
Integro-differential models Optimisation

Drug resistance in cancer II:
Perspectives in therapeutic control

Luis Almeida, Rebecca Chisholm, Jean Clairambault†, Tommaso Lorenzi,
Alexander Lorz, Benoît Perthame, Camille Pouchol, Emmanuel Trélat

Mamba INRIA team & Laboratoire Jacques-Louis Lions, UPMC, Paris

Nonlocal aspects in mathematical biology, Będlewo, January 27, 2016

†http : //who.rocq.inria.fr/Jean.Clairambault/



Integro-differential models Optimisation

A general framework to optimise cancer therapeutics:
designing mathematical methods along 3 axes

• Modelling the behaviour of growing cell populations on which anticancer drugs
act (the targeted cell populations): proliferating tumour and healthy cell
populations, including representing functional (not necessarily molecular) targets
for pharmacological control

• (When PK-PD models are available) Modelling the external control system, i.e.,
fate of drugs in the organism, at the level of functional targets (proliferation,
death, differentiation) in cell populations by functional, rather than molecular,
pharmacokinetics-pharmacodynamics (PK-PD)

• Optimising therapeutic controls: dynamically optimised control of theoretical
drug delivery flows representing time-dependent objectives and constraints,
making use of known or hypothesised differences between cancer and healthy
cell populations
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Choosing the constraint to be represented determines the
model of proliferation used to optimise drug delivery,

aiming to avoid the two main pitfalls of pharmacotherapy:

• Toxicity issues. Limiting toxic side effects to preserve healthy cell populations
leads to representing proliferating cell populations by ordinary differential
equations, or by age-structured models: physiologically structured partial
differential equations

• Drug resistance issues. Limiting emergence of drug-resistant cell subpopulations
in tumour tissues leads to using (evolutionary) phenotypic trait-structured
proliferation: physiologically structured evolutionary integro-differential
equations

• In fact, one should consider the two issues simultaneously, i.e., two similarly
structured cell populations, healthy and cancer, with different characteristics
w.r.t. to drug effects and to evolution towards resistance: phenotypic stability of
healthy cell populations vs. plasticity of cancer cell populations
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Modelling framework: structured population dynamics
• Description of evolution of a population in time t and in relevant trait x

• ‘Structure variable’ x : trait chosen as bearing the biological variability at stake

• Variable : n(x , t) population density of individuals bearing trait x at time t

• (1) Evolution in numbers of individuals constituting the population

t 7→ ρ(t) =

∫ 1

0
n(x , t) dx (if, e.g., x ∈ [0, 1])

• (2) Asymptotics of distribution of the trait in the population

x 7→ limt→+∞
n(x , t)

ρ(t)

• Cancer cell populations: (1) tumour growth; (2) asymptotic distribution of trait

• Space is not necessarily a relevant structure variable when studying drug control
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Drug effects on cell populations and their optimisation
1st IDE model, mutations, one cytotoxic drug: cancer cells

• x = level of expression of a drug resistance phenotype (to a given drug)
• nH(x , t), nC (x , t) densities of cell populations (H=healthy, C=tumour)

∂

∂t
nC (x , t) =

[ growth︷ ︸︸ ︷
(1− θC ) r(x)−

death︷︸︸︷
d(x) −

drug effect︷ ︸︸ ︷
u(t)µC (x)

]
nC (x , t)

+θC

birth with mutation︷ ︸︸ ︷∫
r(y)MσC (y , x)nC (y , t)dy

• r(x) = basic reproduction rate, d(x) = basic death rate; we assume
r(0) > d(0) > 0, r ′(·) < 0, r(+∞) = 0, d ′(·) > 0,
• 0 ≤ θH,C < 1 (θC > θH) is the proportion of divisions with mutations,
• µ[H,C ](x) (with µ′C (·) < 0) represents the phenotype-dependent response to
cytotoxic drug, with concentration u(t), designed to target cancer cells.
• Note: assumptions r(·) > 0, µC (·) > 0, µ′C (·) < 0 and r ′(·) < 0 (cost of resistance:
the higher is x , the lower is proliferation) represent an evolutionary double bind on
resistant cancer cell populations, i.e., an evolutionary trade-off between growing (thus
getting exposed) and keeping still (thus surviving)
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1st IDE model, mutations, one cytotoxic drug: healthy cells

∂

∂t
nH(x , t) =

[ growth with homeostasis︷ ︸︸ ︷
1− θH(

1 + ρ(t)
)β r(x) −

death︷︸︸︷
d(x) −

drug effect︷ ︸︸ ︷
u(t)µH(x)

]
nH(x , t)

+
θH(

1 + ρ(t)
)β

birth with mutation︷ ︸︸ ︷∫
r(y)MσH (y , x)nH(y , t)dy ,

where the total population is defined as

ρ(t) = ρH(t) + ρC (t); ρH(t) =
∫∞
x=0 nH(x , t)dx ; ρC (t) =

∫∞
x=0 nC (x , t)dx .

• β > 0 to impose healthy tissue homeostasis,

• u(t) denotes the instantaneous dose (concentration) of chemotherapy. We assume
in this model that its effect is cytotoxic, i.e., on the death term only.
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IDE model, mutations, one cytotoxic drug: illustrations (1)
[Sensitive cell population case: illustration of Gause’s exclusion principle]
Theorem: Monomorphic evolution towards drug sensitivity, illustrated here with
θH = 0, (no mutations) and µH = 0 (no drug-induced resistance)

Left panel: starting from a medium phenotype x = 0.5, level sets of a drug-sensitive
population in the (t, x) plane. Right panel: asymptotic distribution of this
drug-sensitive population according to the drug resistance phenotype x.

(Lorz et al., M2AN 2013)
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IDE model, mutations, cytotoxic drug: illustrations (2)
[Resistant cell population case: Gause’s exclusion principle again]
Theorem: Monomorphic evolution towards drug-induced drug resistance, here with
θC = 0, µC (·) > 0, r ′(·) < 0, µ′C (·) < 0 (costly drug-induced resistance)

Left panel: starting from a medium phenotype x = 0.5, level sets of a drug- resistant
population in the (t, x) plane. Right panel: asymptotic distribution of this
drug-resistant population according to the drug resistance phenotype x.

(Lorz et al., M2AN 2013)
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IDE model, no mutations: phenotype-structured non-local
Lotka-Volterra model with 2 drugs, cytotoxic u1(t),

cytostatic u2(t), bidimensional resistance phenotype (x , y)

∂

∂t
nC (x , y , t) =

[ rC (x , y)

1 + ku2(t)
− dC (x , y)IC (t)− u1(t)µC (x , y)

]
nC (x , y , t)

Environment: IC (t) = α
∫ 1
0

∫ 1
0 nC (x , y , t) dx dy + β

∫ 1
0

∫ 1
0 nH(x , y , t) dx dy

Sensitive cell population case:

Convergence toward total sensitivity

Resistant cell population case:

Convergence toward 2 resistant phenotypes

(Lorenzi & Lorz, unpublished)
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Same phenotype-structured non-local Lotka-Volterra model
with 2 drugs and one (scalar) resistance phenotype x

∂

∂t
nH(x , t) =

[ rH(x)

1 + kHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

]
nH(x , t)

∂

∂t
nC (x , t) =

[ rC (x)

1 + kCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

]
nC (x , t)

Environment: IH(t) = aHH .ρH(t) + aHC .ρC (t), IC (t) = aCH .ρH(t) + aCC .ρC (t),

with ρH(t) =
∫ 1
0 nH(x , t) dx , ρC (t) =

∫ 1
0 nC (x , t) dx , u1 cytotoxic, u2 cytostatic drugs.

Simultaneous combinations of the 2 drugs, with increasing equal constant doses

Healthy cells: preserved Cancer cells: eventually extinct
‘Pedestrian’s optimisation”
(Lorz et al. M2AN 2013)



Integro-differential models Optimisation

“What does not kill me strengthens me”
• Note that in the representation of the drug targets on cancer cell populations in

the integro-differential equation, with the numerical values chosen for the target
functions µC and rC standing for the sensitivities to drugs u1 and u2, respectively[ rC (x)

1 + kCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

]
nC (x , t),

the cytostatic drug u2 only slows down proliferation (softly slowing down
velocity in the cell division cycle), but does not arrest it, at least at low doses. . .

• . . . whereas the cytotoxic drug u1 kills the cells by directly (additively) impinging
on the death term, hence it is actually a direct life threat to the cell population,
that defends itself by making its resistance phenotype x increase.

• This resistance-inducing killing effect should be avoided as long as possible. In
summary: limit proliferation but do not try too hard to kill cells, lest the cell
population should become resistant, but give cytotoxics only at high doses
during a short interval of time (MTD), thus avoiding to trigger resistance.

• An alternative to such use of MTD (maximum tolerated dose) towards the end
of the chemotherapy course is metronomics, that also prevents developing
resistance by giving low doses of cytotoxics... expecting that the population,
thwarted in its proliferation, will be kept in check by the immune system.
However this has not been represented in an optimal control perspective thus far.
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Optimal control algorithms to improve drug delivery in
cancer cell populations (Emmanuel Trélat, LJLL, UPMC)

Same phenotype-structured non-local Lotka-Volterra model, but instead of a
‘pedestrian’s optimisation’ (i.e., merely using grids), solving an optimal control
problem: determining control functions u1 and u2 in L∞(0,T ), satisfying the
constraints

0 ≤ u1(t) ≤ umax
1 , 0 ≤ u2(t) ≤ umax

2 , (1)

and minimising the cost functional

CT (u1, u2) =

∫ 1

0
nC (x ,T ) dx + γ1

∫ T

0
u1(t) dt + γ2

∫ T

0
u2(t) dt, (2)

where (nC (·, ·), nH(·, ·)) is the unique solution of the system of PDEs corresponding to
the controls u1 and u2, such that nH(0, ·) = n0H(·) and nC (0, ·) = n0C (·) and where the
trajectory t 7→ (nC (·, t), nH(·, t)) is subject to the dynamic state constraint

ρH(t)

ρH(t) + ρC (t)
≥ θ. (3)

(in simulations, e.g., θ = 0.4) We use a direct approach, discretising the whole
problem and then solving the resulting constrained optimisation problem with AMPL
(automatic differentiation) combined with IPOPT (expert optimisation routine)
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Numerical solution to this first optimal control problem
Distribution of populations according to phenotype (black: initial; red: final; blue:
intermediate steps of the optimisation algorithm)

Left and centre panels: optimal drug flows for u1(t) (cytotoxic) and u2(t) (cytostatic)
Right panel: satisfaction of dynamic constraint
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Introducing ‘adaptive therapy’, following Robert Gatenby

• Principle: keep alive an objective ally in
the enemy place

• Relies on competition for resources
between resistant (weakly proliferative)
and sensitive cancer cells in the tumour

• Aim: avoid extinction of sensitive tumour
cells, that are able to outcompete
resistant tumour cells provided that not
too high doses of a drug are delivered

• Method: deliver relatively low doses of
the drug to prevent thriving of too many
sensitive cells and limit emergence of too
many (unbeatable) resistant cells

• Objective: controlling total (sensitive +
resistant) tumour cell population

• Caveat: not necessarily applicable in the
case of fast growing tumours (e.g., acute
myeloblastic leukaemia)
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Second optimal control problem, same IDE model (1)
Environment: IH(t) = aHH .ρH(t) + aHC .ρC (t), IC (t) = aCH .ρH(t) + aCC .ρC (t),

with ρH(t) =
∫ 1
0 nH(x , t) dx , ρC (t) =

∫ 1
0 nC (x , t) dx .

Same IDE model with evolution in phenotype x due to effects of cytotoxic drug u1(t)

∂

∂t
nH(x , t) =

( rH(x)

1 + αHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

)
nH(x , t)

∂

∂t
nC (x , t) =

( rC (x)

1 + αCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

)
nC (x , t)

0 ≤ u1(t) ≤ umax
1 , 0 ≤ u2(t) ≤ umax

2

minCT (u1, u2) = ρC (T ) =

∫ 1

0
nC (x ,T ) dx

under the additional constraints
ρH(t)

ρH(t) + ρC (t)
≥ θH , ρH(t) ≥ ρH(0)
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Second optimal control problem, same IDE model (2)

Furthermore, we may add the “adaptive” constraint

ρCS(t)

ρC (t)
≥ θCS , where

ρCS(t) =

∫ 1

0
(1− x)nC (t, x) dx

may be seen as the total number at time t of tumour cells that are sensitive, and

ρCR(t) =

∫ 1

0
xnC (t, x) dx

as the total number at time t of tumour cells that are resistant.

... but this newly added constraint does not in fact change anything to the results of
simulations...



Integro-differential models Optimisation

Second optimal control problem: theoretical results

Theorem
Under these conditions, the optimal trajectory in large time T > 0 consists of 3 arcs:

1. A first transient short-time arc, consisting of reaching the boundary
ρH (t)

ρH (t)+ρC (t)
= θH , with u1 = 0 and with an appropriate control u2.

2. A middle long-time arc: u1 = 0, u2 ' Cst, this constant being tuned so that

ρH(t)

ρH(t) + ρC (t)
= θH .

At the end of this long-time arc, we have

nH(·, t) ' ρ∞H δx∞
H
, nC (·, t) ' ρ∞C δx∞

C
(δx∞

[H,C ]
unit Dirac masses)

for some constant concentrations ρ∞H and ρ∞C at some given respective
phenotypes x∞H and x∞C , i.e., healthy and tumour cell populations have
concentrated and do not evolve neither in time nor w.r.t. phenotype.

3. A last transient short-time arc: u1 = umax
1 , u2 = umax

2 , along which the
population of healthy and of tumour cells is very quickly decreasing.
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Simulations illustrating this theorem

Simulation with T = 30

(optimisation using
AMPL-IPOPT)
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Interpretation
Neglecting the first transient arc, in a first approximation the optimal trajectory is
made of two parts, the first one with u1 = 0 and the second one with u1 = umax

1 .

Main idea:
1. Let the system naturally evolve to a phenotype concentration (long-time phase).
2. Then, apply the maximal quantity of drugs, during a short-time phase, in order

to eradicate as many tumour cells as possible.

The second short-time phase is all the more efficient as the phenotypes are more
concentrated (hence, as the time T is large).

We have two facts to prove: 1) convergence and concentration; 2) optimality of the
concentrated state to start the final drug delivery phase.

Looking for the proof of the theorem, beginning with the simpler case of constant
controls, we investigated different tracks. The first attempt failed, but its main
ingredients were used in the actual proof (still with constant controls), which relies on
the design of a Lyapunov functional.
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First attempt: constant controls, asymptotic behaviour
Lemma
Assume that u1 = Cst = ū1 and that u2(t) = Cst = ū2. Then there exist traits x∞H
and x∞C such that for some constants ρ∞H and ρ∞C , ∀(nH(·, 0), nC (·, 0))
nH(·, t) −→

t→+∞
ρ∞H δx∞

H
, nC (·, t) −→

t→+∞
ρ∞C δx∞

C
.

Proof. ∂

∂t
nH(x , t) =

[ rH(x)

1 + kHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

]
nH(x , t)

∂

∂t
nC (x , t) =

[ rC (x)

1 + kCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

]
nC (x , t)

where we recall that IH(t) = aHH .ρH(t) + aHC .ρC (t), IC (t) = aCH .ρH(t) + aCC .ρC (t),

and ρH(t) =
∫ 1
0 nH(x , t) dx , ρC (t) =

∫ 1
0 nC (x , t) dx . Firstly, we tried to show,

integrating in x and taking lower and upper bounds w.r.t. x , that (ρH(t), ρC (t))
satisfy integral inequalities with at each bound the solutions of a coupled system of
non-explosive Riccati equations (aka Lotka-Volterra with competition and coexistence)

ż1(t) = z1(t)(a1 − b11z1(t)− b12z2(t))

ż2(t) = z2(t)(a2 − b22z2(t)− b21z1(t)).

However, although this argument works in 1D [and in 2D in the case of mutualism,
not competition], it implies only the convergence of sub- and supersolutions.
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Asymptotic behaviour, first attempt to the proof (1)
Unfortunately, even if we had such boundaries for the solutions, oscillatory behaviour
between boundaries could not be excluded! Note that if nevertheless convergence of
(ρH(t), ρC (t)) were granted, then concentration would then follow from the
exponential behaviour of nH(·, t) and nC (·, t), as we will show next.

1. Convergence towards what? Assume that u1(t) = Cst = ū1, u2(t) = Cst = ū2 and
that for any initial population of healthy and of tumour cells, convergence of
(ρH(t), ρC (t)) when t → +∞ is taken for granted. Then the equilibrium point
(ρ∞H , ρ∞C ) towards which (ρH(t), ρC (t)) converges can be exactly computed as follows.
Let a1 ≥ 0 and a2 ≥ 0 be the smallest nonnegative real numbers such that

(∀x)
rH(x)

1 + αH ū2
− ū1µH(x) ≤ dH(x)a1 and

rC (x)

1 + αC ū2
− ū1µC (x) ≤ dC (x)a2.

(Remark: for ū1, ū2 fixed, call RH,C (x0, a1,2) ≤ 0 the two inequalities above and
assume ab absurdo that ∀a ∈ R+, ∃x0 s.t. RH,C (x0, a) > 0, then by continuity, this
would be true on a whole interval around x0, hence there would be exponential
blow-up of the population, which is excluded by the convergence hypothesis.)

Then (ρ∞H , ρ∞C ) is the unique solution of the system (invertible as a consequence of the
fact that intraspecific competition is assumed higher than interspecific competition)

aHHρ∞H + aHCρ∞C = a1,
aCHρ∞H + aCCρ∞C = a2.
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Asymptotic behaviour, first attempt to the proof (2)

2. Concentration. Furthermore, if AH ⊂ [0, 1] (resp., AC ⊂ [0, 1]) is the set of all
points such that equalities hold in (1), then the supports of the probability measures
νH(t) =

nH (x,t)
ρH (t)

dx and νC (t) =
nC (x,t)
ρC (t)

dx converge respectively to AH and AC . In
particular, if AH is reduced to a singleton x∞H , and if AC is reduced to a singleton x∞C
(cases of our simulations), then νH(t) and νC (t) converge for the vague topology
respectively to the Dirac masses δx∞

H
and δx∞

C
for some x∞H ∈ [0, 1] and x∞C ∈ [0, 1]

as t tends to +∞.

This theorem (that still remains to be proved) asserts that, under generic conditions
that are satisfied here with the numerical data that we have chosen and under a
constant drug treatment, the populations of healthy and of tumour cells concentrate
to some respective phenotypes that can be exactly computed.
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Asymptotic behaviour, first attempt to the proof (3)
Indeed, by integration, we have

nH(x , t) = n0H(x) exp
(( rH(x)

1 + αH ū2
− ū1µH(x)

)
t

− dH(x)

(
aHH

∫ t

0
ρH(s) ds + aHC

∫ t

0
ρC (s) ds

))
,

nC (x , t) = n0C (x) exp
(( rC (x)

1 + αC ū2
− ū1µC (x)

)
t

− dC (x)

(
aCH

∫ t

0
ρH(s) ds + aCC

∫ t

0
ρC (s) ds

))
.

Then, since for large t, we have
∫ t
0 ρH(s) ds ∼ ρ∞H t and

∫ t
0 ρC (s) ds ∼ ρ∞C t, the

asymptotic behaviour of nH(x , t) and of nC (x , t) depends on the functions

bH(x) =
rH(x)

1 + αH ū2
− ū1µH(x)− dH(x)(aHHρ∞H + aHCρ∞C ),

bC (x) =
rC (x)

1 + αC ū2
− ū1µC (x)− dC (x)(aCHρ∞H + aCCρ∞C ),

whose maxima on [0, 1] may be shown to be both zero. The points at which these
maxima are attained (AH and AC , generically singletons x∞H and x∞C ) are the supports
of the announced Dirac masses.



Integro-differential models Optimisation

Proof with constant controls, using a Lyapunov functional
However, convergence was hitherto only taken for granted! We will in the sequel prove
at the same time convergence and concentration by designing a Lyapunov functional.

Theorem
Assume that u1 and u2 are constant: u1 ≡ ū1, and u2 ≡ ū2. Then, for any positive
initial population of healthy and of tumor cells, (ρH(t), ρC (t)) converges to the
equilibrium point (ρ∞H , ρ∞C ), which can be exactly computed as follows.
Let a1 ≥ 0 and a2 ≥ 0be the smallest nonnegative real numbers such that

rH(x)

1 + αH ū2
− ū1µH(x) ≤ dH(x)a1 and

rC (x)

1 + αC ū2
− ū1µC (x) ≤ dC (x)a2.

Then (ρ∞H , ρ∞C ) is the unique solution of the (invertible) system
aHHρ∞H + aHCρ∞C = a1,
aCHρ∞H + aCCρ∞C = a2.

Let AH ⊂ [0, 1] (resp., AC ⊂ [0, 1]) be the set of all points x ∈ [0, 1] such that equality
hold in one of the inequalities above. Then the supports of the probability measures

νH(t) =
nH(t, x)

ρH(t)
dx and νC (t) =

nC (t, x)

ρC (t)
dx

converge respectively to AH and AC as t tends to +∞.
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Basis of proof (constant controls): a Lyapunov functional

Firstly, the correspondence (a1, a2) 7→ (ρ∞H , ρ∞C ) being bijective and controls ū1, ū2
being constant and omitted in the sequel, one can write the two inequalities above as

∀x ∈ [0, 1], RH(x , ρ∞H , ρ∞C ) ≤ 0 and ∀x ∈ [0, 1], RC (x , ρ∞C , ρ∞H ) ≤ 0

with, furthermore

∀x ∈ AH , RH(x , ρ∞H , ρ∞C ) = 0 and ∀x ∈ AC , RC (x , ρ∞C , ρ∞H ) = 0

Then, for mH,C :=
1

dH,C
, define the Lyapunov functional V (t) := VH(t) +VC (t) where

VH,C (t) = λH,C

∫ 1

0
mH,C (x)

[
n∞H,C (x) ln

( 1
nH,C (t, x)

)
+
(
nH,C (t, x)− n∞H,C (x)

)]
dx .

where n∞H,C (x) are measures with support in AH,C such that
∫ 1

0
n∞H,C (x) dx = ρ∞H,C ,

the positive constants λH and λC being adequately chosen later to make V decreasing
along trajectories.
. . . Next: see Camille Pouchol’s presentation tomorrow!
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Non-constant controls, towards optimality

See also Camille Pouchol’s presentation tomorrow
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Second fact: an alternative optimal control problem

Conjecture
Consider the following optimal control problem on the short-time interval [t1,T ]:

Find the best possible distribution nC (·, t1) such that, applying along
[t1,T ] the maximal quantity of drugs, we minimise the quantity ρC (T ).

The answer is (likely) a Dirac mass:

nC (·, t1) = δx∞
C
.

This conjectured lemma, that ‘looks true on simulations’, implies that, in order to kill
as many tumour cells as possible, the drugs are most efficient when the tumour cells
are concentrated on a given phenotype.

These two facts, combined with other remarks (showing for instance that T must be
large, that the controls must be almost constant, etc.), allow to prove the theorem.
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About the ‘cooking recipes’ used in the simulations (1)

In this version of the simulations (used throughout in the sequel)

rH(x) =
1.5

1 + x2
, rC (x) =

3
1 + x2

,

dH(x) =
1
2

(1− 0.1x), dC (x) =
1
2

(1− 0.3x),

umax
1 = 3.5, umax

2 = 7,

and the initial data are

nH(0, x) = C0 exp(−(x − 0.5)2/ε), nC (0, x) = C0 exp(−(x − 0.5)2/ε),

with ε > 0 small (typically, we will take either ε = 0.1 or ε = 0.01), and where C0 > 0
is such that

ρH(0) + ρC (0) = 1.
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About the ‘cooking recipes’ used in the simulations (2)

The closer to 1 is the variable x , the more resistant are the tumour cells. The choice
done in Lorz et al. 2013 (where no optimal control is considered) is

µH(x) =
0.2

0.72 + x2
, µC (x) =

0.4
0.72 + x2

.

Note that, with this choice of functions, if we take constant controls u1 and u2, with

u1(t) = Cst = umax
1 = 3.5, u2(t) = Cst = 2,

then we can kill all tumour cells (at least, they decrease exponentially to 0), and no
optimisation is necessary - not clinically realistic.
So that function µC was modified to be zero for x close to the maximum value of the
drug resistance phenotype (namely 1), becoming µC (x) = max

( 0.9
0.72 + 0.6x2

− 1, 0
)
.
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About the ‘cooking recipes’ used in the simulations (3)
The environment variables I[H,C ](t) defined by

IH(t) = aHHρH(t) + aHCρC (t),

IC (t) = aCHρH(t) + aCCρC (t),
(1)

and

ρH(t) =

∫ 1

0
nH(x , t) dx , ρC (t) =

∫ 1

0
nC (x , t) dx .

have been chosen such that

aHH = 1, aCC = 1, aHC = 0.07, aCH = 0.01, αH = 0.01, αC = 1,

which means in particular that in the limiting logistic terms in the model, intraspecific
competition is overwhelmingly higher than interspecific competition, i.e., cell growth is
mainly limited by access to resources, and very little by frontal competition between
cancer and healthy cells, a choice done on biological grounds (cancer cells and healthy
cells are not thriving on the same metabolic niche, e.g., aerobic vs. glycolytic
metabolisms). As a consequence, as in classical Lotka-Volterra models with
competition, the choice of these parameters will lead in the simulations to asymptotic
coexistence of the two species, healthy and cancer, in a non trivial equilibrium state.
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Comparison with “almost periodic” therapeutic strategies

On the right: drugs given
almost periodically, within
T = 60.
→ Far less efficient!!

ρC (T ) ' 0.03

whereas using the previous
strategy we had

ρC (T ) ' 10−6

(optimisation using
AMPL-IPOPT)



Integro-differential models Optimisation

Limitations of this optimisation procedure, owing to the
fact that the trait represents resistance to only one drug

• The model assumes one trait of resistance corresponding to one cytotoxic drug.

• However, overcoming resistance using such strategy may not be successful if
too many types of resistance coexist, due to high phenotype heterogeneity.

• Phenotype heterogeneity (e.g., multiclonality) within the tumour may reduce
such strategy to nothing, unless a multidimensional phenotype is considered.

• ... Unless also one could act very early to avoid the development of transient
drug-resistant cell clones by epigenetic drugs or metabolism-modifying strategies.

(AML relapse, cf. Ding et al.Nature 2012)
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Extension of the IDE model: tumour micro-environment
Breast cancer cell line MCF7 co-cultured with adipocytes (work 2015)

	
  

Control by drugs: cytostatic vr (t), cytotoxic vd (t),
plus blockade of receptors to intercellular soluble factors ϕA(t), ϕC (t) by other drugs,
e.g., oestrogen receptor blockers wsC (t), antiinflammatory molecules wsA(t)

∂

∂t
nC (u, t) =

[ rC
1 + vr (t)

+ ϕA(t)
sC (u)

1 + wsC (t)
− (1 + vd (t))dC (u)ρC (t)

]
nC (u, t),

∂

∂t
nA(x , t) =

[
rA + ϕC (t)

sA(x)

1 + wsA(t)
− dAρA(t)

]
nA(x , t).

(Camille Pouchol’s PhD thesis 2015-. . . )
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Other extensions: dealing with the immune response

• Remarkable recent and longlasting therapeutic results have been obtained in
various cancers by using immune checkpoint inhibitors (anti-CTLA-4, anti-PD1,
anti-PDL1), monoclonal antibodies that inhibit inhibition of immune effector
cells, see, e.g., Naidoo et al. in Br J Cancer 2014

• However, remarkable though they are, these results remain limited, long
survivors (18 months) in melanoma passing from 0 to 25-40 % in the best cases
(Nivolumab in melanoma without BRAF mutation, C. Robert NEJM 2015)

• Using chemotherapies to decrease cancer cell populations, not to eradicate
them, but to make them amenable to be kept in check by the immune system,
raises reasonable hopes to increase these (already remarkable) results

• This calls for models of the immune response in cancer to optimise cancer
treatments by combining chemo- and immunotherapies (another ongoing PhD
thesis at LJLL)
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