
E U R O P E A N J O U R N A L O F C A N C E R 4 6 ( 2 0 1 0 ) 2 1 – 3 2

. sc iencedi rec t . com
ava i lab le a t www
journal homepage: www.ejconl ine.com
Position Paper

Modelling the genesis and treatment of cancer: The potential
role of physiologically based pharmacodynamics 5
Jean-Louis Steimer a, Svein G. Dahl b, Dinesh P. De Alwis c, Ursula Gundert-Remy d,
Mats O. Karlsson e, Jirina Martinkova f, Leon Aarons g,*, Hans-Jürgen Ahr h,
Jean Clairambault i, Gilles Freyer j, Lena E. Friberg e, Steven E. Kern k,
Annette Kopp-Schneider l, Wolf-Dieter Ludwig m, Giuseppe De Nicolao n,
Maurizio Rocchetti o, Iñaki F. Troconiz p
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Molecular events in cancerogenesis can be detected using ‘omics’ technology, a tool applied

in experimental carcinogenesis, but also for diagnostics and prognosis. The molecular

understanding forms the basis for new drugs, for example targeting protein kinases specif-

ically expressed in cancer. At present, empirical preclinical models of tumour growth are in

great use as the development of physiological models is cost and resource intensive.

Although a major challenge in PKPD modelling in oncology patients is the complexity of

the system, based in part on preclinical models, successful models have been constructed

describing the mechanism of action and providing a tool to establish levels of biomarker

associated with efficacy and assisting in defining biologically effective dose range selection

for first dose in man. To follow the concentration in the tumour compartment enables to

link kinetics and dynamics. In order to obtain a reliable model of tumour growth dynamics

and drug effects, specific aspects of the modelling of the concentration–effect relationship

in cancer treatment that need to be accounted for include: the physiological/circadian

rhythms of the cell cycle; the treatment with combinations and the need to optimally

choose appropriate combinations of the multiple agents to study; and the schedule depen-

dence of the response in the clinical situation.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Physiologically based pharmacokinetic models are designed

to represent the human body and its physiology. The models

allow the implementation of age- and disease-dependent

physiological changes enabling simulations and predictions

of the kinetics under special circumstances which are exper-

imentally hardly accessible, e.g. in internal organs such as the

liver, and in special ages such as preterm babies. Up to now,

there are not many examples of a similar approach used to

describe the dynamic part of the relationship between dose

and observed effects. Models for pharmacodynamic/toxicody-

namic effect require a priori knowledge of the mechanistic ba-

sis of the disease process and at which step in the chain of

events the drug acts. The objective of the expert meeting

was, in the context of cancer, to discuss the developments

in: the molecular understanding of the disease process’ in

the modelling approaches used so far to describe the disease

processes; preclinical models of cancer treatment; and thera-

peutic options which have been recently developed based on

the improved understanding of the underlying processes.

Thus, the meeting brought together experts involved in eval-

uating and modelling steps in carcinogenesis, in the pharma-

ceutical development of new oncology agents or in the

therapy of cancer. The discussions among the participants

provided new insight into the contribution of physiologically

based modelling of pharmacodynamics to current and future

cancer treatment.

The manuscript is organised as follows. In the first two

sections the molecular basis of cancerogenesis, diagnosis

and treatment intervention together with their respective

modelling approaches are presented. Section 4 describes

how modelling and simulation is currently contributing to

many stages and aspects in anticancer drug development:

preclinical tumour growth models; management of drug (hae-

mo-) toxicity; intra-tumour pharmacokinetics; physiological

aspects of tumour cells and predicting outcomes from drug

combinations.
2. Biological mechanisms of cancerogenesis

2.1. Molecular events in cancerogenesis

In the traditional approach, the evaluation of the toxic prop-

erties of substances is based on phenotypic pathological

and histopathological characterisation of responses after

exposure which does not allow insight into the underlying

toxic mechanism. In recent years, toxicogenomic techniques

have been used to support the interpretation of the pheno-

typic results by mode of action considerations. Furthermore,

gene expression techniques using microarrays have been ap-

plied in toxicological studies with the aim of classifying

chemicals using biomarkers based on gene expression

changes.1 If the mode of action is understood and can be cap-

tured in a set of biomarkers, the detection of molecular events

would allow the prediction of selected toxic effects. Currently,

the carcinogenic potential of chemicals is evaluated with ro-

dent life time bioassays, which are time consuming and

expensive with respect to cost, number of animals and

amount of compound required. Since the results of these 2-

year bioassays are not known until late during development

of new chemical entities, including drugs, and since the short

time test battery to assess genotoxicity, a characteristic of

genotoxic carcinogens, is hampered by low specificity, the

identification of early biomarkers would be a big step forward.

Gene expression profiling on Affymetrix arrays has been

used to investigate the molecular events leading to a carcino-

genic response in rats.2,3 In a first study male rats were dosed

with the genotoxic hepatocarcinogen N-nitrosomorpholine

for 7 weeks followed by a treatment-free observation period

of up to 50 weeks.4 Already shortly after start of the treat-

ment, significant alterations of various genes were observed,

which belong to reasonable mechanistic pathways. Extension

of the observation period did not add much further informa-

tion.5 Therefore, the study duration was limited to 14 d for

further mechanistic studies and for the selection of early bio-

markers. In a series of short-term in vivo studies, it was inves-
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tigated whether carcinogens at doses known to induce liver

tumours in the 2-year rat bioassay alter the expression of

characteristic sets of genes and whether these genes repre-

sent defined biological pathways. Male rats were dosed with

five genotoxic and five non-genotoxic hepatocarcinogens.

Three non-carcinogenic compounds were used as control

profiles. The expression profiles in the liver indicated that dis-

tinct cellular pathways were affected by non-genotoxic car-

cinogens as compared to genotoxic carcinogens and non-

carcinogenic control profiles (Fig. 1). Characteristic early

molecular events for genotoxic carcinogens were DNA dam-

age response and the activation of proliferative and survival

signalling. Non-genotoxic carcinogens induced responses to

oxidative DNA or protein damage as well as cell-cycle pro-

gression and signs of regeneration.6 Although neither a single

gene nor a single pathway was sufficient to discriminate the

two classes of hepatocarcinogens, it became evident that a

combination of pathway associated gene expression profiles

may be used to predict a genotoxic or non-genotoxic carcino-

genic potential of a chemical in short-term studies.6 Several

statistical methods were then applied to extract biomarkers

from these expression profiles. Very low cross-validation er-

rors were obtained for all biomarkers, but, surprisingly, the

biomarkers greatly differed in the number of genes, the genes

themselves and their mechanistic foundation. Nevertheless,

all multigene biomarkers showed a good predictivity for a
Fig. 1 – Induction of pathway-specific expression profiles in live

opposed to non-carcinogens.
set of independent validation compound profiles with up to

88% accuracy. This may be considered as a proof of the con-

cept that a classification of carcinogens based on short-term

studies is feasible.7 The usefulness of this approach has also

been demonstrated by other authors to model the mode of ac-

tion in cancerogenesis and make predictions on the proper-

ties of chemicals.8–10

In order to get more understanding of the carcinogenic

stress response and to possibly overcome the observed insta-

bility of biomarker selection, the utility of systems biology ap-

proaches were further explored. The gene expression network

is interactive and highly correlated. By explicit modelling of

the gene–gene interactions in this network a promising alter-

native description of the global stress response following

treatment with carcinogens was obtained. This may point to

a future role that systems biology may play in analysing such

toxicogenomic data and reducing their complexity.11

2.2. Modelling stochastic processes in carcinogenesis

The process of carcinogenesis is inherently a stochastic pro-

cess, at least as long as it is not known why certain individu-

als get cancer under conditions where others are unaffected.

Therefore the models of carcinogenesis may be formulated in

the framework of stochastic processes. The most prominent

stochastic models of carcinogenesis are the multistage mod-
r tissue by non-genotoxic and genotoxic carcinogens as
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els with clonal expansion which describe the fate of single

cells. Cells can divide or die or they can be transformed into

a more advanced cell on the way to malignancy. Models with

different numbers of premalignant states are available. There

are several reasons for formulating models of carcinogenesis.

One is to elucidate the biological process of carcinogenesis,

and to get more insight into the processes for mechanistically

based drug development. A further reason is to provide a ra-

tional basis for the assessment of cancer risk in man by an

environmental chemical. A biologically based dose–response

curve derived from the results of high-dose animal studies

would allow the extrapolation of the dose–effect relationship

down to a dose range of interest for the environmental expo-

sure of the human population. In addition, using different

biological models to describe the carcinogenic response can

be useful in the analysis of the mode of action of carcinogens.

Data from classical carcinogenesis experiments report

rates of tumour bearing animals in the experimental groups

or time to tumour for individual animals. More recent studies

have focused on pre-neoplastic end-points as these occur ear-

lier in life and their occurrence is less harmful to the animals.

Stochastic models of carcinogenesis describe both the carci-

noma end-point and the number and sizes of pre-neoplastic

lesions.

Models for the carcinoma end-point have been addressed

previously,12–14 and several methods have been discussed to

derive the distribution of time to tumour.15 Parameter estima-

tion is difficult as not all model parameters are identifiable.16

Carcinogenesis models can be used with either tumour inci-

dence or prevalence data. They can also be used to investigate

the impact of dose–response behaviour on the shape of the

resulting tumour prevalence curve.17

For the analysis of pre-neoplastic liver lesions, a model-

based approach is especially valuable because the full lesions

cannot be observed but only transections of the lesions can be

made visible in two-dimensional liver sections. Two stochas-

tic models for hepatocarcinogenesis have been described, the

classical two-stage clonal expansion model (TSCEM) (e.g. 18

and a modification of the colour-shift model with beta distrib-

uted growth rates (CSMbeta).19,20 Both models involve param-

eters which allow for inference about the effect of a tested

carcinogen on the rate of formation and size development

of pre-neoplastic liver lesions.

3. Molecular basis for diagnosis and
therapeutic intervention

3.1. Molecular origins of cancer as a basis for new
therapeutic targets – a clinical view

Cancer is caused by alterations in oncogenes, tumour-sup-

pressor genes, and microRNA genes.21 These alterations are

usually somatic events resulting in changes in growth regula-

tion and thus transform a normal cell into a cancer cell. In the

last decade, the functional properties of cancer cells have

been linked to underlying mutations through a better under-

standing of the growth factors and their receptors, signal

transducers and apoptosis regulators that control cell prolif-

eration, apoptosis or both. These findings have led to the def-

inition of the so-called hallmarks of cancer22 including the
acquisition of self-sufficient signals for growth, the capacity

for extended proliferation, resistance to growth-inhibiting

signals, the ability to evade cell death signals, the potential

for tissue invasion and metastasis, and the power to induce

angiogenesis. Some of these traits are the properties of the

cancer cells themselves, but others depend on communica-

tion between the cancer cells and their cellular and macro-

molecular environments. In cancer cells, not only can the

expression levels of proteins be altered but also the stoichi-

ometry of the interaction network can be altered. Hence,

our understanding of complex networks has increased our

understanding of how oncogenes and tumour-suppressor

genes interact and how the networks are modified by gene

alterations to result in proliferation or apoptosis of cells.

The advances in knowledge have made possible a description

of cancer in molecular terms that is now likely to improve the

ways in which human cancers are diagnosed, classified, mon-

itored and treated. Each property constitutes a vulnerability

in a tumour, to be exploited by new targeted therapies, espe-

cially when the underlying mutations and signalling altera-

tions are known. The fundamental challenge of anticancer

therapy is the need for agents that eliminate cancer cells at

a dose which is tolerated by the patient. Most cytotoxic anti-

cancer drugs inhibit essential functions that are present in

both normal and cancer cells. A new generation of cancer

drugs has been designed to interfere with a specific molecular

target, typically a protein, that is believed to have a critical

role in tumour growth or progression. In recent years, by

the identification of oncogenes involved in the initiation

and progression of tumours, a new generation of drugs has

been developed targeting specific proteins (growth factor

receptors) on the cell membranes (e.g. monoclonal antibod-

ies) or oncogenic proteins (tyrosine or serine and threonine

kinases) in cancer cells (e.g. small molecules) encoding mem-

bers of signal-transduction pathways.21 However, contrary to

initial expectations, these targeted therapeutics can also

cause new drug-related toxicities in normal cells which result

from the disturbance of growth factor signalling pathways

that are important for maintaining cellular homeostasis. As

these new agents will also be given in prolonged treatment

strategies, possible long-term toxicities should be anticipated

and further studies are needed to explore the biological

mechanisms of this toxicity.23

Protein tyrosine kinases are essential enzymes in cellular

signalling processes and have been identified as regulators

of tumour or tumour vessel growth in human cancer. One

of the landmark events in the ‘targeted-therapy revolution’

has been the development of imatinib, an inhibitor of multi-

ple tyrosine kinases, including ABL, BCR-ABL, platelet-derived

growth factor receptor and c-kit. The success of imatinib as a

treatment for chronic myelogenous leukaemia (CML) can be

attributed to the critical role of the BCR-ABL tyrosine kinase

in causing the disease and the specificity of imatinib as an

ABL kinase inhibitor. Clinical studies conducted over the last

years have established that imatinib is nowadays the first-line

treatment for CML.24 Nearly all patients in early chronic

phase treated with imatinib achieve a complete haematolog-

ical response, with 80–90% achieving a complete cytogenetic

response. However, BCR-ABL transcripts at very low level

are still detectable by reverse transcriptase PCR (RT-PCR) in
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approx. 96% of responding patients with CML, suggesting that

this could be a potential pool from which resistance emerges.

Furthermore, there is a high relapse rate among advanced-

and blast-crisis-phase patients owing to the development of

mutations in the ABL kinase domain that cause drug resis-

tance. Recent strategies circumventing resistance to kinase-

inhibitor therapy include the development of second-genera-

tion inhibitors (e.g. dasatinib and nilotinib) targeting the

integrity and/or stability of the BCR-ABL protein itself as well

as signalling pathways downstream of BCR-ABL that are nec-

essary for malignant transformation.25,26 The activity of

imatinib in CML and gastrointestinal stromal tumours

(GISTs),27,28 as well as of monoclonal antibodies against

receptor tyrosine kinase signalling (e.g. trastuzumab against

the human epidermal growth factor receptor-2, HER-2) or of

small-molecule inhibitors of epidermal growth factor recep-

tor (EGFR; e.g. gefitinib or erlotinib) has validated the concept

that certain tumours are ‘oncogene-dependent’.29,30

During the last decade, monoclonal antibodies (mAbs)

have emerged as the most rapidly expanding class of human

therapeutics for cancer treatment, and several mAbs for the

treatment of malignant disorders have been approved,

including several unconjugated antibodies or immunoconju-

gates directed against surface antigens expressed by haema-

tological malignancies. The mechanism of action and

resistance to these therapeutic mAbs are often not com-

pletely known. Two mAbs, i.e. rituximab and alemtuzumab,

employed for the treatment of non-Hodgkin’s lymphoma,

have contributed to the current understanding of the biologi-

cal responses to these mAbs and resistance mechanisms.31

Further examples of therapeutic antibodies which have

shown great promise as targeted agents include trastuzumab

and bevacizumab, humanised mAbs targeting HER-2 and

VEGF, respectively. Trastuzumab was the first FDA-approved

monoclonal antibody to target solid tumours which overex-

press HER-2 (e.g. breast cancer).32 VEGF binding by bev-

acizumab has been shown to inhibit angiogenesis and is

proving to be of clinical benefit, mostly in combination with

cytotoxic drugs, in a variety of tumour entities (e.g. advanced

colorectal and non-small-cell lung cancer).33

Antisense inhibition of relevant genes involved in cancer

progression is another promising area for targeted cancer

therapy. Antisense oligonucleotides (ASOs) offer one ap-

proach to target genes involved in cancer progression, espe-

cially those that are not amenable to small-molecule or

antibody inhibition. The most prominent example is the

ASO oblimersen (G3139 or genasense) which targets the BCL-

2 gene, the prototype of oncogenes with a direct antiapoptotic

function.34 Antisense technology has quickly moved from

preclinical models to testing in the clinic. However, chal-

lenges remain to optimise tissue exposure, cellular uptake,

and demonstration of mechanism as well as clinically rele-

vant antitumour activity. As is true for the clinical develop-

ment of all targeted therapies in cancer, crucial issues

include the early determination of the optimal biological dose

and the need to define the relevant patient population for

clinical trials and therapy better through molecular character-

isation of somatically acquired mutations in cancer cells and/

or biomarkers which predict significant clinical responses to

the drug. Furthermore, in order to address the goal of maxi-
mising tumour cell kill, rational combinations of conventional

cancer therapies (e.g. chemo- and radiotherapy) with targeted

therapy have still to be defined.
3.2. PKPD modelling in oncology patients: the challenge of
complexity

Daily clinical practice for oncology patients has to be as sim-

ple as possible. However, the need to individualise therapy is

of utmost concern, perhaps more than in any other therapeu-

tic area. A major challenge in PKPD modelling in oncology pa-

tients is the inherent complexity of the system. Despite some

successes,35 the strict application of pharmacokinetic princi-

ples to target blood or plasma concentrations should not be

overemphasised. As an example, twenty years of PK studies

have failed to improve cancer treatment for epirubicin, indi-

cating the limited utility of plasma concentration of these

compounds as a surrogate for clinical effectiveness. In con-

trast, focusing on the pharmacodynamic aspects has been

shown to provide multiple examples of success with increas-

ing application of clinical relevance, e.g.:

• protecting patients receiving docetaxel/epirubicin from

neutropaenia by proper administration of GSCF at the sec-

ond cycle, after having ‘learned’ the individual’s concentra-

tion time-course in the first cycle,36

• diminishing the incidence of hand-foot syndrome by proper

adjustment of the dose of capecitabine.37

4. Models in drug development

4.1. Tumour growth models in preclinical drug
development

The in vivo evaluation of the antitumour effect is a fundamen-

tal step in the preclinical development of drugs in oncology.

The first in vivo tumour models were developed in the mid-

1960s. These models were mouse leukaemia models where

the cells were grown in the ascites fluid and, for this reason,

not suitable to represent the growth of solid tumours. The

evaluation of the antitumoural activity of the compounds

tested using these systems was very limited, and generally

based on the estimation of the increase in life span, cell dou-

bling time and log 10 cell kill.38

Subsequently, with the development of in vivo solid tu-

mour models such as the syngeneic mouse tumours and hu-

man tumour xenografts grown as subcutaneous nodules or in

orthotopic sites, the complete growth time-course was made

available through measurements of tumour volume. More re-

cently, the development of ‘labelled’ tumour models, based

on fluorescence proteins or firefly luciferase, enables tumour

volume assessment by imaging techniques. The response to

treatment can be evaluated by directly comparing the ob-

served tumour growth in the treated animals with that ob-

served in the control group. For this purpose, different

metrics have been proposed for assessing efficacy of the

tested compounds, for instance, the distances between the

tumour growth curves in control and treated animals, mea-
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sured either at specific times and expressed as tumour

growth delay (TGD) or tumour growth inhibition (TGI).39 How-

ever, these metrics, and other related tumour response end-

points, depend on the doses, dose schedules and the design

of the experiments. For this reason, the biological interpreta-

tion of the results is limited, making it difficult to obtain a

definite evaluation of the activity of anticancer compounds,

and this is likely the most important cause of the question-

able relevance of these animal models to predict therapeutic

efficacy that generates a continuous debate and controversy

about their usefulness.39,40

With the aim of fully exploiting the capabilities of these

animal models and circumventing the difficulties mentioned

above, a number of mathematical tumour growth models

have been reported in the literature, reflecting different para-

digms. Empirical models use the well-known mathematical

equations (e.g. sigmoid functions, such as the logistic, Ver-

hulst, Gompertz, von Bertalanffy)41 but are unable to correctly

describe the underlying patho-physiological processes. For

this reason, the effect of a drug can be evaluated only in terms

of changes of the parameter values describing the tumour

growth and it is uncertain whether the model can be used

as a predictive tool outside the tested dose regimens.

Physiological models, conversely, are based on mechanistic

descriptions of biological processes underlying tumour

growth. These models, partially based on system biology tech-

niques, are constructed by making assumptions about tumour

growth, involving cell-cycle kinetics and biochemical pro-

cesses, such as those related to antiangiogenic and/or immu-

nological responses. Because of the biological complexity they

try to capture, the development is time consuming and a
Fig. 2 – Prediction of human dose by preclinical model estimates.

in rodents are used to estimate the parameters of the so-called

characterise the unperturbed tumour growth as well as the pote

to predict tumour growth under different drug dosages and sch

optimization. The model provides also an estimate of the conce

obtaining tumour regression in these animal models. Right pan

been established that the clinical doses in humans may be pre

concentration parameter.45 Based on this, an estimate of the ex

compounds may be derived directly from the first preclinical st
much larger number of parameters are necessary compared

to the empirical models. Hence, in addition to the standard tu-

mour growth measurements, further data are needed such as

flow cytometry analyses and measurements of biochemical

and immunological markers in order to avoid identifiability

problems due to the over-parametrisation. As a consequence,

these models are mainly used as simulation tools to obtain

qualitative descriptions of the tumour response to changes

in biological pathways within the tumour cells.

In view of the pros and cons of the different approaches,

achieving a correct compromise between empirical and

mechanism-based models is a real need in preclinical drug

development. Along this line, a new simple and effective

PKPD Tumour Growth Inhibition (TGI) model, linking the plas-

ma concentrations of anticancer compounds to the effect on

tumour growth in xenograft mice (the most common animal

model used) has been developed recently.42,43 The TGI model

was shown to successfully describe the inhibition of tumour

growth observed at different dose levels and schedules, inde-

pendently of the mechanism of action and the therapeutic

indications of the compounds. On this basis, from a single

experiment it is possible to derive a quantitative evaluation

of anticancer activity through the estimate of biologically

meaningful pharmacodynamic parameters. In particular,

two drug-specific parameters may be obtained: k1 is related

to how rapidly the tumour cells are killed by the drug action,

while k2 reflects the antitumour potency of the compound.

The TGI model is recognised as a useful tool for supporting

the lead optimisation and candidate selection phases.44,45

Some extensions of the model including also biomarker eval-

uations have been presented.46
Left panel: data from tumour growth inhibition experiments

Tumour Growth Inhibition (TGI) model.42 These parameters

ncy of the antitumour drug (k2 parameter). The model is able

edules and can therefore be used for experiment design

ntration threshold in plasma (CT) to be maintained for

el: applying the TGI model to known anticancer drugs it has

dicted by a log–log regression on the estimated threshold

pected therapeutically active doses in humans of new

udies in rodents.
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Recently, predictivity in humans was investigated by

applying the TGI model to experiments with anticancer drugs

already in therapeutic use and estimating their corresponding

potency. Exploiting the regression between the potency

parameters estimated in the animal model and the doses

commonly used to treat patients is a means to derive an esti-

mate for the expected therapeutically active dose of a new

compound45 (Fig. 2). This estimate, even if approximate, pro-

vides a rational basis for the decision-making process in drug

development, allowing inappropriate compounds to be dis-

carded earlier, reducing the number of dose escalations in

Phase I trials and consequently exposing fewer patients to

ineffective treatments. Moreover, in general, the full exploita-

tion of this kind of PKPD models is expected to substantially

reduce the number of failures in the clinical phase with an

outstanding impact on the costs of late failures.47,48

4.2. The potential of PKPD modelling in early phase
oncology drug development

If one considers the approach to the development of cytotox-

ics and targeted therapies, clear differences are apparent.

Conventional cytotoxic chemotherapies follow a well worn

empirical course: dose escalation followed a fixed or semi-

fixed scheme from a starting dose based on some multiple

of a preclinical toxicity dose. Escalation continues until the

maximally tolerated dose (MTD) is found and this single dose

is carried forward into later phase clinical trials. Toxicity such

as myelosuppression, is often used as a biomarker of the de-

sired cytotoxic effect in the tumour. Pharmacokinetics are lar-

gely descriptive, with body surface area dosing a substitute to

individualised therapy, but without adequate understanding

of the covariates.49 In contrast, the early clinical development

of targeted agents is driven by the need to assess the impact

on the target which may occur in the absence of a clinically

definable effect on the tumour or other tissues. Translation

to clinical efficacy is more remote and hence more difficult

to illicit in Phase 1 studies. Dose escalation is more amenable

to adaptive study design in which pharmacokinetics and

pharmacodynamics play an increasingly important role. Bio-

logical effect rather than toxicity determines the subsequent

range of doses which maybe taken into Phase 2 studies. New

considerations have been introduced such as the degree and

duration of target inhibition. Complete (100%) inhibition

indefinitely may adversely affect the margin of safety and

may not be desirable for efficacy.50

This is illustrated by the recent development of a cytotoxic

and a targeted agent (TGFb type 1 receptor antagonist).46 The

cytotoxic agent exhibited a very high saturable protein bind-

ing, gender difference within a species and an additional spe-

cies difference in toxicity. Total dose and total drug

concentrations failed to explain a 30% mortality in male rats

compared to a 3% mortality in female rats given the same

dose. However, incorporating protein binding and protein lev-

els in a semi-mechanistic PK model based on unbound con-

centrations explained these differences. This model also

incorporated in vitro bone marrow assay data to explain neu-

tropaenia differences between rat and dog. The model was

further used to for designing a safer, more effective phase 1

dose escalation study incorporating a PK and toxicity driven
dose escalation scheme. This example also illustrated that

carrying out a standard MTD approach to Phase I dose escala-

tion using a Fibonacci or incremental dose escalation could

potentially select sub-therapeutic doses. In another example,

the construction of preclinical models integrating PK, bio-

markers and tumour growth delay data satisfactorily de-

scribed the mechanism of action of a TGF-b signal-

transduction inhibitor and provided a tool to investigate dif-

ferent experimental scenarios to establish levels of biomarker

inhibition associated with efficacy and to assist the design

and help define biologically effective dose range selection

for the first study in man.46 This model also characterised

the signal-transduction processes which could help design

the dosing schedule and simulate out the preclinical efficacy

outcomes between chronic and intermittent dosing

schedules.

4.3. PBPK in tumour compartment – example of
capecitabine

Capecitabine is an orally administered precursor of the anti-

cancer agent 5-fluorouracil (5-FU), designed to exploit differ-

ences in metabolic enzyme activities between the tumour

and healthy tissue. The demonstrated increased conversion

to the cytotoxic agent 5-FU in the tumour is intended to en-

hance safety and efficacy of the treatment of breast and colo-

rectal cancer. Before being converted to 5-FU, capecitabine

undergoes extensive sequential metabolism in multiple phys-

iological compartments, and thus presents particular chal-

lenges for predicting PK and PD activity in humans. In order

to cope with these complexities, several modelling ap-

proaches were used during the development of capecitabine,

which were ultimately influential on decision-making as well

as labelling. These modelling approaches are summarised in

the paper of Blesch et al.51

An important aspect was the development of a physiolog-

ically based pharmacokinetic (PBPK) model,52 which was used

for the prediction of tissue-specific exposure in humans. The

model integrated the tissue-specific differences in metabolic

enzyme activity between tumour and normal tissues deter-

mined on in vitro preclinical data for the metabolites.53 In par-

ticular, metabolic enzyme activity, characterised in vitro by

the parameters Vmax and Km, or protein binding in the differ-

ent species could be integrated into the model directly. The

model relied on some key assumptions, including:

• a rapid equilibrium distribution of capecitabine and its

metabolites between blood and tissue,

• the sequential metabolism within a tissue according to a

(non-linear) Michaelis–Menten process representing the

time-varying intrinsic metabolic clearance from one metab-

olite to the next.

Ultimately, the complete model was composed of four

PBPK sub-models that addressed the important pharmacolog-

ical characteristics of this agent. This ‘mechanistic’ model de-

scribed the PK of capecitabine and its metabolites (primarily

5-FU), including the (saturable) enzyme transformations.

Exploring factors that influenced exposure could be evaluated

through a sensitivity analysis of the model (e.g. change in
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blood flow rate to the tumour, or change in metabolic enzyme

activity). The PBPK model allowed the prediction of a thera-

peutic index based on exposure to 5-FU of target organs for

efficacy (tumour) versus toxicity (GI tract). This provided a

better understanding of the therapeutic advantage of oral

capecitabine compared to other modes of 5-FU administra-

tion, which was confirmed in terms of adequate efficacy

and improved safety in two Phase 3 trials comparing oral

capecitabine to intravenous (i.v.) 5-FU/leucovorin in meta-

static colorectal cancer.54 Patients in the capecitabine arm

had an improved overall safety profile with one exception,

the frequency of hand-and-foot syndrome. This phenome-

non, related to the accumulation of capecitabine, is not ad-

dressed in the PBPK model. It has been addressed recently

by developing a longitudinal PKPD model for predicting a

score for risk with the goal to enhance individual treatment

adaptation37 (see Section 3.2). Other successful examples of

adequate therapy including capecitabine have been published

since the registration of the compound, including the use of

capecitabine in advanced breast cancer in older women55 or

in combination with indisulam in patients with solid

tumours.56

4.4. Physiological/circadian and pharmacological control
of cell cycle – consequences for optimisation of cancer therapy
including chronotherapy

The need to better understand and improve the success of

anticancer chronotherapy and the fact that it has been clearly

demonstrated that disruptions of the circadian clocks result

in enhanced tumour proliferation in laboratory rodents and

poor prognosis in patients with cancer57 has led to designing

models of tissue proliferation with circadian control. Among

these, a highly mechanistic model of the cell division cycle

in proliferating cell populations has been developed, based

on age-structured partial differential equations (PDEs).58 It

represents the classical phases G1, S, G2, M, with the possibil-

ity to add a quiescent phase G0, and it is used to analyse phys-

iological and pharmacological controls on tumour and on

healthy tissue proliferation. The targets for control inputs

are the death rates inside phases and, more importantly,

the transition rates between phases, particularly at the G1/S

and G2/M checkpoints. The growth behaviour of the popula-

tion is determined by a Malthus exponent, positive for expo-

nential growth and negative for exponential decay in the

simple case of a linear model. When a G0 phase is added, with

exchanges of cells between G0 and G1 phases (non-linear

model), other types of behaviours – linear or polynomial

growth – can be observed.59,60

The controlling inputs to this model at the checkpoint le-

vel are Cyclin-Cdk dimers, which are themselves outputs of:

(a) a system of ordinary differential equations (ODEs), the ‘mi-

totic oscillator’ involving in its minimal form a Cyclin, a Cdk

and a Cyclin-degrading protease61 that is controlled by phys-

iological circadian inputs exerting their influence on proteins

Wee1, p21, p53; and (b) pharmacological inputs resulting from

cytotoxic drug dynamics on DNA and the subsequent trigger-

ing of p53 and Cdk blockade.

The intracellular pharmacokinetics of these drugs is under

the dependence of: (a) their corresponding blood kinetics; (b)
ABC transporters that ensure their active efflux; (c) detoxica-

tion enzymatic mechanisms that may be subject to both cir-

cadian modulation and genetic polymorphism. For each

cytotoxic drug considered (until now oxaliplatin and irinotec-

an), a resulting PKPD model based on ODEs, describing the

evolution of the average drug concentration in the proliferat-

ing cell population, was achieved. The input to this molecular

PKPD model is drug infusion flow from the blood compart-

ment. This flow is in its turn amenable to computer delivery

time schedules, stored in programmable portable pumps,

and based on mathematical optimisation algorithms de-

signed after the model equations.

A circadian clock model has been developed, that is a net-

work of circadian oscillators, each of which is the FRQ oscilla-

tor designed for Neurospora.62 This simple ODE oscillator can

be replaced by a more physiological one if necessary.63 It con-

sists of a central hypothalamic conductor (representing cou-

pled neurons in the suprachiasmatic nuclei), a pathway

from the centre to the periphery, and uncoupled similar circa-

dian oscillators in the peripheral cells.64 This structure has

been designed to take into account at the central locus the

synchronising effects of light and the desynchronising effects

of circulating cytokines, both of which are known to exert

influences on the central circadian clock, and on peripheral

cell proliferation.

The complete model is still under construction. The build-

ing blocks that constitute it, and will be presented in the talk,

make it a modular model easily amenable to improvements.

The final goal is the optimisation of anticancer multiple drug

delivery flow time schedules, with the constraint to protect

healthy tissues from unwanted side-effects.57,58,65 It is clear

that such a model, that involves both intracellular drug

metabolism and whole body pharmacokinetics (blood and tis-

sues, with enzymatic activity determination), as exemplified

in the previous paragraph of this article for capecitabine, with

the added difficulty that it involves circadian dependencies

both at the cell and at the whole body levels, raises non-neg-

ligible parameter identification issues. Such questions must

be settled by both pharmacokinetic–pharmacodynamic mea-

surements in cell cultures and in different tissue samples in

whole animals. It is noteworthy that to this purpose, a pio-

neering study of intracellular metabolism and transmem-

brane transport, with identification of parameters by high

performance liquid chromatography (HPLC) and mathemati-

cal optimisation techniques, is under way in a European net-

work (TEMPO) for the anticancer drug Irinotecan. Other such

studies should be undertaken for oxaliplatin and for 5-fluoro-

uracil, thus making progress towards a complete identifica-

tion of the model, which will take a long time.

4.5. Modelling schedule dependence of therapy

Many anticancer drugs exhibit schedule dependence where

the grade of tumour response and/or toxicity are dependent

on the rate of drug administration and a changed administra-

tion schedule can have a larger impact on the outcome than

increasing the dose. For example, the tumour response of eto-

poside in small-cell lung cancer was much increased follow-

ing 1-h infusions on 5–8 d compared with a 24-h infusion

despite that the total exposure (AUC) was the same.66 For pac-
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litaxel, the grade of neutropaenia is lower following weekly

administration than after once-every-3-weeks administration

without compromising efficacy.67 The maximum tolerated

dose (MTD) intensity for a drug given by bolus injection can

differ by several orders of magnitude compared to MTD inten-

sity when the drug is administered by slow infusion (Fig. 3).

Schedule dependence of anticancer drugs can be difficult to

predict since drug administration and observed effects gener-

ally are dissociated in time. Schedule-dependent effects may

be due to cell-cycle specificity, saturable drug transport, time-

dependent repair mechanisms, co-factor depletion, drug

resistance development or multiple mechanisms of action.

For example, metronomic dosing, where low drug concentra-

tions are retained during a long time period, may result in

pronounced antiangiogenetic effects that are negligible with

short exposure times of high concentrations.68 Historically

the optimal schedule has been searched for by performing

numerous clinical trials where most often a single schedule

has been tested at a time making comparisons to other

schedules ambiguous. Among other advantages, population

pharmacokinetic–pharmacodynamic modelling offers a ra-

tional approach to analyse several studies simultaneously

and thereby a good understanding of the dose–concentra-

tion–effect relationships following different dosing regimens

can be acquired.

To be able to predict the effect of a changed schedule it is

of importance to characterise the pharmacokinetics because

for drugs with non-linear pharmacokinetics the dose–re-

sponse relationship will appear to be schedule dependent.

The optimal schedule of 5-fluororacil (5-FU) has been debated

for long and the fact that 5-FU has capacity-limited elimina-

tion is often neglected, i.e. the AUC is dependent on the dos-

ing regimen. When the response rates in 39 study arms on

different schedules of 5-FU in colorectal cancer were ana-

lysed69 and the non-linear pharmacokinetics were consid-

ered,70 it was found that for exposures with a large AUC

(>0.2 mg week/l) continuous administration was superior over

shorter exposure times while for lower AUC values the expo-
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Fig. 3 – Logarithm of ratio of maximum tolerated dose (MTD)

intensity (mg/m2/week) when cytotoxic drugs are given as

bolus injections compared to when given as infusions. A

value of 1 indicates the same dose intensity can be

administered and there is therefore no schedule depen-

dence in MTD for these drugs.
sure time was less important.71 The concentration–response

relationship was characterised with a model where the drug

concentration is related to a direct effect and the cumulative

direct effect is related to the observed response.72 The rela-

tionship between the drug concentration and direct effect

was shown to neither be linear (AUC-dependent) nor de-

scribed by a step-function (time-above-threshold-dependent).

It is of importance to clarify the end-point when classify-

ing if there is schedule dependence or not. For example, two

different dosing regimens may result in a similar neutrophil

nadir although the duration of neutropaenia differs. Models

which describe the full time-course of effect are therefore

preferable as well as models which are built on the essential

mechanisms of the affected system as such models poten-

tially have the capability of predicting different dosing regi-

mens. Several semi-physiological models have been

developed to describe the time-course of myelosuppres-

sion73–75 where different schedules of administration were

well characterised. Such models have potential to investigate

schedule dependence in different measures of neutropaenia

and may be used in an efficient model-based search for opti-

mal schedules of therapy.

Models describing the time-course of tumour response fol-

lowing different schedules of chemotherapy are rare. For the

investigational anticancer agent CHS 828 the effect in a rat

hollow fibre model was larger when the same total oral dose

was administered once-daily for 5 d compared with when the

whole dose was given on a single occasion.76 Experiments

that followed the time-course of effect showed that this was

not due to re-growth following the single dose regimen, but

the AUC after a single dose was lower because of dose-depen-

dent bioavailability. However a relatively simple pharmacoki-

netic–pharmacodynamic model of cancer cell response over

time revealed that not only the pharmacokinetics, but also

the pharmacodynamics were schedule dependent, i.e. a pro-

longed administration schedule of CHS 828 is preferred.

To predict schedule dependence of the response in the

clinical situation resistance and metastasis development

may also need to be accounted for to obtain a reliable model

of tumour growth dynamics and drug effects. A developed

longitudinal dose-tumour size model, in combination with

patient characteristics, may predict survival time, as previ-

ously shown.77 Finally, simulations from developed effect

and toxicity models can be performed to find the schedule

that maximises the response while limiting the toxicity to

an acceptable degree.

4.6. Drug combination modelling beyond isoboles

Pharmacological agents are given in combination either

simultaneously or in sequence to produce a greater desired

effect with less risk for side-effect than equi-effective

amounts of the individual agents when given alone. To opti-

mise these drug combinations for an application, design tech-

niques were explored that compared two traditional ways of

choosing drug combinations for clinical studies with a novel

approach. The standard paradigms for choosing drug combi-

nations and assessing the interaction are referred to as mesh

and radial designs.78,79 For two drug combinations, these

methods essentially plot the minimum and maximum dose
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of each agent on an X–Y axis like a grid and then combina-

tions are chosen at points on the grid that are expected to

cover the range of effects from the combinations. The mesh

approach uses combination at the grid points while the radial

approaches picks combinations along radii extending out

from the grid origin. These qualitative graphical approaches

were compared to a novel D-optimal design technique based

on methodology adapted from Duffull et al.80 The comparison

explored the number of subjects and dosing groups needed to

obtain reasonably precise estimates of interaction model

parameters that create a surface that describes the

interaction.

By simulating an optimal design experiment, it was esti-

mated that a standard mesh design will produce large estima-

tion errors for both the fixed and variance terms of the

interaction model parameters. Using the optimal design sig-

nificantly reduces these error estimates. While both the stan-

dard and optimal designs performed worse at estimating

synergism when the transition from no effect to maximum

drug effect occurred over a narrow concentration range or

when the degree of interaction was small, the optimal design,

however, handled such situations better, producing interac-

tion model parameter estimates with lower levels of

uncertainty.

These analyses suggest that the D-optimal design allows

the quantification of drug synergy much better than the stan-

dard design. When assumptions about the likely degree of

interaction can be made a priori and the individual dose/re-

sponse relationship is known for each drug, the D-optimal

method predicts the dose combination pairs to study clini-

cally that minimise the expected interaction model parame-

ter variability and simplifies the experimental design. This

method provides a basis for developing clinical interaction

studies for oncological applications where it is desired to

determine pharmacodynamic synergy.
5. Conclusions

The presentations and discussions from the COST meeting

illustrated the significant progress in understanding the

molecular basis and the mode of action of the development

of cancer in experimental animal models and in humans. Pro-

gress has also been made in the area of mathematical model-

ling of carcinogenesis and in the application of these

approaches in anticancer drug development over the last

few years. The presented models ranged from the knowl-

edge-based, systems biology type of models capturing the cir-

cadian and pharmacological control of the cell cycle to data

driven PKPD or PBPK models such as those used in the drug

development. The presentation on preclinical models in tu-

mour growth clearly illustrated the ability of linking well-de-

signed biological models and semi-mechanistic models. The

predictive ability of this approach to define the efficacious

dose range in the clinic for cytotoxic agents is significantly

better than a purely empirical approach. These types of mod-

els then can be used in preclinical stages of drug development

supporting the lead optimisation and candidate selection

phases. The presentation on modelling schedule dependence

of therapy highlighted the value of carrying out retrospective
modelling using semi-physiological models of myelosuppres-

sion on established drugs such as 5-FU and paclitaxel to iden-

tify schedule dependency and how this could be used to

search for optimal schedules of therapy of old and new

agents. Combination therapy in cancer is a common thera-

peutic approach. The use of D-optimal techniques is a helpful

tool to guide combination therapy in cancer.

The simulation of future experiments based on the types

of preclinical or clinical models discussed in this paper, may

aid the decision-making processes saving resources and ex-

pense by carrying out optimised clinical studies crucial in

the fight against cancer. These modelling efforts overall illus-

trated the work done to understand the mechanistic nature of

the relationship between dose and effects and its variability

and uncertainty. The efforts are directed to elucidate the sit-

uation with the aim to be able to quantify these aspects to

the advantage of the patient.
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