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Cancer puzzle: beyond intracellular signalling pathways
• Cancer is a disease of multicellular organisms: it makes little sense (except for

monogenic cases: CML, APL,...) to search for its determinants in a single cell

• Cancer as localised loss of coherence between tissues in the same multicellular
organism, i.e., localised disruption in the control of cell differentiations?

• Loss of differentiation control is cell plasticity and results in phenotype lability

• What is coherence within/between tissues? How is it disrupted in cancer?

• Atavistic hypothesis of cancer: from Boveri to Davies, Lineweaver and Vincent

• Between-species phylostratigraphic analyses of genes of multicellularity and
genes altered in cancer: Domazet-Lošo & Tautz 2010

• Perturbed gap junctions (Trosko) and impaired energetic metabolism in cancer

• “Cold genes”, extreme cellular stress and bet hedging in cancer?

• Epigenetic barriers, “self” (friend-or-foe) recognition and the immune system

• Evolutionary parallelism between the development of multicellularity in different
species and the development of the immune system in these different species?
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Motivation from and focus on drug resistance in cancer

• Slow genetic mechanisms of ‘the great evolution’ that has designed multicellular
organisms, together with fast reverse evolution on smaller time windows, at the
scale of a human disease, may explain transient or established drug resistance.

• Plasticity in cancer cells, i.e., epigenetic (much faster than genetic mutations,
and reversible) propension to reversal to a stem-like, de-differentiated status,
resulting in fast adaptability of cancer cell populations, makes them amenable to
resist abrupt drug insult as response to extreme cellular stress.

• Intra-tumour heterogeneity with respect to drug resistance potential, modelling
between-cell phenotypic variability within cancer cell populations, is a good
setting to represent continuous evolution towards drug resistance in tumours.

• Reversible plasticity is captured by mathematical models that incorporate
between-cell heterogeneity by making use of continuous phenotypic variables
structuring the population.

• Such models have the advantage of being compatible with optimal control
methods for the theoretical design of optimised therapeutic protocols involving
combinations of cytotoxic and cytostatic (and later epigenetic?) treatments.
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Drug resistance:
a phenomenon common to various therapeutic situations

• In therapeutic situations where an external pathogenic agent is proliferating at
the expense of the resources of an organism: antibiotherapy, virology,
parasitology, target populations are able to develop drug resistance mechanisms
(e.g., expression of β-lactamase in bacteria exposed to amoxicillin).

• In cancer, there is no external pathogenic agent (even though one may have
favoured the disease) and the target cell populations share much of their
genome with the host healthy cell population, making overexpression of natural
defence phenomena easy (e.g., ABC transporters in cancer cells).

• Drug resistance may account for unexpected failures in targeted therapies.

• Note that drug resistance (and resistance to radiotherapy) is one of the many
forms of fast resistance to cellular stress, possibly coded in ‘cold’, i.e., strongly
preserved throughout evolution, rather than in ‘hot’, i.e., mutation-prone, genes
(Wu et al. PNAS 2015).
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Molecular mechanisms at the single cell level
vs. Phenotypes at the cell population level

• Overexpression of ABC transporters, of drug processing enzymes, decrease of
drug cellular influx, etc. are relevant to describe molecular resistance
mechanisms at the single cell level.

• At the cell population level, representing drug resistance by a continuous
variable x standing for a resistance phenotype (in evolutionary game theory: a
strategy) is adapted to describe evolution from total sensitivity (x = 0) towards
total resistance (x = 1).

• Is such evolution towards drug resistance due to sheer Darwinian selection of the
fittest by mutations in differentiation at cell division or, at least partially, due to
phenotype adaptation in individual cells? Not clear.
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Drug resistance: evolutionary bottlenecks in cancer
• Animal genome (of the host to cancer) is rich and amenable to adaptation

scenarios that may recapitulate developmental scenarios - resulting in
insufficient cohesion of the ensemble - abandoned in the process of evolution
from protozoa to metazoa (Davies & Lineweaver 2011).

• In cancer populations, enhanced heterogeneity with enhanced proliferation
results in a high phenotypic or genetic diversity of proliferating clonal
subpopulations

• So that drug therapy may be followed, after initial success, by relapse due to
selection of a resistant clone (Ding et al. 2012).

Ding et al. Nature 2012
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Drug resistance: always mutations and branching?

Darwin’s notebook 1837 Maley & Greaves Nature 2012

Gerlinger et al. NEJM 2012
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Can resistance be assessed by biological experiments? (1)
First hint: cell heterogeneity in Luria and Delbrück’s experiment (1943)

Different Petri dishes, same experimental settings

Bacterial populations firstly proliferating freely, then
exposed to a phage environment: some will show
resistance to the phages

Question: Is resistance induced by the phage
environment, scenario (A)? Or was it preexistent in
some subclones, due to random mutations at each
generation, and selection by the phages, scenario (B)?

Experiment: the answer is always (B):
preexistent mutations before selection

However, bacteria are not cancer cells! In particular,
they are far from being able of the same plasticity
(no differentiation is available for them)

(Luria & Delbrück, Genetics, 1943)
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Biological experiment (2): reversible resistance in cancer

• Population of PC9 (NSCLC) cells under high doses of drugs (e.g., gefitinib)
• 99.7% cells die, .3% survive in this maintained hostile drug environment:

Drug Tolerant Persisters, DTPs
• In the same hostile environment, 20% of DTPs resume proliferation:

Drug Tolerant Expanded Persisters, DTEPs
• Total reversibility to drug sensitivity is obtained by drug withdrawal, occurring

after 9 doubling times for DTPs, and 90 doubling times for DTEPs
• Inhibition of epigenetic enzyme KDM5A blocks emergence of DTPs
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Sharma et al. Cell 2010
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Glioblastoma and temozolomide: as in Sharma Cell 2010

from F. Vallette’s INSERM team in Nantes
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Gene expression followed from D0 to D16 (PCA)

Short time window for combined treatment with an epigenetic drug??

from F. Vallette’s INSERM team in Nantes
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A possible evolutionary framework (billion year-term view):
the atavistic hypothesis of cancer (1)

“Nothing in biology makes sense except in the light of evolution” (Th. Dobzhansky, 1973)

“Cancer: more archeoplasm than neoplasm” (Mark Vincent, 2011) More references:
Boveri 1929, Israel JTB 1996, Davies & Lineweaver Phys Biol 2011, Vincent Bioessays
2011, Lineweaver, Davies & Vincent Bioessays 2014, Chen et al. Nature Comm 2015,
Bussey et al. PNAS 2017, Cisneros et al. PLoS One 2017, Trigos et al. PNAS 2017
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A possible evolutionary framework (billion year-term view):
the atavistic hypothesis of cancer (2)
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(see Chisholm et al. 2016, BBA General Subjects DOI:10.1016/j.bbagen.2016.06.009)

• The genes that have appeared in the process of development to multicellularity
are precisely those that are altered in cancer

• In what order in evolution, from 1) proliferation+apoptosis to 2) cell
differentiation +division of work, and to 3) epigenetic control of differentiation
and proliferation?

• Reconstituting the phylogeny of this ‘multicellularity toolkit’ should shed light
on the robustness or fragility of genes that have been altered in cancer

• Attacking cancer on proliferation is precisely attacking its robustness. It would
be better to attack its weaknesses (e.g. absence of adaptive immune response)
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Why resistance in cancer, not in healthy, cell populations?

• According to the atavistic hypothesis, cancer is a ‘backward evolution’ from a
sophisticated form of multicellularity (us), in which epigenetic processes control
gene regulatory networks of transcription factors: differentiation factors, p53,
etc., that themselves physiologically control the basis of cellular life: proliferation

• We bear in our genomes many attempts of species evolution since billions of
years; dead-end tracks (‘unused attractors’ in S. Huang and S. Kauffman’s
version of the Waddington landscape) have been silenced (e.g., by epigenetic
enzymes, resulting in evolutionary barriers in this landscape), but are still there

• In cancer, global regulations are lost, differentiation is out of control, so that,
without regulation, local proliferations overcome; sophisticated adaptive
epigenetic mechanisms are present, not controlling proliferation, but serving it
(by stochastic expression of so-called cold genes? cf. Wu et al. PNAS 2015)

• Primitive forms of cooperation between specialised cells in a locally organised
multicellular collection (tumour), with plasticity between them, may be present,
exhibiting coherent intratumoral heterogeneity, and escaping external control

• The basic cancer cell is highly plastic and highly capable of adaptation to a
hostile environment, as were its ancestors in a remote past of our planet (poor
O2, acidic environment, high UV radiations,...) and likely presently even more
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Another evolutionary framework (life-term view):
revisiting the Waddington epigenetic landscape

The classic Waddington
landscape ("The strategy of
genes", 1957) for cell
differentiation

Waddington landscape revisited by S. Huang (2011, 2012, 2013)

“Nothing in evolution makes sense except
in the light of systems biology” (S. Huang, 2012)
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Genetic and epigenetic: the two landscapes (Sui Huang)

• The epigenetic landscape (a):
high-dimensional variety (dimensions being
given by various states of many gene
regulatory networks) endowed with a
quasi-potential that governs fast evolution of
cells in a genetically homogeneous
population, expanded from a point in the
fitness landscape (b) of genomes.

• References: Sui Huang Sem Canc Biol 2011,
Bioessays 2012, Canc Metastasis Rev 2013;
Zhou Interface 2012; Pisco Br J C 2015...

• Characterising resistance to a given drug by a
phenotypic low-dimensional variable amounts
to performing a low-dimensional projection
from the global epigenetic landscape (onto a
line, a plane, etc.)

(Sui Huang, Canc Metastasis Rev 2013)
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The best known case: haematopoiesis
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Some milestones to reconstruct the global landscape

[Classic Waddington landscape]

Stem cell fate: modern version by Tariq Enver
(ASH meeting 2011)

Zoom on the PU.1/GATA1 node (for
equations and bifurcations, see Huang,
Guo, May & Enver Devel Biol 2007)
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First tentative model of resistance: one drug, cancer cells
• x = level of expression of a drug resistance phenotype (to a given cytotoxic drug)

• nH(x , t), nC (x , t) densities of cell populations (H=healthy, C=tumour)

∂

∂t
nC (x , t) =

[ growth︷ ︸︸ ︷
(1− θC ) r(x)−

death︷︸︸︷
d(x) −

drug effect︷ ︸︸ ︷
u(t)µC (x)

]
nC (x , t)

+θC

birth with mutation︷ ︸︸ ︷∫
r(y)MσC (y , x)nC (y , t)dy

• r(x) = basic reproduction rate, d(x) = basic death rate; we assume that
r(0) > d(0) > 0, r ′(·) < 0, r(+∞) = 0, d ′(·) > 0

• θH and θC (1 > θC >> θH ≥ 0) are the proportions of divisions with mutations

• µ[H,C ](x) (with µ′C (·) < 0) represents the phenotype-dependent response to
cytotoxic drug, with concentration u(t), designed to target cancer cells.

• Note: assumptions r(·) > 0, µC (·) > 0, µ′C (·) < 0 and r ′(·) < 0 (cost of resistance:
the higher is x , the lower is proliferation) represent an evolutionary double bind on
resistant cancer cell populations, i.e., an evolutionary trade-off between growing (thus
getting exposed) and keeping still (thus surviving)

Lorz et al., M2AN 2013
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First tentative model of resistance: one drug, healthy cells

∂

∂t
nH(x , t) =

[ growth with homeostasis︷ ︸︸ ︷
1− θH(

1 + ρ(t)
)β r(x) −

death︷︸︸︷
d(x) −

drug effect︷ ︸︸ ︷
u(t)µH(x)

]
nH(x , t)

+
θH(

1 + ρ(t)
)β

birth with mutation︷ ︸︸ ︷∫
r(y)MσH (y , x)nH(y , t)dy ,

where the total population is defined as

ρ(t) = ρH(t) + ρC (t); ρH(t) =
∫∞
x=0 nH(x , t)dx ; ρC (t) =

∫∞
x=0 nC (x , t)dx .

• β > 0 imposes healthy tissue homeostasis,

• u(t) denotes the instantaneous dose (concentration) of chemotherapy. We assume
in this model that its effect is cytotoxic, i.e., on the death term only.

Lorz et al., M2AN 2013
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First model of resistance, one drug: illustrations (1)
[Sensitive (or healthy) cell population case: illustration of Gause’s exclusion principle]
Theorem: Monomorphic evolution towards drug sensitivity, illustrated here with
θH = 0, (no mutations) and µH = 0 (no drug-induced resistance)

Left panel: starting from a medium phenotype x = 0.5, level sets of a drug-sensitive
population in the (t, x) plane. Right panel: asymptotic distribution of this
drug-sensitive population according to the drug resistance phenotype x .

Lorz et al., M2AN 2013
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First model of resistance, one drug: illustrations (2)
[Resistant cancer cell population case: Gause’s exclusion principle again]
Theorem: Monomorphic evolution towards drug-induced drug resistance, here with
θC = 0, µC (·) > 0, r ′(·) < 0, µ′C (·) < 0 (costly drug-induced resistance), u(t) = Cst

Left panel: starting from a medium phenotype x = 0.5, level sets of a drug- resistant
population in the (t, x) plane. Right panel: asymptotic distribution of this
drug-resistant population according to the drug resistance phenotype x .

Lorz et al., M2AN 2013
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Simple phenotype-structured population dynamics

• Description of evolution of a population in time t and in relevant phenotype x

• ‘Structure variable’ x : trait chosen as bearing the biological variability at stake

• Variable : n(t, x) population density of individuals bearing trait x at time t

• (1) Evolution in numbers of individuals constituting the population

t 7→ ρ(t) =

∫ 1

0
n(t, x) dx (if, e.g., x ∈ [0, 1])

• (2) Asymptotics of distribution of the trait in the population

x 7→ limt→+∞
n(t, x)

ρ(t)

• Cancer cell populations: (1) tumour growth; (2) asymptotic distribution of trait

• Space is not necessarily a relevant structure variable when studying drug control
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Phenotype-structured non-local Lotka-Volterra models

Questions: what is the asymptotic behaviour (t → +∞) of

• the total population ρ(t)?

• the phenotypes in the population (i.e., possible limits for
n(t, ·)
ρ(t)

in M1(0, 1))?

Nonlocal Lotka-Volterra model: n(t, x) density of cells of trait (phenotype) x ∈ [0, 1]:

∂n

∂t
(t, x) =

(
r(x)− d(x)ρ(t)

)
n(t, x),

with

ρ(t) :=

∫ 1

0
n(t, x) dx and n(0, x) = n0(x).

We assume reasonable (C1) hypotheses on r and d , and n0 ∈ L1([0, 1])

[More general settings for the growth rate R(x , ρ(t)), here
(
r(x)− d(x)ρ(t)

)
, have

been studied in Benoît Perthame’s book Transport equations in biology (2007)]
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Non-local Lotka-Volterra 1D model: convergence in time
Convergence (one-population case): plot of t 7→ ρ(t)

Firstly, it can be shown that: ρ converges to ρ∞ = max
[0,1]

r

d
, i.e., to the smallest value ρ

such that r(x)− d(x)ρ ≤ 0 on [0, 1].

[See Camille Pouchol’s internship report: “Modelling interactions between tumour cells
and supporting adipocytes in breast cancer”, UPMC, September 2015,
https://hal.inria.fr/hal-01252122]

https://hal.inria.fr/hal-01252122
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Non-local Lotka-Volterra 1D model: concentration in x

Concentration (one population): Plot of x 7→ n(t, x) for different times t

Theorem
• ρ converges to ρ∞, the smallest value ρ such that r(x)− d(x)ρ ≤ 0 on [0, 1].
• n(t, ·) concentrates on the set

{
x ∈ [0, 1], r(x)− d(x)ρ∞ = 0

}
.

• Furthermore, if this set is reduced to a singleton x∞, then

n(t, ·) ⇀ ρ∞δx∞ in M1(0, 1).

[See Camille Pouchol’s internship report: “Modelling interactions between tumour cells
and supporting adipocytes in breast cancer”, UPMC, September 2015,
https://hal.inria.fr/hal-01252122]

https://hal.inria.fr/hal-01252122
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Non-local Lotka-Volterra 1D model: convergence and
concentration using a Lyapunov functional

Although in the 1D case a direct proof of convergence based on a BV hypothesis may
be obtained, from which concentration easily follows, it is interesting to note, as this
argument can be used in the case of 2 populations, that a global proof based on the
design of a Lyapunov function gives at the same time convergence and concentration:
choosing any measure n∞ on [0, 1] such that

∫ 1
0 n∞(x) dx = ρ∞ = max

[0,1]

r

d
, and for an

appropriate weight w(x) (= 1
d(x)

, P.-E. Jabin & G. Raoul, J Math Biol 2011), setting

V (t) =

∫ 1

0
w(x) {n(t, x)− n∞(x)− n∞(x) ln n(t, x)} dx ,

one can show that
dV

dt
= −(ρ(t)− ρ∞)2 +

∫ 1

0
w(x) {r(x)− d(x)ρ∞} n(t, x) dx ,

which is always nonpositive, tends to zero for t →∞, thus making V a Lyapunov
functional, and showing at the same time convergence and concentration. Indeed, in
this expression, the two terms are nonpositive and their sum tends to zero; the zero
limit of the first one accounts for convergence of ρ(t), and the zero limit of the second
one accounts for concentration in x (on a zero-measure set) of lim

t→+∞
n(t, x).

[See Camille Pouchol’s PhD thesis (Sorbonne Université) defended in June 2018, and
in a more general case, Pouchol et al., J Maths Pures Appl 2018]
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Non-local Lotka-Volterra 2D model (2 populations, nH , nC )
with 2 different drugs and one resistance phenotype x

∂

∂t
nH(t, x) =

[
rH(x)

1 + kHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

]
nH(t, x)

∂

∂t
nC (t, x) =

[
rC (x)

1 + kCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

]
nC (t, x)

Environment: IH(t) = aHH .ρH(t) + aHC .ρC (t), IC (t) = aCH .ρH(t) + aCC .ρC (t),

with ρH(t) =
∫ 1
0 nH(t, x) dx , ρC (t) =

∫ 1
0 nC (t, x) dx , u1 cytotoxic, u2 cytostatic drugs.

Simultaneous combinations of the 2 drugs, with increasing equal constant doses

Healthy cells nH : preserved Cancer cells nC : eventually extinct

Proof of concept, or here “Pedestrian’s
optimisation” Lorz et al. M2AN 2013



Position of problem Evolution Modelling Control Mutualism Space Functionally structured models Questions

Asymptotic behaviour with constant controls
Following an argument by P.-E. Jabin & G. Raoul (J Math Biol 2011) we prove at the
same time convergence and concentration by using a Lyapunov functional of the form∫

w(x) {n(t, x)− n∞(x)− n∞(x) ln n(t, x)} dx

Theorem
(Asymptotic behaviour theorem, generalising to 2 populations the 1D case)
Assume that u1 and u2 are constant: u1 ≡ ū1, and u2 ≡ ū2. Then, for any positive
initial population of healthy and of tumour cells, (ρH(t), ρC (t)) converges to the
equilibrium point (ρ∞H , ρ∞C ), which can be exactly computed as follows.
Let a1 ≥ 0 and a2 ≥ 0 be the smallest nonnegative real numbers such that

rH(x)

1 + αH ū2
− ū1µH(x) ≤ dH(x)a1 and

rC (x)

1 + αC ū2
− ū1µC (x) ≤ dC (x)a2.

Then (ρ∞H , ρ∞C ) is the unique solution of the invertible (aHH .aCC >> aCH .aHC ) system
I∞H = aHHρ

∞
H + aHCρ

∞
C = a1,

I∞C = aCHρ
∞
H + aCCρ

∞
C = a2.

Let AH ⊂ [0, 1] (resp., AC ⊂ [0, 1]) be the set of all points x ∈ [0, 1] such that equality
hold in one of the inequalities above. Then the supports of the probability measures

νH(t) =
nH(t, x)

ρH(t)
dx and νC (t) =

nC (t, x)

ρC (t)
dx

converge respectively to AH and AC as t tends to +∞.
Pouchol et al. J. Maths Pures Appl. 2018
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Basis of proof (constant controls): a Lyapunov functional

Firstly, the correspondence (a1, a2) 7→ (ρ∞H , ρ∞C ) being bijective and controls ū1, ū2
being constant and omitted in the sequel, one can write the two inequalities above as

∀x ∈ [0, 1], RH(x , ρ∞H , ρ∞C ) ≤ 0 and ∀x ∈ [0, 1], RC (x , ρ∞C , ρ∞H ) ≤ 0

with, furthermore, by definition

∀x ∈ AH , RH(x , ρ∞H , ρ∞C ) = 0 and ∀x ∈ AC , RC (x , ρ∞C , ρ∞H ) = 0

Then, for mH,C :=
1

dH,C

, define the Lyapunov functional V (t) := VH(t) +VC (t) where

VH,C (t) = λH,C

∫ 1

0
mH,C (x)

[
n∞H,C (x) ln

(
1

nH,C (t, x)

)
+
(
nH,C (t, x)− n∞H,C (x)

)]
dx .

where n∞H,C (x) are measures with support in AH,C such that
∫ 1

0
n∞H,C (x) dx = ρ∞H,C , the

positive constants λH and λC being adequately chosen to make V decreasing along
trajectories. The functional V yields simultaneously convergence and concentration.

Pouchol et al. J. Maths Pures Appl. 2018
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How to be deleterious by using constant doses of drugs
[We define the population of sensitive cancer cells by ρCS (t) :=

∫ 1
0 (1− x) nC (t, x) dx]

Simulation with u1(t) = Cst = 3.5 and u2(t) = Cst = 2, in time T = 10

• Quite small effect of the drug pressure on the phenotype of nH
• nC quickly concentrates around a resistant phenotype
• Catastrophic effects on ρH , ρC and ρCS .

Pouchol et al. J. Maths Pures Appl. 2018



Position of problem Evolution Modelling Control Mutualism Space Functionally structured models Questions

“What does not kill me strengthens me”
• Note that in the representation of the drug targets on cancer cell populations in

the integro-differential equation, with the numerical values chosen for the target
functions µC and rC standing for the sensitivities to drugs u1 and u2,

R(x , ρH(t), ρC (t), u1(t), u2(t)) =

[
rC (x)

1 + kCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

]
,

the cytostatic drug u2 only slows down proliferation (softly slowing down
velocity in the cell division cycle), but does not arrest it, at least at low doses. . .

• . . . whereas the cytotoxic drug u1 kills the cells by increasing the death term,
hence it is actually a direct life threat to the cell population, that ‘defends itself’
(biological bases under assessment...) by increasing its resistance phenotype x

• This resistance-inducing killing effect should be avoided as long as possible in
therapeutics. In summary: limit proliferation but do not try too hard to kill cells,
lest the cell population should become resistant, but give cytotoxics only at high
doses during a short interval of time (MTD), thus avoiding to trigger resistance.

• An alternative to such use of MTD (maximum tolerated dose) towards the end
of the chemotherapy course is metronomics, that also prevents developing
resistance by giving low doses of cytotoxics... expecting that the population,
thwarted in its proliferation, will be kept in check by the immune system. This
has not been represented in our optimal control perspective thus far (however,

see Cécile Carrère, J Theor Biol 2017 ).
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Optimal control problem, phenotype-structured IDE model
Environment: IH(t) = aHH .ρH(t) + aHC .ρC (t), IC (t) = aCH .ρH(t) + aCC .ρC (t),

with ρH(t) =
∫ 1
0 nH(t, x) dx , ρC (t) =

∫ 1
0 nC (t, x) dx .

IDE model with evolution in phenotype x due to effects of cytotoxic drug u1(t)

∂

∂t
nH(t, x) =

(
rH(x)

1 + αHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

)
nH(t, x)

∂

∂t
nC (t, x) =

(
rC (x)

1 + αCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

)
nC (t, x)

0 ≤ u1(t) ≤ umax
1 , 0 ≤ u2(t) ≤ umax

2

Find controls (u1, u2) minimising

CT (u1, u2) = ρC (T ) =

∫ 1

0
nC (T , x) dx

under the additional constraints
ρH(t)

ρH(t) + ρC (t)
≥ θHC , ρH(t) ≥ θH .ρH(0)

(the last constraint, with, e.g., θH = 0.6, to limit damage to healthy cells)

Pouchol et al. J. Maths Pures Appl. 2018
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Optimal control problem: theoretical results

Theorem
(Optimal control theorem)
Under these conditions, the optimal trajectory in large time T > 0 consists of 2 parts:

• a long-time part, with constant controls on [0,T1], at the end of which
populations have almost concentrated in phenotype (for T1 large)

• a short-time part on [T1,T ] consisting of at most three arcs, for T − T1 small:

1. a boundary arc, along the constraint
ρH(t)

ρH(t) + ρC (t)
= θHC ,

2. a free arc (no constraint saturating) with controls u1 = umax
1 and

u2 = umax
2 ,

3. a boundary arc along the constraint ρH(t) ≥ θH .ρH(0) with u2 = umax
2 .

Pouchol et al. J. Maths Pures Appl. 2018
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Simulations illustrating this theorem
Simulations with T = 30
(optimisation using AMPL-IPOPT)

Simulation with T = 60
(optimisation using AMPL-IPOPT)

Note that this strategy lets the cancer cell population ρC grow initially to an
equilibrium level, while increasing the ratio

ρCS

ρC
of drug-sensitive cancer cells, before

delivering u1 = umax
1 ; only then is the cytotoxic efficacy maximal.
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Interpretation

In a first approximation the optimal trajectory is made of 3 parts, the first one with
u1 = 0, the 2nd one with u1 = umax

1 , the 3rd one with u1 slightly lower than umax
1 .

Main idea:
1. Let the system naturally evolve to a phenotype concentration (long-time phase).

2. Then, apply the maximal quantity of drugs, during a short-time phase, in order
to eradicate as many tumour cells as possible.

The second short-time phase is all the more efficient as the phenotypes are more
concentrated (hence, as the time T is large).
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Comparison with “almost periodic” therapeutic strategies
We mimic actual clinical settings: as long as

ρH

ρH + ρC
> θHC , we follow the ‘drug

holiday’ strategy by choosing u1 = ū1 = 0, u2 = ū2 = 0.5. Then, as long as
ρH > θH .ρH(0), we use the maximal amount of drugs. As soon as ρH = θH .ρH(0),
back to the drug holiday strategy. Results (note stabilised ρC and increasing ρCS ):



Position of problem Evolution Modelling Control Mutualism Space Functionally structured models Questions

Comparison with “almost periodic” therapeutic strategies
1) Mimicking the clinic; 2) the same with saturation of the constraint ρH = θH .ρH(0)

1) Left: (unsatisfying) periodic strategy: stabilisation of ρC only. 2) Right: second strategy, same, but
with added arc following the constraint ρH = θH .ρH (0), with u2 = umax

2 , and control u1 obtained from

the equality
dρH

dt
= 0 (saturation of the constraint) and back to the drug holiday strategy u1 = 0 as ρC

starts increasing again: we see that ρC can be brought arbitrarily close to 0 (tumour eradication?).

Pouchol et al. J. Maths Pures Appl. 2018



Position of problem Evolution Modelling Control Mutualism Space Functionally structured models Questions

Another concentration problem with two symbiotic cell
populations, haematopoietic stem cells and stromal cells

where

ρh(t) =

∫ b

a
nh(t, x) dx , ρs(t) =

∫ d

c
ns(t, x) dx

with bidirectional cross-talk functions
(trophic Σs and ‘call for support’ Σh)

Σh(t) :=

∫ b

a
ψh(x)nh(t, x) dx ,

Σs(t) :=

∫ d

c
ψs(y)ns(t, y) dy


∂tnh(t, x) =

[
rh(x)− ρh(t)− ρs(t) + α(x)Σs(t)

]
nh, x ∈ (a, b), t > 0,

∂tns(t, y) =
[
rs(y)− ρh(t)− ρs(t) + β(y)Σh(t)

]
ns , y ∈ (c, d), t > 0,

with initial data nh(0, x) = nh0(x) ≥ 0, ns(0, y) = ns0(y) ≥ 0.
(Nguyen et al. MBE 2019)
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A convexity condition to obtain (at most) dimorphism with
respect to malignancy trait x , i.e., coexistence between

healthy (x = a) and leukaemic (x = b) stem cells nh(t, x)

(Blue curve x ∈ [a, b] 7→ (Z = α(x),W = rh(x)); red straight line Z Σ̂s + W = ρ̂h + ρ̂s )
• Assume that (n̂h, n̂s ) is any evolutionary stationary distribution (ESD) that does not vanish. Then n̂h
is monomorphic if one of the following hypotheses is fulfilled:
either (i) α is strictly monotone and rh(α−1) is concave on [0, α(a)], or (ii) rh is strictly monotone and
α(r−1

h
)) is concave on [0, rh(b)], or (iii) rh, α are strictly concave.

• Also n̂h is at most dimorphic if one of the following hypotheses is fulfilled:
either (i) α is strictly monotone and rh(α−1) is convex on [0, α(a)], or (ii) rh is strictly monotone and
α(r−1

h
)) is convex on [0, rh(b)], or (iii) rh, α are strictly convex.

• The same conclusions as above hold for n̂s provided that similar assumptions on rs , β are supposed.

(Nguyen et al. MBE 2019)



Position of problem Evolution Modelling Control Mutualism Space Functionally structured models Questions

Two different monomorphic cases of ESDs for HSCs

Left: snapshots of trait distributions. Right: continuous evolution of nh and ns populations with time,
where traits x ∈ (1, 2) (malignancy) and y ∈ (3, 4) (support capacity) are in abscissae, time in ordinates.
1st case (upper panels): strong stromal support trtait y and extinction of the leukaemic clone; 2nd case
(lower panels) : weak stromal support trait y and extinction of the healthy clone.

(Nguyen et al. MBE 2019)
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A case of dimorphic (healthy/leukaemic) ESD for HSCs

Left: snapshots of trait distributions. Right: continuous evolution of nh and ns populations with time,
where traits x ∈ (1, 2) (malignancy) and y ∈ (3, 4) (support capacity) are in abscissae, time in ordinates.
Weak support trait y , but existence of lots of stromal cells ns (t, y), and coexistence of the two clones.

In fact (a remark by Benoît Perthame), to obtain such dimorphism, one must have
diffusion. Even though the equations are nonlocal Lotka-Volterra-like (quasi-ODEs)
without diffusion, their numerical simulation introduces diffusion, and this might be
the right explanation for such dimorphism!

(Nguyen et al. MBE 2019)
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What about space? Considering both a (1D) resistance
phenotype and (1D) space in a tumour spheroid: equations

We assume that the evolution of functions n, s (nutrients), u1 and u2 in a 3D radially
symmetric tumour spheroid (r ∈ [0, 1]) is ruled by the following set of equations:

∂tn(t, r , x) =

[
p(x)

1 + µ2u2(t, r)
s(t, r)− d(x)%(t, r)− µ1(x)u1(t, r)

]
n(t, r , x), (1)

−σs∆s(t, r) +

[
γs +

∫ 1

0
p(x)n(t, r , x)dx

]
s(t, r) = 0, (2)

−σu∆u1(t, r) +

[
γu +

∫ 1

0
µ1(x)n(t, r , x)dx

]
u1(t, r) = 0, (3)

−σu∆u2(t, r) +

[
γu + µ2

∫ 1

0
n(t, r , x)dx

]
u1(t, r) = 0, (4)

with zero Neumann conditions at r = 0 coming from radial symmetry and Dirichlet
boundary conditions at r = 1

s(t, r = 1) = s1, ∂r s(t, r = 0) = 0, u1,2(t, r = 1) = U1,2(t), ∂ru1,2(t, r = 0) = 0. (5)

For each t, we also define ρ(t, r) =

∫ 1

0
n(t, r , x) dx (local density at radius r) and

ρT (t) =

∫ 1

0
ρ(t, r)r2 dr (global density).

Lorz et al. Bull Math Biol 2015
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Tumour spheroid: simulations with constant drug doses (1)

Evolution without drugs: towards sensitive phenotype (x → 0)

Lorz et al. Bull Math Biol 2015
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Tumour spheroid: evolution with constant drug doses (2)

Cytotostatic u2 has only small effects, whereas cytotoxic u1 clearly induces resistance
Lorz et al. Bull Math Biol 2015
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Tumour spheroid (3): constant or bang-bang control?
Therapeutic strategies for (u1, u2): (Constant, Bang-bang) vs. (Bang-bang, Constant)

Lorz et al. Bull Math Biol 2015
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Biological observation: reversible drug resistance in cancer

• Population of PC9 (NSCLC) cells under high doses of drugs (e.g., gefitinib)
• 99.7% cells die, .3% survive in this maintained hostile drug environment: DTPs
• In the same hostile environment, 20% of DTPs resume proliferation: DTEPs
• Total reversibility to drug sensitivity is obtained by drug withdrawal, occurring

after 9 doubling times for DTPs, and 90 doubling times for DTEPs
• Inhibition of epigenetic enzyme KDM5A blocks emergence of DTPs

(precisely: provokes rapid death of both DTPs and DTEPs, not affecting PC9s)
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Sharma et al. Cell 2010



Position of problem Evolution Modelling Control Mutualism Space Functionally structured models Questions

Structured cell population model: cell-functional variables
• Initial (PC9) cancer cell population structured by a 2D phenotype (x , y):

x ∈ [0, 1]: viability = expression level of survival potential phenotype, and
y ∈ [0, 1]: fecundity = expression level of proliferation potential phenotype
(both biologically relying on, e.g., levels of methylation in DNA and histones)

• Population density of cells n(x , y , t) with phenotypic expression (x , y) at time t
satisfies

∂n

∂t
(x , y , t) +

∂

∂y

(
v(x , c(t); v̄)n(x , y , t)

)
︸ ︷︷ ︸
Stress-induced adaptation
of the proliferation level

=

[
p(x , y , %(t))− d(x , c(t))

]
n(x , y , t)︸ ︷︷ ︸

Non local Lotka-Volterra selection

+ β∆n(x , y , t).︸ ︷︷ ︸
Non-genetic

phenotype instability

• %(t)=
∫ 1
0
∫ 1
0 n(x , y , t) dx dy , p(x , y , %(t))=(a1 + a2y + a3(1− x))(1− %(t)/K)

and d(x , c) = c(b1 + b2(1− x)) + b3
• The drift term w.r.t. proliferation potential y represents possible (if v 6= 0)

‘Lamarckian-like’, epigenetic and reversible, adaptation from PC9s to DTPs
• v(x , c(t); v̄) = −v̄ c(t)H(x∗ − x) where t 7→ c(t) is the drug infusion function
• No-flux boundary conditions

Chisholm et al., Cancer Research 2015
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Same framework using an agent-based model (ABM)
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Individual cell behaviour (ABM) can be different from the
averaged dynamics observed at the population level

• Evolution in the I-B model (here no DTPs initially present, adaptation on):
heterogeneity of behaviours in the population of PC9 cells.

• Left: Trajectories of the phenotypic expression of 3 individual cells and mean
phenotypic expression of the cell population (dashed line). Triangles: initial
phenotype of cells; asterisks: last phenotype expressed by cells before death

• Right: Corresponding global population density as a function of time.

Chisholm et al., Cancer Research 2015
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AB model and PDE model recover phenotype dynamics
During drug exposure and after drug withdrawal: total recovery of drug sensitivity
(either high or low drug dose)

(a), (b) Only PC9s initially, adaptation on v 6= 0: ‘Lamarckian’ scenario, or
Luria-Delbrück scenario (A)

(c), (d) PC9s and DTPs initially, no adaptation v = 0: ‘Darwinian’ scenario, or
Luria-Delbrück scenario (B)

Chisholm et al., Cancer Research 2015
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Resensitisation after drug washout is in the model
During drug exposure and after drug withdrawal: total recovery of drug sensitivity
(either high or low drug dose)

Two scenarios: Lamarckian adaptation, or sheer Darwinian selection of the fittest

(a), (b) Only PC9s (no DTPs initially), adaptation on (v 6= 0): ‘Lamarckian’ scenario

(c), (d) PC9s and DTPs initially, no adaptation (v = 0): ‘Darwinian’ scenario
(sheer selection of the fittest = DTPs, supposed to be present in the initial population)

Chisholm et al., Cancer Research 2015
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Phenotype heterogeneity in the cancer cell population

The PC9 cell population becomes more heterogeneous when it is left to evolve in the
absence of drug treatment: starting from an initial concentrated phenotype (x0, y0),
the phenotype (x , y) diffuses in the population according to a Gaussian-like curve.
(c) Projection onto the x phenotype axis; (d) Projection onto the y phenotype axis.

C, D: Under drug treatment, heterogeneity persists when phenotypes evolve (here,
Darwinian scenario: DTPs are initially present)

Chisholm et al., Cancer Research 2015
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Use PDE (or AB) model to address 3 questions

Q1. Is non-genetic instability (Laplacian term) crucial for the emergence of DTEPs?

Q2. What can we expect if the drug dose is low?

Q3. Could genetic mutations, i.e., an integral term involving a kernel with small
support, to replace both adapted drift (advection) and non-genetic instability
(diffusion), generate similar dynamics?

Consider c(·) = constant and two scenarios:
(i) (‘Darwinian’ scenario (B): the dogma) PC9s and few DTPs initially, no

adaptation (v = 0)

(ii) (‘Lamarckian’ scenario (A): the outlaw) Only PC9s initially, adaptation present
(v 6= 0)

To make a long story short, Q1. Always yes! Whatever the scenario

Q2. Low drug doses result in DTEPs, but no DTPs

Q3. Never! Whatever the scenario

Chisholm et al. Cancer Research 2015
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A1. Non-genetic instability is crucial for the emergence of
DTEPs

[Scenario (B) PC9s and few DTPs initially present]

Extinction when β = 0 (here, adaptation is absent v = 0)

Chisholm et al., Cancer Research 2015
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A1. Non-genetic instability is crucial for the emergence of
DTEPs

[Scenario (A) Only PC9s initially present]

Extinction when β = 0 (here, adaptation is present v 6= 0)

Chisholm et al., Cancer Research 2015
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Q2. What can we expect if the drug dose is low?

Definition (LCγ dose)
The drug dose required to kill γ% of the total cell population, in the initial stage of
drug therapy, before the population starts to recover

• High c: c ≥ LC90 dose
• Low c: c ≤ LC50 dose
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A2. High dose of cytotoxic drugs is necessary for the
transient dominance of DTPs

[Scenario (B) PC9s and DTPs initially present]

Low drug dose does not let appear DTPs (here, adaptation is absent v = 0)

Chisholm et al., Cancer Research 2015
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A2. High dose of cytotoxic drugs is necessary for the
transient dominance of DTPs

[Scenario (A) Only PC9s initially present]

Low drug dose does not let appear DTPs (here, adaptation is present v 6= 0)

Chisholm et al., Cancer Research 2015
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Q3. Could genetic mutations generate similar dynamics?
Consider the pure mutation model (no diffusion, no stress-induced adaptation drift)

∂n

∂t
(x , y , t) =

[
(1− α)p(x , y , %(t))− d(x , c(t))

]
n(x , y , t)︸ ︷︷ ︸

birth and death term due to sheer selection

+ α

∫ 1

0

∫ 1

0
p(ξ, η, %(t))M(x , y |ξ, η;σ)n(ξ, η, t)dξ dη,︸ ︷︷ ︸

birth term due to genetic mutations

where the mutation kernel is defined as,

M(x , y |ξ, η;σ) := CMe−
(x−ξ)2
σ e−

(y−η)2
σ ,

and CM is a normalisation constant such that∫ 1

0

∫ 1

0
M(x , y |·, ·; ·)dxdy = 1.

Chisholm et al., Cancer Research 2015
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A3. Genetic mutations cannot generate similar dynamics
[Scenario (B) Initially there are DTPs and PC9s]

• G: only mutations and selection, vs.

• NG: non-genetic phenotype instability and selection

G: mutations do not let occur total recovery (NG: here, adaptation is absent v = 0)

Chisholm et al., Cancer Research 2015
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A3. Genetic mutations cannot generate similar dynamics
[Scenario (A) Initially there are only PC9s]

• G: only mutations and selection, vs.

• NG: non-genetic phenotype instability, adaptation and selection

G: total extinction (NG: here, adaptation is present v 6= 0)

Chisholm et al., Cancer Research 2015
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Summary of simulation results on the Sharma et al. paper

• Both mathematical models (AB, IDE) reproduce the main experimental observations

• To see the transient appearance of the DTPs during high-dose drug therapy:

• If there are some DTPs present initially, model explanation requires only

• non-genetic instability
• selection

• If no DTPs are present initially, model explanation requires interplay between

• stress-induced adaptation
• non-genetic instability
• selection

• Therapeutic consequences? Not clear yet. Epigenetic drugs? Not many of them
exist (in particular no KDM5A inhibitor). Acting on epigenetics by modifying
metabolism? Combining cytotoxic (inducing drug resistance) drugs and cytostatic
drugs at low doses (not inducing drug resistance)? To be assessed using this model?
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Modelling bet hedging using 3 cell-functional variables?
• What is more relevant for stress response of a cell population (adaptable, as in

the case of a tumour): maintain a subpopulation of all-stress resistant cells, or
maintain a subpopulation of cells expressing ‘cold genes’ and able to launch
different resistance mechanisms in different cells? (... stochastically chosen?)

• Bet hedging as a ‘tumour strategy’ to diversify its responses to deadly stress (as
high doses of cytotoxic drugs) by launching different stress response mechanisms
in different cells? (ABC transporters, detoxication enzymes, DNA repair...)

• Stress response through derepression of cold genes? Wu et al. PNAS 2015:
existence of very ancient genes, constituted in a remote past of our planet, able
to put at work survival programs in a state of emergency, with bet hedging, in a
cancer cell population?

• Does bet hedging shuffle phenotypes, setting favorable bases for the emergence
of specialisation (Michod et al. JTB 2006) and cooperativity in tumours
(Tabassum & Polyak Nature Rev. Cancer 2015, Polyak & Marusyk Nature
2014), making them viable?

• Bet hedging setting for n(x , y , θ, t), with x=fecundity, y=viability, θ=plasticity:

nt+∇·{V (x , y , θ,D) n} = α(θ)nxx+β(θ)nyy+n

{
r(x , y , θ)−

ρ(t)

C(x , y)
− µ(x , y , θ,D)

}
(with F.E. Alvarez Borges, J.A. Carrillo, S. Mischler)
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Why is evolution important in cancer? Basic questions on
multicellularity and cancer

• Cancer is a disease of multicellular organisms, that has been evidenced,
including in fossils, in the whole animal kingdom

• Cancer is the failure of maintenance of a coherent (=founded on stable cellular
differentiations) multicellularity, or else:

• Cancer may be defined as a loss of cohesion of tissues and organs of a
same organism following failures in differentiation

• Does there exist in the construction of multicellularity a qualitative succession of
emergences of families of genes responsible for 1. proliferation and apoptosis 2.
differentiation (transcription factors?); 3. epigenetic control of differentiations ?
Phylogenetic scenarios of evolution of mutations in AML go in the opposite
direction with increasing malignancy (Hirsch et al. Nature Comm. 2016)

• Some gene mutations predispose subjects to well-identified organ cancers: do
these genes play a role in the anatomic constitution of multicellularity?

• Evolution proceeds by tinkering (François Jacob, ‘Evolution and tinkering’,
Science 1977), using every possible avaible material: what in such a succession
of tinkerings makes an organism viable but fragile?

• The genes that are altered in cancers are the same that serve
multicellularity design (Domazet-Lošo & Tautz 2010, Davies & Lineweaver
2011): can we methodically collect these genes?
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Questions (continued)
• What defines a same organism ? A ‘self’ that would be conserved during the

sequences of differentiations that in Man lead from the first embryonic cell to
the ‘200 terminally differentiated cell types’?

• What holds together, normally without conflict, the cell types (interferon??), and
what does the immune system recognise as non-self (foe rather than friend) in a
cancer cell? Is there a duality between immune control and epigenetic barriers?

• Is there a relationship of such coherence with the major histocompatibility
complex (MHC)? What is its primary function, if not to ensure organism
cohesion (of tissues), and how does such coherence (of signals) operate?

• If it is so, what is the impact of the immune system on cell differentiations?

• Can we parallel evolution of species and evolution of their immune system?

• Loss of control of differentiations: do all cancers have in their evolution an
epigenetic origin or an epigenetic mandatory step?

• Some is known of mutations in genes that control epigenetics (e.g., DNMT3A,
TET2) in early leukaemogenesis, and of genes of cell metabolism (IDH1, IDH2)
in cancers (AML, glioblastoma): can we propose scenarios relating metabolism /
perturbations of epigenetic control of differentiations / cancers?
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Questions (continued)

• Energetic metabolism of the cell, intercellular communications and cancer:
appearance of gap junctions in multicellularity and perturbations of physiological
gap junctions, essential to multicellularity, in solid tumours? (James Trosko)

• Glycolytic vs. mitochondrial respiratory phenotypes: do cancer cells shift easily
from one to the other (in other words, does a tumour practice a form of
metabolic bet hedging?) Gravenmier et al. Bull. Math. Biol. 2017)

• What are the advantages and drawbacks of these 2 phenotypes? (efficiency of
the TCA [=Krebs] cycle vs. rapidity of anaerobic glycolysis) When did appear
the mitochondrial respiratory chain as a necessary condition for the physiological
establishment of reliable intercellular communications?
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Questions (continued)
• What is more relevant for stress response of a cell population (adaptable, as in

the case of a tumour): maintain a subpopulation of all-stress resistant cells, or
maintain a subpopulation of cells expressing ‘cold genes’ and able to launch
different resistance mechanisms in different cells? (... stochastically chosen?)

• Bet hedging as a ‘tumour strategy’ to diversify its responses to deadly stress (as
high doses of cytotoxic drugs) by launching different stress response mechanisms
in different cells? (ABC transporters, detoxication enzymes, DNA repair. . . )

• Stress response through derepression of cold genes? Wu et al. PNAS 2015:
existence of very ancient genes, constituted in a remote past of our planet, able
to put at work des survival programs in a state of emergency, with bet hedging,
in a cancer cell population?

• Does bet hedging shuffle phenotypes, setting favorable bases for the emergence
of specialisation (Michod et al.) and cooperativity in tumours (Tabassum &
Polyak, Polyak & Marusyk), making them viable?

• Bet hedging setting for n(x , y , θ, t), with x=fecundity, y=viability, θ=plasticity:

nt+∇·{V (x , y , θ,D) n} = α(θ)nxx+β(θ)nyy+n

{
r(x , y , θ)−

ρ(t)

C(x , y)
− µ(x , y , θ,D)

}
(simplified to V=0, y=1−x , RHS=α∆n+n{r(x)−ρ(t)−µ(x)D}, by C. Carrère, G. Nadin)



Position of problem Evolution Modelling Control Mutualism Space Functionally structured models Questions

Questions (continued)

• Phenotypic heterogeneity of cancer cell populations in a same tumour in the
case of stress response: result of primary massive de-differentiation?

• “Maintenance of phenotypic heterogeneity within cell populations is an
evolutionarily conserved mechanism that underlies population survival upon
stressful exposures.” (Guler et al. Cancer Cell 2017) Chromatin regulators as
‘cold genes’ aiming at maintaining a subpopopulation of resistant cells in case of
extreme, life-threatening, stress?

• Role of transposable elements in the maintenance of such heterogeneity? “In the
context of evolution, activation, and propagation of transposable elements
enables organisms to adapt to changing conditions by generating genomic
diversity (...), but can also result in reduced fitness.” (Guler et al. Cancer Cell
2017)
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A few articles that open ways and challenges
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A few articles that open ways and challenges
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A few articles that open ways and challenges
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