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Introduction

This internship report provides an overview of the work carried out over a four-month internship
at the Jacques-Louis Lions Laboratory (LJLL) during spring 2024. It is essentially an introduction
to the numerical and mathematical modelling of cells interactions in cancer, with the intention to
establish an appropriate framework for the PhD following this internship, titled ”Modeling cellular
phenotypic divergence in oral carcinogenesis to improve oral cavity cancer prevention and treatment”.
This subject was designed during the internship, thanks to the fruitful collaboration between my
advisors Jean Clairambault and Emmanuel Trélat and the medical researcher Jean-Phillipe Foy.

This report will be structured in two independent sections. In the first part, we shall detail the
biological context and the considerations that helped set up the models. The second part will be
dedicated to a mathematical and numerical analysis of the models, and to a description of some first
results on numerical therapeutic optimal control.
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Chapter 1

Biological background and modeling

In this chapter, we will investigate the biology of oral cancer with the aim of developing
mathematical models adapted to answer specific contemporary challenges. Understanding the
biological mechanisms driving carcinogenesis is crucial for constructing accurate and effective
mathematical models.

The ongoing biological questions raised by medical researchers will serve as a foundation for our
mathematical and numerical modeling, with the goal of a better understanding of cancer dynamics
and an improvement of therapeutic strategies.

1.1 Oral cancers

1.1.1 A general overview

Oral cavity cancers are the most frequent cancer types (35%[1]) within head and neck cancers
and arise in the mouth, the lips, and the upper throat. The most common histological type (95%[1])
and the one we will be focusing on is oral squamous cell carcinoma (OSCC), which is linked to
considerable morbidity and mortality.

OSCC originates in the epithelial cells of the mucosal linings, which suggests that it is a rather
homogeneous disease, as it develops from one cell type in one tissue. The biological reality is that
OSCC is remarkably heterogeneous due to the complexity of the anatomical structures concerned as
well as the diversity of the molecular changes taking place during carcinogenesis [2].

The importance of the immune micro-environment in oral carcinogenesis has recently gained
strength. The tumor micro-environment refers to the wide variety of malignant and non-malignant
cell populations surrounding the tumor and to the molecules they produce. In this study, we shall
concentrate our investigation towards the dynamics between immune cells and cancerous cells during
oral carcinogenesis. The infiltration of various immune cell types has been analyzed, along with
their positive and negative effects on cancer development. In [3] a deconvolution of the different
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immune cell types was performed. Figure 1.1 presents the relative percentages of each immune cell
type across the 4 identified steps of oral carcinogenesis: normal stage, hyperplasia (excessive cell
proliferation), dysplasia (loss of healthy characteristics) and carcinoma.

Figure 1.1: Deconvolution of immune cell populations in murine stroma samples

It appears that macrophagic infiltration plays an important role especially during dysplasia. Yet
the role of the macrophages remains poorly understood. Macrophages are immune cells involved in
the immune response classified in two groups : M1 and M2 -although recent studies have identified
a wide variety of macrophages subsets [4]. Macrophages have the ability to switch their phenotype
towards M1 or M2 depending on the neighboring environment. They also play an active role in cancer
progression. As a matter of fact it is commonly believed that M2 macrophages have a protumorigenic
action on developed tumors. However in [3], Jean-Phillipe Foy and his collaborators unexpectedly
found a positive correlation between M2 macrophages signature expression and oral cancer-free
survival of patients with precancerous lesions, as illustrated in Figure 1.2. This recent discovery
suggests that the role of M2 macrophages fluctuates in oral cancers. A major stake is thus identifying
the factors that lead M2 macrophages to have a pro or anti-tumorigenic action.

Figure 1.2: Association of M2 macrophages gene expression signature with oral cancer-free survival

5



1.1.2 Clinical issues

The main risk factors of oral cavity cancers are tobacco and excessive alcohol use. The
combined use of tobacco and alcohol further increases the risk. Here the clinical concern we
will focus on is precancerous lesions. Around 20% of OSCC appear from precancerous lesions
[5]. Such precancerous lesions also called oral potentially malignant disorders are chronic
diseases of the oral mucosa characterized by a greater than normal risk of malignancy. These
lesions are visible to the naked eye and can appear as white (leukoplakia) or red (erythroplakia) patches.

OSCC carcinogenesis involves a multi-stage process associated to genetic and epigenetic changes
whereby the normal oral epithelium transforms into a malignant state. The different steps are review
in Figure 1.3.

Figure 1.3: Multi-step carcinogenesis model [6]

As not all lesions have the same risk of malignant transformation, one of the primary clinical
concerns is to develop strategies that can help determine the likelihood that a lesion will progress to a
cancerous stage as well as prevent a cancerous transformation of these lesions. A better targeting of
the patients could help reduce the costs raised by prevention therapies and prevent risk-free patients
from undergoing heavy treatments.

1.1.3 Immunotherapies

The most widely used treatment to cure cancer is chemotherapy, but it is becoming more and
more limited due to its side effects and to drug resistance. For this reason current oncology research
is shifting towards other therapeutic strategies such as immunotherapies.

A promising therapeutic research direction to prevent the development of cancerous tissues from
oral potentially malignant disorders in the oral cavity is the use of immune checkpoint inhibitors.
Checkpoints inhibitors are a normal component of the immune system that play a key role in
restraining the immune response from being too vigorous.
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Notably the PD-1/PD-L1 pathway holds promising applications for the treatment of oral cancers.
Programmed Cell Death Protein 1 (PD-1) is a protein found on the surface of T cells modulating their
activity. Programmed Cell Death Ligand 1 (PD-L1) is a protein that can be produced by tumors to
bind to PD-1, thereby preventing cancerous cells from being killed by the immune response. This
mechanism, known as cancer immune escape, is one of the hallmarks of cancer [7]. Anti-PD-1 or
anti-PD-L1 immunotherapy drugs act by blocking the pathway PD-1/PD-L1 allowing to remove the
inactivation of the immune system by cancerous cells.

However an approved approach to prevent the malignant transformation of precancerous lesions
have not been established so far [3] and immunotherapies are not yet in use to treat OSCC in France.
The use of mathematical modeling should provide a better understanding of the dynamics involved in
immunotherapies.

1.2 Mathematical modeling of cell populations dynamics in can-
cer

1.2.1 Outline

Understanding early cancer development as well as immune infiltration, in particular macrophages
infiltration in cancerous tissues is a very complex process. Mathematical modelling seems to be an
adapted and efficient tool that can help apprehend these complex biological mechanisms and has been
widely used in similar contexts, see [8], [9] and [10].

Mathematical modeling with partial differential equations (PDE) structured in continuous
phenotypes appears to be perfectly adapted for our study. As a matter of fact we will put our focus
on the cellular phenotypic changes that drives the carcinogenesis. The continuous property of
phenotypes seems to fit with the recent observations according to which the macrophage switch is
continuous and reversible.

In order to investigate the role of macrophagic infiltration in OSCC we will focus on modelling
the interactions between two cellular populations : one macrophagic population and one epithelial
population susceptible of having cancerous behavior. We will be interested by studying the co-
evolution of the two populations over time depending on the evolutions of their phenotypes. The
long term purpose is then to clarify the role of M1 and M2 macrophages during carcinogenesis by
understanding the dynamics observed through the biological data.

1.2.2 Biological data

In the long term, the objective is to refine the models developed in this report using biological data
derived from both murine and human studies conducted by Jean Phillipe Foy and his collaborators.
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The biological data and more broadly the bibliography on the subject is also necessary to settle valid
modeling hypotheses before going through the mathematical analysis of the models. It is not the
focus of this report, as we will primarily introduce generic models that will need further refinement
to align with biological reality.

The data already available notably used in [3] consists of few sets containing the RNA expression
of more than 20 000 genes during the different phases of murine carcinogenesis : normal stage,
hyperplasia, dysplasia, and malignity. From this raw data it is possible to extract enrichment scores
of biologic cellular pathways or cell population types, using previously established signatures. For
instance we can calculate the enrichment score of apoptosis to provide an accurate estimation of
the death terms involved in our equations displayed further on, or the enrichment score of M2
macrophages to compare with the models prediction and make adjustments.

This will enhance the accuracy and relevance of our mathematical models ensuring they are able
to answer the previously depicted challenges in OSCC research. By integrating detailed experimental
data we aim to achieve a deeper understanding of the biological processes at play, ultimately leading
to improved predictive capabilities and therapeutic strategies.
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Chapter 2

Mathematical and numerical modeling

2.1 Introduction to the model

We consider a system of two cellular populations interacting with each other : a macrophagic
population 𝑀 and an epithelial population 𝐸 . The typical equations used in similar contexts are
non-local integro-differential equations coming from adaptive dynamics.

We denote 𝑛𝑀 (𝑡, 𝑥) the density of the macrophage population of phenotype 𝑥 at time 𝑡 and 𝑛𝐸 (𝑡, 𝑦)
the density of the epithelial population 𝐸 of phenotype 𝑦 at time 𝑡.

To keep things simple the phenotypes 𝑥 and 𝑦 will be in this section uni-dimensional, taking values
in [0, 1].

◦ For macrophage cells, 𝑥 ranges from 0 for an M1 phenotype to 1 for a M2 phenotype.

◦ For epithelial cells, 𝑦 ranges from 0 for a weak differentiation potential (very specialized cell)
to 1 for a strong differentiation potential (close to stem cell properties).

We consider the following two-dimensional system of partial differential equations:


𝜕𝑡𝑛𝑀 (𝑡, 𝑥) = 𝑛𝑀 (𝑡, 𝑥) [𝑟𝑀 (𝑥) − 𝑑𝑀 (𝑥)𝜌𝑀 (𝑡) + 𝜌𝐸 (𝑡)𝜙𝑀 (𝑡)] (𝑡, 𝑥) ∈ [0,∞) × [0, 1]

𝜕𝑡𝑛𝐸 (𝑡, 𝑦) = 𝑛𝐸 (𝑡, 𝑦) [𝑟𝐸 (𝑦) − 𝑑𝐸 (𝑦)𝜌𝐸 (𝑡) + 𝜌𝑀 (𝑡)𝜙𝐸 (𝑡)] (𝑡, 𝑦) ∈ [0,∞) × [0, 1]
(2.1)

Each term describes a separate phenomenon, for 𝐶 ∈ {𝑀, 𝐸} and 𝑧 ∈ {𝑥, 𝑦} we have:

• The birth rate of population 𝐶: 𝑟𝐶 (𝑧) as a function of the phenotype 𝑧.

• The death term of population 𝐶: 𝑑𝐶 (𝑧)𝜌𝐶 (𝑡) where the death rate is 𝑑𝐶 (𝑧) and the total mass is
denoted :

𝜌𝐶 (𝑡) :=
∫
[0,1]

𝑛𝐶 (𝑡, 𝑤)𝑑𝑤.
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• For 𝐷 ∈ {𝑀, 𝐸}, 𝐷 ≠ 𝐶, the action of population 𝐷 on population 𝐶 is represented by the term
𝜌𝐷 (𝑡)𝜙𝐶 (𝑡). The underlying assumption is that this action is proportional to the total mass of
population 𝐷 and depends more specifically on the population 𝐶 through the function 𝜙𝐶 . This
notation must be used with caution: 𝜙𝐶 can and will explicitly depend on 𝑛𝐶 .

One typical way of choosing 𝜙𝐶 is to define:

𝜙𝐶 (𝑡) =
∫
[0,1]

𝜓𝐶 (𝑧)𝑛𝐶 (𝑡, 𝑧)𝑑𝑧 ∀𝑡 ∈ [0,∞).

𝜓𝐶 (𝑧) is here a weight function quantifying the effectiveness of the interaction as a function
of the phenotype. Its sign gives precious knowledge about the nature of interactions between
the two populations : mutualistic (if positive) or competitive (if negative). Along this report
we will mainly focus on mutualistic interactions but a long term objective is to apprehend the
case when the sign of 𝜓𝐶 is fluctuating, which appears to be closer the the biological reality as
explained in section 1.1.1.

In order to delve deeper into the subject we expect in the long term more accurate information
on the dependency of 𝑟 and 𝜙 on the phenotypes from our medical collaborator Jean-Phillipe Foy.
While waiting for such material we shall here explore the possible representations of these interactions
through trial and error.

2.2 Mathematical analysis

2.2.1 One population

For a better understanding of the system, let us first focus on the single population case. We
consider one partial differential equation describing the temporal evolution of one cell population.

Our modeling assumption is that the birth and death rate are positive constants respectively equal
to 𝑟 and 𝑑. The non local integro-differential equation characterizing the evolution of the density is
then: 

𝜕𝑡𝑛(𝑡, 𝑥) = 𝑛(𝑡, 𝑥) (𝑟 − 𝑑𝜌(𝑡)), (𝑡, 𝑥) ∈ [0,∞) × [0, 1]

𝑛(0, 𝑥) = 𝑛0(𝑥), 𝑥 ∈ [0, 1]
(2.2)

where 𝜌(𝑡) :=
∫
[0,1] 𝑛(𝑡, 𝑧)𝑑𝑧 and 𝑛0 ∈ C([0, 1]).

Integrating (2.2) over [0, 1], one gets:
𝜌′(𝑡) = 𝜌(𝑡) (𝑟 − 𝑑𝜌(𝑡)) 𝑡 ∈ [0,∞)

𝜌(0) =
∫
[0,1] 𝑛

0(𝑧)𝑑𝑧 := 𝜌0
(2.3)
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Lemma 1. The unique solution of (2.3) on [0,∞) is:

𝜌̄(𝑡) = 𝑟𝜌0𝑒
𝑟𝑡

𝑟 − 𝑑𝜌0 + 𝑑𝜌0𝑒𝑟𝑡

Proof. Direct calculations show that 𝜌̄ is a solution of (2.3). The uniqueness comes from the Cauchy
Lipschitz theorem. □

Proposition 1. There exists a unique solution to (2.2) on [0,∞) × [0, 1] for which we have the explicit
formula:

𝑛̄(𝑡, 𝑥) = 𝑟𝑒𝑟𝑡

𝑟 − 𝑑𝜌0 + 𝑑𝜌0𝑒𝑟𝑡
𝑛0(𝑥)

Proof. As 𝑛̄(𝑡, 𝑥) = 𝜌̄(𝑡)
𝜌0

𝑛0(𝑥), we have 𝜕𝑡 𝑛̄(𝑡, 𝑥) = 𝜌′ (𝑡)
𝜌0

𝑛0(𝑥) so from Lemma 1 we have that 𝑛̄(𝑡, 𝑥)
is a solution of (2.2).

For the uniqueness, we rewrite (2.2) as a local system:

𝑑

𝑑𝑡

(
𝑛(𝑡, 𝑥)
𝜌(𝑡)

)
=

(
𝑟𝑛(𝑡, 𝑥) − 𝑑𝜌(𝑡)𝑛(𝑡, 𝑥)

𝑟𝜌(𝑡) − 𝑑𝜌(𝑡)2

)
(2.4)

The function 𝐹 defined by :

𝐹

(
𝑛

𝜌

)
:=

(
𝑟𝑛 − 𝑑𝜌𝑛

𝑟𝜌 − 𝑑𝜌2

)
is C1(R2), so (2.4) has a unique maximal solution on [0,∞) × [0, 1] that is thus (𝑛̄, 𝜌̄).

As for any 𝑛 ∈ C1( [0,∞) × [0, 1]) solution of (2.2) , we have that (𝑛, 𝑡 −→
∫
[0,1] 𝑛(𝑡, 𝑥)𝑑𝑥) is a

solution of (2.4), then we know that there is a unique solution to (2.2) on [0,∞) × [0, 1]. □

2.2.2 Mutualistic interactions between two populations

We will now focus on the situation with two cell populations interacting with each other. We recall
the system previously defined:


𝜕𝑡𝑛𝑀 (𝑡, 𝑥) = 𝑛𝑀 (𝑡, 𝑥) [𝑟𝑀 (𝑥) − 𝑑𝑀 (𝑥)𝜌𝑀 (𝑡) + 𝜌𝐸 (𝑡)𝜙𝑀 (𝑡)] (𝑡, 𝑥) ∈ [0,∞) × [0, 1]

𝜕𝑡𝑛𝐸 (𝑡, 𝑦) = 𝑛𝐸 (𝑡, 𝑦) [𝑟𝐸 (𝑦) − 𝑑𝐸 (𝑦)𝜌𝐸 (𝑡) + 𝜌𝑀 (𝑡)𝜙𝐸 (𝑡)] (𝑡, 𝑦) ∈ [0,∞) × [0, 1]
(2.1)

where for 𝐶, 𝐷 ∈ {𝑀, 𝐸}:

• The effect of population 𝐷 on population 𝐶 at time 𝑡 is quantified by 𝜌𝐷 (𝑡)𝜙𝐶 (𝑡).
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• The total mass of population 𝐶 at time 𝑡 is:

𝜌𝐶 (𝑡) =
∫
[0,1]

𝑛𝐶 (𝑡, 𝑧)𝑑𝑧.

Our analysis will mainly focus on the ODE version of system (2.1), obtained with the integration
of (2.1) over [0, 1] and assuming constant birth and death rates:

𝜌′
𝑀
(𝑡) = 𝜌𝑀 (𝑡) [𝑟𝑀 − 𝑑𝑀𝜌𝑀 (𝑡) + 𝜌𝐸 (𝑡)𝜙𝑀 (𝑡)] (𝑡) ∈ [0,∞)

𝜌′
𝐸
(𝑡) = 𝜌𝐸 (𝑡) [𝑟𝐸 − 𝑑𝐸 𝜌𝐸 (𝑡) + 𝜌𝑀 (𝑡)𝜙𝐸 (𝑡)] (𝑡) ∈ [0,∞)

(2.3)

The two different nature of interactions we will consider are, for 𝐶 ∈ {𝑀, 𝐸}:

• 𝜙𝐶 (𝑡) =
∫
[0,1] 𝜓𝐶 (𝑧)𝑛𝐶 (𝑡, 𝑧)𝑑𝑧 ∀𝑡 ≥ 0

• 𝜙𝐶 (𝑡) =
∫
[0,1] 𝜓𝐶 (𝑧)𝑛𝐶 (𝑡,𝑧)𝑑𝑧

1+𝜌𝐶 (𝑡) ∀𝑡 ≥ 0

Constant mutualistic interactions .

In this part we will choose the interaction functions as suggested before, that is for 𝐶 ∈ {𝑀, 𝐸}:

𝜙𝐶 (𝑡) =
∫
[0,1]

𝜓𝐶 (𝑧)𝑛𝐶 (𝑡, 𝑧)𝑑𝑧.

For the sake of simplicity, the parameters 𝑟𝑀 , 𝑟𝐸 , 𝑑𝑀 , 𝑑𝐸 , 𝜓𝑀 , 𝜓𝐸 will be positive constants.
Then system (2.1) rewrites itself:


𝜕𝑡𝑛𝑀 (𝑡, 𝑥) = 𝑛𝑀 (𝑡, 𝑥) [𝑟𝑀 − 𝑑𝑀𝜌𝑀 (𝑡) + 𝜓𝑀𝜌𝑀 (𝑡)𝜌𝐸 (𝑡)] (𝑡, 𝑥) ∈ [0,∞) × [0, 1]

𝜕𝑡𝑛𝐸 (𝑡, 𝑦) = 𝑛𝐸 (𝑡, 𝑦) [𝑟𝐸 − 𝑑𝐸 𝜌𝐸 (𝑡) + 𝜓𝐸 𝜌𝐸 (𝑡)𝜌𝑀 (𝑡)] (𝑡, 𝑦) ∈ [0,∞) × [0, 1]
(2.5)

By integrating (2.5) over [0, 1], one gets the ODE version of the system :
𝜌′
𝑀
(𝑡) = 𝜌𝑀 (𝑡) [𝑟𝑀 − 𝑑𝑀𝜌𝑀 (𝑡) + 𝜓𝑀𝜌𝑀 (𝑡)𝜌𝐸 (𝑡)] 𝑡 ∈ [0,∞)

𝜌′
𝐸
(𝑡) = 𝜌𝐸 (𝑡) [𝑟𝐸 − 𝑑𝐸 𝜌𝐸 (𝑡) + 𝜓𝐸 𝜌𝐸 (𝑡)𝜌𝑀 (𝑡)] 𝑡 ∈ [0,∞)

(2.6)

The objective here is, after proving the existence of a unique maximal solution of (2.6), to figure
out the how it shapes up asymptotically. This will give us an idea of the total masses behavior across
time, but to complete the study it would be important to work on the partial differential system (2.5).

Let us first show the existence and uniqueness of the solution of (2.6) along with the positivity
property of the system.
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Proposition 2. For any (𝜌0
𝑀
, 𝜌0

𝐸
) ∈ [0,∞)2, (2.6) has a unique maximal solution (𝜌𝑀 , 𝜌𝐸 ) that satisfies

(𝜌𝑀 (0), 𝜌𝐸 (0)) = (𝜌0
𝑀
, 𝜌0

𝐸
) and that is positive.

Proof. 1. Existence and uniqueness.

By Cauchy Lipschitz theorem, existence and uniqueness of a maximal solution comes from
𝑓 ∈ 𝐶1(R2) where 𝑓 is defined as:

𝑓 (𝜌𝑀 , 𝜌𝐸 ) =
(
𝜌𝑀 [𝑟𝑀 − 𝑑𝑀𝜌𝑀 + 𝜓𝑀𝜌𝑀𝜌𝐸 ]
𝜌𝐸 [𝑟𝐸 − 𝑑𝐸 𝜌𝐸 + 𝜓𝐸 𝜌𝐸 𝜌𝑀]

)
2. Positivity. If 𝜌0

𝑀
> 0, 𝜌0

𝐸
> 0.

By contradiction, let 𝑇 be the minimal time at which 𝜌𝑀 (𝑇) = 0 and 𝜌𝑅 (𝑇) > 0. Then :


𝜌′
𝑀
(𝑇) = 0

𝜌′
𝐸
(𝑇) = 𝜌𝐸 (𝑇) [𝑟𝐸 − 𝑑𝐸 𝜌𝐸 (𝑇)]

Then eventually (𝜌𝑀 , 𝜌𝐸 ) will reach the steady state (0, 𝑟𝐸
𝑑𝐸
). By uniqueness, as the only initial

conditions for which this steady state is stable are on the y-axis, we get (𝜌𝑀 (0), 𝜌𝐸 (0)) = (0, 𝑟𝐸
𝑑𝐸
)

which gives the contradiction.
□

Now we aim to analyse the asymptotic behavior of the solution of system (2.6). We first state the
following proposition.

Proposition 3. We denote (𝜌𝑀 , 𝜌𝐸 ) a solution of (2.6) and 𝐼 its maximal interval of existence. Either
| (𝜌𝑀 (𝑡), 𝜌𝐸 (𝑡)) | → ∞ as 𝑡 → 𝜕𝐼+, or else (𝜌𝑀 (𝑡), 𝜌𝐸 (𝑡)) converges to a stable steady point as
𝑡 → 𝜕𝐼+.

Proof. As (2.6) is a two dimensional cooperative 2 by 2 system, according to an application of
Poincarré-Bendixon theorem given in [11], the result is true. □

We must perform a stability analysis of the steady states of (2.6). Our objective is to get a general
idea of the asymptotics and some computations are complicated so we will for clarity sketch the
different phase portraits for various cases based on the values of the parameters, made with Maple.
The colored curves represent random trajectories and the green and red dots are the equilibria.
Afterwards we will investigate the nature of the maximal interval of existence.

The steady points of this ODE system are:

(0, 0), (0, 𝑟𝐸
𝑑𝐸

), ( 𝑟𝑀
𝑑𝑀

, 0)

and other possible ones given by ( ¯𝜌𝑀 , 𝜌𝐸 ) the solutions of:

13




− ¯𝜌𝑀2𝜓𝑀𝑑𝑀 + ¯𝜌𝑀 (𝑑𝑀𝑑𝐸 − 𝜓𝐸𝑟𝐸 + 𝑟𝑀𝜓𝑀) − 𝑟𝑀𝑑𝐸 = 0

𝜌𝐸 (𝑑𝐸 − 𝜓𝑀 ¯𝜌𝑀) = 𝑟𝐸

(2.7)

The Jacobian matrix of the system (2.6) is given by:

𝐽 (𝜌𝑀 , 𝜌𝐸 ) =
(
𝑟𝑀 − 2𝑑𝑀𝜌𝑀 + 2𝜓𝐸 𝜌𝑀𝜌𝐸 𝜌2

𝑀
𝜓𝐸

𝜌2
𝐸
𝜓𝑀 𝑟𝐸 − 2𝑑𝐸 𝜌𝐸 + 2𝜓𝑀𝜌𝐸 𝜌𝑀

)

By evaluating the Jacobian matrix at the equilibria (0, 0), (0, 𝑟𝐸
𝑑𝐸
) and ( 𝑟𝑀

𝑑𝑀
, 0), we get that (0, 0)

is an unstable repelling node and both (0, 𝑟𝐸
𝑑𝐸
) and ( 𝑟𝑀

𝑑𝑀
, 0) are unstable saddle points.

We wish to examine whether there are other steady points and if they are stable or not. The
existence of solutions for system (2.7) is given by the sign of:

Δ = (𝑑𝑀𝑑𝐸 − 𝜓𝐸𝑟𝐸 + 𝑟𝑀𝜓𝑀)2 − 4𝑟𝑀𝑑𝐸𝜓𝑀𝑑𝑀 .

We study the three possible cases:

• Δ < 0.

Figure 2.1: Phase portrait for Δ < 0
𝑟𝑀 = 3; 𝑟𝐸 = 1; 𝑑𝑀 = 1; 𝑑𝐸 = 2; 𝜓𝑀 = 0.5; 𝜓𝐸 = 1

Then there is no other steady point and none of the steady points are stable neither asymptotically
stable. So according to Proposition 3 | (𝜌𝑀 (𝑡), 𝜌𝐸 (𝑡)) | → ∞ as 𝑡 → 𝜕𝐼+ ; the solution explodes.

Example 1. We will here focus on the simple case where:

14





𝑟 := 𝑟𝑀 = 𝑟𝐸

𝑑 := 𝑑𝑀 = 𝑑𝐸

𝜓 := 𝜓𝑀 = 𝜓𝐸

𝜌0 := 𝜌𝑀 (0) = 𝜌𝐸 (0)

Proposition 4. In this particular case, 𝜌𝑀 (𝑡) = 𝜌𝐸 (𝑡) for all 𝑡 ∈ [0,∞] .

Proof. The system writes:
𝜌′
𝑀
(𝑡) = 𝜌𝑀 (𝑡) [𝑟 − 𝑑𝜌𝑀 (𝑡) + 𝜓𝜌𝑀 (𝑡)𝜌𝐸 (𝑡)] 𝑡 ∈ [0,∞)

𝜌′
𝐸
(𝑡) = 𝜌𝐸 (𝑡) [𝑟 − 𝑑𝜌𝐸 (𝑡) + 𝜓𝜌𝐸 (𝑡)𝜌𝑀 (𝑡)] 𝑡 ∈ [0,∞)

𝜌𝑀 (0) = 𝜌𝐸 (0)

(2.8)

The result is straightforward from Proposition 2 as (𝜌, 𝜌) is a solution of (2.8) where 𝜌 satisfies:


𝜌′(𝑡) = 𝜌(𝑡) [𝑟 − 𝑑𝜌(𝑡) + 𝜓𝜌(𝑡)2], for 𝑡 ∈ [0,∞)

𝜌(0) = 𝜌0
(2.9)

□

We have thus reduced to system (2.9). We assume moreover that 𝑑2 < 4.𝑟 .𝜓 in order to ensure
Δ < 0.

We notice:

1
(𝑟 − 𝑑𝜌 + 𝜓𝜌2)𝜌

=
2𝑑 − 2𝜓𝜌

2𝑟 (𝑟 − 𝑑𝜌 + 𝜓𝜌2)
+ 1
𝑟𝜌

=
𝑑 − 2𝜓𝜌

2𝑟 (𝑟 − 𝑑𝜌 + 𝜓𝜌2)
+ 𝑑

2𝑟𝜓
1

(𝜌 − 𝑑
2𝜓 )2 + 4𝑟𝜓−𝑑2

4𝜓2

+ 1
𝑟𝜌

Integrating yields:

𝐶 + 𝜏 = − 1
2𝑟

ln |𝑟 − 𝑑𝜌 + 𝜓𝜌2 | + 2𝑑𝜓
𝑟 (4𝑟𝜓 − 𝑑2)

arctan( 2𝜓𝜌 − 𝑑√︁
4𝑟𝜓 − 𝑑2

) + 1
𝑟

ln |𝜌 |

where 𝜌 = 𝜌(𝜏) and 𝐶 = 1
𝑟

ln |𝜌0 |√︃
𝑟−𝑑𝜌0+𝜓𝜌2

0

+ 2𝑑𝜓
𝑟 (4𝑟𝜓−𝑑2) arctan( 2𝜓𝜌0−𝑑√

4𝑟𝜓−𝑑2
) is the integration constant.

Equivalently:

𝐶 + 𝜏 = −1
𝑟

ln
|𝜌 |√︁

𝑟 − 𝑑𝜌 + 𝜓𝜌2
+ 2𝑑𝜓
𝑟 (4𝑟𝜓 − 𝑑2)

arctan( 2𝜓𝜌 − 𝑑√︁
4𝑟𝜓 − 𝑑2

).

Under the hypothesis that 𝜌 explodes, one gets:

𝜏∗ + 𝐶 = −1
𝑟

ln
1
√
𝜓
+ 2𝑑𝜓
𝑟 (4𝑟𝜓 − 𝑑2)

.
𝜋

2
.
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Consequently in this particular setting, the blow up happens in finite time 𝜏∗ computed above.

Back into the more general case, a similar argumentation provides a lower bound for the time
of explosion, as done below.

Let 𝑢 =
√
𝜌𝑀𝜌𝐸 . Then :

𝑢′(𝑡) =
𝜌′
𝑀
(𝑡)𝜌𝐸 (𝑡) + 𝜌𝑀 (𝑡)𝜌′

𝐸
(𝑡)

2
√︁
𝜌𝑀 (𝑡)𝜌𝐸 (𝑡)

=
𝑢(𝑡)

2
[𝑟𝑀+𝑟𝐸−𝑑𝑀𝜌𝑀 (𝑡)−𝑑𝐸 𝜌𝐸 (𝑡)+(𝜓𝑀+𝜓𝐸 )𝑢(𝑡)2] ≤ 𝑢(𝑡)

2
[𝑟𝑀+𝑟𝐸−2𝑢(𝑡)

√︁
𝑑𝑀𝑑𝐸+(𝜓𝑀+𝜓𝐸 )𝑢(𝑡)2]

Let us have a look at the polynomial: P(𝑢) = 𝑟𝑀 + 𝑟𝐸 − 2𝑢
√
𝑑𝑀𝑑𝐸 + (𝜓𝑀 + 𝜓𝐸 )𝑢2.

Δ𝑢 = 4𝑑𝑀𝑑𝐸 − 4(𝜓𝑀 + 𝜓𝐸 ) (𝑟𝑀 + 𝑟𝐸 )

= 4(𝑑𝑀𝑑𝐸 − 𝜓𝑀𝑟𝑀 − 𝜓𝑀𝑟𝐸 − 𝜓𝐸𝑟𝑀 − 𝜓𝐸𝑟𝐸 )

= 4(𝑑𝑀𝑑𝐸 − (
√︁
𝑟𝑀𝜓𝐸 +

√︁
𝑟𝐸𝜓𝑀)2 − (

√︁
𝑟𝑀𝜓𝑀 −

√︁
𝑟𝐸𝜓𝐸 )2)

≤ 4(𝑑𝑀𝑑𝐸 − (
√︁
𝑟𝑀𝜓𝐸 +

√︁
𝑟𝐸𝜓𝑀)2 < 0

Because Δ < 0.

The computations done in Example 1 give in this more general setting that the time of blow up
𝜏∗ satisfies :

Ψ𝐷𝜋

𝑅(4Ψ𝑅 − 𝐷2)
≤ 𝜏∗ + 𝐶

where: 𝐶 = 1
𝑅

ln 𝑢2
0

𝑅−𝐷𝑢0+Ψ𝑢2
0
+ 4𝐷Ψ

𝑅(4𝑅Ψ−𝐷2) arctan( 2Ψ𝑢0−𝐷√
4𝑅Ψ−𝐷2 ) is the integration constant and:


𝑅 := 𝑟𝑀 + 𝑟𝐸

𝐷 := 2
√
𝑑𝑀𝑑𝐸

Ψ := 𝜓𝑀 + 𝜓𝐸

• Δ = 0.

In that case, there is a forth steady point :

( ¯𝜌𝑀 , 𝜌𝐸 ) = (

√︄
𝑟𝑀𝑑𝐸

𝜓𝑀𝑑𝑀
,

√︄
𝑟𝐸𝑑𝑀

𝜓𝐸𝑑𝐸
).

Then :

|𝐽 ( ¯𝜌𝑀 , 𝜌𝐸 ) − 𝜆 | =
[
−𝑟𝑀 − 𝜆

𝜓𝐸𝑟𝑀𝑑𝐸
𝜓𝑀𝑑𝑀

𝜓𝑀𝑟𝐸𝑑𝑀
𝜓𝐸𝑑𝐸

−𝑟𝐸 − 𝜆

]
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= (𝑟𝑀 + 𝜆) (𝑟𝐸 + 𝜆) − 𝑟𝑀𝑟𝐸 = 𝜆(𝜆 + 𝑟𝑀 + 𝑟𝐸 ).

As the two eigenvalues 0 and −(𝑟𝑀 +𝑟𝐸 ) are non positive and not both negative, it would require
further theoretical investigation to determinate if this equilibrium ( ¯𝜌𝑀 , 𝜌𝐸 ) is asymptotically
stable, which will not be done here.

Figure 2.2: Phase portrait for Δ = 0
𝑟𝑀 = 4; 𝑟𝐸 = 2; 𝑑𝑀 = 4; 𝑑𝐸 = 1; 𝜓𝑀 = 1; 𝜓𝐸 = 8

However we can conjecture from the phase portrait in Figure 2.2 that some initial conditions
lead to explosion to +∞.

• Δ > 0. In that case, there exists two more steady points than in the case Δ < 0, given by:

( ¯𝜌𝑀,1 =
𝑑𝑀𝑑𝐸 − 𝜓𝐸𝑟𝐸 + 𝑟𝑀𝜓𝑀 +

√
Δ

2𝜓𝑀𝑑𝑀
, ¯𝜌𝐸,1 =

2𝑟𝐸𝑑𝑀
𝑑𝑀𝑑𝐸 + 𝜓𝐸𝑟𝐸 − 𝑟𝑀𝜓𝑀 −

√
Δ
)

( ¯𝜌𝑀,2 =
𝑑𝑀𝑑𝐸 − 𝜓𝐸𝑟𝐸 + 𝑟𝑀𝜓𝑀 −

√
Δ

2𝜓𝑀𝑑𝑀
, ¯𝜌𝐸,2 =

2𝑟𝐸𝑑𝑀
𝑑𝑀𝑑𝐸 + 𝜓𝐸𝑟𝐸 − 𝑟𝑀𝜓𝑀 +

√
Δ
)

The stability analysis computations are here complicated so we will focus on a particular
example and with the help of the phase portrait in Figure 2.3 we will get a good understanding
of the dynamics.
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Figure 2.3: Phase portrait for Δ > 0
𝑟𝑀 = 0.6; 𝑟𝐸 = 2; 𝑑𝑀 = 1; 𝑑𝐸 = 3; 𝜓𝑀 = 1; 𝜓𝐸 = 0.1

Example 2. We look at the simple case where:



𝑟 := 𝑟𝑀 = 𝑟𝐸

𝑑 := 𝑑𝑀 = 𝑑𝐸

𝜓 := 𝜓𝑀 = 𝜓𝐸

𝜌0 := 𝜌𝑀 (0) = 𝜌𝐸 (0)

But this time we assume that 𝑑2 > 4.𝑟 .𝜓 in order to ensure Δ > 0. System (2.7) boils down to :


− ¯𝜌𝑀2𝜓 + ¯𝜌𝑀𝑑 − 𝑟 = 0

𝜌̄ := 𝜌𝐸 = ¯𝜌𝑀

Then the Jacobian writes:

|𝐽 ( 𝜌̄) − 𝜆 | =
[
−𝑟 − 𝜆 𝜌̄2𝜓

𝜌̄2𝜓 −𝑟 − 𝜆

]
= 𝜆2 + 2𝜆𝑟 + 𝑟2 − 𝜓2 𝜌̄4

The solutions are given by: 𝜆± = −𝑟 ± 𝜓𝜌̄2.

So we already know that 𝜆− < 0 for both equilibria ( ¯𝜌𝑀,1, ¯𝜌𝐸,1) and ( ¯𝜌𝑀,2, ¯𝜌𝐸,2).
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Concerning 𝜆+, the two possible solutions 𝜌1, 𝜌2 are given by:

¯𝜌1,2 =
𝑑 ±

√︁
𝑑2 − 4𝑟𝜓
2𝜓

≥ 0

So: 
𝜆+,1 = −𝑟 + 𝜓𝜌1

2 = −2𝑟 + 𝑑𝜌1 = −2𝑟 + 𝑑
2𝜓 (𝑑 −

√︁
𝑑2 − 4𝑟𝜓)

𝜆+,2 = −𝑟 + 𝜓𝜌2
2 = −2𝑟 + 𝑑𝜌2 = −2𝑟 + 𝑑

2𝜓 (𝑑 +
√︁
𝑑2 − 4𝑟𝜓)

Quick calculations give 𝜆+,2 > 0 and 𝜆+,1 < 0 thanks to the hypothesis 𝑑2 > 4𝑟𝜓.

Gathering up : ( ¯𝜌𝑀,2, ¯𝜌𝐸,2) is an unstable saddle point and ( ¯𝜌𝑀,1, ¯𝜌𝐸,1) (in red on Figure 2.3)
is locally asymptotically stable.

For any value of Δ ∈ R , it is clear from the phase portraits that some initial conditions lead to the
explosion to +∞ of the solutions. Next we aim to investigate whether this blow up occurs in finite or
infinite time.

Proposition 5. For system (2.6), the solution (𝜌𝑀 , 𝜌𝐸 ) explodes to +∞ in finite time if and only if
both 𝜌𝑀 and 𝜌𝐸 explode.

Proof. Assume lim𝑡 𝜌𝑀 (𝑡) = +∞. Then we distinguish the different cases:

• If lim𝑡 𝜌𝐸 (𝑡) = +∞. Then asymptotically, from (2.6) we get :
𝜌′
𝑀
(𝑡) ≈ 𝜓𝑀𝜌𝑀 (𝑡)2𝜌𝐸 (𝑡)

𝜌′
𝐸
(𝑡) ≈ 𝜓𝐸 𝜌𝐸 (𝑡)2𝜌𝑀 (𝑡)

So asymptotically:
𝜕𝜌𝑀

𝜕𝜌𝐸
(𝜌𝐸 ) =

𝜕𝜌𝑀
𝜕𝑡

𝜕𝜌𝐸
𝜕𝑡

≈ 𝜓𝑀𝜌𝑀 (𝜌𝐸 )
𝜓𝐸 𝜌𝐸

.

Implying that asymptotically :

𝜌𝑀 (𝜌𝐸 ) ≈ 𝜌

𝜓𝑀
𝜓𝐸

𝐸
.

Then asymptotically:
𝜌′𝐸 (𝑡) ≈ 𝜓𝐸 𝜌𝐸 (𝑡)𝛼

where 𝛼 = 2 + 𝜓𝑀

𝜓𝐸
< 1.

The solution of this ODE satisfies:

𝜌𝐸 (𝑡)1−𝛼 = (1 − 𝛼)𝑡 + 𝜌𝐸 (0)1−𝛼

which explodes in finite time. This concludes one implication. For the other one:
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• If lim𝑡 𝜌𝐸 (𝑡) = 0 (up to a sub-sequence). Then asymptotically, from (2.6) we get :
𝜌′
𝑀
(𝑡) ≈ 𝜌𝑀 (𝑡) (𝑟𝑀 − 𝑑𝑀𝜌𝑀 (𝑡))

𝜌′
𝐸
(𝑡) ≈ 𝜌𝐸 (𝑡) (𝑟𝐸 + 𝜓𝐸 𝜌𝑀 (𝑡)𝜌𝐸 (𝑡))

So 𝜌𝑀 does not explode in finite time, see section 2.2.1.

• If lim𝑡 𝜌𝐸 (𝑡) = 𝐶 ≠ 0 (up to a sub-sequence). Then (𝜌𝑀 , 𝜌𝐸 ) must converge to an equilibrium,
which contradicts our hypothesis : lim𝑡 𝜌𝑀 (𝑡) = +∞.

□

This proposition allows us to conclude that for any parameter configuration, there exists initial
conditions for which the solution of the system (2.6) blows up in finite time. In suffices to choose 𝜌0

𝑀

and 𝜌0
𝐸

big enough so that near 0: 
𝜌′
𝑀
(𝑡) ≈ 𝜓𝑀𝜌𝑀 (𝑡)2𝜌𝐸 (𝑡)

𝜌′
𝐸
(𝑡) ≈ 𝜓𝐸 𝜌𝐸 (𝑡)2𝜌𝑀 (𝑡)

However this is not a biological observable reality so our model needs to be refine. To prevent
finite time blow-up and thereby enhance the model’s ability to replicate biological observations, we
will modify the interaction dynamics described by the functions 𝜙𝐶 .

Saturated mutualistic interactions .

In this section we suggest saturated interactions, that is we take functions 𝜙𝐶 , for 𝐶 = 𝑀, 𝐸 of the
form :

𝜙𝐶 (𝑡) =
𝜓𝐶𝜌𝐶 (𝑡)
1 + 𝜌𝐶 (𝑡)

with 𝜓𝐶 > 0.

Then for any 𝑡 > 0, 𝜙𝐶 (𝑡) ≤ 𝜓𝐶 ensuring an upper bound for the interactions.
System (2.1) becomes in this case:
𝜕𝑡𝑛𝑀 (𝑡, 𝑥) = 𝑛𝑀 (𝑡, 𝑥) [𝑟𝑀 (𝑥) − 𝑑𝑀 (𝑥)𝜌𝑀 (𝑡) + 𝜌𝐸 (𝑡)𝜓𝑀

𝜌𝑀 (𝑡)
1+𝜌𝑀 (𝑡) ] (𝑡, 𝑥) ∈ [0,∞) × [0, 1]

𝜕𝑡𝑛𝐸 (𝑡, 𝑦) = 𝑛𝐸 (𝑡, 𝑦) [𝑟𝐸 (𝑦) − 𝑑𝐸 (𝑦)𝜌𝐸 (𝑡) + 𝜌𝑀 (𝑡)𝜓𝐸
𝜌𝐸 (𝑡)

1+𝜌𝐸 (𝑡) ] (𝑡, 𝑦) ∈ [0,∞) × [0, 1]
(2.10)

And its ODE version when taking constant coefficients 𝑟𝑀 , 𝑟𝐸 , 𝑑𝑀 , 𝑑𝐸 :
𝜌′
𝑀
(𝑡) = 𝜌𝑀 (𝑡) [𝑟𝑀 − 𝑑𝑀𝜌𝑀 (𝑡) + 𝜌𝐸 (𝑡)𝜓𝑀

𝜌𝑀 (𝑡)
1+𝜌𝑀 (𝑡) ] 𝑡 ∈ [0,∞)

𝜌′
𝐸
(𝑡) = 𝜌𝐸 (𝑡) [𝑟𝐸 − 𝑑𝐸 𝜌𝐸 (𝑡) + 𝜌𝑀 (𝑡)𝜓𝐸

𝜌𝐸 (𝑡)
1+𝜌𝐸 (𝑡) ] 𝑡 ∈ [0,∞)

(2.11)
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The modeling hypothesis here is that the message going from population 𝑀 (resp. 𝐸) to population
𝐸 (resp. 𝑀) becomes saturated when the density of population 𝐸 (resp. 𝑀) grows excessively.

The steady states of this ODE system are:

(0, 0), (0, 𝑟𝐸
𝑑𝐸

), ( 𝑟𝑀
𝑑𝑀

, 0)

and other possible ones given by ( ¯𝜌𝑀 , 𝜌𝐸 ) the solutions of:
¯𝜌𝑀2𝑑𝑀 + ¯𝜌𝑀 (𝑑𝑀 − 𝑟𝑀 − 𝜓𝑀𝜌𝐸 ) + 𝑟𝑀 = 0

𝜌𝐸
2𝑑𝐸 + 𝜌𝐸 (𝑑𝐸 − 𝑟𝐸 − 𝜓𝐸 ¯𝜌𝑀) + 𝑟𝐸 = 0.

(2.12)

A complete stability analysis should be done in this case but in this report we will restrict ourselves
to the numerical analysis of the model with saturated interactions.

2.3 Numerical analysis

In this section we will detail the numerical method used to resolve the system and then display
the numerical results obtained with Python. While waiting for biological clarifications we computed
codes that could easily be reused for similar PDE models. The last subsection is dedicated to a small
introduction to numerical optimal control.

2.3.1 Introduction to the numerical model

For this numerical analysis, under Franck Alvarez’s guidance, we considered two-dimensional
phenotypes : 𝑥 := (𝑥1, 𝑥2) for macrophages and 𝑦 := (𝑦1, 𝑦2) for epithelial cells, enabling the model to
gain in complexity in the case where the biological concerns require to add another phenotypic variable.

Let 𝑇 𝑓 be the final finite time of the simulations. The general model is then :


𝜕𝑡𝑛𝑀 (𝑡, 𝑥1, 𝑥2) = 𝑛𝑀 (𝑡, 𝑥1, 𝑥2) [𝑟𝑀 (𝑥1, 𝑥2) − 𝑑𝑀 (𝑥1, 𝑥2)𝜌𝑀 (𝑡) + 𝜌𝐸 (𝑡)𝜙𝑀 (𝑡)] (𝑡, 𝑥1, 𝑥2) ∈ [0, 𝑇 𝑓 ] × [0, 1]2

𝜕𝑡𝑛𝐸 (𝑡, 𝑦1, 𝑦2) = 𝑛𝐸 (𝑡, 𝑦1, 𝑦2) [𝑟𝐸 (𝑦1, 𝑦2) − 𝑑𝐸 (𝑦1, 𝑦2)𝜌𝐸 (𝑡) + 𝜌𝑀 (𝑡)𝜙𝐸 (𝑡)] (𝑡, 𝑦1, 𝑦2) ∈ [0, 𝑇 𝑓 ] × [0, 1]2

(2.13)
To discretize (2.13) one typical way of proceeding (as in [9]) is to use the finite volume method:

Let 𝑁 ∈ N be the number of nodes in each space of phenotypes [0, 1]. We define the following
control volumes:

𝐶𝑖 𝑗 = [ 𝑖
𝑁
,
𝑖 + 1
𝑁

] × [ 𝑗
𝑁
,
𝑗 + 1
𝑁

] for 𝑖, 𝑗 = 0, ..., 𝑁 − 1 s.t ∪ 𝐶𝑖 𝑗 = [0, 1]2
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For 𝑧 ∈ {𝑥, 𝑦} and 𝑖, 𝑗 ∈ {0, .., 𝑁 − 1}, we denote by (𝑧𝑖1, 𝑧
𝑗

2) the center of cell 𝐶𝑖 𝑗 . The area of
every square 𝐶𝑖 𝑗 is 1

𝑁2 .

For 𝐶 ∈ {𝑀, 𝐸} and 𝑧 ∈ {𝑥, 𝑦} we will proceed to the following approximation coming from the
finite volume method:

𝑛𝐶 (𝑡, 𝑧𝑖1, 𝑧
𝑗

2) ≈ 𝑛
𝑖 𝑗

𝐶
(𝑡) := 𝑁2

∫
𝐶𝑖 𝑗

𝑛𝐶 (𝑡, 𝑧1, 𝑧2)𝑑𝑧 ∀𝑖, 𝑗 ∈ {0, ...𝑁 − 1}.

We get rid of the double indexation {𝑖 𝑗} by introducing 𝑙 := 𝑁 (𝑖 − 1) + 𝑗 , 𝑙 ∈ 1, ..., 𝑁2.

Then:
𝑛𝐶 (𝑡, 𝑧𝑙) ≈ 𝑛𝑙𝐶 (𝑡) := 𝑁2

∫
𝐶𝑙

𝑛𝐶 (𝑡, 𝑧𝑙)𝑑𝑧 ∀𝑙 ∈ {0, ...𝑁2}

where the above new notations 𝑧𝑙 , 𝑛𝑙
𝐶

and 𝐶 𝑙 follow naturally. Thereafter we get:

𝜌𝐶 (𝑡) =
∫
[0,1]2

𝑛𝐶 (𝑡, 𝑧)𝑑𝑧 =
∫
∪𝐶𝑙

𝑛𝐶 (𝑡, 𝑧)𝑑𝑧 =
∑︁
𝑙

∫
𝐶𝑙

𝑛𝐶 (𝑡, 𝑧)𝑑𝑧 ≈
1
𝑁2

∑︁
𝑙

𝑛𝑙𝐶 (𝑡)

.
and similarly for any regular function 𝑓 : 𝑧 = (𝑧1, 𝑧2) −→ 𝑓 (𝑧1, 𝑧2):∫

𝐶𝑙

𝑛𝐶 (𝑡, 𝑧) 𝑓 (𝑧)𝑑𝑧 ≈
1
𝑁2𝑛

𝑙
𝐶 (𝑡) 𝑓

𝑙

.
where : 𝑓 𝑙 := 𝑓 (𝑧𝑙) for any 𝑙 ∈ {0, ..., 𝑁2}.

By integrating system (2.13) on 𝐶 𝑙 for a given 𝑙 ∈ 0, ..., 𝑁2 and multiplying by 𝑁2 we get an ODE
system:


𝑛𝑙

′

𝑀
(𝑡) = 𝑛𝑙

𝑀
(𝑡) [𝑟 𝑙

𝑀
− 𝑑𝑙

𝑀

𝑁2
∑

𝑙 𝑛
𝑙
𝑀
(𝑡) + 1

𝑁2
∑

𝑙 𝑛
𝑙
𝐸
(𝑡)𝜙𝑀 (𝑡)] 𝑡 ∈ [0, 𝑇 𝑓 ], 𝑙 ∈ {0, ..𝑁2}

𝑛𝑙
′

𝐸
(𝑡) = 𝑛𝑙

𝐸
(𝑡) [𝑟 𝑙

𝐸
− 𝑑𝑙

𝐸

𝑁2
∑

𝑙 𝑛
𝑙
𝐸
(𝑡) + 1

𝑁2
∑

𝑙 𝑛
𝑙
𝑀
(𝑡)𝜙𝐸 (𝑡)] 𝑡 ∈ [0, 𝑇 𝑓 ], 𝑙 ∈ {0, ..𝑁2}

Where we assumed some regularity of the solution to differentiate under the integral sign.

We use the implicit Euler scheme to discretize this system over time. Let 𝑇 be the number of
temporal nodes in [0, 𝑇 𝑓 ] and Δ𝑡 =

𝑇 𝑓

𝑇
and 𝑡𝑘 = 𝑘Δ𝑡 for 𝑘 ∈ {0, .., 𝑇}.

Let 𝐶 ∈ {𝑀, 𝐸}, 𝑙 ∈ {0, ..., 𝑁2} and 𝑘 ∈ {0, ..., 𝑇}. We denote respectively 𝑛𝑙
𝐶,𝑘

and 𝜙𝐶,𝑘 the
approximations of 𝑛𝑙

𝐶
(𝑡𝑘 ) and 𝜙𝐶 (𝑡𝑘 ). We have:

𝑛𝑙
𝑀,𝑘+1 [1 − 𝑟 𝑙

𝑀
Δ𝑡 + 𝑑𝑙

𝑀
Δ𝑡

𝑁2
∑
𝑛𝑙
𝑀,𝑘+1 −

Δ𝑡

𝑁2
∑
𝑛𝑙
𝐸,𝑘+1𝜙𝑀,𝑘+1] = 𝑛𝑙

𝑀,𝑘

𝑛𝑙
𝐸,𝑘+1 [1 − 𝑟 𝑙

𝐸
Δ𝑡 + 𝑑𝑙

𝐸
Δ𝑡

𝑁2
∑
𝑛𝑙
𝐸,𝑘+1 −

Δ𝑡

𝑁2
∑
𝑛𝑙
𝑀,𝑘+1𝜙𝐸,𝑘+1] = 𝑛𝑙

𝐸,𝑘

(2.14)
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The numerical computations are heavy so the codes directly derived from (2.14) are unusable.
Therefore we will use a technique used by the authors of [9] to optimize the scheme. It consists of
handling large sparse matrices in order to gain time on computations.

We introduce 𝐼𝐶,𝑘 = 1
𝑁2

∑
𝑙 𝑛

𝑙
𝐶,𝑘

and the generalized variable 𝑛
𝐶,𝑘

= (𝑛𝐶,𝑘 , 𝐼𝐶,𝑘 ) where 𝑛𝐶,𝑘 =

(𝑛𝑙
𝐶,𝑘

)𝑙=0,...,𝑁2 . Then summing (2.14) over 𝑙 and dividing by 𝑁2, for 𝐷 ∈ {𝑀, 𝐸}, 𝐷 ≠ 𝐶 :

𝐼𝐶,𝑘 = 𝐼𝐶,𝑘+1 −
Δ𝑡

𝑁2

∑︁
𝑟 𝑙𝐶𝑛

𝑙
𝐶,𝑘+1 +

𝐼𝐶,𝑘+1Δ𝑡

𝑁2

∑︁
𝑑𝑙𝐶𝑛

𝑙
𝐶,𝑘+1 − Δ𝑡 𝐼𝐷,𝑘+1𝐼𝐶,𝑘+1𝜙𝐶,𝑘+1

So the generalized scheme is:


𝑛𝑙
𝐶,𝑘

= 𝑛𝑙
𝐶,𝑘+1 [1 − 𝑟 𝑙

𝐶
Δ𝑡 + 𝑑𝑙

𝐶
Δ𝑡 𝐼𝐶,𝑘+1 − Δ𝑡 𝐼𝐷,𝑘+1𝜙𝐶,𝑘+1] 𝑙 = 0, ..., 𝑁2

𝐼𝐶,𝑘 = 𝐼𝐶,𝑘+1 − Δ𝑡

𝑁2
∑
𝑟 𝑙
𝐶
𝑛𝑙
𝐶,𝑘+1 +

𝐼𝐶,𝑘+1Δ𝑡

𝑁2
∑
𝑑𝑙
𝐶
𝑛𝑙
𝐶,𝑘+1 − Δ𝑡 𝐼𝐷,𝑘+1𝐼𝐶,𝑘+1𝜙𝐶,𝑘+1

We can gather the generalized systems on 𝑀 and 𝐸 with a vector equality:

𝑀𝑎𝑡 (𝑛
𝑘+1) · 𝑛𝑘+1 − 𝑛

𝑘
= 0 (2.15)

where 𝑛
𝑘
= (𝑛

𝑀,𝑘
, 𝑛

𝐸,𝑘
) and 𝑀𝑎𝑡 (𝑛

𝑘+1) is a square matrix of size 2𝑁2 + 2. We will not here give
the specific calculations.

Then at each time 𝑘 step we use the Newton-Raphson method to solve (2.15).

The choice of initial conditions we have made is similar to the one in [9] of the form :

𝑛𝐶,0(𝑧1, 𝑧2) = 1{𝑔𝐶 (𝑧1,𝑧2)<1}𝑒
− 1

1−𝑔𝐶 (𝑧1 ,𝑧2 )

for 𝐶 ∈ {𝑀, 𝐸} where :

· 𝑔𝑀 : (𝑧1, 𝑧2) −→ (𝑧1−0.25)2+(𝑧2−0.25)2

(0.25)2

· 𝑔𝐸 : (𝑧1, 𝑧2) −→ (𝑧1−0.75)2+(𝑧2−0.75)2

(0.25)2

This represents an initial situation where the phenotypes are concentrated around set phenotypes:
(0.25, 0.25) for the macrophage population and (0.75, 0.75) for the epithelial one, as illustrated on
Figure 2.4. This suggestion seems consistent with the biological observations, as the macrophages
are suspected to present a M1 phenotype at the beginning of the carcinogenesis that will undergo a
M2 switch. For the epithelial cells it corresponds to the hypothesis that epithelial cells have a high
differentiation potential in early stages which would need to be corroborated biologically in the context
of oral cancers.
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Figure 2.4: Initial densities

2.3.2 Constant mutualistic interactions

In this subsection we illustrate the solutions of the two-dimensional model when the interactions
are mutualistic and constant. The numerical scheme reduces to:

𝑛𝑙
𝐶,𝑘

= 𝑛𝑙
𝐶,𝑘+1 [1 − 𝑟 𝑙

𝐶
Δ𝑡 + 𝑑𝑙

𝐶
Δ𝑡 𝐼𝐶,𝑘+1 − Δ𝑡 𝐼𝐷,𝑘+1𝜓𝐶 𝐼𝐶,𝑘+1] 𝑙 = 0, ..., 𝑁2

𝐼𝐶,𝑘 = 𝐼𝐶,𝑘+1(1 + Δ𝑡

𝑁2
∑
𝑑𝑙
𝐶
𝑛𝑙
𝐶,𝑘+1 − Δ𝑡 𝐼𝐷,𝑘+1𝐼𝐶,𝑘+1𝜓𝐶) − Δ𝑡

𝑁2
∑
𝑟 𝑙
𝐶
𝑛𝑙
𝐶,𝑘+1

We illustrate in Figure 2.5 the final densities (𝑇 𝑓 = 40) of the two populations having constant
mutualistic interactions. As choice of parameters and in absence of accurate biological knowledge we
took 𝑟 := 𝑟𝑀 = 𝑟𝐸 , 𝑑 := 𝑑𝑀 = 𝑑𝐸 and 𝜓 := 𝜓𝑀 = 𝜓𝐸 constant equal to respectively 0.6, 2

√
𝑟 and 1.

These values imply Δ = 0 in which case there is a stable equilibrium (
√

0.6,
√

0.6) as seen before.

Figure 2.5: Final densities with constant interactions

We observe that both densities have concentrated around the fixed initial phenotypes, and both
total masses represented in Figure 2.6 increase over time. We also conjecture the convergence of the
total masses (𝜌𝑀 , 𝜌𝐸 ) towards the equilibrium (

√
0.6,

√
0.6).
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Figure 2.6: Evolution of total masses with time (constant interactions)

When choosing other parameters values we observe a blow up in finite time characterized by
negative numerical solutions that is not interesting to illustrate here but that allowed us to find out that
the model was not satisfactory.

We also plot on Figure 2.7 the case where there is no interactions between the two populations,
corresponding to the situation of two uncoupled single integro-differential equations.

Figure 2.7: Final densities with no interaction

We observe that both densities have concentrated around the fixed initial phenotypes but as we
could have expect the concentrations are less marked than in the mutualistic interactions case.

2.3.3 Saturated mutualistic interactions

To avoid the blowing up of solutions we here simulate the solutions of the case with saturated
mutualistic interactions. The scheme now writes:
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
𝑛𝑙
𝐶,𝑘

= 𝑛𝑙
𝐶,𝑘+1 [1 − 𝑟 𝑙

𝐶
Δ𝑡 + 𝑑𝑙

𝐶
Δ𝑡 𝐼𝐶,𝑘+1 − Δ𝑡 𝐼𝐷,𝑘+1𝜓𝐶 𝐼𝐶,𝑘+1

1
1+𝐼𝐶,𝑘+1

] 𝑙 = 0, ..., 𝑁2

𝐼𝐶,𝑘 = 𝐼𝐶,𝑘+1(1 + Δ𝑡

𝑁2
∑
𝑑𝑙
𝐶
𝑛𝑙
𝐶,𝑘+1 − Δ𝑡 𝐼𝐷,𝑘+1𝐼𝐶,𝑘+1𝜓𝐶

1
1+𝐼𝐶,𝑘+1

) − Δ𝑡

𝑁2
∑
𝑟 𝑙
𝐶
𝑛𝑙
𝐶,𝑘+1

In Figure 2.8 we illustrate both final time densities in this case with the same choice of parameters
as before.

Figure 2.8: Final densities with saturated interactions

We observe the same mechanism of concentration around the initial set phenotypes. Moreover
when implementing the code for random choices of parameters we observe this time no more finite
time blow up.

When plotting the code for 𝑟 = 0.8, 𝑑 = 0.8 and 𝜓 = 1 we observe non-monotonous total masses
as in Figure 2.9.

Figure 2.9: Evolution of total masses with time (saturated interactions)

26



It appears that above a certain threshold the saturation constrains the total masses to decrease. This
would be an interesting phenomenon to study theoretically.

2.3.4 Numerical optimal therapeutic control

Optimal control is a branch of applied mathematics that has been widely used for several years,
and that seeks to optimize the solution of a differential system under given constraints. Recently it
has been used in clinical contexts such as optimal therapeutic control in cancer. In our case, a typical
quantity we want to minimize would be the total mass of the cancerous epithelial population.

In this report we achieved a initiation to numerical optimal therapeutic control with the help of
AMPL which is a very useful tool that solves numerically optimal control problems. The long term
intention is to compare the results obtained with therapeutic biological data on immunotherapies that
Jean-Phillipe Foy and his collaborators plan to produce.

Here, and following this report’s approach we implement a generic optimization problem. The
controlled dynamical system we consider is:


𝜕𝑡𝑛𝑀 (𝑡, 𝑥) = 𝑛𝑀 (𝑡,𝑥)

1+𝜈𝑀𝑣(𝑡) (𝛼𝑤(𝑡)𝑟𝑀 − 𝑑𝑀𝜌𝑀 (𝑡) − 𝜇𝑀𝑢(𝑡) + 𝜌𝑀 (𝑡)𝜌𝐸 (𝑡)) (𝑡, 𝑥) ∈ [0, 𝑇 𝑓 ] × [0, 1]

𝜕𝑡𝑛𝐸 (𝑡, 𝑦) = 𝑛𝐸 (𝑡,𝑦)
1+𝜈𝐸𝑣(𝑡) (𝑟𝐸 − 𝑑𝐸 𝜌𝐸 (𝑡) − 𝜇𝐸𝑢(𝑡) + 𝜌𝐸 (𝑡)𝜌𝑀 (𝑡)) (𝑡, 𝑦) ∈ [0, 𝑇 𝑓 ] × [0, 1]

𝑛𝐶 (0, 𝑥) = 𝑛0
𝐶
(𝑥) ≥ 0 𝑥 ∈ [0, 1] 𝐶 ∈ {𝑀, 𝐸}

(2.16)
It represents the constant mutualistic interactions case with one-dimensional phenotypes and 3

control terms:

• 𝑢 ≥ 0, scaled by 𝜇 ≥ 0 : reproduces the action of a cytotoxic drug, killing proliferating cells

• 𝑣 ≥ 0, scaled by 𝜈 ≥ 0: reproduces the action of a cytostatic drug, inhibiting proliferation

• 𝑤 ≥ 0, scaled by 𝛼 ≥ 0: reproduces the action of an immunotherapy, boosting the macrophage
growth

And we want to minimize 𝜌𝐴 (𝑇 𝑓 ) under the constraints, for 𝑡 ∈ [0, 𝑇 𝑓 ]:

0 < 𝜌𝑀 (𝑡) < 2𝜌𝑀 (0)

0 < 𝜌𝐸 (𝑡) < 2𝜌𝐸 (0)∫
[0,𝑇] 𝑢(𝑡)𝑑𝑡 ≤ 𝑢1 and 𝑢(𝑡) ≤ 𝑢∞∫
[0,𝑇] 𝑣(𝑡)𝑑𝑡 ≤ 𝑣1 and 𝑣(𝑡) ≤ 𝑣∞∫
[0,𝑇] 𝑤(𝑡)𝑑𝑡 ≤ 𝑤1 and 𝑤(𝑡) ≤ 𝑤∞
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As in [12] we bounded the L1 and L∞ norms of the controls which seams reasonable as they
represent drug doses. We also imposed constraints to keep both total masses bounded over time.

Figure 2.10: Numerical simulations of optimal control problem (2.16)

An optimal solution was found by AMPL and the numerical results are illustrated in Figure 2.10.

We chose initial densities similarly as before but here with one dimensional phenotypes. We
observe that at the final time the epithelial population has reduced to 0 and the macrophage phenotypes
has gathered around 1. We plotted the optimal controls as functions of time and the evolution of the
total masses under these controls.

These results need further investigation as well as theoretical knowledge to be better understood.
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Perspectives

As explained in introduction the main aspiration of this study is to lay the groundwork for the
coming PhD for which the subject was designed during the internship in collaboration with Jean
Clairambault, Emmanuel Trélat and Jean-Phillipe Foy.

Therefore a significant part of the work was to establish the exchanges between medicine,
mathematics and computing : what biological concerns are relevant to study through modeling
and how to do so? Our answer to that question is not yet complete and needs to be further
developed, notably through more biological data that is to come. In particular to have a better
understanding of the pro or anti tumorigenic role of macrophages our models need to be refined :
the choice of the birth rate 𝑟 (.), the death rate 𝑑 (.) and the nature of interactions 𝜙(.) are to be specified.

The other part of the work was to study generic models both numerically and theoretically in order
to have a better view on the behavior of the solutions. We saw that the case of constant mutualistic
interactions leads to a blow up of the solutions in finite time which is not relevant biologically. We
then enhanced this first model by adding a saturation to the interactions which brought more interest-
ing results. There are still many ways to explore on this subject and this study raised many discussions.
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