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Optimising anticancer drug delivery: present and future




4. Optimising therapeutics

ronobiology in a nutshell (1): the circadian system
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4. Optimising therapeutics

Chronobiology in a nutshell (2): cancer chronotherapy
Infusion flow
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How does it work? Impact of circadian clocks on both cell drug

detoxication enzymes and cell division cycle determinant proteins
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Chronobiology in a nutshell (3): chronotherapy technology

POMPE MINIATURISEE MULTI-CANAUX
POUR PERFUSION INTRAVEINEUSE

Multichannel programmable ambulatory
injector for intravenous drug infusion
pompe M¢élodie, Aguettant, Lyon, France)

Can such therapeutic schedules be improved?

INSERM U776 Rythmes Biologiques et Cancers




RV RUEl Chronnobiology in a nutshell (4):
Chronotherapy today in the clinic

* Centralised programmation

Multichannel pump * Any modulation of delivery rate

* 4 reservoirs (100-2000 mL)
for chronotherapy * 2 independent channels

e Rates from 1 to 3000 mL/h

Francis Lévi, INSERM U 776 Rythmes Biologiques et Cancers




Theoretical optimisation of Oxaliplatin drug delivery
with model parameter identification 1n mice




4. Optimising therapeutics

Aims of this study

Taking into account (observation facts) that for a given cytotoxic drug,
better anti-tumour efficacy and lesser toxicity are obtained when delivered
at a well-determined time of the circadian cycle, we want to:

Provide clinicians with a practical tool allowing to improve the efficacy of
an anti-tumoral treatment while minimizing its toxicity on healthy tissues
by optimizing the infusion flow.

Such a tool should be based on pharmacokinetic-pharmacodynamic
modelling mimicking the observed chronosensitivity of the tumour and
healthy tissue to the drug, and on optimal control of the infusion flow.
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Application chosen for a feasibility study

Oxaliplatin (one of the few active drugs on human colorectal cancer) is
also active on Glasgow osteosarcoma in B6D2F, mice.

The treatment of this murine tumour by oxaliplatin has been extensively
studied 1n our laboratory at Hopital Paul-Brousse, Villejuif (INSERM
EPI 0354), according to various time-scheduled dose regimens.

Its clinical toxicity consists in peripheral sensory neuropathy, diarrhoea
and vomiting, and haematological suppression; in mice, leukopenia,
jejunal mucosa necrosis (and premature death) have been reported.

Jejunal villi enterocyte population was chosen as toxicity target in mice.
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Physiological hypotheses, literature data

Oxaliplatin after IV or IP injection diffuses (as free Pt) according to order 1
kinetics firstly in the plasma, then to the healthy tissue and to the tumour.

The drug activity may be represented by an efficacy function (Hill function)
inhibiting cell population growth in each compartment (healthy and tumoral).

Without treatment, the tumour grows according to a Gompertz law: firstly
exponential growth then convergence towards a plateau.

In the tumour compartment there may exist cells developing drug resistance.

Without treatment, the elimination of mature cells from jejunal villli into the
bowel lumen 1s exactly compensated at any moment by the influx of young
cells from the crypts.

In the jejunal mucosa, only crypt cells are directly sensitive to the drug,
whereas villi cells are only secondarily affected by it.
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Measurements that are available at the laboratory

Published laboratory data reporting diffusion parameters for oxaliplatin and
optimal (=yielding smallest tumour weight at 14 or 21 days) injection time.

Measure of tumour weight as a function of time (days) of B6D2F, mice
bearing Glasgow osteosarcoma, without treatment.

Measure of tumour weight as a function of time (days) of B6D2F, mice
bearing Glasgow osteosarcoma treated by 4 injections (bolus, 2 distinct
doses) of oxaliplatin delayed by 24 hours, and at different injection times.
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The model: 1/ Pt concentration

dP/dt = -A P + i(t)/V (P = free Pt plasma concentration)
dC/dt=-u C+P (C = total Pt concentration in healthy tissue )
dD/dt=-vD + P (D = total Pt concentration in tumour )

Therapeutic control: t -->1(t) = intravenous drug infusion flow (ug/h) at time t

-V = distribution volume (mL); A,u,v: diffusion parameters calculated after the
half-life (In 2 / half-life), known or estimated, of the drug in each compartment
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The model : 2/ drug efficacy and toxicity functions

Toxicity function in healthy tissue:
£(C,) = F . [C/C5 IE%/(14[C/Csy] &%) { 1+c0s 2mt(t-¢pg)/ T }

gS = Hill coefficient; Cy, = half-saturation concentration; T (24 h) = period of drug
sensitivity variations; ¢pq = maximum toxicity phase (h); F= half-maximum toxicity

Efficacy function in tumour:

g(D,t) = H . [D/Ds, [E/(14[D/Dsy] &1 . 1+cos 2m(t-¢o)/ T}
T = Hill coefficient; D5, = half-saturation concentration; T (24 h) = period of drug
sensitivity variations; ¢ = maximum efficacy phase (h); H= half-maximum efficacy
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The model: 3/ enterocyte population

dA/dt= Z-Z, (A = number of cells borne by jejunal villi)
dZ/dt=-la+f(CH)]Z-pP A+y (Z=number of cells per time unit (h) migrating
from crypts towards villi; Z,, =Z at steady state)

Y: a positive constant; o.: a positive constant standing for a natural inhibition rate
(autoregulation); B: a positive constant standing for a mitosis inhibiting factor (a so-
called ‘chalone’) coming from neighbouring villi to crypts

This linear system may be seen as the linearisation of an unknown nonlinear system

around its stable equilibrium point [A =p7". (~a Z_ + ), Ze] without treatment,
assuming hyperbolicity of this equilibrium, which ensures the validity of the linear
approximation, since stability of this equilibrium is granted: in case of a sudden
perturbation, return to steady state with damped oscillations, cf. Wright & Alison.
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Model oscillations of the enterocyte population

(without treatment, response to radiotoxic or cytotoxic brief insult)
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4. Optimising therapeutics

Model oscillations of enterocyte population

(without treatment, response to radiotoxic or cytotoxic brief insult)
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The model: 4/ tumour cell population

dB/dt =-a.B.In(B/B__. )-g(D).B.(1+B%/2 (B = number of tumour cells)

max

a= Gompertz exponent; B_ . asymptotic (=maximal) value of B

It G =dB/Bdt;,_,, ,initial growth exponent at chosen initial observation time t ,
then B__ =B(t,) .e%?, and without treatment, dB/dt=G.e ‘% B

B.(1-B")/2 = population of drug resistant cells (according to Goldie-Coldman),
where q is -2 times the probability for a tumour cell to become resistant
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The complete 1nitial system (IS): 6 state variables

Healthy cells (jejunal mucosa) Tumour cells

—\P + @@(t)

—uC + P

—{a+ f(C, t)}Z’— BA+~

Z 7 Zeq .

(tumour gro’\;/th:Gompertz model)

4

(« chrono-PD ») -~
A

HC,1)=F.CH(Cs,1+C1) {1 +cos 27(t-qg)I T} ¢(D,t)=H D"/(Dy'+D") {1+cos 27(t-g )T}

Aim: balancing IV delivered drug anti-tumour efficacy by healthy tissue toxicity

(JC, Pathol-Biol 2003; Adv Drug Deliv Rev 2007)
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Model parameter 1dentification

The daily dose of injected drug was fixed as 60 ug of free Pt (corresponding to 4
mg/kg/d of oxaliplatin for a 30 g mouse, a common value at the laboratory).

Diffusion parameters (V , A, u, v) : laboratory data
Optimal injection phase ¢, (Whence ¢g et ¢r) : laboratory data

Laboratory observation: maximal anti-tumour efficacy phase ¢ and minimal healthy
tissue toxicity phase 12 + ¢4 coincide.

gS and gT have been arbitrararily fixed as 1, Cs, and Dy, at a high value (10) so as
to bring the efficacy/toxicity functions in a linear zone.

Equilibrium point [A.=p7. (~a Z. + ) , Z. |, period (6 d) and dampening factor
(1/3) for oscillations of the enterocyte population chosen after Potten et al., whence
a, B, ¥

F, H, G and a have been determined after laboratory curves, q fixed as 0 or -0.002.
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Example of parameter identification for the tumour growth model:
fitting the model to mice data, tumour burden in untreated mice

Sanstraiternent :j8,j9,j12,j14
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Computer stmulation with SCILAB or MATLAB

SCILAB / MATLAB programming

Time unit: hour, counted from O halo (hours after light onset) at day 1;
integration step = 0.1 hour

Integration of the ordinary differential equations system beginning with
treatment, with interruption at each discontinuity step (for square wave or
sawtooth-like control laws); used solvers: Adams or implicit (BDF) scheme.
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First attempt: periodic drug flow control according
to clinical habits (5d treatment +16 d recovery)
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4. Optimising therapeutics
SCILAB: visualisation of variables (square wave)
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4. Optimising therapeutics
Comparison: periodic time-scheduled regimen (sinus-like
optimal control law, SO) vs constant infusion (CI) over 5
days, followed by 16 days of recovery

Concentratj Concentrati
in tumour ] in tumour

Infudon flow
J T T T TOHP.

T 4.7x10° tumoufr cells

Mature villi cells

Flux from crypts

Eradication on day 5 Cancer cell persistence and tumour regrowth
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Graphical optimisation: superimposing infusion peaks
on maximal chronoefficacy epochs

Graphic optimization: first days of treatment, between t=phil (first injection time) and t=phil+96 h
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Detail of a 5-day regimen

(optimal square wave time schedule)

Square wave, tau=5, phi=12,i0=60

(drug concentration in tum

illi cells)




4. Optimising therapeutics

Detail of a 5-day regimen

(comparison with constant infusion schedule)

Constant infusion,

phi=12, i0=60

(drug concentration in tumour)

crypt
illi)

B (tumour
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Typical periodic infusion course: Sd+16d of recovery+35d
(square wave time schedule)
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A more aggressive regimen: 5d+5d (recovery)+35d

(optimal square wave time schedule)

Square wave, tau=5, phi=12,i0=60
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Summary of results for this “poorman’s optimisation scheme’

1/ Optimal time schedule > constant infusion > worst possible time schedule
(4 residual tumoral cells out of 10°initially < 17 out of 10° < 52 out of 10°)

2/ ¢ Aggressive curative regimen ’, allowing a wide toxicity limit, here a
decrease down to 40 % of 1nitial villi population:

Best result (3 residual tumoral cells) for the same daily dose (60 ug/d free
Pt) obtained with a sharp sinusoid-like law for 5 hours , beginning at 12 halo

3/ ¢ Reduced toxicity regimen ’, prohibiting the decrease of the villi population
below a given threshold, here 60 % of 1nitial villi population:

Best result ( 516 residual tumoral cells out of 10° initially) obtained with a
right sawtooth-like law for 1 hour beginning at 14 halo,
allowing the infusion of a maximum dose of 45 ug/d.

Main drawback : high drug concentrations over a short period.

Advantage: better anti-tumoral results than constant infusion which, for the
same tolerability limit, imposes not to deliver above 34 ug/d (2626 residual
tumoral cells out of 10° initially).




4. Optimising therapeutics
Optimal control, step 1: deriving a constraint

function from the enterocyte population model

i(t)
AP+ Y
LY

—uC + P
—{a+ f(C,1)}Z — BA+
J — 7.

Minimal toxicity constraint, for 0<t,<1 (e.g. T, =60%):

min A(t,i) > T4Ae, i € L*([to,t¢]), or :
tE[t()tf]
FA(L) = T4 — min A(t,’i)/Ae <0

te [to at ]

Other possible constraints:




4. Optimising therapeutics
Optimal control, step 2: deriving an objective
function from the tumoral cell population model

i(t)

(] »

Ojective function 1: Eradication strategy: minimize Gg(i), where;
B = B(t,i) ,i € L*([tg,t¢])
Gp(i) = min B(t,17)

tEto,ts]

Objective function 2: Stabilisation strategy: minimize Gy(7), where;

or else:

max B(t,1)
tE€[to,ts]
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Optimal control problem (eradication): defining a lagrangian:

min max L(z,6)
i € L*([to, tg]) ="

+ other constraints

If G and F, were convex, then one should have:

min max £(7, ) = max min L(z, 0)
i 6>0 6>0 i

...and the minimum would be obtained at a saddle-point
of the lagrangian, reachable by an Uzawa-like algorithm
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Investigating the minima of the objective function:
a continuous problem

...but Gy and F, need not be convex functions of infusion flow !!

Yet it may be proved using a compacity argument that
the minimum of G under the constraint F,<0 actually exists:

F, and Gy are weakly continuous functions of 7, from L2([t,.t;]) to H?([t,.t;]) since
i->A(t,i) and i->B(z,i) are continuous by integration of the initial system:

hence also are
C(#).D(0),A(7).B(?)

and the constraint set {i,0 <i<i_.,F,(i) =0} is weakly compact in L*([t,.t])

max?
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Investigating the minima of the objective function:
a differentiable problem

Moreover, A and B are C 2 as functions of time ¢
(again by integration of the initial system)

The minimum of A being attained at t,(7), 1.e., F A(z) To-Alt,, z)/A 1t can be
proved, assuming that d*A(ta(D) i) [ 02> 0 and using the implicit function
theorem, that t, is a differentiable function of flow i

In the same way, t; , defined by Gg(7/)=max; B(7,t)=B(i,t5(7)), 18,
provided that 6°B(t;(7),i) / dr*> 0, a differentiable function of flow i
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A heuristics for finding minima of the objective function

Hence, the infusion flow optimatisation problem is liable to
differentiable optimisation techniques,

and though the problem 1s not convex, so that searching for saddle
points of the lagrangian will only yield sufficient conditions,

we nevertheless define a heuristics to obtain minima of the objective function
Gy submitted to the constraint F,<0, based on a Uzawa-like algorithm based
on a nonlinear conjugate gradient, which will need defining 2 adjoint systems:
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1/ Adjoint system (AS1) for calculating the gradient of F,

Recall that: Fp(i) =74 — tel[ltlil% ]A(t, i)/ A
/ 0,Lf

Then, if t,(7), time at which the minimum of F, is attained, 1s defined by
F, (i) =T, -A(t,, i) / A it can be proved, provided that 9*A(t,(7),i) / 0r*> 0
and using the implicit function theorem, that t, i1s a differentiable function of i

Then the gradient of F, with respect to i is dF (i) / 0i = Up .1 gt/ v,

where [t,, ] = Supp (i) (=1njection interval) and U, is the first component
of the Lagrange multiplier (Up, U, U,, U, ), solution of the adjoint system:

with initial conditions:
Up(m)=Uc(n)= Uz(n)=0

and U,(n)=-1/A,

and vanishing conditions at t,
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2/ Adjoint system (AS2) for calculating the gradient of Gy
(designing an objective function for the eradication strategy)

Similarly, with  (ClI&] (1) = telifl}ll% ]B (t,17)
0 f

It t5(7), time at which the minimum of Gy 1s attained, is defined by
Gy(i) = B(tg, i) it can be proved, provided that 9°B(tg(i),i) / dt*> 0,
by using the implicit function theorem, that t; is a differentiable function of i

And the gradient of Gy with respect to i is 0Gy(i) / 6i = Vp .1 |, ../ v,
where [t,, N] = Supp (i) (=1njection interval), and V, is the first component
of the Lagrange multiplier (Vp, Vpy, V), solution of the adjoint system:

with initial conditions:
AVp = Vb V()= Vig(1)=0 and

Jdg V()= 1 at the upper
vVp — oD (D, 1).B.Vp bound n of the injection

o 1n BB +a—g(D, z‘)> Ve interval, and vanishing

mazx conditions at tO
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2’/ An adjoint system for calculating the gradient of Gy
(designing an objective function for the stabilisation strategy)

Gp(i) = B(ty)

since we are not interested in local or global minima of B, but only

in its maximum at the end of the cbservation interval [t,, t]; the
differentiability of G with respect to i is also valid; the same adjoint system
with initial conditions in t;: Vp(t)= Vp(t)=0 and V;(t;)= 1 will also yield the
required gradient by 6Gg(i) / 9i=Vp . 1 )/ 1%

If we choose: the problem is theoretically simpler,

But in fact, because observation periods run over several chemotherapy cycles, and
it 1s not granted that t,=t;, we chose to use:

G B (’L) — max B (t ’l) plainly replacing a minimum in the
- y

eradication strategy by a maximum;
4 [t() ,t f] the use of the implicit function theorem
18 also valid, even with t,=t;, provided
that 6°B / at?(t,)=0
And the same algorithm holds as in the eradication strategy
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Computation summed up: a Uzawa-like descent algorithm

Start from initial infusion profile and Lagrange multiplier i,and 6 (cst. and 1)

Given the infusion profile 1., integrate the initial dynamical system (IS) with 6
state variables, between t, and t;, yielding population profiles A(3, ) and B(i; )

Given (i, 0, ) search for t, (i) and t; (i,) and compute Gg (i), F, (i), £y , 0; )

Integrate the adjoint systems (AS1) from t, down to t, and (AS2) from t; down
to t, to obtain the gradient of £(., 0,)= Gy (.)+ 0, F, (.)

Define a descent direction by d,= d£(i,0, )/ di or by a linear combination of d£
(1,0, )/ di and previous descent directions d,_;,d,,....

Determine i, ; by minimizing £( i, +sd,,0,) w.r. to s (i.e. along direction d,)
Compute 0, ;= max(0, +pF,(), 0), for a given p>0

10. Until convergence, i.e. with stopping condition IF (i, )l<¢ (constraint saturation)
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Optimal control: results of the tumour
stabilisation strategy using this simple one-drug PK-PD model

(and investigating more than Uzawa’s algorithm fixed points, by storing best profiles)

Drug infusion flow

I L

0 \ » | \ 0
012345678910 N2AA 456 7181 BE@1 012345678910 N2A3ANIE N PR 01234567 8910245 aN82@1
Time (days) Time (days) Time (days)

x10°  Tumoral cell population Villi population

-
(=]

injection (ugh)
B - number of cells
A —number of cells

Objective: minimising the maximum || Constraint : preserving the jejunal mucosa
of the tumour cell population according to the patient’s state of health

Solution : optimal infusion flow i(t) adaptable to the patient’s state of health

(according to a tunable parameter T,. here preserving T,=50% of enterocytes)

(C. Basdevant, JC, F. Lévi, M2AN 2005; JC Adv Drug Deliv Rev 2007)
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injection (ugh)
o> =2

n

A —number of cells

HQ1013 —canceQwe - ituz=2

i0=0.417 pg/h dt=0.1 h Tio=To+1 j
Ibd=6, mu=0.015, nu=0.03
To=12h, Ti=To+6 |, toA=50%
B(0)=1000000 cells, cTi=4
ca0=6000, ca=6250

eps=9e-06, epsa=0.001

¢i=300 pg, imax=10 pg'h

Ti=To+2 j#3.25 h =To+2.1354 |
Tia=Te+0 h

Drug infusion flow

Time (days)

Villi population

3 4
Time (days)

Detailed results: eradication strategy
=350 %
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<i>=3.63 yg/h, Sum i=185.7 yg
Max i=7.977 pgh

MinA=50.03 %Aeq, tMinA=4.783 |
Bmin=159 cells, tBmin=3.142

Bmax=1.04e+06 cells

tBmax=To+0.0917 j
B(Tf)=24121.4919 cells

Tumoral cell population

4
Time (days)

Drug infusion during next 24h

Time (days)

injection (ug/h)

A - number of cells

HQ1012 -canceQwe - ituz=3

i0=0.417 pg/h dt=0.1 h Tio=To+1 j
Ibd=6, mu=0.015, nu=0.03

To=12 h, Tf=To+6 |, toA=60%
B(0)=1000000 cells, cTi=4
¢a0=60000, ca=82500

eps=9e-06, epsa=0.001

ci=300 pg, imax=10 pg’'h

Ti=To+1 j+8.73 h =To+1.3639 j
Tia=To+0 h

Drug infusion flow
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n
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3 4
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itn=64

<i>=3.692 pg’h, Sumi=120.2 pg
Max i=8.96 yg/h

MinA=60 %:Aeq, tMinA=3.958 j
Bmin=2.91e+03 cells, tBmin=3.117 j

Bmax=1.04e+06 cells

tBmax=To+0.1j
B(Tf)=142058.7998 cells

Tumoral cell population
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Drug infusion during next 24h

3 4
Time (days)
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Detailed results: eradication strategy, optimisation w.r. to i and m

If, as defined earlier, [t,, n] = Supp (i) (=1njection interval), we also may optimize
w. I. to (i, m) in L? ([t,, t;]) X [t,, t;] . Then, for the eradication problem:

i, n — t, (days) min B(t)
40 % 1.37 3.65
50 % 2.13 159

60 % 1.36 2910

Summing up: for a chemotherapy course of 7 days, the best results are obtained
with a short infusion interval (1.5 to 2 days) at the beginning of the course,
followed by recovery during the remaining time of the week, i.e. a « German
scheme » for oxaliplatin chronotherapy rather than the usual « French schemes »
of 5d + 16 d (recovery time) or 4 d + 10 d (recovery time)
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With t, = 50 %:

ChimioS0j

CS00 - dt=0.1h

Ibd=6, mu=0.015, nu=0.03
To=12h, Ti=To+21 ]
B(0)=1000000 cells

Gaussian noise - zero mean

Sum i=515.4 ug
Max i=10.47 pg'h

MinA=49.9 %Aeq, tIMinA=11.8
Bmin=144.8 cells, tBmin=10.14
standard deviation=0 pyg/h

Bmax=109876 , tBmax=14.63 |
Ti=To+15 j+12 h=To+155]
B(Tf)=109691.5206 cells

Drug infusion flow x10° Tumoral cell population
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Detailed results:

stabilisation strategy
Varying t,:

Numerical results for 1.5
days infusion + 5.5 days recovery:

max B(t) min B(t)
28 000 §)

102 000 147

305 000 2700
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Detailed results:

stabilisation strategy with T, = 50 %, zoom:

Drug infusion flow — first period
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4. Optimising therapeutics

Other optimisation techniques have been used

1) Augmented Lagrangian (AL)

2) SQPAL (Sequential Quadratic Programming AL,
author: Jean-Charles Gilbert, INRIA)

...ylelding similar results, but SQPAL 1s much faster




4. Optimising therapeutics

In conclusion to this optimal control study

Optimal control of the chemotherapy infusion flow 1s possible using a simple
quasilinear model taking into account both efficacy and toxicity

It should be performed using: 1/ chronobiology constraints regarding
antitumour efficacy and clinical toxicity

2/ a peak infusion flow during the very first
days of the chemotherapy course

3/ arather short chemotherapy course as
much as possible, i.e. as long as the patient’s health allows it

The choice of the strategy (eradication or stabilisation) for the objective
function, and of the constraints representing various forms of toxicity is
essential and may depend on the particuliar drug and on the patient

As much as possible, one should choose dynamic constraints (i.e. depending on
time at each instant) rather than global constraints of the type AUC<AUC,_ .




4. Optimising therapeutics

Other recent theoretical approaches to cancer chronotherapy

e Albert Goldbeter and Attila Altinok, with Francis Lévi:
Cellular automata model of the cell cycle, SFU (S-phase specific),

synchronised (healthy) vs. desynchronised (cancer) cells
Altinok A., Lévi F., Goldbeter A, Adv Drug Deliv Rev. 2007; Eur J Pharm Sci. 2009

e Samuel Bernard, with Francis Lévi:

Delay differential model of the cell cycle, SFU, differences in S-
phase timing and in cycle duration between healthy and cancer cells
Bernard S,, éajavec Bernard B,, Lévi F,, Herzel H, PLOS Comp. Biol. 2010




More future prospects and challenges




5. Future prospects

More challenges and future prospects:

Individualised treatments in oncology
Genetic polymorphism: between-subject variability

for pharmacological model parameters

According to subjects, there exist different expression and activity levels of

drug processing enzymes and proteins (uptake, degradation, active efflux, e.g.
GSTx, DPYD, UGT1A1, P-gp....) and drug targets (e.g. Thymidylate Synthase,
Topoisomerase I)

The same is true of DNA mismatch repair enzyme gene expression (e.g.,
ERCCI1, ERCC2)

More generally, pharmacotherapeutics should be guided more by molecular
alterations of the DNA than by location of tumours: genotyping patients with
respect to anticancer drug processing may become the rule in oncology in the
future (G. Milano & J. Robert in Oncologie 2005) with individualised medicine

...Which also leads, using searched-for biomarkers, to populational PK-PD




5. Future prospects

A particular aspect of individualised medicine:
Gender 1ssues

Mixed genders: It has been shown by large population
overall survival studies in patients with CRC treated
by SFU+Oxaliplatin classical
chronotherapy vs. constant infusion:

- that chronotherapy is beneficial in
male patients

- that chronotherapy is detrimental in

female patients
(Giacchetti et al. J Clin Oncol 2006)

c. Overall D.f' Overall . . . .
survival S survival Possible explanation: differences in
of women of men toxicity (levels and peak times of

N RN EW cnzyme activities?) between genders,
~ ;éﬁr((:)ggs}am o4 My Constant .

: e hardly taken into account so far
Recommendation: find different

optimised schedules for women



5. Future prospects .
More challenges and future prospects (continued):

Other frontiers 1n cancer therapeutics

1. Immunotherapy:

Not only using cytokines and actual anticancer vaccines, but also examining delivery

of cytotoxics from the point of view of their action on the immune system
(Review by L. Zitvogel in Nature Rev. Immunol. 2008)

2. The various facets of (innate/acquired/(ir )reversible) drug resistance:

- Repair enzymes, mutated pS53: cell cycle models with by-pass of DNA damage control
- ABC transporters, cellular drug metabolism: molecular PK-PD ODEs (or PDEs)

- Microenvironment, interactions with stromal cells: competition/cooperativity models
- Mutations of the targets: evolutionary game theory, evolutionary dynamics models

3. Developing non-cell-killing therapeutic means:

- Associations of cytotoxics and redifferentiating agents (e.g. retinoic acid in AML3)

- Moditying local metabolic parameters? (e.g. pH) to foster proliferation of healthy cells
rather than cancer cells

4. Associating drugs with other mechanisms: antiangiogenics, MMPIs, ...
(Often disappointing due to unpredicted toxicity issues)




