








Relative importance of cancer as one of the major 
killer chronic diseases worldwide	



WHO source (2005): http://www.who.int/chp/chronic_disease_report/full_report.pdf	



Background: basic facts about cancer	





Cancer, a major public health problem in Europe	



2 major killers in Western Europe:	


Cardio-vascular diseases: 35% of deaths by disease, and Cancer: 25%	


(precise data according to zones and countries: http://www.euro.who.int)	


	



Estimated incidence of main cancers in the European Union in 2004,  from Boyle & Ferlay, Ann. Oncol.  2005	



Background: basic facts about cancer	





In France, cancer (now 1st) and cardiovascular diseases 
(2nd) are by far the 2 major killers among all diseases	



(Bulletin available online: http://www.invs.sante.fr/beh/2007/35_36/index.htm) 
Bulletin Épidémiologique Hebdomadaire (BEH) de l’INVS, 18/09/2007	



Background: basic facts about cancer	



Trend confirmed in 2008 (BEH 2011): cancers 29.6%, cardiovascular 27.5%  	





The same trend (Cancer 1st) is also true in the USA	



(from Jemal et al.,  CA Cancer J Clin 2007)	



Background: basic facts about cancer	





Persistence of a very slow decrease in cancer mortality	



From Siegel et al.,	


Cancer statistics 2014	


CA Cancer J Clin 2014 	



in the US	



Background: basic facts about cancer	





Tissues that may evolve toward malignancy 	



…are the tissues where cells are committed to fast proliferation	


(fast renewing tissues):	


	


- epithelial cells+++, i.e., cells belonging to those tissues which 	


  cover the free surfaces  of the body (namely epithelia): gut (colorectal cancer),	


  lung, cervix, glandular coverings (breast, prostate), skin,…	


	


- liver cells in situations where the liver is called for renewal (e.g., surgery)	


  or, in pathology, hepatocellular carcinoma	


	


- cells belonging to the different blood lineages, daily produced in	


  the bone marrow: liquid tumours, or malignant haemopathies	


	


- others (rare: gliomas, sarcomas, neuroblastomas, dysembryomas…) 	



Background: basic facts about cancer	





Natural history of cancers: from genes to bedside	



•  Control on entry in the cell cycle for quiescent (=non-proliferating) cells	


•  Control on cell cycle phase transitions and apoptosis for proliferating cells	


•  Normal inability to use anaerobic glycolysis (selective advantage for cancer cells)	


•  Contact inhibition by surrounding cells (cell adhesion, cell density pressure)	


•  Normal inability to stimulate new blood vessels from the vascular neighbourhood	


•  Normal linking to the extracellular matrix (ECM) fibre network and basal membranes	


•  Recognition (friend or foe) by the immune system 	



Gene mutations: an evolutionary process which may give rise to abnormal DNA 
when a cell duplicates its genome, due to defects in tumour suppressor or DNA	


repair (BER, NER) genes (Yashiro et al. Canc Res. 2001; Gatenby & Vincent, Canc. Res. 2003)	



 Resulting genomic instability allows malignant cells to escape control on 	


 proliferation at different levels: subcellular, cell, tissue and whole organism:	



Cancer invasion is the macroscopic result of breaches in these control mechanisms	



Background: basic facts about cancer	





Evading proliferation and growth control mechanisms	



(Hanahan & Weinberg, Cell 2000)	



…but just what is cell proliferation?	



(Hanahan & Weinberg, Cell 2011)	





Cell population growth in proliferating tissues	



One cell divides in two: a controlled process at cell and tissue levels	



(from Lodish et al., Molecular cell biology, Nov. 2003) 	



Background: basic facts about cancer	





Cyclin D	



Cyclin E	

Cyclin A 

Cyclin B	



S	


G1	



G2 
M

At the origin of proliferation: the cell division cycle 

Physiological or therapeutic control 
exerted on:	


- transitions between cell cycle phases	


   (G1/S, G2/M, M/G1)	


- death rates (apoptosis or necrosis) 	


   inside cell cycle phases	


- velocity of progression of cell      
populations in cell cycle phases 	


	



S:=DNA synthesis; G1,G2:=Gap1,2; M:=mitosis	


	



Mitosis=M phase	



(from Lodish et al., Molecular cell biology, Nov. 2003)	



Background: basic facts about cancer	





Exchanges between proliferating (G1SG2M) and quiescent (G0) cell compartments	


are controlled by mitogens and antimitogenic factors in G1 phase	



From Vermeulen et al. Cell Prolif. 2003	


Most cells do not proliferate physiologically, even in fast renewing tissues (e.g. gut) 	



Proliferating and quiescent cells	



R	

Restriction point	


(in late G1 phase)	



before R:	


mitogen-dependent	


progression through G1	


(possible regression to G0)	



after R:	


mitogen-independent	


progression through G1 to S	


(no way back to G0)	



(Pardee 1974	


 Zetterberg & Larsson 1985)	



Background: basic facts about cancer	





Phase transitions, apoptosis and DNA repair	



Repair or apoptosis 

S!
G1!

G2!
M!

- Sensor proteins, e.g. p53, detect defects 
in DNA, arrest the cycle at G1/S and G2/M 
phase transitions to repair damaged 
fragments, or lead the whole cell toward 
controlled death = apoptosis	



- p53 expression is known to be down-
regulated in about 50% of cancers	



- Physiological inputs, such as circadian 
gene PER2, control p53 expression; 
circadian clock disruptions (shiftwork) 
may result in low p53-induced genomic 
instability and higher incidence of cancer	



Repair or apoptosis 

p53	



p53	



(Fu & Lee, Nature Rev. 2003)	



Background: basic facts about cancer	





Invasion: local, regional and remote	


1) Local invasion by tumour cells implies loss of 
normal cell-cell and cell-ECM (extracellular matrix) 
contact inhibition of size growth and progression in the 
cell cycle. ECM (fibronectin) is digested by tumour-
secreted matrix degrading enzymes (MDE=PA, MMP) 
so that tumour cells can move out of it. Until 106 cells 
(1 mm δ) is the tumour in the avascular stage.	


	


2) To overcome the limitations of the avascular stage, 
local tumour growth is enhanced by tumour-secreted 
endothelial growth factors which call for blood vessel 
sprouts to bring nutrients and oxygen to the insatiable	


tumour cells (angiogenesis, vasculogenesis)	


	


3) Moving cancer cells can achieve intravasation, i.e., 
migration in blood and lymph vessels (by diapedesis), 
and extravasation, i.e. evasion from vessels, through 
vascular walls, to form new colonies in distant tissues. 
These colonies are called metastases.	


	


	



Proliferating rim	



Quiescent layer	



Necrotic core	



(Images thanks to A. Anderson, M. Chaplain, J. Sherratt, and Cl. Verdier)	
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Interactions with the immune system	



Tumours are antigenic, i.e., recognisable as foes by the immune system:	


	


Innate immunity:   Cytokines, macrophage-produced molecules to protect intact cells 	


(non specific)             (e.g. interferon) 	

 	

 	

 	

      	

 	



	

 	

 	

   	


	

 	

  NK Lymphocytes = cells which sense foe antigens (receptors are	


	

 	

 	

 	

     modifications of cytoskeleton), migrate	


	

 	

 	

 	

     into blood and tissues to kill antigenic cells	



	


Adaptive immunity: B Lymphocytes produce specific antibodies (immunoglobulins)	


(specific: immune memory)	



	

 	

     Helper T-Lymphocytes produce cytokines (e.g. interleukins)	


	

 	

 	

 	

 	

which boost the immune response	


	

 	

     Cytotoxic T-Lymphocytes kill specific antigenic cells	



(after P. Lollini, 2005)	
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I. Mathematical models of healthy and cancer tissue growth	





Mathematical models of tumour growth and therapy ���
A great variety of models, depending on what one intends to describe���

	


•  In vivo (tumours) or in vitro (cultured cell colonies) growth? In vivo (diffusion in 

living organisms) or in vitro (constant concentrations) growth control by drugs?	



•  Scale of description for the phenomenon of interest: subcellular, cell, tissue or whole 
organism level? … may depend upon therapeutic description level	



•  Is space a relevant variable? [Not necessarily!] Must the cell cycle be represented?	


	


•  Are there surrounding tissue spatial limitations? Limitations by nutrient supply or 

other metabolic factors? 	



•  Is loco-regional invasion the main point? Then reaction-diffusion equations (e.g. 
KPP-Fisher) are widely used, for instance to describe tumour propagation fronts	



•  Is cell migration to be considered? Then chemotaxis [=chemically induced cell 
movement] models (e.g. Keller-Segel) have been used 	



A reference: A. Friedman. ‘A hierarchy of cancer models and their mathematical challenges’, DCDS-B 2004	





Models of tumour growth 1	


Macroscopic, non-mechanistic models: the simplest ones:	


exponential, logistic, Gompertz	



	



Exponential model: relevant for the early stages of tumour growth only	


	


[Logistic and] Gompertz model: represent growth limitations (S-shaped curves with 
plateau=maximal growth), due to mechanical pressure or nutrient/space scarcity 	


	


[Used to describe therapeutic control by adding a drug action term -ϕ (d, x) on the RHS]	



x= tumour weight	


or volume, proportional	


to the number of cells,	


or tumour cell density	



t	



x	



Ordinary differential equations 	





Models of tumour growth 2: Gompertz revisited	


ODE models a) with 2 cell compartments, proliferating and quiescent,	


or b) varying the tumour carrying capacity xmax in the original Gompertz model	



Avowed aim: to justify global Gompertz-like growth	



However, a lot of cell colonies and tumours do not follow Gompertz growth	


Refinements: Hahnfeldt et al., Canc. Res 1999; Ergun et al., Bull Math Biol 2003	



	



(Gyllenberg & Webb, Growth, Dev. & Aging 1989; Kozusko & Bajzer, Math BioSci 2003)	



Tumour burden	



time	



Gompertz model	



Data	


d9	



d8	



d12	


d14	



Example of non-Gompertz	


tumour growth:	


(GOS) in a population of	


mice, laboratory data	



Ordinary differential equations 	





a) ODE models with 2 exchanging cell compartments, 	


proliferating (P) and quiescent (Q)	



(Gyllenberg & Webb, Growth, Dev. & Aging 1989; Kozusko & Bajzer, Math BioSci 2003)	


where, for instance:	



r0 representing here the rate of	


inactivation of proliferating cells,	


and ri the rate of recruitment from	


quiescence to proliferation	



Initial goal: to mimic Gompertz growth	



Cell 	


exchanges	


G0/G1	



Ordinary differential equations 	





b) ODE models with varying carrying capacity 	


Ordinary differential equations 	



Hahnfeldt et al., Cancer Res. 1999	


Ergün et al., BMB 2003	



Used by U. Ledzewicz et al. to optimise combined delivery of 	


cytotoxic and antiangiogenic drugs, acting on pt and et, respectively	





Models of tumour growth 3	


Physical laws describing macroscopic spatial dynamics of an avascular tumour	



	


- Fractal-based phenomenological description of growth of cell colonies and tumours,	


  relying on observations and measures: roughness parameters for the 2D or 3D tumour 	


  	


 Findings: - all proliferation occurs at the outer rim	



	

  - cell diffusion along (not from) the tumour border or surface	


	

  - linear growth of the tumour radius after a critical time (before: exponential)	



(A. Bru et al. Phys Rev Lett 1998,  Biophys J 2003)	


	


	


Individual-based (=agent-based) models:	


 - cell division and motion described by	


   stochastic algorithm then continuous limit	


 - permanent regime = KPP-Fisher-like	


   (also linear growth of the tumour radius) 	


(D. Drasdo, Math Comp Modelling 2003; Phys Biol 2005) 	



Individual-based models	





Models of tumour growth 3	


Mechanical models of macroscopic spatial dynamics involving pressure 	



Multiphase models with moving boundaries:	


proliferating cells, quiescent cells, necrotic cells, surrounding healthy cells…	



	

 	

 	

 	

 	

 	

 	

(see Preziosi et al.)	


	


Simplified models with only intra-tumour cell pressure p and cell velocity v:	



(from H. Byrne & D. Drasdo JMB 2009) 	



Simplified models involving pressure p and nutrient concentration c (ρ=cell density):	


(from Perthame-Quiroz-Vazquez Arch Rat Mech Anal 2014)  	



Partial differential equations 	





Models of tumour growth 4	


Macroscopic reaction-diffusion evolution equations (travelling wave fronts)	



1 variable c = density of tumour cells): KPP-Fisher equation	



D(x) = diffusion (motility) in [brain] tissue, ρ  (reaction)=growth of tumour cells	


1D x and c instead of c(1-c): used to represent [brain] tumour radial propagation	


(K. Swanson & J. Murray, Cell Prolif 2000; Br J Cancer 2002; J Neurol Sci 2003)	



2 or more variables: ex.: healthy cells N1, tumour cells N2, excess H+ ions L	



(Gatenby & Gawlinski, Canc. Res. 1996)	

 Prediction: interstitial cell gap between tumour 
propagation and healthy tissue recession fronts	



Partial differential equations 	





PDE models of tumour growth: invasion	


Macroscopic reaction-diffusion equations to represent invasion front	



1-dimensional variable c = density of tumour cells): KPP-Fisher equation	



D(x) = diffusion (motility) in brain tissue, 	


ρ (reaction)=growth of tumour cells, x spatial 
variable (1-d, 2-d or 3-d) and c: density of 
tumour cells, used to represent brain tumour 
radial propagation from a centre. If D(x) = D,	


then v= 2.sqrt(ρD) is the front propagation speed	


	


(K. Swanson & J. Murray, Cell Prolif 2000;	


 Br J Cancer 2002; J Neurol Sci 2003)	



Partial differential equations 	





PDE models of tumour growth: invasion as competition	


Macroscopic reaction-diffusion equations to represent invasion / recession fronts	



2 or more variables: ex.: healthy cells N1, tumour cells N2, excess H+ ions L	



(Gatenby & Gawlinski, Canc. Res. 1996)	

Prediction: interstitial cell gap between tumour	


propagation and healthy tissue recession fronts	



N1	


N2	



L

Partial differential equations 	

 [Competition for space]	





PDE models for moving tumour cells in the ECM	


Chemotaxis: chemo-attractant induced cell movements	



Keller-Segel model	



p = density of cells	


w = density of chemoattractant	



(Originally designed for movements of bacteria, with w=[cAMP])	


(Keller & Segel, J Theoret Biol 1971) 	


Anderson-Chaplain model for local invasion by tumour cells in the ECM	



n = density of cells	


	


f = ECM density	


	


m = MDE (tumour	


     metalloproteases)	


	


u = MDE inhibitor	



(Anderson & Chaplain, Chap 10 in Cancer modelling and simulation, L. Preziosi Ed, Chapman & Hall 2003)	



Partial differential equations 	





Models of tumour growth 5	


Models of Lotka-Volterra type, phenotype-structured, with built-in growth limitation	



(mentioned in Billy & JC, DCDS-B 2013); see also Delitala & Lorenzi’s papers 	


or:	



(mentioned in Billy & JC, DCDS-B 2013; see here on Thursday; see also Delitala & Lorenzi’s papers) 	



where	

 is the total cell population or, more generally, 
a [total] cell population-dependent 
environment variable = growth limitation	



Integro-differential models	





Models for angiogenesis	


VEGF-induced endothelial cell movements towards tumour	



- Biochemical enzyme kinetics	


- Chemical transport (capillary and ECM)	


- “Reinforced random walks”	


- Cell movements in the ECM	



Models by Anderson  and Chaplain, 
Levine and Sleeman	


(Levine & Sleeman,Chap. 6 in Cancer modelling and 
simulation, L. Preziosi Ed, Chapman & Hall 2003)	



Partial differential equations 	





A multiscale angiogenesis model 	


Interacting cell populations	

 Proliferating cancer cell population	



F. Billy et al., J. Theor. Biol. 2009	



Coupling by oxygen concentration, 	

acting on actual commitment of cells	


into the division cycle (passing the restriction point)	


	


Aim: assessment of an antiangiogenic treatment by endostatin	



Partial differential equations 	





Hybrid modelling: PDEs, ODEs and Cellular Automata	



-  PDEs for the diffusion of molecules in the interstitial medium: 
oxygen, nutrients, growth factors and drugs in space-structured tissues	



-  ODEs for intracellular metabolism and PK-PD (pharmacokinetics-
pharmacodynamics in single cells, the targets of drugs)	



-  Cellular Automata or Agent-Based Models (ABMs) to build a tissue 
from single cells (=the individual agents) 	



Many examples of such models exist in the scientific literature	


A recent one: Robertson-Tessi et al., Cancer Research 2015 	





Modelling the cell cycle 1 (single-cell models)	


Ordinary differential equations to describe progression in the cell cycle	



C	



X

M	



A. Golbeter’s minimal model for the « mitotic oscillator » 	



C = cyclin B, M = Cyclin-linked cyclin dependent kinase, X = anticyclin protease	



Switch-like dynamics of kinase cdk1, M	


	


Adapted to describe G2/M phase transition, 	


which is controlled by Cyclin B	



(A. Goldebeter Biochemical oscillations and cellular rhythms, CUP 1996)	



Ordinary differential equations 	





Including more phase transitions in the cell cycle model?	


Hint: an existing model for G1/S and G2/M synchronisation	


(recalling the minimum mitotic oscillator (C, M, X) by A. Goldbeter, 1996, here 	


duplicated to take into account synchronisation between G1/S and G2/M transitions)	



Changing the coupling strength may lead to:	



 i=1:	


G1/S	



 i=2:	


G2/M	



Romond, Gonze, Rustici, Goldbeter, Ann NYAS, 1999	



Ci=Cyclin	


Mi=CDK	


Xi=Protease	



Ordinary differential equations 	





Modelling the cell cycle 2 (single-cell models)���
Detailed ODE models to describe progression in the cell cycle	



Phase transitions:	


-G1/S	


-G2/M	


-Metaphase/anaphase	


	


…due to steep variations	


of  Cyc-cdk concentrations	


(bifurcation parameter=cell mass)	



(Novak, Bioinformatics 1999)	

 (Tyson, Chen, Novak, Nature Reviews 2001)	



Ordinary differential equations 	





Modelling the cell cycle 2: single cell (continued) ���
Even more detailed ODE models to describe progression in the cell cycle	



39 variables. Growth factor, rather than cell mass	


(as was the case in models by Tyson, Chen & Novak)	


 is the driving parameter for bifurcations	


	


A simplified model has been proposed, with 5 variables	


	

   C. Gérard & A. Goldbeter, PNAS 2009; Interface Focus 2011	



   C. Gérard, D. Gonze & A. Goldbeter, FEBS Journal 2012	



Ordinary differential equations 	





Modelling the cell cycle 3���
Transport equations for age-structured cycling cell populations	



(after B. Basse et al., J Math Biol 2003)	



In each phase i , a Von Foerster-McKendrick-like equation:	



di , K i->i+1 constant or 
periodic w. r. to time t 
(1≤i≤I, I+1=1)	



ni:=cell population 
density in phase i 
di:=death rate	


K i->i+1:=transition rate 
(with a factor 2for i=1)	



FUCCI staining (Sakaue-Sawano Cell 2008) 	


allows to quantify proliferating cell population	


repartition according to cell cycle phases	



Death rates di and phase transitions K i->i+1 are targets	


for physiological (e.g. circadian) and therapeutic (drugs) control 

Partial differential equations 	



(JC, B. Laroche, S. Mischler, B. Perthame INRIA research report 4892, 2003) 	





 General case (N phases): by the Krein-Rutman theorem (infinite-dimensional form	


 of the Perron-Frobenius theorem), there exists a nonnegative first eigenvalue λ and, 	


 if                                           ,  Ni , bounded solutions to the problem (here vi(a)=1) :	



(the weights ϕi being solutions to the dual problem); this can be proved by using a 
generalised entropy principle (GRE). Moreover, if the control (di  or Ki->i+1) is 
constant, or if it is periodic, so are the Ni , with the same period in the periodic case.	


	



with a real number ρ such that the asymptotics of 	

 	

 	

       follow:	



Ph. Michel, S. Mischler, B. Perthame, C. R. Acad. Sci. Paris Ser. I (Math.) 2004; J Math Pures Appl 2005 	

      JC, 
Ph. Michel, B. Perthame, C. R. Acad. Sci. Paris Ser. I (Math.) 2006; Proc. ECMTB Dresden 2005, Birkhäuser 2007	


	



   ρ.	





In summary: proof of the existence of a unique growth exponent λ, the same for all 
phases i, such that the                                       are bounded, and asymptotically 
periodic if the control is periodic	



Example of control (periodic control case): 2 phases, control on G2/M transition by 
24-h-periodic CDK1-Cyclin B (from A. Goldbeter’s minimal mitotic oscillator model)	



 ψ=CDK1   All cells in G1-S-G2 (phase i=1)  All cells in M (phase i=2)	


	


  Entrainment of the cell division cycle by ψ= CDK1 at the circadian period	



  	



λ: a growth exponent governing the cell population behaviour	



time t 

“Surfing on the 
exponential growth curve”	


	


(= the same as adding	


an artificial death term	


+λ to the di)	



Partial differential equations 	





Details (1): 2 phases, no control on G2/M transition	



The total population of cells	


	


	


inside each phase follows	


asymptotically an exponential	


behaviour	



Stationary state 
distribution of cells 
inside phases 
according to age a: 
no control, hence 
exponential decay	





 Details (2): 2 phases, periodic control  ψ  on G2/M transition	



The total population of cells	


	


	


inside each phase follows	


asymptotically an exponential	


behaviour tuned by a periodic 
function	



Stationary state	


distribution of cells	


inside phases	


according to age a: 
sharp periodic 
control, hence sharp 
rise and decay 	





The simplest case: 1-phase model with division	



(Here, v(a)=1, a* is the cell cycle duration, and τ(<1)  is the time	


during which the 1-periodic control ψ is actually exerted on cell division)	


	


Then it can be shown that  the eigenvalue problem:	


	


	


	


	



	

 	

 	

 	

 	

 	

 	

  has a unique positive	


1-periodic eigenvector N, with a positive eigenvalue λ, solution, if d(t)=d, K(t,a)=K(a)	


of Lotka’s (=Euler’s) equation:	



Partial differential equations 	





Experimental measurements to identify transition kernels Ki_i+1	



(and simultaneously experimental evaluation of the first eigenvalue λ)	


In the simplest model with d=0 (one phase with division) and assuming K=K(x)	


(instead of indicator functions              , experimentally more realistic transitions):	



Which can be interpreted as: if τ is the age in phase at division, or transition, then	


	



With probability density (experimentally identifiable):	



with	



Whence (by integration 	


along characteristic lines):	



i.e.,	



Partial differential equations 	





Experimental parameter identification for this cell cycle model 
with 2 phases: G1 and S-G2-M using FUCCI reporters 	



FUCCI=Fluorescent Ubiquitination-based Cell Cycle Indicator	





FUCCI: a movie (Sakaue-Sawano 2008), HeLa cells	





Another FUCCI movie (C. Feillet, IBDC Nice), NIH3T3 cells	





FUCCI reporters + individual cell tracking (non trivial...):	


Measuring time intervals: G1 and total division cycle durations	



Data from Bert van der Horst’s lab, Erasmus University, Rotterdam, processed  by Frédérique Billy at INRIA 	





Phase durations (hence transitions, using 	

 	

  ) in age x	


Pdfs f(x) fitted from data on 50 NIH 3T3 proliferating cells	



	

 	

 	

 	

 	

 	

(mouse embryonic fibroblasts)	


 	



FUCCI data in NIH3T3 cells, that are healthy mouse fibroblasts tracked in liquid medium	



Density of duration of G1 phase	

 Density of duration of SG2M	





Fitting probability density functions to data and computing λ:	


Gamma p.d.f.s were best fits and yielded simple computations	



2-phase Lotka’s equation simply reads:	


	


... which yields here λ = 0.039 h-1	



(and yields mean doubling time Td =17.77 h, and mean cell cycle time Tc =17.95 h)  	



(Billy et al., Math. Comp. Simul. 2014) 	





Phase transitions w.r.t. age x:	


Transition rates K(x) from pdfs f(x) on NIH 3T3 healthy cells	



and resulting population evolution without control on transitions	



G1 to S	

 M to G1	



G1 to S	

 S/G2/M to G1	



G1	



S/G2/M 	



(cell synchronisation “by hand”)	

 Asynchronous theoretical cell growth	



Exponential growth of theoretical total 	


cell population: here, λ=0.039 h-1 	



One complete observed cell cycle	



Recalling that in the model	


f = p.d.f. of phase duration time	


and K = phase transition kernel:	





More single cell data to build population data���
from IBDC (F. Delaunay, C. Feillet) in Nice  	



•  117+150 single NIH3T3 cell data stained by FUCCI, plus a RevErb-α track	



•  117 in 10% Fetal Bovine Serum (FBS), rich in growth factors, and 150 in 15% 
FBS (150 out of many; only the ones with a robust RevErb-α circadian clock 
were kept as mere indicators of good health)	



•  Results: evaluation of phase transition rates in a 2-phase model of the cell cycle 
in the two concentration media	



	


•  Increasing FBS from 10 to 15%  reduces standard deviation of both phase 

durations, suggesting increased synchrony between cell cycle phases	



•  Good agreement of the model behaviour with the data, evidencing higher 
velocity v in cell cycle progression with 15% FBS	



•  v: 15% FBS cell population grows approximately 10% faster than the 10% FBS	





More on FUCCI to identify cell cycle phase durations:	


Effects of growth factors on NIH3T3 cell populations	



117 cells	


in 10% FBS	



150 cells	


in 15% FBS	



G1	



G1	



S/G2/M	



S/G2/M	



F. Billy et al. Math BioSci Eng 2013	





Descriptive statistics: influence of growth factors on m and sd ���
	

   Coefficient of variation	



 (sd/m)	


	



       G1:     0.53  / 0.40	


	


S/G2/M:     0.21 / 0.20	



   Coefficient of variation	


 	

(sd/m)	


	


       G1:    0.34  / 0.25	


	


S/G2/M:    0.16 / 0.15	



F. Billy et al. Math BioSci Eng 2013	



Measured	



Using	


model	


parameters	





(F. Billy et al., Math Biosci. Eng. 2013)	





Taking into account different progression velocities in the cycle	


•  The complete model, with speed of progression v (in age x w.r.t. time t):	



•  ... or, choosing a constant speed v independent of age x and phase i:	





Setting free the parameter v = speed of progression	


in the cell cycle for 15% FBS cells (with basis	


v=1 in the 10% FBS cell population) yielded	


v=1.095 in the 15% FBS cell population and	


better fit of model to experimental data	


(with Td=15.4 h instead of 18.1 h in 15% FCS	


compared with Td=20.8 h in 10% FCS)	



(F. Billy et al., Math Biosci. Eng. 2013)	



Results: better fit with evaluation of varying speed v	



v=1.095 in 15% FCS  



One cell divides in two: a physiologically controlled process at cell and tissue levels	


in all healthy and fast renewing tissues (gut, bone marrow) that is disrupted in cancer:	


	


Is cell cycle phase synchronisation a mark of health in tissues? 	



(from Lodish et al., Molecular cell biology, Nov. 2003) 	



A possible application to the investigation of	


synchronisation between cell cycle phases  	





A working hypothesis that could explain differences in 
responses to drug treatments between healthy and cancer tissues	



Healthy tissues, i.e., cell populations, would be well synchronised	


w. r. to proliferation rhythms and w. r. to circadian clocks, whereas…	


	


...tumour cell populations would be desynchronised w. r. to both, and such	


proliferation desynchronisation would be a consequence of an escape	


by tumour cells from central circadian clock control messages, just as	


they evade most physiological controls, cf. e.g., Hanahan & Weinberg:	


  	


	

 Question: 	



is cell cycle phase	


desynchronisation 
another hallmark of 
cancer in cell 
populations? 	





A mathematical result: λ increases with desynchronisation   	


where desynchronisation is defined as a measure of phase overlapping at transition	



 	



i.e.,for a given family (fi) of p.d.f.s with second moment σi, λ is increasing with each σi   	



(Thomas Ouillon’s INRIA internship report 2010, also shown in Billy et al., Math. Comp. Simul., 2014)	





Simple age-structured PDE models representing	


exchanges between proliferation and quiescence	



p=density of proliferating cells; q=density of quiescent cells; γ,δ=death terms;	


K=term describing cells leaving proliferation to quiescence, due to mitosis;	


β=term describing “reintroduction” (or recruitment) from quiescence to proliferation	



Partial differential equations 	





Delay differential models with two cell compartments,	


 proliferating (P)/quiescent (Q): Haematopoiesis models 	



(obtained from the previous model with additional hypotheses and integration in x along characteristics)	



(from Mackey, Blood 1978)	



Properties of this model: depending on the parameters, one can have positive	


stability, extinction, explosion, or sustained oscillations of both populations	



	

 	

 	

(Hayes stability criteria, see Hayes, J London Math Soc 1950)	


Oscillatory behaviour is observed in periodic Chronic Myelogenous Leukaemia	


(CML) where oscillations with limited amplitude are compatible with survival, 	


whereas explosion (blast crisis, alias acutisation) leads to AML and death	


 (Mackey and Bélair in Montréal; Adimy, Bernard, Crauste, Pujo-Menjouet, Volpert in Lyon)	



(delay τ = cell division cycle time)	



Delay differential equations 	





Modelling haematopoiesis	


for Acute Myeloblastic Leukaemia (AML)	


…aiming at non-cell-killing therapeutics	


by inducing re-differentiation of cells using	


molecules (e.g. ATRA) enhancing differentiation	


rates represented by Ki terms	



 

 

 

where ri and pi represent resting and proliferating	


cells, respectively, with reintroduction term βi=βi(xi) 
positive decaying to zero, 	


with population argument:	


	



and boundary conditions:	



From Adimy, Crauste, ElAbdllaoui J Biol Syst 2008 (see also: Özbay, Bonnet, Benjelloun, JC MMNP 2012)	





Modelling leukaemic haematopoiesis (Mackey/Adimy) : ���
proliferation advantage?	



‘Stem-like’ cells CD34+/CD38-	



Committed cells CD34+/CD38+	



TK (flt3-ITD) mutation	



Blood/ bone marrow sampling	


in AML patients	


Cell sorting (magnetic beads)	


	


FACS for cell cycle phases 	


Self-renewal: critical penomenon	


Measuring apoptosis and cell	


division in each population should lead to model identification	





An age[a]-and-cyclin[x]-structured PDE model	


with proliferating and quiescent cells	



(exchanges between (p) and (q), healthy and tumour tissue cases: G0 to G1 recruitments G from q to p differ)	



Healthy tissue 
recruitment G: 
homeostasis	



Tumour recruitment G:	


(α2>0) exponential growth	



F. Bekkal Brikci, 
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N=p+q: 
total number 
of cells                         
L: leak term 
from p to q     
F: mitosis	



λ>0	


for small Ν	


λ<0	


for large N	



λ>0	


for all Ν	





Healthy tissue 
recruitment G: 
homeostasis	



Tumour recruitment G:	


(α2>0) exponential growth	



Note that if one sets λ1=0 and n=1/k, k integer, then one can obtain tk power-law growth	



(Bekkal Brikci et al., Math Comp Modelling 2008)	



Age[a]-and-cyclin[x]-structured PDE model, continued	





i.e., “It is appropriate to the model to testify for the phenomena, and	


         to the phenomena for the model”	


	


(in Aristotle’s Περί  Ουρανού [Sky], from which I freely translate λόγος by model)	



To conclude this first part on models, quoting Aristotle: 	

	




