker circadiankchas been drastically perturbed,
either through neurosurgery, or through light-dark cyakeuption (see e.g. [12, 11]). Moreover,
in the clinic, taking advantage of the influence exerted lvgadian clocks on anticancer drug
metabolism and on the cell division cycle has led in the pastehrs to successful applications in
the chronotherapy of cancergarticularly colorectal cancer (see [16]). This motigateodeling
the circadian rhythm in simple cell cycle models and stugyirese effects on the growth rate of a
cell population.

Contrary to our first idea, the growth rate of a cell populati@scribed by a physiologically
structured PDE model with time-periodic control is not resaily lower than in a model of the
same nature, but with a time-averaged control [7, 8]. The geee is twofold. Firstly we ana-
lyze how modeling assumptions lead to define various groatidsrunder the effects of circadian
rhythms. Secondly we model the effect of chronotherapy esdtgrowth rates.

In the second section we recall the definition of these vargrowth rates, in terms of Perron
and Floguet eigenvalues of a linear Von Foerster- Mc-Kaekdmodel. We also discuss known
inequalities between them. In the third section we studyrmgk division model, for which we es-
tablish (in Theorem 2) strict inequalities comparing thevgh rate in the stationary (Perron) and
periodic (Floquet) cases. These inequalities are provestinyying a related time delay system
(which is similar to the one considered in [4]). This modeuged to confirm the impossibility
to derive a general comparison between the Perron and Rletgenvalues defined in the sec-
ond section. In the fourth section, we give an argument forgusiultiphase models to represent
chronotherapy, taking better into account the structurthefcell cycle and particularly the ex-
istence of various phases. We provide numerical simulattonllustrate our results. In a first
appendix, we give the detailed proof of the existence of tiet®n of the eigenproblem, by ap-
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Figure 1: Effects of the perturbation of light-dark cycle toimor proliferation (reproduced from
[11]). In clock-perturbed mice (black dots), the tumorslifeoates much faster than in control
mice (white dots).(By courtesy of Elizabeth Filipski).

plying the Krein-Rutman theorem. In a second appendix, wevel@nalytical formulae for the
eigenelements in a specific multiphase case, which yietdéuinformation on their behavior and
can be used to validate numerical experiments.

2. The model

2.1. The renewal equation

We base our study on a cell population that follows the ctatsenewal equation structured in age
with periodic coefficients representing the effect of aitiea rhythms

2n(t,z) + Znlt, x) + d<t, z)n(t,z) =0, 2.1
{n T (2.1)

Heren(t, x) represents the density of cells of age the cycle at time, d(t, z), B(t, x) represent
respectively the death rate, and the birth rate. Both thes#icients areél’-periodic in time. We
define the growth rate of the population in terms of an eigellpm. The growth rateé  (F for
Floquet as for ODEs with periodic coefficients) is definednastinique real numbevr, such that
there is a solutionV to the problem

IN(t,z)+ iN(t, :1:) + [)\F +d(t, z)]N(t,z) =0,
N(t,z =0) fo N(t,z)dz, (2.2)
N >0, T— perlodlc
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We refer to [18] for conditions of existence fay- (and to the appendix for the case of division
models).

2.2. Comparison of eigenvalues

We use the following notations. Foriaperiodic functionf we define,
1 T
(fy = ?/ f(t)dt the arithmetical average,
0

1 T
(f)g = exp <?/0 log f(t)dt) the geometrical average, whgn> 0.

It may seem natural to introduce the following stationargigpem (Perron eigenproblem), in
which the death and birth rates are averaged

L Np(2) + [Ap + (d(2))|Np(x) = 0,
Np(0) = [*(B(2))Np(x)dx =1, (2.3)
Np(l‘) > 0.
It is shown in [8] that, wherB does not depend on time, the inequality > A\p holds. In the
present paper, we show that this inequality does not camy tovthe case of a time dependéhnt
It should be noted, however, that there is a general ingguastablished in [7], which relates-

with the solution of the following eigenproblem in which amtlametical average of the death rate
is taken, whereas the geometrical average of the birthgadsken,

%Ng(x) + [Ag + {d(2))|Ny(z) = 0,
Ny(0) = [77(B(2))yNy(a)dw = 1, (2.4)

N,y(z) > 0.
Theorem 1([7]). The eigenvalues defined in (2.2) and (2.4) satisfy
Ap > Ay

This result suggests that there is no general inequalitydsti)\ » and )\ -, because the inequal-
ity which follows from convexity is\p > A,. Moreover, it follows from the standard arithmetico-
geometrical inequality,

Ap > Ay

Such a general comparison cannot hold betweemand A p, as shown in the next section. To go
further we use a more specific model.
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3. A simple one-phase division model

3.1. Model and main results

We model the cell cycle with the following PDE which is a paular case of (2.1),
Sn(t,x) + Ln(t,) + [d(t) + Ko (t) X roof(@)]n(t, 2) = 0,
n(t,0) = 2Kop(t) [ n(t, z)dz,

whereK, > 0 is a constant) > 0 is a7-periodic function with

() = 1. (3.1)

The termKy1)(t) x(o,+00] FEPresents the division raté(t) is the apoptosis rate (we assume it to be
T-periodic). We have denoted hyx the indicator function of sek. Finally, ¢)(¢) represents a
nonnegative periodic control exerted on division. As befoe look for the growth raté of such

a system. It is defined so that there is a solution to the Flogjgenproblem,

SN(t,z) + ZN(t,z) + [Ar + d(t) + Ko (t) X[a,+00[ (@) | N (¢, 2) = 0,
N(t,0) = 2Ko(t) [° N(t,z)dz, (3.2)
N > 0, T-periodic

and we normalizeV by

T o)
/ / N(t,z)dxdt = 1.
o Jo

As we already know a general comparison result for the getrakeigenvalue\, defined in
(2.4), we are now only interested in the comparison pfand \p, the latter quantity defined by
requiring the existence of a solution to the Perron eigduipro already defined in (2.3) which

here reads
%NP<I) + [)\P +d+ Kgx[m_,_oo[(x)]Np(lC) = 0,

NP(O) = 2K0 faoo Np(l‘)dl‘, (33)
Np >0,
and we normalizeéVp by

We are interested in evaluating the effect of the perioditrab(¢) on the growth of the sys-
tem. Therefore we denote by-(a, 1) and by\p(a) the above defined eigenelements so as to keep
track of the problem parameters.

The following theorem implies that there is no possible gaheomparison betweek; and
Ap.



J. Clairambault, S. Gaubert Comparison of Perron and Floquet eigenvalues
and T. Lepoutre in age structured cell division cycle models

Theorem 2. For all continuous positivd -periodic functions) satisfying (3.1), we have
Ar(a =T, 0) = Ap(T) = Ap(a = T,1), (3.4)
and fora in a neighborhood of T, we have, providedz 1
Ar(a,v) > Ap(a) = Ap(a,1) for a<T,
Ar(a, ) < Ap(a) = Ap(a,1) for a>T.

The proof of this theorem is presented in the next sectiohs. cbmputations done in section
4.1 insure that, without loss of generality, we can suppbse0.

Numerical results are presented in figures 2,3 which iléistthis theorem. Graphically, for
fixed ¢, this predicts firstly that the curves af-(a, v) (Floquet curve) andp(a) (Perron curve)
must cross each other far= T', secondly that the Floquet curve should be above the Peurve c
before (i.e., fora < T) the crossing and below this curve after it (i.e., for- T). A possible
interpretation is that for a better adaptation (in the sesfdg@igher proliferation), the cell cycle
should be shorter thaith; an effect already observed in [4].

3.2. Proof of Theorem 2, part 1 (a delay differential equatio)

Throughout the proof, we use the shorter notativpsind\ p instead of\ z(a, ¢) andAp(a) when
there is no possible confusion.

To find more information on - we derive a delay differential equation.

We integrate (3.2) with respect to age oferc[. We get

% /:O N(t, z)dz + N(t,00) = N(t,a) + [\p + Kot (1)] / Nt 2)de = 0.

From the formula of characteristics and the boundary cadin (3.2),

N(t,a) = N(t — a,0)e *r4,
N(t,a) = 2Koe " ")(t —a) [ N(t — a,z)dx.

We setP(t) = [ N(t,z)dz. Since we haveV(t,c00) = 0 (see the appendix) we obtain the
delay differential equation

Pt) + </\F n Kow(t))P(t) — 2Ky (t — a)P(t — a)e Fe, (3.5)

3.3. Proof of Theorem 2, part 2 (equality of growth rates fora = 1))
The comparison betweeyy and ) is based on the following formula fovp.

Lemma 3.
Ap + Ky Ara

Ya > 0
“= 2K,

~1. (3.6)

6
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Proof. From (3.3), we have, far > a, Np(z) = e~(Ar+Eoz+Koa \We insert that in the boundary
condition and obtain

1
1 =2Ky———e P2

Ap + Ky
O
Corollary 4.
VYa > 0, Ap > 0.
Proof. This follows from Lemma 3 and the remark
A+ Ky 1
< ———
Va > 0,VA <0, 51 e =35
O
To obtain (3.4), we divide (3.5) b¥ and find
P(t) Plt—a) _,
— = \p — Ko(t) + 2K (t — a)—=——>¢e "F¢
20 F ot (t) + 2Kt (t — a) P(t)

When we take the average over a period, we get (siheT -periodic in time by its definition as
N is)
_ P(t—a)
_ AFa _
0= ()\F + KO) + 2K06 <’I7Z)(t a) P(t) >,
>\F + KO A P(t — (1,)
28 T PO ARa —g)— 7\ 7
2K, <W @) P(1) (3.7)

Now we consider the particular cage= 7. As P is T-periodic P(t — a) = P(t). Hence, for
a =T, we arrive at

Moo (pe- 5T — ) =1 (38)

This equality is the same fox as the one described in lemma 1 fgs. As we know that the
mapping

A+ Ko

Aa
31 e,

A =

is increasing on— Ky, +oo[ from 0 to +oo and is negative elsewhere, there is only one solution to
(3.8) which is also given by (3.6) and the result (3.4) is pchv O
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3.4. Proof of Theorem 2, part 3 (local comparison aroundr = 7')

We fix ¢ # 1. We study the variations e¥;:52e @ arounda = T'. From (3.7), we know:

A+ Ko yoa P(t—a)\ P(t)
2K, et = <W —a) P(t) > - <w(t)P(t + a)>’
therefore
O+ Koy 0 P(t)
da 2K, e = %<¢(t)P(t+a)>’

0 — 0
— (v )+ (PO 2 (Pl a)) )

Recalling that” depends om (as N and A do), we have

9, oP :
%P(t +a) = %(t +a)+ P(t+ a).

We then split the computations
O+ Ko 5,0 oP 1 P(t) oP :
SR — (o5 O pr— )~ (0o (Gt +a) + P+ a)) )
1 oP P(t) oP
- <w(t>P(t +a) <%<t> “Pitaaalt a)> >
P)
—<1/1(t) P+ a) P(t+ a)>.

Fora = T, the first term vanishes, afé(t + a) = P(t) i.e.,

O A+ Ko \,0 P(t) - B P(t)
2y o = (0 0) = ~(#0p )

v
P

i)

To compute this we again make use of the ODE (3.5) which weiphulhy

P(t—a)
P(t)

e e,

() 5n = —ARY(t) — Kot (t) + 2Ko(t — a)i(t)
Averaging on a period we still get, far= T,
(WO E ) = =3e = Kotu?) + 2Ka(uhe e
Using (3.8), we arrive at
(VOBEY = e = Kolt?) + () 0e + Ko) = Ar((02) ~ 1),

8
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We now have the derivative at= T,

0 A+ Ko . >
a3k et = —Ap((v%) — 1). (3.9)

We use here the notationé (7") for %Fl _,andAp(T) = Ap(T) to recall that we are studying

the local behavior oA - and\p arounda = af, (v is fixed). We can directly compute

0 )\F—FKQ A , 6)\F(T)T , K0+)\F(T) A (T
— ¢ = No(T)——— T T)) = L AR(DT
B 3 = N (T) e ()T 4 Ap(1) =2 (O
Therefore, using (3.4) and (3.6), we obtain
— =N, (T T Ap(T
aala:T 2K0 € F( ) 2K0 + + F( )7

so that, using (3.4) and (3.9), we have

(D))

Ap(DT °
T + 2Ko

Ap(T)

Similarly we have

—Ap(T)

eAp(T)T
2Ko

No(T) =
P(T) -

Therefore,

T — ) = A = 1)

Ap(T)T
T + 2Ky

Thanks to corollary 4\p(T') is positive. The assumption (3.1) leads to

(W) —1= (¥~ 1)%) > 0.

Finally we obtain
No(T) — N (T) > 0, (3.10)

and the second statement of the theorem follows then imredygliaom (3.4) and (3.10). O

4. Modeling chronotherapy

In the following we propose a model for chronotherapy by ttieoiduction of a periodic death rate
due to the effect of a drug on our cell division cycle model.
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4.1. Limit of single-phase division models

We consider a population of cells following a general dmmsequation with apoptosis ratle As
above, all coefficients arE-periodic with respect to time.

In(t,z) + Zn(t,z) + (d(t,z) + K(t, z))n(t,z) = 0,
n(t,0) =2 [7° K(t, z)n(t, z)dx.
We consider the Floquet eigenproblem associated with thiateon
IN(t, )+ ZN(t,x) + (d(t,z) + K(t,z) + Ap)N(t,z) =0,
N(t,0) =2 [ K(t,2)N(t, x)dx,
N >0, fofo (t,z)dxdt =1

We propose to model the effect of chronotherapy by addingha Ti-periodic, age-independent
death ratey(t) representing the effect of a drug (for instance we may censigroportional to
the quantity of drug in the body). The cell population nowduls the equation

Sn(t,2) + Ln(t,2) + [d(t,2) + K(t,2) +y(D)]nlt,2) = 0,
n(t,0) =2 [;° K(t, z)n(t, z)dx.
The Floquet eigenproblem for this equation reads
INV(t, @) + NVt x) + (d(t, z) + K(t,x) + y(t) + Ap) N (¢, z) =0,
N7(t,0) =2 [ K(t,2)N(t, z)dx,
N*>0, T —periodic [ [*N7(t z)dzdt=1.
Lemma 5.
Ap = Ar — (7).
Proof. We definey = v — (), I'(t) = fo s)ds. Noticing thatl" is T-periodic, we define the
function M by M(t,z) = N(t,z)e"®. It satisfies
DM(t,x) + ZM(t,z) + (d(t,z) + K(t,z) +(t) + Ap — (7)) M(t,z) = 0,
M(t,0) =2 [ K(t, x)M(t, z)dz,
M >0, T — periodic

Therefore\). = A\r — () and up to a renormalizatiol/ = N”. O
This result expresses that with such a simple model, chnenapy is inefficient, since chang-

ing the moment of administration of a drug (in symbols, chiagg (¢) into v(t + ¢) wheref is

a real number) has no effect on the growth rate. In other wandsuch one-phase models, this

effects depends ofy). Only the total daily dose of the drug is relevant!

10
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4.2. Using multiphase models

We now consider more realistic multiphase models. We usadldéional ingredient that the real
cell division cycle is multiphasic because of the existesfogheck points between phases (mainly
the G1/S and G2/M transitions) at which it can be arrestedniogne integrity is not preserved. We
consider a cell cycle model withphases wheré > 1 (for instancel = 4 if we want to represent
the classical phases G1-S-G2-M). We studyopulations of cellsp;(¢, x) being the density of
cells of ager in phase at timet. We use the conventioh+ 1 =1

( %nz(tax) + %nz(tax) + [Ki—>i+1(t7 {L‘) + dl(tax)]nz(tax) = 07

ni+1(t7 0) = fooo Kiai+1(t7 y)nl(ta y)dy7 I <i
ny (tv 0) =2 fooo KI—>1(t7 y)nI(ta y)dya

L n:(0,2) = nl(z) given.

(4.1)

Here K; ;1 represents the transition rate from phase : + 1. At the end of phasé division
occurs with ratek;_,;. To be as general as possible, we have considered deatliratgshase.
As above, the coefficients are tirfieperiodic and we can consider the Floquet eigenproblem

( SN;(t,x) + ZN;(t,2) + [Kimi (t, ) + di(t, ) + AN;(t, ) = 0,
Nia(t,0) = [5° Kimia (t, y) Ni(t, y)dy, 1<

Ni(t,0) =2 [° K7 (t,y)Ni(t, y)dy,

N; >0, T —periodic 37 [y ¢ Nidwdt = 1.

(4.2)

\
We also consider the adjoint eigenproblem

%gbi(t) l’) + %QSZ(ta ._'E) - [Ki—>i+1(t7 l’) + di(ta l’) + )‘]gbl(ta l’) = Ki—>i+1¢i+1(t7 0)7

%¢[(t, l‘) + %gb](t, IE) - [Kf—ﬂ(tv IE) + dl(ta l‘) + )\]ﬁb[(t, l‘) = 2KI—>1¢1(t7 0)7 (43)

¢; >0, T —periodic > [* Nigsdudt = 1.
To model the effect of chronotherapy, we consider a cytatdrilg acting only on a specific phase
(for instance 5Fluorouracil acts on S-phase) and, as inraqus section we represent its action
by an additional death rate in phagey(t) (we replace in phasgd; by d; + v) . We also define
eigenelements for the modified equatioxt, N7, ¢7). We multiply the first line of (4.2) (version

with d; replaced byd; + v, N; by N; and\ by \?) by ¢;, and (4.3) byN,”. Summing ovei and
integrating over age and time, we obtain

(A= A") Z /01 /OOO N7 ¢sdadt = /01 () /OOO N} ¢;dxdt. (4.4)

11
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We shall not have here the problem encountered with oneephaslels. We study the effect of a
death ratey(t + 6). We denote\*?, N= the eigenelements associated to an additional death rate
ey(t + 0) in phasej. We definel'(¢, 0) by

Jo et +0) [7° N2 dwdt
> Jo SN pudadt
As we havex = \%Y for anyd, F(0,6) = 0. Particularly it does not depend @n The question

is: doesF(e,0) depend or¥ for fixed e? To assess this question, we compute using dominated
convergence

F(e,0) =\ — )\ = (4.5)

1 0o
e 0 0

Therefore if neither the function(.) nor the function/;” N;¢;(., z)dx are constant (contrarily

to one-phase models, there are no compensating effect mﬁﬁrj\fjgbj(., x)dx constant, see for

F(e,0) .
depends o (we mean it is not a

constant function of) and so is (at least for smal) F'(¢, .). We illustrate this property numerically
in the next section.

instance the computations of the appendix), thﬁ(l)‘l
E—

5. Numerical simulations

We illustrate the theorems proved above by several nunieiitaulations. We firstly present the
numerical scheme, then we give several algorithmic praggerEinally tests are presented.

5.1. Discretization

In our numerical simulations we consider a pure division elod
Sty x) + Lnlt,x) + Koth(t)Xja oo (x)n(t, ) = 0,
n(t,0) = 2Kop(t) [ n(t, z)du.

Consider time and age incremems, Az and denote by:; and ", the quantitiess; =
KoXa+o00[(iAz) andy® = ¢ (kAt). Choosing first order finite differences, we obtain from equa
tion (5.1) the following approximation with an error of ord@(|At| + |Az|)

(5.1)

k+1 k k k
L A A k41, k+1 ,
i ~ Lo ZA:CZ _i_/%w n; :()7 1§1§[7

where{0...I} is the set of all values ofto be considered in the discretization. Takihg= Ax
(CFL = 1), we obtain the following compact discretization scheme:

n

k
k+1 o TL,L-_ .
N = A 1SS 52)
nktt =29k ST kmkAt. '
0<i<I

12
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Assumey is periodic of period” > 0 and consider a grid ove6, T'| x [0, I At|, consisting
of squares with sides of lengtht = 7'/ N7, for someN; € N (and! large enough, particularly
IAt > aandI + 1 > Nr). Then, the populations at tin{é + 1) At for all ages in0, At} can be
obtained from the corresponding populations at tikme as follows:

nngl 21/1’“/110At . 21/1’“/11_1At kanIAt nlg
k+1 1 k

nk B AR 0 0 nk 5:3)
k+1 1 k

ny 0 T ARRIR, 0 ny

It is clear that the matrix in (5.3) depends only on the timgexk and is periodic of period
Nr. We denotel/,, this matrix and the vectors respectivel§f andn**!. The equation (5.3) can
be writtenn*t! = M;nF.

5.2. Approximating the eigenvalue

The algorithm has already been discussed in [23]. We rduallthe growth rate is defined as the
unique real\ such that (5.1) admits solutions of the foni(z, z)e*r* with N > 0 andN (., x) is
periodic. We can approximate it thanks to:
Lemma 6 (Discrete Floquet theorem)
There exists a unique real and a unique sequence of vectdre”),cy , N* = (/\/f)
0<i<I
such that

I
NE>0, Y N =1, (5.4)
=0
k— (N*) is Np-periodic (5.5)
nk,  defined byn" = N*eMFA1 s solution to(5.3) (5.6)

Proof. The proof is standard and we recall it for the sake of compks. It is based on the Perron
Frobenius theorem. First we prove uniqueness. Supposing #xists such”, we have

nt = Myn®,
n2 = Mlnl = MlMonO,
o (5.7)
nt = MnF = MM,_, ... M, Myn®, (5.8)
nNT = MNTflMNTfZ e MlMonO. (59)
We define
M = MNT—lMNT—2 < My My,
thus, (5.9) reads™ = Mn°. O

13
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Lemma 7. The matrixM is nonnegative and primitive (and therefore is irreduc)ble

Proof. The nonnegativity is obvious. To prove the primitivity, tkey pointis/ + 1 > Ny and
IAt > a + 2At. For somes > 0 we have for any, if we denote byid, the identity matrix of

orderk,
0...0 11
Mk28< 1d, 0)—5W
Notice thatlV is the Wielandt matrix of ordef + 1 which is known to be primitive (see [14]).
Therefore for some, W? > 0 and thus foiy N > p,
M > cINT 7 aNT 0,

which yields the primitivity ofMI, the spectral radius of which, denoted herepby then positive.
We denote by its spectral radius. We haye> 0.

Back to the proof of the discrete Floquet theorem, we have

Nr — eANTAtNNT — eATNO — 6)\’T 0

n n-.

Hence we hav@ln® = ¢*'n°. This means that’ is a positive eigenvector d@fl associated to
a positive eigenvalue*”. From the Perron-Frobenius theoreed! = p andn® = A is the

(unigue) associated eigenvector. The solution is unique.

Conversely, if we know the Perron eigenvectorand the Perron eigenvalyeof M, then the

keN
sequence{N’“) defined by
NO =V,
NFHL — oA ATk

satisfies (5.4),(5.5) and (5.6) far= log(p(M)). O
For multiphase models, the idea is mainly the same. To compste’” the spectral radius of
M, thepower algorithms used. It converges thanks to the primitivitydt

5.3. Numerical results

First we present some numerical results to illustrate #mad2. We scald” = 1. We fix the value
of K, to 2 and test various periodic functiafn We plot the curves

a — )\F(a7 ’l/})a

a — Ap(a)

We recall that the eigenvalues for the Perron problem carrbetly computed thanks to lemma 3.
From theorem 2, we know that these curves cross:fooordinaten = 7', the second part of the
theorem tells us that we expect (locally) the curve Xprto be above the curve forp fora < T

14
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Name of the functior Formulation on the interva, 1] (%)
154 (SQuare wave) 1.8x0,1/21(t) + 0.1x[1/2,1] 1.81

Vi, (peak function) | 0.1 4 ht/éxos1(t) + (2 — ht/6)xs,261(t) | 1.99
Ysin (Sinusoidal) 1+ 0.9 cos(27t) 1.405

Table 1. Functiong for the simulations

and below it fora > T'. We plot the curves = A\p(a) andX = Ag(a, v) for our functionsy and
look at the crossing of curves aroufid(on the simulations]” = 1). We also give a more global
view of A\ (a, 1, ) andAp in figure 3 to illustrate the fact that the comparison is oolyel. Here,
the parameters andJ are respectively set tband0.3.

From the last part of the demonstration of theorem 2, we d@xpec

8)\F (CL, Q/ka) > a>\F (CL, wsq> > 8)\F<aa wsm>
Oa - Oa [ Oa -

9

we give figure (4) as a confirmation. Finally we give some satiahs to illustrate our remarks on
chronotherapy.

o
o}
=}

rrrrrr Perron
— Floquet

eigenvalues
o
[9)]
i

0.56:
0.54:
0.52:
0.50:
0.48:
0.46:
0.44:

0.42+

0.40 T T T T T T T T T T T T T T
0.80 0.85 0.90 0.95 1.00 105 110 115
minimal age for division a

Figure 2: Crossing of the Perron and Floquet curves (ddaaity = 1),,.

For the chronotherapy simulation we use the following pat@m we fix/ = 3 (we consider
S and G2 as a single phase). The parameisra periodic function (with strong variations on a
period to have a stronger effect of the paraméter(0, 1)). We compute the eigenvalue for a death
rate in phase 2 (phase S-G2) having the vatug + 6). We test several value efto determine

15
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S Perron
, — Floquet

eigenvalues
-
i

02+ T T T T T T T T T T T T T T T
02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
minimal age for division a

Figure 3: Crossing of the Perron and Floquet curvesg/fer ¢;,,.

T
0.80 0.85 0.90 0.95 1.00 1.05 110 115 1.20

Figure 4: Crossing of the Perron and Floquet curves/fer 1, (dash dot)g),, (dots) andy,
(long dash).
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whether or not the amplitude of the death rate changes thevebehavior of the eigenvalue with
respect td.The coefficients have the form:

Ki—>i+1(t7 x) - szz(t)X[al,oo[(x)a

where K, a; are positivey); is a positivel periodic function. We give a simulation for the case
described in the appendix (a case for which we can computécilyp f0°° Nogo(t, x)dx). We

fix K; = 10 for all i, a; = 10/24,a9 = 12/24 = 0.5,a3 = 2/24, ¥(t) = 1 + 0.9 cos(2nt)
andv; defined from) as in the appendix. We choosét) = cos®(2xt). With these choices of
coefficients, we compute

/ Nogy(t, x)dx = C' — C"sin(27t),
0

whereC andC” are positive constants. Therefore,

)\5,6 O

lim % = C + (' sin(276).

0.46
epsilon=0.5
0.44— .

0.42+

Floquet eigenvalue
o o o [=}
B (%)) (%) wu
il A

0.40
0.38
0-367 epsilon=1

0.34- —

0.3; T T T T T T T T T T T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

theta

Figure 5: Variation of the Floquet eigenvalue with respecdhe parametet for various amplitude
for fixed v and amplitude = 0.1, 0.5, 1 (from left to right).
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Concluding remarks

The results of the present paper show that the periodic @owitithe transition rate of cell cycle
models yields richer behaviors than in the case in which tindydeath rates are subject to a
periodic control [8]. In particular, the inequality of [8pds not carry over. Our results also indicate
that multiphase models are the simplest candidates tosepiréhe effects of chronotherapy.

A Appendix

Al. Existence theory for\

This part is dedicated to the demonstration of the existehtiee Floquet eigenvalue. Particularly,
we try to prove it under general hypothesis on the periodiction. For instance, a short adap-
tation of the demonstration given in [18] would be sufficiartthe case of a positive continuous
periodic functiony, but one would like to have the possibility of studying nonogtin functions
such as a square wave (which for instance could have vatlging the day and during the
night). We give a proof of the existence of the Floquet eigéune in the one-phase model. It can
easily be adapted for a multiphase-model with out deatls natesre the coefficients would have
the form K ;11 = Kit)i(t) X(a,,+oo[ With the same hypothesis on the functiafs We prove here
existence of a solution to three eigenproblems: the dirigetn@roblem

ON(t,2) + 0N (£, 2) + (A -+ K1) Xfassoct (2)) N (1, 7) = 0,
N(t,0) = 2K9(t) [ N(t,z)dz, (A10)
N>0, [ Ndr=1,
the dual eigenproblem
{ —00(t, x) — 0p0(t, ) + (A + KY(t) X0, +00[(2) )N (t, 2) = 2K1)(t) X{a,00[(2)P(2, 0), (ALD)
¢ >0, [*Nodr=1,
and the delay differential equation

P(t) = —(Ko(t) + NP(t) + 2Ke ™t — a)P(t —a), P >0, / Py —1. (A12)

We give a normalization foP to ensure uniqueness.

Theorem 8. For any positiveT-periodic bounded functiog # 0, a > 0 here exists a unique
A, N, ¢, P such thatP > 0 is solution to (3.5) andV > 0 is solutionto (3.2) vV > 0if ¢ is
positive).

The proof is based on the Krein-Rutman theorem (see [9] fetamce). We consider B-
periodic nonnegative bounded functign# 0. We adapt the proof from [18] to our case. First,

18
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using the methods of characteristics for the partial difféial equations, we reduce the eigenprob-
lems to integral equations a¥(¢,0), ¢(t,0) and P. We consider three operators depending on a
parametef. For a bounded-periodic functionM, we defineN; = £;(M) by

M) = 2K /00 Pt — x)e o KIS vl=atads Af (4 — 2)da, (A13)
No(t) = 2K / h P(t)e e KIS v=aa)ds A q (4 g d, (A14)
Ns(t) = 2K / Ooz/z(t + z)e re KIS ds A (¢ 4 1) da. (A15)

These operators are defined such thagifer A\, we get,

Pt) = Li(P)(1),
) = La(N(,0)(1),
) = Ls(o(,0))().

This means that the functions should be nonnegative eigéngeof these three operators associ-
ated to the eigenvalue

Lemma 9. For u > 0,
e L£; mapsLye, (0,7 into itself,
e L, L3 are continuous compact operators 6h,,.(0, T),
e [, L3 are strongly positive and, is nonnegative (strongly positiveujf > 0).

Proof. For M bounded, one has, since for> a, [ ¥(t)dt < (V)(z — a) + [|[¥]| T
Li(M)|oo < 25 —2eKWI=T | M|, = O| M| o
1£:i(M)]] (@) | Ml | Ml

For continuity and compactness we only explicit the proofife: 1, the casé = 3 is very similar.
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We considetM continuous and small,
Ni(t+h) = 2K / Wt + h — x)e o KISV hmatads Ag (g 4 p— g)d,

_ QK/ w<t - x>€f,u(:c+h)7K fal‘HL w(tfors)dsM(t o ZC)d:C,
a—h

a

— 9K w<t - x>€f,u(:c+h)fK f;’HL w(tf:chs)dsM(t o SC)d:C
a—h
+ 2K/ w<t _ x>€f,u(:c+h)7K fal‘Hl w(t*erS)dsM (t _ ZC)d:C,
_ Ah ok /oo w<t B x) (e_ll/(x+h)_Kf;+}L Y(t—z+s)ds e—;w:—K I w(t—x-l-s)ds)M(t . .T})dﬂf

+ 2K / N W(t — x)ere K ST tds g4 ) dy,
P A0}
We have bounds oA, andB;,,
| An| < 2K |||l M[[och,
|Br| < K|[¢[lochlMlloo < CK|[)]|os|[M]|och-

Therefore, using (Al.),(Al.), we obtain the continuity ahd compactness of operatdy. Using
the same techniques we can prove continuity and compacbhegeeratorL;. The operatoi’,
needs regularity o to be compact (and continuous). All these operators ardip@siWe can
apply the Krein-Rutman theorem (weak form [9]). We denatep; the spectral radii of respec-
tively £, L£3. They are positive (sincé(1) > ¢ > 0, p; > ¢), so are the associated nonnegative
eigenfunctions. IfM; (¢) = 0, then

Yt —x)My(t —x) =0, for = >a,
which leads ta) M; = 0 andp; M; = 0.ThereforeM; and similarly M3 can not vanish.

Lemma 10.
Lo(WMy) = prip My,

pP1 = pP3-

Proof. The first point is a straightforward computation. The secpouht uses the duality of
operatorsC, andLs,
T T
| ewmo.Mivi = [ oMo
0 0

o / BOM (OMs(Ddt = py / M (1) M(t)dt
0

2



J. Clairambault, S. Gaubert Comparison of Perron and Floquet eigenvalues
and T. Lepoutre in age structured cell division cycle models

The existence of a solution to (3.5) is equivalent to theterise of a positive fixed point a; for
i = A, therefore, we need to findsuch thap, () = 1. Foru = 0, we have

Ls(1) = 2.

Thereforep, (0) = 2. As p is a decreasing function efandp; (co) = 0, there exists some positive
A such thatp;(\) = 1. The solution to (3.5) is then given by sughand P = M;. Then, the
function N definedN (¢,0) = ()M, (t) and the characteristics

Y

N(t, ,CL’) = N(t —x, 0)67)\17]09” Kp(t—z+5)X[a,00[(5)ds

is solution to (3.2). We remark then, as> 0, that N (¢, oo) = 0. Similarly, we defines by

0t.0) = [ KU+ = D)ool 0)0l0 4y = 2, 0)c AT i

This is a solution to (A11).

A2. Explicit solutions for the multiphase eigenproblem

In the followingT = 1.

We give here explicit solutions to the eigenproblem in thdtiple phases case. We do not
give details for the demonstration. We considex phase model without death terms, where the
transition terms have the form:

Here,); is a positivel-periodic function satisfyingv,;) = 1. We consider the following very
specific case: we choosg, as, a3 > 0 such thata; + as + a3 = 1, and we choose); in the
following way, for a fixed positiva-periodic functiony,

Ua(t) = ¥(t —ay),

"Lpg(t) = ’Lp(t — 9 — CL3).
To explain the form of the coefficients, we make the followiegnark: if we denoteP,(t) =
faio N;(t,z)dz (the same idea as for the one phase model),tperiodic functionsP; satisfies
a system of delay differential equations and siage- a, + a3 = 1, the 1-periodic functionsy);
defined byQ, (t) = Pi(t), Qa2(t) = Py(t+as), Qs(t) = P3(t+as+ag) satisfy a system of ordinary
differential equations.

NG —X — K1) 0 2Kz p(t) \ [ Qult)
2 @) | == KePm() —Kap(t) - A 0 @a(t) ] -
Qs(t) 0 Kye 2sap(t)  —Kgip(t) — A Qs(t)
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We denotéel/(t) the above matrix. Due to the special form of the functionsve haveM (¢) M (') =
M(t'")M(t), for all t, . Therefore we can write

Q) = e ([ 26185 ))

The vectorQ(t) is 1-periodic, thus,Q(0) has to be a positive eigenvector @fp(fo1 M(s)ds)
associated to the eigenvalueThe matriXexp(fo1 M (s)ds) has eigenvalue if and only if

(K1 4+ N (Ky + N (K3 + ) — 2K, Ky Kge MNaitaztas) — (A16)
This leads ta), (t) = ¢* o @)=V, (0), whereQ(0) is a positive vector satisfyingj M (s)dsQ(0) =
0. Then, we can comput&;(¢) and N;(¢,0). Finally, using the methods of characteristics, the
eigenfunctionsV; are given, up to a normalization, by

Ni(t,z) = 2K3Usth(t +ay — )Mo ) DdsAe— i Ka (b= )Xoy ool ()

No(t,z) = K Uy(t — x)e)\fot*””(w(s)—l)ds—)\a:—foz Ko(t=a+5=02)X{as 0 (8)d5

No(t,z) = KolUsth(t — ag — x)er o 20— Dds—da— [ Ka(t—o-+s-02-a3)X(ag ool (s)ds
where
U, 1A
Kie "%2
o W T
Us 2K316_’\“1

The adjoint eigenfunctions are given by the formulas

t—ag9g—ag—min(z,aq) .
(bl (t, ZL’) _ e—)\fo 2793 Y (3p(s)—1)ds+A mln(m,al)‘/l’
t—min(x,a9) .
¢2(t’ {L‘) _ 6—)\f0 2V (4h(s)—1)ds+\ mln(x,ag)VYQ’
(b3(t, ZL’) _ 67)\ fgiaQimin(z’GS)(w(s)fl)der)\ min(:r,ag)%’
where
‘/1 K1 A
+
VQ - Klel—/\;ll
2Kze” "3
V3 1?34—)\

Basically, the ideas for the computationsggfare the same, based on the following remark, as

¢z‘(t7 x) = / KZ.HHl(t +y,x+ y)¢i+1(t + v, 0)67 s )\+Ki~>i+1(ter/,:Eer/)dy/dy’
0
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(with a factor2 for i = 3), we haveg;(t,z) = ¢, a;) for a > a;. This leads to a differential
equation forg, (¢, 0). Details are left to the reader. In this case, we comgijiteV; (¢, z)¢;(t, x)dx.
As we havep;(t, z) = ¢;(t, a;) for z > a;,

/ T Ni(t 2)64(t, 2)dr = / " Nt 2t 0)de + () / Nt 2)d.
0 0 a;
We have

/ Nyt o) (tx) = (Ky+\)e / Wt — 2+ an)ds + U Ve
0 0
/ Ny(t, z)po(t, x)dr = (K + N)e ™ / Y(t — z)dx + UsVae ™,

0 0

o] as
/ Ni(t,z)ps(t, x)dr = (K + \)e ™ / Y(t — ag — x)dx + UsVae s,
0 0

Particularly, in this casef;,” N;¢dz is not always constant. We denokgt) = fot(z/J(s) — 1)ds, it
is a1 periodic function. We also denotg¢ = U;Vie* C = (K, + \)e >, both these constants
are positive,

/00 Ni(t,z)pi(t,x) = Cla +¥(t) =V (t+ay)) + Cy,
/00 Ny(t,z)po(t,x)de = Clag + VY(t — ag) — VY(t)) + Co,

/00 Ns(t,x)ps(t, x)de = Clag+V(t+ar) —V(t —as))+ Cs.

For instance, using the parameters of the simulation, we,lg¢) = %2 sin(2nt), as = 0.5,

2

/ Nogy(t, x)dx = (Cag + Co) — 20? sin(27t) = C' — Oy sin(27t),
0 m

1 o] 1 1
/ v(t + 0) / Nooo(t, z)dx = C’/ cos® (27 (t + 0))dt — C’é/ cos® (27 (t + 0)) sin(2nt)dt,
0 0 0 0
a short computation leads to

1 3 15 5
v(t) = D) cos(67t) + 2 cos(4mt) + 3 cos(27t) + o

therefore, X
/ v(t + 0) / Nogo(t, x)dx = C" — C sin(270),
0 0
WhereC” > CY > 0. Therefore, in this particular case,

g0 _ 0
lim % = CYy sin(270) — C".
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