
On Designing a Target-Independent DSL for Safe
OS Process Scheduling Components

Julia Lawall, DIKU, University of Copenhagen

Anne-Françoise Le Meur, Jacquard Group, LIFL, Lille

Gilles Muller, OBASCO Group, Ecole des Mines de Nantes

1

Overview

I Introduction to Domain-Specific Languages (DSLs).

I Our proposal for DSL design.

I Instantiation in the Bossa DSL for process scheduling.

I Conclusions.

2

Domain-Specific Languages (DSLs)

DSL: A language dedicated to a particular domain.

I Captures a family of programs.
I Provides high-level domain-specific abstractions that

I Simplify programming.
I Enable verifications, optimizations.

Useful when:

I Programming within the program family is often needed.

I Programming within the program family requires highly
specialized knowledge.

Examples: lex, yacc, SQL, languages for graphics, Web
programming, etc.

3

Our target domain: process scheduling

Process scheduling: How an OS selects a process for the CPU.

I Many scheduling policies (round-robin, rate monotonic, etc.).

I Policies form a program family.

I No policy is perfect for all applications.

Implementing a scheduler requires:

I Understanding the scheduling policy.
I Understanding the target OS.

I Any error can crash the machine.

⇒ An ideal DSL target . . .

I Bossa [Muller, Lawall, et al., EW2002, ASE2003, PEPM2004]

4

Creating a DSL

A domain expert uses domain expertise to [Consel, Marlet, PLILP’98]:

I Select language abstractions.

I Develop a language syntax.

I Implement language support (verifier, compiler, etc.)

verified
DSL program

executable
component

DSL
verifier

DSL
compiler

DSL
programDSL

//

//

��

�� ��

Problem: Multiple kinds of expertise may be needed.
5

Expertise needed to create a DSL for process scheduling

Expertise in scheduling policies:

I Liveness, bounded response time, etc.

I What kinds of operations are needed to provide these
properties?

Expertise in operating systems:

I How does existing scheduling code work?

I What existing scheduling code should be replaced?

I What invariants must scheduling code maintain?

Problem: Expertises required at different times.

6

Our proposal

Divide the role of the domain expert:

I Scheduling expert: Expert in the program family.
I Identifies relevant language constructs.

I OS expert: Expert in each specific execution environment.
I Identifies relevant OS properties.

Introduce a type system:

I Developed by the scheduling expert based on an analysis of
the range of relevant properties.

I Used by the OS expert to describe OS properties.

I Types used in verifying and compiling DSL programs.

7

Our proposal

Divide the role of the domain expert:

I Scheduling expert: Expert in the program family.
I Identifies relevant language constructs.

I OS expert: Expert in each specific execution environment.
I Identifies relevant OS properties.

Introduce a type system:

I Developed by the scheduling expert based on an analysis of
the range of relevant properties.

I Used by the OS expert to describe OS properties.

I Types used in verifying and compiling DSL programs.

8

Instantiation in the Bossa DSL

verified policy
implementation

scheduling
component

policy
verifier

policy
compiler

policy programmer

policy
implementation

DSL

//

��

��

�� ��

9

Instantiation in the Bossa DSL

verified
types

policy programmer

verified policy
implementation

scheduling
component

type
verifier

policy
verifier

policy
compiler

OS expert

types policy
implementation

Type
system DSL

// //
//

��

��

��

��

��

�� ��

10

Issues

I Can relevant properties be expressed in a concise and
understandable way?

I Can type information be used to detect errors?

I Can type information improve the result of compilation?

11

The Bossa DSL, in more detail

I The scheduling domain.

I Contribution of the scheduling expert

I Contribution of the OS expert

I Tying things together: the verification process.

12

The scheduling domain

Goal of process scheduling:

I Elect a new process.

I Only ready processes are eligible.

. . .

. . .

CPU
Blocked

Ready // // //

// //

��

A scheduler must:

I Elect an eligible process.

I Adjust process states in response to kernel events.

13

Contribution of the scheduling expert

Language infrastructure (OS independent)

I Syntax
I main elements: process states and event handlers

I Type system

I Verifier

I Compiler

14

Process states

states = {
RUNNING running : process;
READY ready : select queue;
READY expired : queue;
BLOCKED blocked : queue;
TERMINATED terminated;

}

States: running, ready, etc.

State classes: Describe state semantics:

I RUNNING: the state of the running process

I READY: states containing eligible processes

I BLOCKED: states containing blocked (ineligible) processes

I TERMINATED: a dummy state for terminating processes

15

Event handlers

On unblock.* {
if (e.target in blocked) {

e.target => ready;
if (!empty(running)) {

running => ready;
}

}
}

unblock p2

Scheduler

running ready blocked

p1 p2 p3

''OOO
O

wwooooo
�� ''OOOO

�� ��

 ��4
4

⇒ Scheduler

running ready blocked

p1 p2 p3

wwooooo
�� ''OOOO

��

��4
44

��

16

Contribution of the OS expert (Linux 2.4)

Events:
bossa.schedule, block.*, unblock.preemptive.*, unblock.nonpreeptive.*, . . .

Interrupt events: unblock.preemptive.*, unblock.nonpreeptive.*, . . .

Event sequences: block.*
u→ bossa.schedule, . . .

Type rules:
I unblock.preemptive.*:

I [tgt in BLOCKED] -> [tgt in READY]
I [p in RUNNING, tgt in BLOCKED] ->

[{p, tgt} in READY]
I [tgt in RUNNING] -> []
I [tgt in READY] -> []

I 11 events, 60 rules for Linux 2.4.

17

Tying things together

Verifier and compiler:

I Implemented by the scheduling expert.

I Configured with information provided by the OS expert.

Verifier:

I Checks that all handlers are present.

I Checks that handlers implement allowed transitions.

Compiler:

I Generates C code.

I Uses information collected by the verifier.

18

Verification example

On unblock.preemptive.* {
if (e.target in blocked) {

e.target => ready;
if (!empty(running)) {
running => ready;

}
}

}

Verification with respect to:
[tgt in BLOCKED] -> ...

Matches:
[p in RUNNING, tgt in BLOCKED]->

[{p, tgt} in READY]

[tgt in BLOCKED] -> [tgt in READY]

[] = running
{p,tgt} in ready

? in blocked

[] = running
tgt in ready
? in blocked

p in running
tgt in ready
? in blocked

? in running
tgt in ready
? in blocked

? in running
? in ready

tgt in blocked

��

ttiiiiiiii

��3
33

33
33

33
33

33
33

��

19

Conclusions

Multiple kinds of expertise required to implement a DSL.

I May not all be available at the same time.

For scheduling, we propose:

I A scheduling expert.

I An OS expert.

I A type system to connect them.

DSL can be constructed so that the contribution of the OS expert
can be usefully exploited.

20

Availability

I Implementation in Linux 2.4, with and without high-resolution
timers.

I Example policies and applications.

I Teaching lab, based on Knoppix.

I MPlayer demo.

http://www.emn.fr/x-info/bossa/

21

	On Designing a Target-Independent DSL for Safe OS Process Scheduling Components

