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Motivations

• Drug resistance: still a major pitfall of cancer therapeutics

• Accounting for drug resistance in cancer requires considering the level of cancer
cell populations

• Phenotype heterogeneity in cancer cell populations is likely the main cause of
drug resistance

• Heterogeneity in cancer cell populations may be due to fast backward evolution
(‘atavistic theory of cancer’)

• We assess it by biological and mathematical models of evolving heterogeneous
cell populations, structured in traits coding relevant biological variability

• Therapeutic strategies should rely on optimal control algorithms with targets in
such models of heterogeneous cell populations
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Summary

• Intra-tumour heterogeneity, i.e., between-cell variability within cancer cell
populations, accounts for drug resistance.

• Evolutionary mechanisms that encompass the great evolution that has designed
multicellular organisms, as well as smaller windows of evolution on the time
scale of human disease, are in the background.

• Mathematical models used to predict drug resistance in cancer together with
optimal control methods can help circumvent drug resistance in combined
therapeutic strategies.

• Plasticity in cancer cells, i.e., partial reversal to a stem-like status in individual
cells and resulting adaptability of cancer cell populations, may be viewed as
backward evolution making cancer cell populations resistant to drug insult.

• Reversible plasticity is captured by mathematical models that incorporate
between-cell heterogeneity through continuous phenotypic variables.

• Such models have the benefit of being compatible with optimal control methods
for the design of optimised therapeutic protocols involving combinations of
cytotoxic and cytostatic treatments with epigenetic drugs and immunotherapies.

• Gathering knowledge from cancer and evolutionary biology with physiologically
based mathematical models of cell population dynamics should help oncologists
to design optimised therapeutic strategies to circumvent drug resistance.
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Definitions: evolution or adaptation in cell populations

[Naive and utilitary definitions]

• Evolution: constitution of a new species (cell population of a new type) by
genetic mutations (including single nucleotide substitutions, deletions,
translocations...), i.e. irreversible modifications of the genome ‘written in the
marble of the genetic code’, resulting in a new phenotype

• Adaptation: modification of a cell type also resulting in a new phenotype in a
cell population, but reversible, i.e., amenable to complete restitution of the
initial phenotype, with preservation of the intact genome (= of the initial
sequence of base pairs)
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Mutations and epimutations in cell populations

[Again, naive and utilitary definitions]

• [Genetic] mutation: irreversible modification of the genome (cf. Evolution)

• Epigenetic modification = ‘epimutation’: modification of the phenotype due to
mechanisms that do not affect the genetic code, but are due to silencing of
genes (that may be activators or inhibitors of the expression of other genes) by
DNA methylation and histone methylation or acetylation
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Initial motivation: Drug resistance, genetic or epigenetic
phenomenon?

In the same way as one can ask to what extent evolution towards malignancy in
premalignant cell populations is genetic (irreversible, due to mutations) or epigenetic
(reversible, due to epimutations), we can ask whether, in cancer cell populations,
drug-induced evolution towards drug resistance is genetic or epigenetic

• hence, is it irreversible or reversible?
• and if it is reversible:
• can we design combined drug strategies to

overcome it?
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Drug resistance:
a phenomenon common to various therapeutic situations

• In therapeutic situations where an external pathogenic agent is proliferating at
the expense of the resources of an organism: antibiotherapy, virology,
parasitology, target populations are able to develop drug resistance mechanisms
(e.g., expression of β-lactamase in bacteria exposed to amoxicillin).

• In cancer, there is no external pathogenic agent (even though one may have
favoured the disease) and the target cell populations share much of their
genome with the host healthy cell population, making overexpression of natural
defence phenomena easy (e.g., ABC transporters in cancer cells).

• Drug resistance may account for unexpected failures in targeted therapies.

• Note that drug resistance (and resistance to radiotherapy) is one of the many
forms of cellular resistance to stress, coded in ‘cold’, strongly preserved in
evolution, rather than in ‘hot’, mutation-prone, genes (Wu et al. PNAS 2015).
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Drug resistance: how does it work?

• What was formerly assumed: 0-1 expression of genes (e.g., functional or
inefficient p53 due to a mutation)

• Varying expressivity of genes in a cell population, or else degree of effectiveness
of mutations (e.g., mutated EGFR)

• Varying activity of ABC transporters (e.g., P-gp), main effectors of drug efflux
out of cells

• Darwinian effects of drug pressure selecting subpopulations in a heterogeneously
constituted (by stochastic variations: bet hedging?) cell population

• Transient adaptation to hostile environment by subclones in the cell population?
Note that we deal with drug-induced, not constitutive drug-resistance
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Molecular mechanisms at the single cell level
vs. Phenotypes at the cell population level

• Overexpression of ABC transporters, of drug processing enzymes, decrease of
drug cellular influx, etc. are relevant to describe resistance mechanisms at the
single cell level.

• At the cell population level, representing drug resistance by a continuous
variable x standing for a resistance phenotype (in evolutionary game theory: a
strategy) is adapted to describe evolution from sensitivity (x = 0) towards
resistance (x = 1).

• Is it due to sheer Darwinian selection of the fittest after cell division or, at least
partially, due to phenotype adaptation in individual cells? Not clear.
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A possible evolutionary framework (diachronic view):
the atavistic hypothesis of cancer (1)

“Nothing in biology makes sense except in the light of evolution” (Th. Dobzhansky, 1973)

“Cancer: more archeoplasm than neoplasm” (Mark Vincent, 2011)
References: Israel JTB 1996, Davies & Lineweaver Phys Biol 2011, Vincent Bioessays
2011, Lineweaver, Davies & Vincent Bioessays 2014, Chen et al. Nature Comm 2015
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A possible evolutionary framework (diachronic view):
the atavistic hypothesis of cancer (2)
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(see Chisholm et al. 2016, BBA General Subjects DOI:10.1016/j.bbagen.2016.06.009)

• The genes that have appeared in the process of development to multicellularity
are precisely those that are altered in cancer

• In what order in evolution, from 1) proliferation+apoptosis to 2) cell
differentiation +division of work, and to 3) epigenetic control of differentiation
and proliferation?

• Reconstituting the phylogeny of this ‘multicellularity toolkit’ should shed light
on the robustness or fragility of genes that have been altered in cancer

• Attacking cancer on proliferation is precisely attacking its robustness. It would
be better to attack its weaknesses (e.g. absence of adaptive immune response)
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Why resistance in cancer, not in healthy, cell populations?
• According to the atavistic hypothesis, cancer is a ‘backward evolution’ from a

sophisticated form of multicellularity (us), in which epigenetic processes control
gene regulatory networks of transcription factors: differentiation factors, p53,
etc., that physiologically control the basis of cellular life, i.e., proliferation

• We bear in our genomes many attempts of species evolution since billions of
years; dead-end tracks (‘unused attractors’ in S. Huang and S. Kauffman’s
version of the Waddington landscape) have been silenced (e.g., by epigenetic
enzymes, resulting in evolutionary barriers in this landscape), but are still there

• In cancer, global regulations are lost, differentiation is out of control, so that
local proliferations without regulation overcome; sophisticated adaptive
epigenetic mechanisms are present, not controlling proliferation, but serving it

• Primitive forms of cooperation between specialised cells in a locally organised
multicellular collection (tumour), with plasticity between them, may be present,
exhibiting coherent intratumoral heterogeneity, and escaping external control

• The basic cancer cell is highly plastic and highly capable of adaptation to a
hostile environment, as were its ancestors in a remote past of our planet (poor
O2, acidic environment, high UV radiations,...) and likely presently even more
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Heterogeneity in cancer cell populations
• According to the atavistic theory of cancer, conditions of oxygenation and of

intercellular communications that are quite poor in cancer cell populations send
them back to very primitive forms of multicellularity

• These two conditions of multicellularity are closely related to one another, since
intercellular communications, that rely in particular on gap junctions (appeared
during the long oxygenation epoch of developing multicellular life and often
altered in cancer), consume high quantities of energy

• High energy resources physiologically rely on the oxygen-dependent tricarboxylic
acid (TCA, aka Krebs) cycle in mitochondria, that are altered in cancer: the
Warburg effect describes the fact that cancer cells are hardly able to make their
mitochondria work properly and depend on the poor energy-producing process
of anaerobic glycolysis (aka fermentation)

Otto Warburg has even proposed
that cancer could be primarily
a disease of the mitochondria

The mitochondrial TCA cycle →
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Another evolutionary framework (synchronic view):
revisiting the Waddington epigenetic landscape

The classic Waddington
landscape (1957) for cell
differentiation

Waddington landscape revisited by S. Huang (2011, 2012, 2013)

“Nothing in evolution makes sense except
in the light of systems biology” (S. Huang, 2012)
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Genetic and epigenetic: the two landscapes (Sui Huang)

• The epigenetic landscape (a):
high-dimensional variety (dimensions being
given by various states of many gene
regulatory networks) endowed with a
quasi-potential that governs fast evolution of
cells in a genetically homogeneous
population, expanded from a point in the
fitness landscape (b) of genomes.

• References: Sui Huang Sem Canc Biol 2011,
Bioessays 2012, Canc Metastasis Rev 2013;
Zhou Interface 2012; Pisco Br J C 2015...

• Characterising resistance to a given drug by a
phenotypic low-dimensional variable amounts
to performing a low-dimensional projection
from the global epigenetic landscape (onto a
line, a plane, etc.)

(Sui Huang, Canc Metastasis Rev 2013)
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The best known case: haematopoiesis
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Some milestones to reconstruct the global landscape

(From Tariq Enver, ASH meeting 2011)



Drug resistance Evolution Cell cultures Modelling Optimisation Long-term prospects

Can resistance be assessed by biological experiments? (1)
First hint: cell heterogeneity in Luria and Delbrück’s experiment (1943)

Different Petri dishes, same experimental settings

Bacterial populations firstly proliferating freely, then
exposed to a phage environment: some will show
resistance to the phages

Question: Is resistance induced by the phage
environment, scenario (A)? Or was it preexistent in
some subclones, due to random mutations at each
generation, and selection by the phages, scenario (B)?

Experiment: the answer is always (B):
preexistent mutations before selection

However, bacteria are not cancer cells! In particular,
they are far from being able of the same plasticity
(no differentiation is available for them)

(Luria & Delbrück, Genetics, 1943)
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Can it be assessed by biological experiments? (2)
Reversible drug resistance of cancer cells in a Petri dish

• Motivation for math: to account for biological observations of a reversible
drug-resistant phenotype in cancer cell populations, Sharma et al., Cell 2010

• Underlying hypothesis: epigenetic modifications affect differently survival and
proliferation potentials in cancer cell populations exposed to high drug doses

• 2 proposed traits: x , stress survival potential (∼ resistance to apoptosis) and
y , proliferation potential (∼ cell division cycle enhancement), both reversible

• A PDE model and an agent-based (AB) model show the same behaviour
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Sum-up of the Sharma et al. paper
• Population of PC9 (NSCLC) cells under high doses of drugs (e.g., gefitinib)
• 99.7% cells die, .3% survive in this maintained hostile drug environment: DTPs
• In the same hostile environment, 20% of DTPs resume proliferation: DTEPs
• Total reversibility to drug sensitivity is obtained by drug withdrawal, occurring

after 9 doubling times for DTPs, and 90 doubling times for DTEPs
• Inhibition of epigenetic enzyme KDM5A blocks emergence of DTPs

(precisely: provokes rapid death of both DTPs and DTEPs, not affecting PC9s)
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(Sharma et al., Cell 2010)
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Modelling framework: structured population dynamics
• Description of evolution of a population in time t and in relevant trait x

• ‘Structure variable’ x : trait chosen as bearing the biological variability at stake

• Variable : n(x , t) population density of individuals bearing trait x at time t

• (1) Evolution in numbers of individuals constituting the population

t 7→ ρ(t) =

∫ 1

0
n(x , t) dx (if, e.g., x ∈ [0, 1])

• (2) Asymptotics of distribution of the trait in the population

x 7→ limt→+∞
n(x , t)

ρ(t)

• Cancer cell populations: (1) tumour growth; (2) asymptotic distribution of trait

• Space is not necessarily a relevant structure variable when studying drug control
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2D continuous phenotype-structured PDE model
• Initial (PC9) cancer cell population structured by a 2D phenotype (x , y):

x ∈ [0, 1]: normalised expression level of survival potential phenotype, and
y ∈ [0, 1]: normalised expression level of proliferation potential phenotype
(both biologically relying on, e.g., levels of methylation in DNA and histones)

• Population density of cells n(x , y , t) with phenotypic expression (x , y) at time t
satisfies

∂n
∂t

(x , y , t) +
∂

∂y

(
v(x , c(t); v̄)n(x , y , t)

)
︸ ︷︷ ︸
Stress-induced adaptation
of the proliferation level

=

[
p(x , y , %(t))− d(x , c(t))

]
n(x , y , t)︸ ︷︷ ︸

Non local Lotka-Volterra selection

+ β∆n(x , y , t).︸ ︷︷ ︸
Non-genetic

phenotype instability

• %(t)=
∫ 1
0

∫ 1
0 n(x , y , t) dx dy , p(x , y , %(t))=(a1 + a2y + a3(1− x))(1− %(t)/K)

and d(x , c) = c(b1 + b2(1− x)) + b3
• The drift term w.r.t. proliferation potential y represents possible (if v 6= 0)

‘Lamarckian-like’, epigenetic and reversible, adaptation from PC9s to DTPs
• v(x , c(t); v̄) = −v̄c(t)H(x∗ − x) where t 7→ c(t) is the drug infusion function
• No-flux boundary conditions

(Chisholm et al., Cancer Research 2015)
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Agent-based model (ABM)
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(Chisholm et al., Cancer Research 2015)



Drug resistance Evolution Cell cultures Modelling Optimisation Long-term prospects

AB model and IDE model recover phenotype dynamics
e.g., during drug treatment (here, PC9s and DTPs present initially)

T is the simulation end-time: 0 ≤ t ≤ T

(Chisholm et al., Cancer Research 2015)
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AB model and IDE model recover phenotype dynamics
During drug exposure and after drug withdrawal: total recovery of drug sensitivity
(either high or low drug dose)

(a), (b) Only PC9s initially, adaptation on v 6= 0: ‘Lamarckian’ scenario, or
Luria-Delbrück scenario (A)

(c), (d) PC9s and DTPs initially, no adaptation v = 0: ‘Darwinian’ scenario, or
Luria-Delbrück scenario (B)

(Chisholm et al., Cancer Research 2015)



Drug resistance Evolution Cell cultures Modelling Optimisation Long-term prospects

Phenotype heterogeneity in the cancer cell population

The PC9 cell population becomes more heterogeneous when it is left to evolve in the
absence of drug treatment: starting from an initial concentrated phenotype (x0, y0),
the phenotype (x , y) diffuses in the population according to a Gaussian-like curve.
(c) Projection onto the x phenotype axis; (d) Projection onto the y phenotype axis.

C, D: Under drug treatment, heterogeneity persists when phenotypes evolve (here,
Darwinian scenario: DTPs are initially present)

(Chisholm et al., Cancer Research 2015)
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Individual cell behaviour can be different from the
averaged dynamics observed at the population level

• Evolution in the I-B model (here no DTPs initially present, adaptation on):
heterogeneity of behaviours in the population of PC9 cells.

• Left: Trajectories of the phenotypic expression of 3 individual cells and mean
phenotypic expression of the cell population (dashed line). Triangles: initial
phenotype of cells; asterisks: last phenotype expressed by cells before death

• Right: Corresponding global population density as a function of time.

(Chisholm et al., Cancer Research 2015)
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Use IDE model to address 3 questions

Q1. Is non-genetic instability (Laplacian term) crucial for the emergence of DTEPs?

Q2. What can we expect if the drug dose is low?

Q3. Could genetic mutations, i.e., an integral term involving a kernel with small
support, to replace both adapted drift (advection) and non-genetic instability
(diffusion), generate similar dynamics?

Consider c(·) = constant and two scenarios:
(i) (‘Darwinian’ scenario (B): the dogma) PC9s and few DTPs initially, no

adaptation (v = 0)

(ii) (‘Lamarckian’ scenario (A): the outlaw) Only PC9s initially, adaptation present
(v 6= 0)
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A1. Non-genetic instability is crucial for the emergence of
DTEPs

[Scenario (B) PC9s and few DTPs initially present]

Extinction when β = 0 (here, adaptation is absent v = 0)

(Chisholm et al., Cancer Research 2015)
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A1. Non-genetic instability is crucial for the emergence of
DTEPs

[Scenario (A) Only PC9s initially present]

Extinction when β = 0 (here, adaptation is present v 6= 0)

(Chisholm et al., Cancer Research 2015)
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Q2. What can we expect if the drug dose is low?

Definition (LCγ dose)
The drug dose required to kill γ% of the total cell population, in the initial stage of
drug therapy, before the population starts to recover

• High c: c ≥ LC90 dose
• Low c: c ≤ LC50 dose
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A2. High dose of cytotoxic drugs is necessary for the
transient dominance of DTPs

[Scenario (B) PC9s and DTPs initially present]

Low drug dose does not let appear DTPs (here, adaptation is absent v = 0)

(Chisholm et al., Cancer Research 2015)
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A2. High dose of cytotoxic drugs is necessary for the
transient dominance of DTPs

[Scenario (A) Only PC9s initially present]

Low drug dose does not let appear DTPs (here, adaptation is present v 6= 0)

(Chisholm et al., Cancer Research 2015)
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Q3. Could genetic mutations generate similar dynamics?
Consider the pure mutation model (no diffusion, no stress-induced adaptation drift)

∂n
∂t

(x , y , t) =

[
(1− α)p(x , y , %(t))− d(x , c(t))

]
n(x , y , t)︸ ︷︷ ︸

birth and death term due to sheer selection

+ α

∫ 1

0

∫ 1

0
p(ξ, η, %(t))M(x , y |ξ, η;σ)n(ξ, η, t)dξ dη,︸ ︷︷ ︸

birth term due to genetic mutations

where the mutation kernel is defined as,

M(x , y |ξ, η;σ) := CMe−
(x−ξ)2
σ e−

(y−η)2
σ ,

and CM is a normalisation constant such that∫ 1

0

∫ 1

0
M(x , y |·, ·; ·)dxdy = 1.
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A3. Genetic mutations cannot generate similar dynamics
[Scenario (B) Initially there are DTPs and PC9s]

• G: only mutations and selection, vs.

• NG: non-genetic phenotype instability and selection

G: mutations do not let occur total recovery (NG: here, adaptation is absent v = 0)
(Chisholm et al., Cancer Research 2015)
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A3. Genetic mutations cannot generate similar dynamics
[Scenario (A) Initially there are only PC9s]

• G: only mutations and selection, vs.

• NG: non-genetic phenotype instability, adaptation and selection

G: total extinction (NG: here, adaptation is present v 6= 0)
(Chisholm et al., Cancer Research 2015)
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Summary of simulation results on the Sharma et al. paper
• Both mathematical models (AB, IDE) reproduce the main experimental
observations

• To see the transient appearance of the DTPs during high-dose drug therapy:

• If there are some DTPs present initially, model explanation requires only
• non-genetic instability
• selection

• If no DTPs are present initially, model explanation requires interplay between
• stress-induced adaptation
• non-genetic instability
• selection

• Therapeutic consequences? Not clear yet. Epigenetic drugs? Not many of them
exist (in particular no KDM5A inhibitor). Acting on epigenetics by modifying
metabolism? Combining cytotoxic (inducing drug resistance) drugs and cytostatic
drugs at low doses (in principle not inducing drug resistance)? Might be assessed
using this model, not done yet.
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Temozolomide (TMZ) in glioblastoma (GBM)

from F. Vallette’s INSERM team in Nantes
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Resistance of GBM cell populations to TMZ

from F. Vallette’s INSERM team in Nantes
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Same observations as in Sharma et al. Cell 2010

from F. Vallette’s INSERM team in Nantes
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Same observations as in Sharma et al. Cell 2010

from F. Vallette’s INSERM team in Nantes
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Same observations as in Sharma et al. Cell 2010

from F. Vallette’s INSERM team in Nantes



Drug resistance Evolution Cell cultures Modelling Optimisation Long-term prospects

Same observations as in Sharma et al. Cell 2010

from F. Vallette’s INSERM team in Nantes
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Gene expression followed from D0 to D16

from F. Vallette’s INSERM team in Nantes
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Gene expression followed from D0 to D16

from F. Vallette’s INSERM team in Nantes
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Therapeutic consequences??

from F. Vallette’s INSERM team in Nantes
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An experiment to decide between scenarios A and B
According to this model, it should be possible to decide between scenarios, by
designing a biological experiment using a low dose exposure: Simulations show that:

In the presence of a low drug dose, if Scenario A [v̄ > 0: no DTPs present initially,
Lamarckian adaptation present] is true, then the mitotic rate should show a sharp
decrease for a long time, to increase again after that time, then yielding DTEPs,
(Figure below: central and right panels, grey lines only)

whereas if Scenario B [v̄ = 0: no Lamarckian instruction, DTPs present initially, and
only Darwinian selection] prevails, then the mitotic rate should slowly increase at first,
to secondarily decrease and finally increase again, yielding DTEPs.
(Figure below: left panel, all lines; central and right panels, black line only)

(Chisholm et al., Cancer Research 2015)
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Questions and tracks to enrich and interpret this model
• Is there a succession of events from a population dynamics point of view

between an epigenetic, reversible, state of drug resistance, followed by a possibly
acquired, genetic, unbeatable state of resistance to a given drug?

• Hint: ‘[epi]genome chaos’ (Henry Heng) (Cartoon from Henry Heng 2014)
triggered by stress signals, followed by
epigenetic (in splicing?) rearrangements
(the drift), and Darwinian selection?...
“What does not kill me strengthens me”
(Sui Huang, 2012, quoting Nietzsche)
Note, however, that we are looking for
a reversible and epigenetic version of chaos
(massive chromatin rearrangements?)

• Is there a way to measure in a molecular way a cost of resistance, so as to
design realistic cost functions for resistance at the cell population level?

• Can we connect stochastic events such as transcription and splicing at the single
cell level - ruled by genetic regulatory networks and possibly influenced by the
cellular environment - with the determination of cell fate (e.g., drug resistance,
transient EMT phenotype) at the cell population level?

clairamb
Nouveau tampon
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A general framework to optimise cancer therapeutics:
designing mathematical methods along 3 axes

• Modelling the behaviour of growing cell populations on which anticancer drugs
act (the targeted cell populations): proliferating tumour and healthy cell
populations, including representing functional (not necessarily molecular) targets
for pharmacological control

• (When PK-PD models are available) Modelling the external control system, i.e.,
fate of drugs in the organism, at the level of functional targets (proliferation,
death, differentiation) in cell populations by functional, rather than molecular,
pharmacokinetics-pharmacodynamics (PK-PD)

• Optimising therapeutic controls: dynamically optimised control of theoretical
drug delivery flows representing time-dependent objectives and constraints,
making use of known or hypothesised differences between cancer and healthy
cell populations
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Choosing the constraint to be represented determines the
model of proliferation used to optimise drug delivery,

aiming to avoid the two main pitfalls of pharmacotherapy:

• Toxicity issues. Limiting toxic side effects to preserve healthy cell populations
leads to representing proliferating cell populations by ordinary differential
equations, or by age-structured models: physiologically structured partial
differential equations

• Drug resistance issues. Limiting emergence of drug-resistant cell subpopulations
in tumour tissues leads to using (evolutionary) phenotypic trait-structured
proliferation: physiologically structured evolutionary integro-differential
equations

• In fact, one should consider the two issues simultaneously, i.e., two similarly
structured cell populations, healthy and cancer, with different characteristics
w.r.t. to drug effects and to evolution towards resistance: phenotypic stability of
healthy cell populations vs. plasticity of cancer cell populations
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Modelling framework: structured population dynamics
• Description of evolution of a population in time t and in relevant trait x

• ‘Structure variable’ x : trait chosen as bearing the biological variability at stake

• Variable : n(x , t) population density of individuals bearing trait x at time t

• (1) Evolution in numbers of individuals constituting the population

t 7→ ρ(t) =

∫ 1

0
n(x , t) dx (if, e.g., x ∈ [0, 1])

• (2) Asymptotics of distribution of the trait in the population

x 7→ limt→+∞
n(x , t)

ρ(t)

• Cancer cell populations: (1) tumour growth; (2) asymptotic distribution of trait

• Space is not necessarily a relevant structure variable when studying drug control
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Introduction to IDEs: typical 1D IDE logistic model

Prototype model, where n(t, x) stands for the density of cells of phenotype x ∈ [0, 1]:

∂n
∂t

(t, x) =
(
r(x)− d(x)ρ(t)

)
n(t, x),

with

ρ(t) :=

∫ 1

0
n(t, x) dx and n(0, x) = n0(x).

We assume reasonable (C1) hypotheses on r and d , and n0 ∈ L1([0, 1])

[More general settings for the growth rate R(x , ρ(t)), here
(
r(x)− d(x)ρ(t)

)
, have

been studied in Benoît Perthame’s book Transport equations in biology (2007)]

Questions: what is the asymptotic behaviour of

• the total population ρ?

• the phenotypes in the population (i.e. possible limits for n(t, ·) in M1(0, 1))?
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Introduction to IDEs: convergence and concentration (1D)
Convergence: Plot of t 7→ ρ(t)

Firstly, it can be shown that: ρ converges to ρ∞, the smallest value such that

r(x)− d(x)ρ∞ ≤ 0 on [0, 1]. (Idea of proof: show that
∫ +∞

0

∣∣∣dρdt ∣∣∣− dt < +∞ and –

with additional hypotheses – that ρ is bounded; then convergence follows.)



Drug resistance Evolution Cell cultures Modelling Optimisation Long-term prospects

Introduction to IDEs: convergence and concentration (1D)
Concentration: Plot of x 7→ n(t, x) for different times t

Theorem
• ρ converges to ρ∞, the smallest value ρ such that r(x)− d(x)ρ ≤ 0 on [0, 1].
• n(t, ·) concentrates on the set

{
x ∈ [0, 1], r(x)− d(x)ρ∞ = 0

}
.

• Furthermore, if this set is reduced to a singleton x∞, then

n(t, ·) ⇀ ρ∞δx∞ in M1(0, 1).

[Proof: see Camille Pouchol’s internship report: “Modelling interactions between
tumour cells and supporting adipocytes in breast cancer”, UPMC, September 2015,
https://hal.inria.fr/hal-01252122]

https://hal.inria.fr/hal-01252122
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Drug effects on cell populations and their optimisation
Model with mutations, one cytotoxic drug: cancer cells
• x = level of expression of a drug resistance phenotype (to a given drug)
• nH(x , t), nC (x , t) densities of cell populations (H=healthy, C=tumour)

∂

∂t
nC (x , t) =

[ growth︷ ︸︸ ︷
(1− θC ) r(x)−

death︷︸︸︷
d(x) −

drug effect︷ ︸︸ ︷
u(t)µC (x)

]
nC (x , t)

+θC

birth with mutation︷ ︸︸ ︷∫
r(y)MσC (y , x)nC (y , t)dy

• r(x) = basic reproduction rate, d(x) = basic death rate; we assume
r(0) > d(0) > 0, r ′(·) < 0, r(+∞) = 0, d ′(·) > 0,
• 0 ≤ θH,C < 1 (θC > θH) is the proportion of divisions with mutations,
• µ[H,C ](x) (with µ′C (·) < 0) represents the phenotype-dependent response to
cytotoxic drug, with concentration u(t), designed to target cancer cells.
• Note: assumptions r(·) > 0, µC (·) > 0, µ′C (·) < 0 and r ′(·) < 0 (cost of resistance:
the higher is x , the lower is proliferation) represent an evolutionary double bind on
resistant cancer cell populations, i.e., an evolutionary trade-off between growing (thus
getting exposed) and keeping still (thus surviving)

(Lorz et al., M2AN 2013)
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Model with mutations, one cytotoxic drug: healthy cells

∂

∂t
nH(x , t) =

[ growth with homeostasis︷ ︸︸ ︷
1− θH(

1 + ρ(t)
)β r(x) −

death︷︸︸︷
d(x) −

drug effect︷ ︸︸ ︷
u(t)µH(x)

]
nH(x , t)

+
θH(

1 + ρ(t)
)β

birth with mutation︷ ︸︸ ︷∫
r(y)MσH (y , x)nH(y , t)dy ,

where the total population is defined as

ρ(t) = ρH(t) + ρC (t); ρH(t) =
∫∞
x=0 nH(x , t)dx ; ρC (t) =

∫∞
x=0 nC (x , t)dx .

• β > 0 to impose healthy tissue homeostasis,

• u(t) denotes the instantaneous dose (concentration) of chemotherapy. We assume
in this model that its effect is cytotoxic, i.e., on the death term only.

(Lorz et al., M2AN 2013)
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Model with mutations, one cytotoxic drug: illustrations (1)
[Sensitive cell population case: illustration of Gause’s exclusion principle]
Theorem: Monomorphic evolution towards drug sensitivity, illustrated here with
θH = 0, (no mutations) and µH = 0 (no drug-induced resistance)

Left panel: starting from a medium phenotype x = 0.5, level sets of a drug-sensitive
population in the (t, x) plane. Right panel: asymptotic distribution of this
drug-sensitive population according to the drug resistance phenotype x.

(Lorz et al., M2AN 2013)
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IModel with mutations, one cytotoxic drug: illustrations
(2)

[Resistant cell population case: Gause’s exclusion principle again]
Theorem: Monomorphic evolution towards drug-induced drug resistance, here with
θC = 0, µC (·) > 0, r ′(·) < 0, µ′C (·) < 0 (costly drug-induced resistance), u(t) = Cst

Left panel: starting from a medium phenotype x = 0.5, level sets of a drug- resistant
population in the (t, x) plane. Right panel: asymptotic distribution of this
drug-resistant population according to the drug resistance phenotype x.

(Lorz et al., M2AN 2013)
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IDE model, no mutations: phenotype-structured non-local
Lotka-Volterra model with 2 drugs, cytotoxic u1(t),

cytostatic u2(t), bidimensional resistance phenotype (x , y)

∂

∂t
nC (x , y , t) =

[ rC (x , y)

1 + ku2(t)
− dC (x , y)IC (t)− u1(t)µC (x , y)

]
nC (x , y , t)

Environment: IC (t) = α
∫ 1
0

∫ 1
0 nC (x , y , t) dx dy + β

∫ 1
0

∫ 1
0 nH(x , y , t) dx dy

Sensitive cell population case:

Convergence toward total sensitivity

Resistant cell population case:

Convergence toward 2 resistant phenotypes

(Lorenzi & Lorz, unpublished)
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Same phenotype-structured non-local Lotka-Volterra model
with 2 drugs and one (scalar) resistance phenotype x

∂

∂t
nH(x , t) =

[ rH(x)

1 + kHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

]
nH(x , t)

∂

∂t
nC (x , t) =

[ rC (x)

1 + kCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

]
nC (x , t)

Environment: IH(t) = aHH .ρH(t) + aHC .ρC (t), IC (t) = aCH .ρH(t) + aCC .ρC (t),

with ρH(t) =
∫ 1
0 nH(x , t) dx , ρC (t) =

∫ 1
0 nC (x , t) dx , u1 cytotoxic, u2 cytostatic drugs.

Simultaneous combinations of the 2 drugs, with increasing equal constant doses

Healthy cells: preserved Cancer cells: eventually extinct
‘Pedestrian’s optimisation”
(Lorz et al. M2AN 2013)
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What about space? Considering both a (1D) resistance
phenotype and (1D) space in a tumour spheroid: equations

We assume that the evolution of functions n, s (nutrients), c1 and c2 in a 1D radially
symmetric tumour spheroid (r ∈ [0, 1]) is ruled by the following set of equations:

∂tn(t, r , x) =

[ p(x)

1 + µ2c2(t, r)
s(t, r)− d(x)%(t, r)− µ1(x)c1(t, r)

]
n(t, r , x), (1)

−σs∆s(t, r) +

[
γs +

∫ 1

0
p(x)n(t, r , x)dx

]
s(t, r) = 0, (2)

−σc∆c1(t, r) +

[
γc +

∫ 1

0
µ1(x)n(t, r , x)dx

]
c1(t, r) = 0, (3)

−σc∆c2(t, r) +

[
γc + µ2

∫ 1

0
n(t, r , x)dx

]
c2(t, r) = 0, (4)

with zero Neumann conditions at r = 0 coming from radial symmetry and Dirichlet
boundary conditions at r = 1

s(t, r = 1) = s1, ∂r s(t, r = 0) = 0, c1,2(t, r = 1) = C1,2(t), ∂r c1,2(t, r = 0) = 0. (5)

For each t, we also define ρ(t, r) =

∫ 1

0
n(t, r , x) dx (local density at radius r) and

ρT (t) =

∫ 1

0
ρ(t, r)r2 dr (global density).

(Lorz et al. BMB 2015)
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Tumour spheroid: simulations with constant drug doses (1)

Evolution without drugs: towards sensitive phenotype (x → 0)

(Lorz et al. BMB 2015)
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Tumour spheroid: simulations with constant drug doses (2)

Cytotostatic c2 has almost no effect / Cytotoxic c1 clearly induces resistance
(Lorz et al. BMB 2015)
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Tumour spheroid (3): constant or bang-bang control?
Therapeutic strategies c1/c2: Constant/Bang-bang vs. Bang-bang/Constant

(Lorz et al. BMB 2015)
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“What does not kill me strengthens me”
• Note that in the representation of the drug targets on cancer cell populations in

the integro-differential equation, with the numerical values chosen for the target
functions µC and rC standing for the sensitivities to drugs u1 and u2,[ rC (x)

1 + kCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

]
nC (x , t),

the cytostatic drug u2 only slows down proliferation (softly slowing down
velocity in the cell division cycle), but does not arrest it, at least at low doses. . .

• . . . whereas the cytotoxic drug u1 kills the cells by increasing the death term,
hence it is actually a direct life threat to the cell population, that ‘defends itself’
(biological bases under assessment...) by increasing its resistance phenotype x

• This resistance-inducing killing effect should be avoided as long as possible. In
summary: limit proliferation but do not try too hard to kill cells, lest the cell
population should become resistant, but give cytotoxics only at high doses
during a short interval of time (MTD), thus avoiding to trigger resistance.

• An alternative to such use of MTD (maximum tolerated dose) towards the end
of the chemotherapy course is metronomics, that also prevents developing
resistance by giving low doses of cytotoxics... expecting that the population,
thwarted in its proliferation, will be kept in check by the immune system. This
has not been represented in an optimal control perspective thus far (however,

see https://hal.inria.fr/hal-01302003v1).
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How to be deleterious by using constant doses of drugs
[We define the population of sensitive cancer cells by ρCS(t) :=

∫ 1
0 (1− x) nC (t, x) dx]

Simulation with u1(t) = Cst = 3.5 and u2(t) = Cst = 2, in time T = 10

• Quite small effect of the drug pressure on the phenotype of nH
• nC quickly concentrates around a resistant phenotype
• Catastrophic effects on ρH , ρC and ρCS .
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Optimal control algorithms to improve drug delivery in
cancer cell populations (with Emmanuel Trélat, LJLL)
Same phenotype-structured non-local Lotka-Volterra model, but instead of a
‘pedestrian’s optimisation’ (i.e., merely using grids), solving an optimal control
problem: determining control functions u1 and u2 in L∞(0,T ), satisfying the
constraints

0 ≤ u1(t) ≤ umax
1 , 0 ≤ u2(t) ≤ umax

2 , (6)

and minimising the cost functional

CT (u1, u2) =

∫ 1

0
nC (x ,T ) dx + γ1

∫ T

0
u1(t) dt + γ2

∫ T

0
u2(t) dt, (7)

where (nC (·, ·), nH(·, ·)) is the unique solution of the system of PDEs corresponding to
the controls u1 and u2, such that nH(0, ·) = n0H(·) and nC (0, ·) = n0C (·) and where the
trajectory t 7→ (nC (·, t), nH(·, t)) is subject to the dynamic state constraint

ρH(t)

ρH(t) + ρC (t)
≥ θHC . (8)

(in simulations, e.g., θHC = 0.4) We use a direct approach, discretising the whole
problem and then solving the resulting constrained optimisation problem with AMPL
(automatic differentiation) combined with IPOPT (expert optimisation routine)
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Numerical solution to this first optimal control problem
Distribution of populations according to phenotype (black: initial; red: final; blue:
intermediate steps of the optimisation algorithm)

Left and centre panels: optimal drug flows for u1(t) (cytotoxic) and u2(t) (cytostatic)
Right panel: satisfaction of dynamic constraint
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Introducing ‘adaptive therapy’, following Robert Gatenby

• Principle: keep alive an objective ally in
the enemy place

• Relies on competition for resources
between resistant (weakly proliferative)
and sensitive cancer cells in the tumour

• Aim: avoid extinction of sensitive tumour
cells, that are able to outcompete
resistant tumour cells provided that not
too high doses of a drug are delivered

• Method: deliver relatively low doses of
the drug to prevent thriving of too many
sensitive cells and limit emergence of too
many (unbeatable) resistant cells

• Objective: controlling total (sensitive +
resistant) tumour cell population

• Caveat: not necessarily applicable in the
case of fast growing tumours (e.g., acute
myeloblastic leukaemia)



Drug resistance Evolution Cell cultures Modelling Optimisation Long-term prospects

Second optimal control problem, same IDE model (1)
Environment: IH(t) = aHH .ρH(t) + aHC .ρC (t), IC (t) = aCH .ρH(t) + aCC .ρC (t),

with ρH(t) =
∫ 1
0 nH(x , t) dx , ρC (t) =

∫ 1
0 nC (x , t) dx .

Same IDE model with evolution in phenotype x due to effects of cytotoxic drug u1(t)

∂

∂t
nH(x , t) =

( rH(x)

1 + αHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

)
nH(x , t)

∂

∂t
nC (x , t) =

( rC (x)

1 + αCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

)
nC (x , t)

0 ≤ u1(t) ≤ umax
1 , 0 ≤ u2(t) ≤ umax

2

minCT (u1, u2) = ρC (T ) =

∫ 1

0
nC (x ,T ) dx

under the additional constraints

ρH(t)

ρH(t) + ρC (t)
≥ θHC , ρH(t) ≥ θH .ρH(0)

(the last constraint, with, e.g., θH = 0.6, to limit damage to healthy cells)
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Second optimal control problem, same IDE model (2)
Note that we might add an “adaptive” constraint

ρCS(t)

ρC (t)
≥ θCS , where

ρCS(t) =

∫ 1

0
(1− x)nC (t, x) dx

may be seen as the total number at time t of tumour cells that are sensitive, and

ρCR(t) =

∫ 1

0
xnC (t, x) dx

as the total number at time t of tumour cells that are resistant.

However, such constraint is superfluous, as we will show - only numerically so far -
that, likely due to phenotype concentration in the first phase of the optimal control,
the ratio t 7→

ρCS(t)

ρC (t)
is, as long as u1(t) = 0, an increasing function of t without

imposing this “adaptive” constraint. Nevertheless, note that when u1(t) > 0, this is no
longer granted, and resistance effects (evidenced on decreasing ρCS) always emerge.
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Second optimal control problem: theoretical results
Theorem
Under these conditions, the optimal trajectory in large time T > 0 consists of 3 arcs:

1. A first transient short-time arc, negligible in large time, consisting of reaching
the boundary ρH (t)

ρH (t)+ρC (t)
= θH , with u1 = 0 and with an appropriate control u2.

2. A middle long-time arc: u1 = 0, u2 ' Cst, this constant being tuned so that

ρH(t)

ρH(t) + ρC (t)
= θHC .

It leads to phenotype concentration and stationary values for cell populations

nH(·, t) ' ρ∞H .δx∞H
, nC (·, t) ' ρ∞C .δx∞C

(δx∞
[H,C ]

unit Dirac masses)

for some constants ρ∞H and ρ∞C , i.e., healthy and tumour cell populations are
concentrated at some given respective phenotypes x∞H and x∞C .

3. A transient short-time arc: u1 = umax
1 followed by a terminal arc during which

u1 is slightly lower than umax
1 to ensure that the constraint ρH(t) ≥ θH .ρH(0) is

satisfied, and u2 = umax
2 in the last two time intervals, during which the

population of healthy and of tumour cells is very quickly decreasing.

(Proof: Camille Pouchol’s PhD thesis work)
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Simulations illustrating this theorem
Simulation with T = 30
(optimisation using AMPL-IPOPT)

Note that this strategy lets the
cancer cell population ρC grow
initially to an equilibrium level,
while increasing the ratio

ρCS
ρC

of

drug-sensitive cancer cells, before
delivering u1 = umax

1 ; only then is
the cytotoxic efficacy maximal.

Note also that the treatment could
be stopped at about Tf = 50 in
this simulation, the last 10 days
(T − Tf ) bringing nothing to the
objective of miminising ρC (T ),
except trouble, namely by triggering
resistance in the few remaining
resistant cancer cells, as can be
seen on the curve t 7→ ρCS (t)

ρC (t)
.
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Interpretation
Neglecting the first transient arc, in a first approximation the optimal trajectory is
made of two parts, the first one with u1 = 0 and the second one with u1 = umax

1 , then
u1 slightly lower than umax

1 .

Main idea:
1. Let the system naturally evolve to a phenotype concentration (long-time phase).
2. Then, apply the maximal quantity of drugs, during a short-time phase, in order

to eradicate as many tumour cells as possible.

The second short-time phase is all the more efficient as the phenotypes are more
concentrated (hence, as the time T is large).

We have two facts to prove: 1) convergence and concentration; 2) optimality of the
concentrated state to start the final drug delivery phase. We shill prove the first fact,
however the proof of the second fact is still elusive.

Looking for the proof of the theorem, beginning with the simpler case of constant
controls, we investigated different tracks. The first attempt failed, but its main
ingredients were used in the actual proof (with firstly constant, then piecewise
constant controls), which relies on the design of a Lyapunov functional, making use of
arguments taken from (Jabin & Raoul, J Math Biol 2011); work underway in Camille
Pouchol’s PhD thesis.
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Limitations of this optimisation procedure, owing to the
fact that the trait represents resistance to only one drug

• The model assumes one trait of resistance corresponding to one cytotoxic drug.

• However, overcoming resistance using such strategy may not be successful if
too many types of resistance coexist, due to high phenotype heterogeneity.

• Phenotype heterogeneity (e.g., multiclonality) within the tumour may reduce
such strategy to nothing, unless a multidimensional phenotype is considered.

• ... Unless also one could act very early to avoid the development of transient
drug-resistant cell clones by epigenetic drugs or metabolism-modifying strategies.

(AML relapse, cf. Ding et al.Nature 2012)
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Extensions of the IDE model: tumour micro-environment
1) Breast cancer cell line MCF7 co-cultured with adipocytes

	
  

Control by drugs: cytostatic vr (t), cytotoxic vd (t),
plus blockade of receptors to intercellular soluble factors ϕA(t), ϕC (t) by other drugs,
e.g., oestrogen receptor blockers wsC (t), antiinflammatory molecules wsA(t)

∂

∂t
nC (u, t) =

[ rC
1 + vr (t)

+ ϕA(t)
sC (u)

1 + wsC (t)
− (1 + vd (t))dC (u)ρC (t)

]
nC (u, t),

∂

∂t
nA(x , t) =

[
rA + ϕC (t)

sA(x)

1 + wsA(t)
− dAρA(t)

]
nA(x , t).

(Camille Pouchol’s PhD thesis 2015-. . . )
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Extensions of the IDE model: tumour micro-environment
2) Haematopoietic stem cells interacting with support stromal cells (no drugs so far)
Model of mutualistic interactions between the two cell populations:

∂h(t, u)

∂t
=

{
α(u)(1−

%(t) + σ(t)

K
) + γ(u)Σ(t)

}
h(t, u) + D

∂2h(t, u)

∂u2
,

∂s(t, v)

∂t
=

{
β(v)(1−

%(t) + σ(t)

L
) + δ(v)P(t)

}
s(t, v) + E

∂2s(t, v)

∂v2
,

h(t, u) := haematopoietic stem/progenitor cells (HSPCs) of plasticity phenotype u
s(t, v) := stromal cells in the bone marrow of supporting capacity phenotype v ,

%(t) =

∫ 1

0
h(t, u) du / σ(t) =

∫ 1

0
s(t, v) dv total HSPCs/stromal cells.

Mutualistic terms: P(t) =

∫ 1

0
ϕ(u)h(t, u) du and Σ(t) =

∫ 1

0
ψ(v)s(t, v) dv

Sensitivities γ(u) and δ(v) quantify interaction strength in the target populations:
γ(u) for the sensitivity of haematopoietic cells to messages from stromal cells, and
δ(v) for the other way round; parameters D and E quantify non-genetic instability of
the cell populations w.r.t. phenotypes u and v .

... Model to be identified after dynamic recordings from genomic expression data??
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Going forward, from local to global: models of cancer cell
population dynamics from genome samples in single cells?

We need several modules (not all of them presently at hand) to design such models:
• A (time) dynamic deterministic structured model of cell population behaviour

with phenotype variability and evolutionary (relevant trait) dynamics; we have
experience of such PDE models: transport, reaction-diffusion, integro-differential

• Intracellular molecular deterministic models for the concentration of relevant
mRNAs and proteins to determine cell fates, e.g., of nodal antagonist pairs X,Y
such as transcription factors PU.1/GATA1 for the choice of myeloid vs.
erythroid lineages in HSCs: relatively easy to design and classic by sets of ODEs

• For each antagonism, a stochastic process Z at the gene expression level, where
would lie the (epigenetic?? TET2, etc.) source of phenotypic heterogeneity,
randomly determining ODE parameters and whose parameters would themselves
depend on tissue environment variables

• Upscaling principles to integrate models from cell ODEs to tissue physiologically
structured PDEs, making phenotype signatures from single cell genome samples

• Environment variables would result from integration, at the tissue level, of such
“readouts” from single cell characteristics; their concentrations would determine
phenotypes in cell populations; see e.g., Friedman et al. J Diff Eq 2009, 2012
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From local to global, and back: a geophysical metaphor
• At the planet level, albedo ratio: reflection (cooling) vs. refraction (warming) of

sunbeams on ice crust vs. ocean water, plus greenhouse effect (warming)

• At the elementary (molecular) level, simplified: H2O + CO2 � H+ + HCO−3 ,
i.e., CO2 emission (greenhouse warming) vs. CO2 sequestration (cooling)

• Environment variable, from global to local: temperature (of the reaction)

• Global cooling: state of the Earth 650 million years ago (“Snowball Earth”)

[NB: Stable equilibrium? (Budyko 1969)... yes, but only if one does not take
into account volcanic activity, that can pierce the ice crust and release enormous
quantities of gases (CO2,CH4), contributing to re-establishing the greenhouse
effect, which actually happened (ice melt -635 My?) and led to the Cambrian
multicellular explosion 540 million years ago, from which we were all begotten]
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Global and local, from Graf & Enver, Nature 2009

In one multicellular organism:

[Classic Waddington landscape]

Stem cell fate: modern version by Tariq Enver
(from ASH meeting 2011) Zoom on the PU.1/GATA1 node:

Choice between red/white lineages
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Sketched candidate model for 2 antagonistic genes X, Y
• Stochastic process Z to represent regulator gene expression (epigenetic? TET2?)
• ODEs for mRNA expression of antagonistic genes X ,Y and for resulting

synthesised proteins x , y
• Environment (=tissue) signal production by integration at the cell population

level of extracellular outputs of intracellular protein concentrations x and y
• Extracellular signals σ and τ (possibly controlled by therapeutic molecules u1(t),

u2(t)) go to the nucleus to control stochastic expression of regulator gene Z

• Dynamics of cell population density ϕ(X ,Y ,Z , t), structured in traits X ,Y ,Z
∂ϕ

∂t
+

∂

∂X
(
ϕ
dx
dt
)

+
∂

∂Y
(ϕ

dy
dt

) + LZϕ = R.ϕ
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Possible candidate equations for the dynamics of the model
- Z stochastic process controlled by σ(t), τ(t), u1(t), u2(t), with outputs on transcription v(Z),w(Z) for bursting
frequency (Va = Va0 .v(Z),Wa = Wa0 .w(Z): effects on launching transcription), and f (Z), g(Z) amplification
terms representing bursting magnitude (mRNA concentrations Xf (Z) and Yf (Z) in RHS representing bursting
amplitude as seen on transcriptional effects on protein concentrations x, y) and

LZϕ = −λ(σ, τ, Z)ϕ(t, X , Y , Z) +

∫ Z

0

λ(σ, τ, ζ)ϕ(t, X , Y , ζ)κ(ζ, Z) dζ +
∂

∂Z
(−θZϕ)

- X , Y : zero-order ultrasensitivity switches representing bursting of transcription in genes X and Y
(0 ≤ X , Y ≤ 1), with Va

Vi
and Wa

Wi
around threshold 1 ( VaVi or Wa

Wi
> 1: gene on; Va

Vi
or Wa

Wi
< 1: gene off, with

steep switch):

dX
dt

= Va.
1− X

Ja + 1− X
− Vi .

X
Ji + X

,
dY
dt

= Wa.
1− Y

Ka + 1− Y
−Wi .

Y
Ki + Y

- x, y : intracellular protein concentrations with mutual inhibition of synthesis:

dx
dt

= −µx +
α1xn

k1 + xn
.

1
1 +

y
γ1

+ Xf (Z),
dy
dt

= −νx +
α2yn

k2 + yn
.

1
1 + x

γ2

+ Yg(Z)

- σ, τ : tissue signalling (including therapeutic control) obtained by extracellular efflux of proteins x and y and their
integration at the cell population level:

σ(t) =
u1(t) +

∫ ∫
xϕ(t, X , Y ) dX dY∫ ∫

ϕ(t, X , Y ) dX dY
, τ(t) =

u2(t) +
∫ ∫

yϕ(t, X , Y ) dX dY∫ ∫
ϕ(t, X , Y ) dX dY
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Therapeutic means of action u1(t), u2(t) to be optimised

• Classical drugs acting on proliferation: with mechanisms more or less known at
the individual cell level (cytotoxic, cytostatic, redifferentiating agents) or at the
tissue level (antiangiogenic, supporting tissue modifiers)

• “Epigenetic” drugs acting on DNA methylation by tissue metabolism
modifications or on histone acetylation (HDAC inhibitors): mechanisms not well
known, nor sufficiently clinically assessed thus far, but clinical essays underway

• IPSC therapies? Dedifferentiating cancer cells (using Yamanaka’s 4 genes
Oct3/Oct4, SOX2, KLF4 and c-myc, plus NANOG or other), then need to guide
(= control) redifferentiation from induced pluripotent stem cells to normal cells

• Possible pitfalls of IPSC therapies (i.e., designing guidelines to establish
constraints for optimal control): non viability, non mastered proliferation,
remnants of initial cell phenotypes in IPS cells, errors at nodes in going down
phylogenetic trees...

• Objectives in optimal control strategies: targeting phenotypic signatures
characteristic (“phylognomonic”) of the desired cell population phenotypes
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Other extensions: dealing with the immune response

• Remarkable recent and longlasting therapeutic results have been obtained in
various cancers by using immune checkpoint inhibitors (anti-CTLA-4, anti-PD1,
anti-PDL1), monoclonal antibodies that inhibit inhibition of immune effector
cells, see, e.g., Naidoo et al. in Br J Cancer 2014

• However, remarkable though they are, these results remain limited, long
survivors (18 months) in melanoma passing from 0 to 25-40 % in the best cases
(Nivolumab in melanoma without BRAF mutation, C. Robert NEJM 2015)

• Using chemotherapies to decrease cancer cell populations, not to eradicate
them, but to make them amenable to be kept in check by the immune system,
raises reasonable hopes to increase these (already remarkable) results

• This calls for models of the immune response in cancer to optimise cancer
treatments by combining chemo- and immunotherapies...

• ... Keeping in mind the urge by Charles Lineweaver, Paul Davies and Mark
Vincent (Bioessays 2014) to target cancer’s weaknesses (not its strengths) by
triggering the adaptive immune response (William Coley revisited)
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