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A general framework to optimise cancer therapeutics:

designing mathematical methods along 3 axes

® Modelling the behaviour of growing cell populations on which anticancer drugs
act (the targeted cell populations): proliferating tumour and healthy cell
populations, including representing functional (not necessarily molecular) targets
for pharmacological control

® Modelling the external control system, i.e., fate of drugs in the organism and
their effects on healthy and tumour cell populations either by molecular PK-PD
(pharmacokinetics-pharmacodynamics) models or merely at the level of their
functional targets, by their effects on proliferation, death, differentiation

® Optimising therapeutic controls: dynamically (=time-varying) optimised control
of theoretical drug delivery flows representing time-dependent objectives and
constraints, making use of known or hypothesised differences between cancer

and healthy cell populations




Choosing the constraint to be represented determines the

model of proliferation used to optimise drug delivery, aiming
to avoid the two main pitfalls of pharmacotherapy:

® Toxicity issues. Limiting toxic side effects to preserve healthy cell populations
leads to representing proliferating cell populations by ordinary differential
equations, or by age-structured models: physiologically structured partial
differential equations

® Drug resistance issues. Limiting emergence of drug-resistant cell subpopulations
in tumour tissues leads to using (evolutionary) phenotypic trait-structured
proliferation: physiologically structured evolutionary integro-differential
equations

® |n fact, one should consider the two issues simultaneously, i.e., two similarly
structured cell populations, healthy and cancer, with different characteristics
w.r.t. to drug effects and to evolution towards resistance: phenotypic stability of
healthy cell populations vs. plasticity of cancer cell populations




Background: basic facts about cancer

Relative importance of cancer as one of the major
killer chronic diseases worldwide

all ages, 2005
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WHO source (2005): http://www.who.int/chp/chronic_disease_report/full_report.pdf




Background: basic facts about cancer

Cancer, a major public health problem in Europe

2 major killers in Western Europe:

Cardio-vascular diseases: 35% of deaths by disease, and Cancer: 25%
(precise data according to zones and countries: http://www.euro.who.int)
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Estimated incidence of main cancers in the European Union in 2004, from Boyle & Ferlay, Ann. Oncol. 2005




Background: basic facts about cancer

In France, cancer (now 1%) and cardiovascular diseases
(279) are by far the 2 major killers among all diseases

Figure 2 Evolution des taux* de déces par grande catégorie de causes de déces, 1980-2004, France
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Background: basic facts about cancer

The same trend (Cancer 1%) 1s also true 1n the USA
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FIGURE 6 Death Rates®* From Cancer and Heart Disease for Ages Younger Than 85 and 85 and Older.
*Rates are age-adjusted to the 2000 US standam population.

Source: US Mortality Public Use Data Tapes, 1960 to 2003, National Center for Health Statistics, Centers for Disease Contra and
Prevention, 2006.

(from Jemal et al., CA Cancer J Clin 2007)



Background: basic facts about cancer

Persistence of a very slow decrease in cancer mortality
in the US
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FIGURE 2. Trends in Cancer Incidence and Death Rates by From Siegel et al.,

Sex, United States, 1975 to 2010. ‘e

Rate; are age adjusted t’o the 2000 US standard population. Incidence rates Cancer statzstzcs 2014
are adjusted for delays in reporting. CA Cancer J Clin 2014




Background: basic facts about cancer

Tissues that may evolve toward malignancy

...are the tissues where cells are committed to fast proliferation
(fast renewing tissues):

- epithelial cells+++, 1.e., cells belonging to those tissues which
cover the free surfaces of the body (namely epithelia): gut (colorectal cancer),

lung, cervix, glandular coverings (breast, prostate), skin,...

- liver cells 1n situations where the liver 1s called for renewal (e.g., surgery)
or, in pathology, hepatocellular carcinoma

- cells belonging to the different blood lineages, daily produced in
the bone marrow: liquid tumours, or malignant haemopathies

- others (rare: gliomas, sarcomas, neuroblastomas, dysembryomas...)




Background: basic facts about cancer

Natural history of cancers: from genes to bedside

Gene mutations: an evolutionary process which may give rise to abnormal DNA
when a cell duplicates its genome, due to defects in tumour suppressor or DNA
repair (BER, NER) ZCNCS (Yashiro et al. Canc Res. 2001; Gatenby & Vincent, Canc. Res. 2003)

Resulting genomic instability allows malignant cells to escape control on
proliferation at different levels: subcellular, cell, tissue and whole organism:

Control on entry in the cell cycle for quiescent (=non-proliferating) cells

Control on cell cycle phase transitions and apoptosis for proliferating cells

Normal inability to use anaerobic glycolysis (selective advantage for cancer cells)
Contact inhibition by surrounding cells (cell adhesion, cell density pressure)

Normal inability to stimulate new blood vessels from the vascular neighbourhood
Normal linking to the extracellular matrix (ECM) fibre network and basal membranes
Recognition (friend or foe) by the immune system

Cancer invasion is the macroscopic result of breaches in these control mechanisms




Evading proliferation and growth control mechanisms
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...but just what is cell proliferation?




Background: basic facts about cancer

Cell population growth in proliferating tissues

(from Lodish et al., Molecular cell biology, Nov. 2003)

One cell divides 1n two: a controlled process at cell and tissue levels




Background: basic facts about cancer

At the origin of proliferation: the cell division cycle

S:=DNA synthesis; G,,G,:=Gap1,2; M:=mitosisPMitosis=M phase

(from Lodish et al., Molecular cell biology, Nov. 2003)

Physiological or therapeutic control

exerted on:

- transitions between cell cycle phases
(G,/S, G,/ M, M/G,)

- death rates (apoptosis or necrosis)
inside cell cycle phases

- velocity of progression of cell

populations in cell cycle phases




Background: basic facts about cancer

Proliferating and quiescent cells

after R:
mitogen-independent
progression through G, to S
(no way back to G,)

Restriction point
(in late G, phase)

(Pardee 1974
Zetterberg & Larsson 1985)

before R:
mitogen-dependent
progression through G,
(possible regression to G,)

From Vermeulen et al. Cell Prolif. 2003

Most cells do not proliferate physiologically, even in fast renewing tissues (e.g. gut)

Exchanges between proliferating (G,SG,M) and quiescent (G,) cell compartments
are controlled by mitogens and antimitogenic factors in G, phase




Background: basic facts about cancer

Phase transitions, apoptosis and DNA repair

- Sensor proteins, e.g. pS3, detect defects
in DNA, arrest the cycle at G,/S and G,/M
phase transitions to repair damaged
fragments, or lead the whole cell toward
controlled death = apoptosis

- pS3 expression 1s known to be down-
regulated in about 50% of cancers

- Physiological inputs, such as circadian
gene PER2, control pS3 expression;
circadian clock disruptions (shiftwork)
may result in low p53-induced genomic
instability and higher incidence of cancer

,,v..' —
Genomic Instability
Damaged Cells - —

(Fu & Lee, Nature Rev. 2003)




Background: basic facts about cancer .
Invasion: local, regional and remote
1) Local invasion by tumour cells implies loss of =
normal cell-cell and cell-ECM (extracellular matrix)
contact inhibition of size growth and progression in the
cell cycle. ECM (fibronectin) 1s digested by tumour-
secreted matrix degrading enzymes (MDE=PA, MMP)
so that tumour cells can move out of it. Until 10° cells
(1 mm 0) is the tumour in the avascular stage.

2) To overcome the limitations of the avascular stage,
local tumour growth i1s enhanced by tumour-secreted
endothelial growth factors which call for blood vessel
sprouts to bring nutrients and oxygen to the insatiable
tumour cells (angiogenesis, vasculogenesis)

ETALEMENT

migration in blood and lymph vessels (by diapedesis), 19\
and extravasation, 1.e. evasion from vessels, through
vascular walls, to form new colonies in distant tissues. s oo, og st eotoms. o

3) Moving cancer cells can achieve intravasation, i.c., BT

afy : Mac-1 PECAML
af : VLA4

These colonies are called metastases.

(Images thanks to A. Anderson, M. Chaplain, J. Sherratt, and Cl. Verdier)




Background: basic facts about cancer

Interactions with the immune system

Tumours are antigenic, i.€., recognisable as foes by the immune system:

Innate immunity: Cytokines, macrophage-produced molecules to protect intact cells
(non specific) (e.g. interferon)

NK Lymphocytes = cells which sense foe antigens (receptors are
modifications of cytoskeleton), migrate
into blood and tissues to kill antigenic cells

Adaptive immunity: B Lymphocytes produce specific antibodies (immunoglobulins)
(specific: immune memory)

Helper T-Lymphocytes produce cytokines (e.g. interleukins)
which boost the immune response
Cytotoxic T-Lymphocytes Kill specific antigenic cells

(after P. Lollini, 2005)




I. Mathematical models of healthy and cancer tissue growth




Mathematical models of tumour growth and therapy

A great variety of models, depending on what one intends to describe

In vivo (tumours) or in vitro (cultured cell colonies) growth? In vivo (diffusion in
living organisms) or in vitro (constant concentrations) growth control by drugs?

Scale of description for the phenomenon of interest: subcellular, cell, tissue or whole
organism level? ... may depend upon therapeutic description level

Is space a relevant variable? [Not necessarily!] Must the cell cycle be represented?

Are there surrounding tissue spatial limitations? Limitations by nutrient supply or
other metabolic factors?

Is loco-regional invasion the main point? Then reaction-diffusion equations (e.g.
KPP-Fisher) are widely used, for instance to describe tumour propagation fronts

Is cell migration to be considered? Then chemotaxis [=chemically induced cell
movement] models (e.g. Keller-Segel) have been used

A reference: A. Friedman. ‘A hierarchy of cancer models and their mathematical challenges’, DCDS-B 2004




Ordinary differential equations

Models of tumour growth 1

Macroscopic, non-mechanistic models: the simplest ones:
exponential, logistic, Gompertz

X= tumour weight

or volume, proportional
to the number of cells,
or tumour cell density

kx (exponential)

kx(1 —x) (logistic)

kx In ($maa;) (Gompertz)

X

Exponential model: relevant for the early stages of tumour growth only

[Logistic and] Gompertz model: represent growth limitations (S-shaped curves with
plateau=maximal growth), due to mechanical pressure or nutrient/space scarcity

[Used to describe therapeutic control by adding a drug action term - (d, x) on the RHS]




Ordinary differential equations

Models of tumour growth 2: Gompertz revisited

ODE models a) with 2 cell compartments, proliferating and quiescent,
or b) varying the tumour carrying capacity x, in the original Gompertz model

max

18 = pp = ro(N)]P 4 7:(N)Q

ro(N)P = [ri(N) + 1] Q

P+Q7 PO+Q0:1
(Gyllenberg & Webb, Growth, Dev. & Aging 1989; Kozusko & Bajzer, Math BioSci 2003)

Avowed aim: to justify global Gompertz-like growth

However, a lot of cell colonies and tumours do not follow Gompertz growth
Refinements: Hahnfeldt et al., Canc. Res 1999; Ergun et al., Bull Math Biol 2003 B

Example of non-Gompertz [l at
tumour growth: - periz model
(GOS) 1n a population of

mice, laboratory data




Ordinary differential equations

a) ODE models with 2 exchanging cell compartments,
proliferating (P) and quiescent (Q)

exchanges

(Gyllenberg & Webb, Growth, Dev. & Aging 1989; Kozusko & Bajzer, Math BioSci 2003) G,/G,

where, for instance: ,
rorepresenting here the rate of

inactivation of proliferating cells,
and r; the rate of recruitment from
quiescence to proliferation

Initial goal: to mimic Gompertz growth




Ordinary differential equations

b) ODE models with varying carrying capacity

Hahnfeldt et al., Cancer Res. 1999
Ergiin et al., BMB 2003

Used by U. Ledzewicz et al. to optimise combined delivery of
cytotoxic and antiangiogenic drugs, acting on p, and e,, respectively




Individual-based models

Models of tumour growth 3

Physical laws describing macroscopic spatial dynamics of an avascular tumour

- Fractal-based phenomenological description of growth of cell colonies and tumours,
relying on observations and measures: roughness parameters for the 2D or 3D tumour

Findings: - all proliferation occurs at the outer rim
- cell diffusion along (not from) the tumour border or surface

- linear growth of the tumour radius after a critical time (before: exponential)
(A. Bru et al. Phys Rev Lett 1998, Biophys J 2003)

Individual-based (=agent-based) models:
- cell division and motion described by
stochastic algorithm then continuous limit
- permanent regime = KPP-Fisher-like ~ WA
(also linear growth of the tumour radius) el (@
(D. Drasdo, Math Comp Modelling 2003; Phys Biol 2005) Fig. 1. Typical simulation scenario in the off-lattice model starting from (a) a single cell to (a)

three cells and aggregates of (b) N = 100, (c) N = 1000, and (d) N = 10000 cells. (Further




Partial differential equations

Models of tumour growth 3

Mechanical models of macroscopic spatial dynamics involving pressure

Multiphase models with moving boundaries:

proliferating cells, quiescent cells, necrotic cells, surrounding healthy cells...
(see Preziosi et al.)

Simplified models with only intra-tumour cell pressure p and cell velocity v:

soH (po — p)
—uVp,

(from H. Byrne & D. Drasdo JMB 2009)

) denotes the Heaviside step function

Simplified models involving pressure p and nutrient concentration ¢ (p=cell density).
0,0 — div(gv'p) =0 (pﬁ c), (from Perthame-Quiroz-Vazquez Arch Rat Mech Anal 2014)

Oic — Ac = —p V(p, c), 9, < 0, 0.0 > 0, ®(par,cp) =0,

c(x,t) = cp >0 as |z| — cofillo, v < 0, 9.¥ >0, U(p,0) =0.




Partial differential equations

Models of tumour growth 4

Macroscopic reaction-diffusion evolution equations (travelling wave fronts)

| variable ¢ = density of tumour cells): KPP-Fisher equation
V.(D(x)Ve) + pe(l — ¢)

D(x) = diffusion (motility) in [brain] tissue, p (reaction)=growth of tumour cells
1D x and c instead of ¢(/-c): used to represent [brain]| tumour radial propagation
(K. Swanson & J. Murray, Cell Prolif 2000; Br J Cancer 2002; J Neurol Sci 2003)

2 or more variables: ex.: healthy cells V,, tumour cells NV,, excess H* ions L

(Gatenby & Gawlinski, Canc. Res. 1996) — Prediction: interstitial cell gap between tumour
propagation and healthy tissue recession fronts




Partial differential equations

PDE models of tumour growth: invasion

Macroscopic reaction-diffusion equations to represent invasion front

1-dimensional variable ¢ = density of tumour cells): KPP-Fisher equation

Diagnosis

D(x) = diffusion (motility) in brain tissue,
p(reaction)=growth of tumour cells, x spatial
variable (1-d, 2-d or 3-d) and c: density of
tumour cells, used to represent brain tumour
radial propagation from a centre. If D(x) = D,
then v= 2.sqrt(oD) 1s the front propagation speed

(K. Swanson & J. Murray, Cell Prolif 2000;
Br J Cancer 2002; J Neurol Sci 2003)




Partial differential equations [Competition for space J—,

PDE models of tumour growth: invasion as competition

Macroscopic reaction-diffusion equations to represent invasion / recession fronts

2 or more variables: ex.: healthy cells V,, tumour cells NV,, excess H* ions L

T ‘v.z.:/‘
(S @
';o B ".\' ¥ , ! ~

Y

n, Equation (A4)
1, Equation (A3)
A Equation (A2)

|

A Pt T I PO A
(Gatenby & Gawlinski, Canc. Res. 1996)

Prediction: interstitial cell gap between tumour
propagation and healthy tissue recession fronts




Partial differential equations

PDE models for moving tumour cells in the ECM

Chemotaxis: chemo-attractant induced cell movements
Keller-Segel model

i)}
4 = Ap — div(px ('u..')Vu...').

ot p = density of cells

0=Aw+(p—1). w = density of chemoattractant

(Originally designed for movements of bacteria, with w=[cAMP])
(Keller & Segel, J Theoret Biol 1971)

Anderson-Chaplain model for local invasion by tumour cells in the ECM

random motility haptotaxis

D,V*n  —xV.(nVYf) n = density of cells

degradation

= f=ECM density
—  omf

dif fusion production neutralisation  decay m = MDE (tumour

~ =~
D, VPm+ unt —  fum  — Am metalloproteases)
dif fusion  production neutralisation

~— AN N g ep
D,NV?*u + F(m,f) —  Oum  —"cu u = MDE inhibitor

decay

(Anderson & Chaplain, Chap 10 in Cancer modelling and simulation, L. Preziosi Ed, Chapman & Hall 2003)




Integro-differential models

Models of tumour growth 5
Models of Lotka-Volterra type, phenotype-structured, with built-in growth limitation

mutations and renewal

N

Y

(/ r(y)M(y, x)n(y, t)dy — r(z)n(z, t)>

- (1(;17)I(t)> n(x,t) - ‘1 (t)p(x)n(x, t);

1 + acy(t)

N >

: ~ ) effect of cytotoxic therapies
growth with cytostatic therapies and death

N

(mentioned in Billy & JC, DCDS-B 2013); see also Delitala & Lorenzi’s papers

r(z,y)

) — d I,y I t) — nlr,y)cq t n t«,ll?,y
1+ po(x,y)ca(t) (@, y)I(t) — pa(z,y)er(t) | nl )

(‘:)t‘n.(t,;l‘.,y) — [

(mentioned in Billy & JC, DCDS-B 2013; see here on Thursday; see also Delitala & Lorenzi’s papers)

1,1
where IIGOE / / n(z,y,t) dz dy is the total cell population or, more generally,
0 JO a [total] cell population-dependent

environment variable = growth limitation




Partial differential equations

Models for angiogenesis

VEGF-induced endothelial cell movements towards tumour

- Chemical transport (capillary and ECM) S =
- “Reinforced random walks” et
- Cell movements in the ECM

==
- Biochemical enzyme kinetics Am

Models by Anderson and Chaplain,
Levine and Sleeman L Eg degrec

* EC proliferation
* formation of sprouts

* formation of pseudopods
* ECM degradation

(Levine & Sleeman,Chap. 6 in Cancer modelling and
simulation, L. Preziosi Ed, Chapman & Hall 2003)




Partial differential equations

A multiscale angiogenesis model

Interacting cell populations Proliferating cancer cell population

mitosis

Endothelial cells
Ang2 - Tie2R | [ Angl - Tie2R | VEGE - Flk-1

Tumor cells

Fig. 4. Schematic representation of our age-structured cell cycle regulation model.
We took into account two proliferative phases P, and P,, one quiescent phase Q,
and one apoptotic phase A. At the end of the P; phase, environmental conditions
are checked; this checking is modeled through functions f and g. In a context of
overpopulation or hypoxia, proliferative cells become quiescent (through function
f). If the hypoxic stress is too high, cells can become apoptotic (through function g).
If the environmental conditions become more favorable, quiescent cells can revert
to the proliferative phase. We suppose that mitosis occurs at the end of the P,
phase, leading to the generation of new cells.

Coupling by oxygen concentration, acting on actual commitment of cells
into the division cycle (passing the restriction point)

Aim: assessment of an antiangiogenic treatment by endostatin

F. Billy et al., J. Theor. Biol. 2009



Hybrid modelling: PDEs, ODEs and Cellular Automata

- PDEs for the diffusion of molecules in the interstitial medium:
oxygen, nutrients, growth factors and drugs in space-structured tissues

- ODEs for intracellular metabolism and PK-PD (pharmacokinetics-
pharmacodynamics in single cells, the targets of drugs)

- Cellular Automata or Agent-Based Models (ABMs) to build a tissue
from single cells (=the individual agents)

Many examples of such models exist in the scientific literature
A recent one: Robertson-Tessi et al., Cancer Research 2015
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Ordinary differential equations
Including more phase transitions in the cell cycle model?

Hint: an existing model for G,/S and G,/M synchronisation

(recalling the minimum mitotic oscillator (C, /7, X) by A. Goldbeter, 1996, here
duplicated to take into account synchronisation between G,/S and G,/M transitions)

»
=)

=Cyclin
=CDK
X, =Protease

Cyclins C1,C 2
N
=)

o
o

-
o

2 4 6 8
Time (10° min)

s ©

o 2 4 6 8 10 4 6
Time (10° min) Time (10 min)

Romond, Gonze, Rustici, Goldbeter, Ann NYAS, 1999




Simulation of mammalian cell cycle
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Ordinary differential equations

Modelling the cell cycle 2: single cell (continued)

Even more detailed ODE models to describe progression in the cell cycle

>

SF Cdk modules Cell cycle
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A simplified model has been proposed, with 5 variables 5o oo0o
C. Gérard & A. Goldbeter, PNAS 2009, Interface Focus 2011 %\ S \ S

C. Gérard, D. Gonze & A. Goldbeter, FEBS Journal 2012 " Time (h)



Partial differential equations

Modelling the cell cycle 3

Transport equations for age-structured cycling cell populations

Transition Transition

k,
S Phase - M Phase
~10 hours ~0.5 hours

2 cells
FUCCI staining (Sakaue-Sawano Cell 2008)
allows to quantify proliferating cell populatioi
repartition according to cell cycle phases

In each phase i , a Von Foerster-McKendrick-like equation:

ng=cell population
density v phase v
d,;=deathv rate

K s =transition rate
(withv v factor 2for i=1)

Ay, K sy constont or

ni(t, a) + [vi(a)ni(t, a)] + di(t, a)ni(t, a) + Ki—iv1(t, a)ni(t,a) = 0

w(Oni(t.a=0) = [ Kii(ta) nia(ta) da
a>0

Ki—>’i+1(t7 CL) — w(t)laZai (CL)
2.3 eviodicw. r. to-tume t
Death rates d; and phase transitions K ; _, ; are targets ?Kog, I+1=1)

for physiological (e.g. circadian) and therapeutic (drugs) control

(JC, B. Laroche, S. Mischler, B. Perthame INRIA research report 4892, 2003)



General case (N phases): by the Krein-Rutman theorem (infinite-dimensional form
of the Perron-Frobenius theorem), there exists a nonnegative first eigenvalue A and,

if ]\N[i(t’ a) = e_)‘tnz-(t, )] i , bounded solutions to the problem (here v(a)=1) :
I N;(t,a) + £N;(t,a) 1! ;

with a real number o such that the asymptotics of N, (t,a) = e M, (¢, a) FIE

N;(t, @) — p. Ni(t,a)| p;(t,a)daa — 0 as t— oo

(the weights ¢, being solutions to the dual problem); this can be proved by using a

generalised entropy principle (GRE). Moreover, if the control (d; or K, _,,,) 1s
constant, or if it 1s periodic, so are the NV, , with the same period in the periodic case.

Ph. Michel, S. Mischler, B. Perthame, C. R. Acad. Sci. Paris Ser. I (Math.) 2004; J Math Pures Appl 2005
Ph. Michel, B. Perthame, C. R. Acad. Sci. Paris Ser. I (Math.) 2006, Proc. ECMTB Dresden 2005, Birkhduser 2007




Partial differential equations
A: a growth exponent governing the cell population behaviour

In summary: proof of the existence of a unique growth exponent A, the same for all

phases i, such that the Ni(t, a) = e_’\tni(t, 7)) are bounded, and asymptotically

periodic if the control 1s periodic

Example of control (periodic control case): 2 phases, control on G,/M transition by
24-h-periodic CDK1-Cyclin B (from A. Goldbeter’s minimal mitotic oscillator model)

ni(t,a)doa, i=1,2

“Surfing on the
exponential growth curve”

(= the same as adding

A e A an artificial death term

. . | +) to the d,)
=CDK1 All cells in G1-S-G2 (phase i=1) :




Details (1): 2 phases, no control on G,/M transition
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Details (2): 2 phases, periodic control @ on G,/M transition

tot (1) — J—At/ ni(t, a)da, i=1,2
a>0

12007

The total population of cells

n;(t,a)do, i=1,2
o>

inside each phase follows
asymptotically an exponential
behaviour tuned by a periodic
function
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Partial differential equations
The simplest case: 1-phase model with division

n(t,a) + —[n(t,a)] + [d(t) + K (¢, a)] n(t,a) = 0

da
0) = 2/ K(t,a) n(t,a) da

where K (t,a) = Kot (t) i« 4 o0((a)
and 1 (t) = Lo ,((t), 1-periodic

ot

(Here, v(a)=1, a* is the cell cycle duration, and t(<1) is the time
during which the 1-periodic control ) is actually exerted on cell division)

Then it can be shown that the eigenvalue problem: n(t, a,) — e>‘t N (t : a,)

Z[N(t,a)] + [\ +d(t) + K(t,a)] N(t,a) = 0

=0)=2 / K(t,a) N(t,a) do
has a unique positive
1-periodic eigenvector N, with a positive elgenvalue A\, solution, if d(t)=d, K(t,a)=K(a)

of Lotka’s (=Euler’s) equatlon 1

+o0 +oo
/ f(z)e™*dz, where f(z) = K(z)e™Jo K® i5 a p.d.f. if/ K(z)dr = +o00
0



Partial differential equations
Experimental measurements to identify transition kernels K

(and simultaneously experimental evaluation of the first eigenvalue \)

l i+1

In the simplest model with d=0 (one phase with division) and assuming K=K(x)
(instead of indicator functions, experimentally more realistic transitions):

( —n(f T) + —n(f )+ K(z)n(t,x)

. n(t,0) —2f() K (z)n(t,z)dx.

Whence (by integration
along characteristic lines):




Experimental parameter identification for this cell cycle model

with 2 phases: G1 and S-G2-M using FUCCI reporters
FUCCI=Fluorescent Ubiquitination-based Cell Cycle Indicator

Cells:

NIH 3T3 of a common population
(mouse embryonic fibroblasts)
without preliminary synchronization

Measures: for each individual cell:
red and green fluorescence time recording

every 15 min

from Sakaue-Sawano et al.

approx. 150 measures for each cell Cell 2008, 132, 487-498




FUCCI: a movie (Sakaue-Sawano 2008), Hel a cells




Another FUCCI movie (C. Feillet, IBDC Nice), NIH3T3 cells

o




FUCCI reporters + individual cell tracking (non trivial...):
Measuring time intervals: G, and total division cycle durations

50

80 . 80
time ( / 15 min)

cycle

Data from Bert van der Horst's lab, Erasmus University, Rotterdam, processed by Frédérique Billy at INRIA



Phase durations (hence transitions, using NGk %) In age x

Pdfs f(x) fitted from data on 50 NIH 3T3 proliferating cells

(mouse embryonic fibroblasts)

Density of duration of G1 phase Density of duration of SG2M
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® daa » ¢ cam
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UCCI data in NIH3T3 cells, that are healthy mouse fibroblasts tracked in liquid medium




Fitting probability density functions to data and computing A.:
Gamma p.d.f.s were best fits and yielded simple computations

= 1,2, where

a; = 828, B; = 1.052h~L, 7, = Oh, ap = 3.42, By = 1.ATh™Y, ~, = 7.75h

2-phase Lotka’s equation simply reads: a1 3\ @2
) ( ) eA1t2) — 9

... which yields here A = 0.039 A/

(and yields mean doubling time 7,=17.77 h, and mean cell cycle time 7, =17.95 h)

(Billy et al., Math. Comp. Simul. 2014)




Phase transitions w.r.t. age x:
Transition rates K(x) from pdfs f(x) on NIH 3T3 healthy cells

and resulting population evolution without control on transitions

Recalling that in the model
f=p.d.f.of phase duration time
and K = phase transition kernel:

Kisipi(z) = 1 — fom fi(§)d¢

150
age in SG2M(h)




More single cell data to build population data
from IBDC (F. Delaunay, C. Feillet) in Nice

117+150 single NIH3T3 cell data stained by FUCCI, plus a RevErb-a track

117 in 10% Fetal Bovine Serum (FBS), rich in growth factors, and 150 in 15%
FBS (150 out of many; only the ones with a robust RevErb-a circadian clock
were kept as mere indicators of good health)

Results: evaluation of phase transition rates in a 2-phase model of the cell cycle
in the two concentration media

Increasing FBS from 10 to 15% reduces standard deviation of both phase
durations, suggesting increased synchrony between cell cycle phases

Good agreement of the model behaviour with the data, evidencing higher
velocity v in cell cycle progression with 15% FBS

v: 15% FBS cell population grows approximately 10% faster than the 10% FBS




More on FUCCI to identify cell cycle phase durations:
Effects of growth factors on NIH3T3 cell populations
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FIGURE 3. Gamma laws (solid line) (multiplied by a coefficient
equal to the total number of data) that fit experimental data (bars)
for the distribution of the duration of phases G (left) and S/Ga/M
(right), for the two experimental conditions i.e., 10% FBS (top) and
15% FBS (bottom).

F. Billy et al. Math BioSci Eng 2013



Descriptive statistics: influence of growth factors on m and sd

Coefficient of variation

10% FBS 15% FBS
mean (h) | sd (h) | mean (h) | sd (h) (sd/m)
G4 (9.3) 4.9 (8.D 3.3
S/Go/M | d2.D | 25 | Q04 | 2.1 G,: 053 /040
cycle 21.4 5.5 18.6 4.1

TABLE 1. Mean and standard deviation (sd) (in hours) of the du-
ration of the phases G; and S/G5/M and of the cell cycle for two
experimental conditions (culture medium composed of 10% of FBS

or of 15% of FBS).

S/G,M: 0.21/0.20

10% FBS 15% FBS
Gl (i=1)]S/Gy/M (i =2) |Gy (i =1) | S/Go/M (i = 2)
a; 1.80 16.96 5.68 2.71
B | 0.43h~1 2.22h~1 1.23h~! 1.01h~!
4.83h 4.37h 3.13h 7.77h

"TABLE 2. Parameters used to fit experimental data of the distribu-
tion of the durations of phases G; and S/G5/M in the population

by Gamma laws, for the two experimental FBS supplementation of
the medium (10% FBS and 15% FBS).

10% FBS 15% FBS . e
m () [ sd () | m (h) | sd () Coetficient of variation
G @0y | 31 [T | 19 (sd/m)
S/Go/M | 12.0) | 1.9 [(10H | 1.6

TABLE 3. Mean (m) and standard deviation (sd) (in hours) of the
Gamma distributed duration of the phases G7 and S/Gs/M for
two experimental conditions (culture medium composed of 10% of

FBS or of 15% of FBS), according to the parameters mentioned in
Table 2.

0.34 /0.25

G,

S/G,M: 0.16/0.15
F. Billy et al. Math BioSci Eng 2013
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age (h) age (h)
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FIGURE 4. Transition rates from G; to S/G5/M (left) and from
S/G5 /M to G, (right) for the two experimental conditions, i.e. 10%
FBS (top) and 15% FBS (bottom). These rates are functions of
age of cells in the phases only.

(F. Billy et al., Math Biosci. Eng. 2013)




Taking into account different progression velocities in the cycle
e The complete model, with speed of progression v (in age x w.r.t. time 7):

0 .
t,x)+ e ('Uz-(;l‘.) n;(t, ;z?)) + ((li(t, x)+ Kii11(t, ;17)) ni(t,z) =0

/ Ki 15i(t,&) ni1(t,§)d§ 2<i<1T,
£§20

0)=2 [ Kioa(t&) ni(t.€) ds
£§2>0

... or, choosing a constant speed v independent of age x and phase i:

0 0 i .
Eni(t,x) + v %ni(t, )+ Kiiv110%(x) ni(t,z) =0 i=1,2

na(t,z =0) = / Ki210%(&) na(t,§) d§
£20

ni(t,z =0) = 2/ Ko 1,10% (&) na(t, §) d§ |
\ £20




Results: better fit with evaluation of varying speed v

w \ s [ Setting free the parameter v = speed of progression
o ym= in the cell cycle for 15% FBS cells (with basis

N | v=11in the 10% FBS cell population) yielded

od y=1.095 in the 15% FBS cell population and

gou better fit of model to experimental data

"ol (with T,;=15.4 h instead of 18.1 h in 15% FCS
o1 compared with 7,=20.8 h in 10% FCS)

5
time (h)

1
—G1 sim
08 SG2M sim 1 .
---G1data ——G1:m
08 SG2M data 08t SQ2M sim
. ---G1data
SG2M data
,:; 07 08
g -
& 07
00' o
g 2
- 0¢
L";J 05 ) g
_ . Gos
§0s v=1.0951n 15% FCS ¢
: g0
£03 -
g 03
02 ’
02
01
01
0 . L ) L L
[+] 5 10 15 20 23 30 35 0 A L A L )
time (h) [} 5 10 15 20 3 30 35
time (h)

FIGURE 5. Time evolution of the percentages of cells in G (red or
deep grey) and S/G5/M (green or light grey) phases from biological
data (dashed line) and from numerical simulations (solid line), in
the case of 10% FBS (top) and 15% FBS (bottom). Our model
results in a good approximation of the biological data.

FIGURE 7. Time evolution of the percentages of cells in G (red or
deep grey) and S/G5/M (green or light grey) phases from biological
data in the case of 15% FBS (dashed line) and from numerical
simulations (solid line) resulting from Equations (13) for v = 1.095.
Our model results in a good approximation of the biological data.

(F. Billy et al., Math Biosci. Eng.2013)




A possible application to the investigation of
synchronisation between cell cycle phases

(from Lodish et al., Molecular cell biology, Nov. 2003)
One cell divides in two: a physiologically controlled process at cell and tissue levels
in all healthy and fast renewing tissues (gut, bone marrow) that is disrupted in cancer:

Is cell cycle phase synchronisation a mark of health in tissues?




A working hypothesis that could explain differences in
esponses to drug treatments between healthy and cancer tissues

Healthy tissues, 1.e., cell populations, would be well synchronised
w. 1. to proliferation rhythms and w. r. to circadian clocks, whereas...

...tumour cell populations would be desynchronised w. r. to both, and such
proliferation desynchronisation would be a consequence of an escape

by tumour cells from central circadian clock control messages, just as
they evade most physiological controls, cf. e.g., Hanahan & Weinberg:

Question:

is cell cycle phase
desynchronisation
another hallmark of
cancer in cell
populations?

Sustained
angiogenesis




A mathematical result: A increases with desynchronisation
where desynchronisation 1s defined as a measure of phase overlapping at transition

rolitferation, as measured by the Malthus growth exponent, or first
eigenvalue, increases with overlapping between cell cycle phases

.e., the less synchronised phases are, the faster is proliferation

NB: so far, this has not been extended to the periodic control case,
.e., phase transitions have been assumed to be uncontrolled)

i.e..for a given family (f;) of p.d.f.s with second moment o, A is increasing with each o,

Proposition 1. Soit f;, 1 < i < I, une famille de fonctions de densité sur R, . Les tauz de
transition associés K;_,;,1 sont ainsi donnés par (voir (2)) :

fi(z) _ fi(z)
ST fia)de — 1— [y fila!)da!

K~i—yi+1(-’lf) =

En supposant d; =0 (1 <1 < 1), la premiére valeur propre du systéme (1) A > 0 est donnée

par (voir [1]) : 1
L = I I . [(x)e " dx
2 _1:1/0 (=) o

Pour1 <1 <1, on pose e; = f0+°O zfi(z)dz etlo? = ) 0+°C 22 fi(z)dx — €2|, et on suppose que

les e; > 0 sont constants. Soit j € {1,...,1}. On suppose que les ocZ(1<i#£j< I ) sont constants.

. 9
Alors |\ est croissante avec o5

(Thomas Ouillon’s INRIA internship report 2010, also shown in Billy et al., Math. Comp. Simul., 2014)



Partial differential equations

Simple age-structured PDE models representing
exchanges between proliferation and quiescence

t (t,z) + 5-p(t,x) + [K(z) +v(t)]p(t,z) = 0
9

2 alt2) + ~a(t2) + [B(0) + 5(t)]a(t, ) = 0

with :
p(0,2) = p°(a).
1(0,7) = ¢°(z),

p(t,0) = B(t) / ", 6)d,

at,00=2 [ K@Ep(t,€)de

p=density of proliferating cells; g=density of quiescent cells; y,0=death terms;
K=term describing cells leaving proliferation to quiescence, due to mitosis;
p=term describing “reintroduction” (or recruitment) from quiescence to proliferation




Delay differential equations
Delay ditferential models with two cell compartments,
proliferating (P)/quiescent (Q): Haematopoiesis models

(obtained from the previous model with additional hypotheses and integration in x along characteristics)

" P — BRI + AQ(—7)e " Q( —7) = 0

%% 1 1BQU) +81Q — 28(Q(t —7))e Q1) = 0

(delay T = cell division cycle time) (from Mackey, Blood 1978)

Properties of this model: depending on the parameters, one can have positive

stability, extinction, explosion, or sustained oscillations of both populations
(Hayes stability criteria, see Hayes, J London Math Soc 1950)

Oscillatory behaviour is observed in periodic Chronic Myelogenous Leukaemia

(CML) where oscillations with limited amplitude are compatible with survival,

whereas explosion (blast crisis, alias acutisation) leads to AML and death
(Mackey and Bélair in Montréal; Adimy, Bernard, Crauste, Pujo-Menjouet, Volpert in Lyon)




From Adimy, Crauste, EIAbdllaoui J Biol Syst 2008 (see also: Ozbay, Bonnet, Benjelloun, JC MMNP 2012)
Modelling haematopoiesis

for Acute Myeloblastic Leukaemia (AML)
...alming at non-cell-killing therapeutics

by inducing re-differentiation of cells using
molecules (e.g. ATRA) enhancing differentiation
rates represented by K, terms

= —(d; + 3:) 4, a>=0,1t=0,

=—(ri+gila))p, O<a<m t>0

where r; and p, represent resting and proliferating

cells, respectively, with reintroduction term ,=f(x;)
Apoptosis

2(1-
qq(t.a)
e —4

k1)
; 7 2k

Apoptosis

nt,0) = 20-K) [ a@m(tad (————
W 0
.T'i,('lt,ﬂ) = ZI:]. _Kg',) j:! gi(ajpi(t,a.)da. [ qml:r,a)J—{

-1 ‘ T
+2K; 4 f gi—1(a)pi_1(t,a)da, i>2, Apoptosis
0

+o0

pil(t,0) = 0 Bilzi(t))rs(t, a)da = Bi(z:(t) i(t), @ €1n, Cells leave

the bone marrow

lim r(t,a) = 0.

\ a—+




Modelling leukaemic haematopoiesis (Mackey/Adimy) :
proliferation advantage?

Introcuction en Cycle Cellulaire ¢ Stem-like ’ CeHS CD34+/CD3 8'

Phase de

/ Phase de Prolifération Repos
P(t) N(t)
M
<> |

-— 1 —>

+5

Apoptose

Blood/ bone marrow sampling
in AML patients Phase de

Phase de Prolifération Repos
Cell sorting (magnetic beads) P(t) N(t)

Gy

FACS for cell cycle phases
Self-renewal: critical penomenon
Measuring apoptosis and cell Apoptose Difirenciation / Mor
division in each population should lead to model 1dent1ﬁcat10n

<

Differenciation / Mort Committed cells CD34+/CD38+



An age|a]-and-cyclin[x]-structured PDE model

with proliferating and quiescent cells

(exchanges between (p) and (¢g), healthy and tumour tissue cases: G, to G, recruitments G from g to p differ)

r

proliferating cells

o ” ,.
— . . L)
&pt .a,r)

Ja

(I'op(t.a.z)) + — (11 (a.z)p(t.a.x))
Loplt.a, ), 61?'1" /P\t.a,x),

—(Lia,x)+ Fla,z) +dy)plt.a.z) + G(N(t)) g(t.a.x).

Lia.z)p(t,a.x) — (G(NIi(t)) t+ds)g(t,a.x).

a10" + ag N"

G(N)
V) an | N’n

recruitment G:
homeostasis

v :
e.3 b :
/A0 g’
4 for srmall N & ;
24 /- - B
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F: mitosis

recruitment G:
(a,>0) exponential growth

F. Bekkal Brikci,
JC, B. Ribba,

B. Perthame

J Math Biol 2008,
Math Comp Mod
2008;

M. Doumic-
Jauffret, MMNP
2007




Agelal-and-cyclin[x]-structured PDE model, continued

Note that if one sets A 1=0 and n=1/k, k integer, then one can obtain t power-law growth

recruitment G:

recruitment G: (a,>0) exponential growth
homeostasis
24
2 A 22
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Fig. 5. Evolution of the total cell population [;"™° [;F*° ¢(1,a, x)dadx + [;7°° ;7 p(t, a, x)dadx for a tumoral tissue with different values of
n = 1 (lower curves), n = 1/2 (medium), n = 1/3 (upper). Left: With polynomial growth, A; = 0, and a log-log scale (this shows the different
power laws). Right: With exponential growth, A; > 0, and a Log scale (this shows that n does not influence the exponential law).

(Bekkal Brikci et al., Math Comp Modelling 2008)




To conclude this first part on models, quoting Aristotle:

EOLXE 0 O TE AOYOG TOLG (YOLVOUEVOLG
WOLETLUEELY, %ol TA (PALVOEVA TG AOY®

i.e., “It is appropriate to the model to testify for the phenomena, and
to the phenomena for the model”

(in Aristotle’s I[1eoi Ovoavodv [Sky], from which I freely translate Aoyog by model)




