SEWordSim: Software-Specific Word Similarity Database

Yuan Tian', David Lo!, and Julia Lawall?
tSchool of Information Systems, Singapore Management University, Singapore
2Inria/LIP6-Regal

{yuan.tian.2012,davidlo}@smu.edu.sg, julia.lawall@lip6.fr

ABSTRACT

Measuring the similarity of words is important in accurately
representing and comparing documents, and thus improves
the results of many natural language processing (NLP) tasks.
The NLP community has proposed various measurements
based on WordNet, a lexical database that contains rela-
tionships between many pairs of words. Recently, a number
of techniques have been proposed to address software engi-
neering issues such as code search and fault localization that
require understanding natural language documents, and a
measure of word similarity could improve their results. How-
ever, WordNet only contains information about words senses
in general-purpose conversation, which often differ from word
senses in a software-engineering context, and the software-
specific word similarity resources that have been developed
rely on data sources containing only a limited range of words
and word uses.

In recent work, we have proposed a word similarity re-
source based on information collected automatically from
StackOverflow. We have found that the results of this re-
source are given scores on a 3-point Likert scale that are over
50% higher than the results of a resource based on WordNet.
In this demo paper, we review our data collection method-
ology and propose a Java API to make the resulting word
similarity resource useful in practice.

The SEWordSim database and related information can be
found at http://goo.gl/BVEAs8. Demo video is available at
http://goo.gl/dyNuyb.

Categories and Subject Descriptors

D.2 [Software]: Software Engineering

General Terms

Measurement

Keywords
Word Similarity, Database, SEWordSim

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

ICSE Companion’14, May 31 — June 7, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2768-8/14/05...$15.00
http://dx.doi.org/10.1145/2591062.2591071

568

1. INTRODUCTION

A fundamental problem in natural language processing
(NLP) is how to measure the similarity of words [4]. Mea-
suring word similarity is essential to the processing of more
complex textual units, such as phrases, sentences, and com-
plete documents. Thus, measuring the similarity of words
has many applications in areas such as information retrieval
or text categorization [2, 7]. A number of studies have
proposed techniques to measure word similarity [1, 8, 14,
18]. Most of these techniques leverage WordNet [13], a well-
known lexical database.

Relevance to Software Engineering. Recently, the soft-
ware engineering community has proposed a number of tools
that rely on textual software artifacts, leveraging informa-
tion retrieval and document classification techniques [9, 15].
The success of the use of word similarity in the NLP com-
munity, suggests that the text-based tools of the software-
engineering community could also benefit from this informa-
tion. For example, word similarity information could be used
to expand a query with additional similar words to improve
the accuracy of an information retrieval based solutions (e.g.,
code search, bug localization, etc.), cf. [5]. However, most
software-engineering tools that have been proposed do not
use word similarity, and instead consider words that are not
identical to be unrelated. Thus, there is a need for a word
similarity resource that is usable by software-engineering
tools. Constructing such a resource leveraging WordNet is
one option. However, WordNet contains the relationships
between words considering general-purpose texts, such as
newspapers, that do not reflect the software-specific mean-
ings of many words, such as Python and Eclipse. To address
this issue, we have built a software-specific word similarity
database.

Originality. Several previous works have attempted to con-
struct a software-specific word similarity resource. The orig-
inality of our work lies in the kind of information sources
considered. Specifically, we consider software information
sites, such as StackOverflow,! forums, etc., in which devel-
opers and ordinary users discuss software related issues.? In
previous work, Yang and Tan extract similar words from
comments and identifiers in source code [20], while Howard
et al. infer similar verbs from source code [6]. However,

"http:/ /stackoverflow.com/

2The term software information site was first introduced
in [19].

source code is not the only place to find words related to
software development. Many of these words are also used in
the mass of content posted in software information sites.
Wang et al. [17] extract similar frequently used software
tags, i.e., short text fragments used to bookmark contents,
in the software information site FreeCode. However, tags
represent only a small fraction of the words that appear in
software information sites. In this work, we leverage the
entire textual contents of the communications in a software
information site, namely StackOverflow, to create a software
specific word similarity database named SEWordSim, con-
taining similarities of 5,636,534 pairs of words.

Complete details of our database construction process and
the evaluation of the resulting database are available in our
research paper [16]. The goal of this demo is to release our
database and to promote its use by researchers, especially
those that work on text analysis for software engineering.

The rest of this paper is organized as follows. Section 2
describes how the database is constructed and our prelim-
inary evaluation. Section 3 presents our API for accessing
our database. We discussion statistics and performance of
the database and in Section 4. We describe related work in
Section 5 and conclude in Section 6.

2. CONSTRUCTION APPROACH

We first describe how the similarity of words is computed.
We then describe our database construction procedure.

2.1 Measuring Similarity

To measure the similarity of a pair of words, we use the
concept of word co-occurrence. The co-occurrence of words
wi and wa is the number of sliding windows of size n in a
document corpus (i.e., a set of documents), where w; is at
the center of the window, and ws appears in the window.

Based on these co-occurrences, we compute positive point-
wise mutual information (PPMI) [10] between w; and wa,
denoted PPMI (w1, w2), which measures the discrepancy be-
tween the actual and expected co-occurrence frequency of wi
and wsz, assuming independence. If the software information
sites from which we extract contents contain tags, as is the
case of StackOverflow, we compute the following weighted
PPMI score to take these tags, which are often important
terms, into account:

WPPMI (w1, ws) = W (j) x PPMI (w1, w:) (1)

a (if j is a popular software tag)
where W(j) =< B (if j is a nonpopular software tag)
~v (otherwise)

(2)

At this point, for each word w; we have a vector of PPMI
scores (or WPPMI scores, if tags are available) that char-
acterize its co-occurrences with other words. To measure
the similarity between w; and another word w; we take the
cosine similarity of their corresponding vectors of PPMI or
WPPMI scores.

2.2 Database Construction Procedure
To compute the similarity of pairs of words based on the
similarity measure above, we perform following steps:

1. Data Collection & Pre-Processing: This step ex-
tracts content from software information sites. This

569

content could be questions and answers in StackOver-
flow, posts in software forums, bug reports in bug
tracking systems, and so on. We separate natural lan-
guage from source code in this content. We first pro-
cess the source code by removing programming lan-
guage keywords and by splitting identifiers based on
Camel casing and Pascal casing. The pre-processed
source code and the natural language content are then
subjected to standard text pre-processing techniques,
i.e., tokenization, stop-word removal, and stemming.
Some software information sites also allow users to at-
tach short labels (i.e., tags) to content. We also extract
these tags if they are available.

Word Co-Occurrence Computation: This step
scans the document corpus and computes the co-occur-
rence of various pairs of words.

. Parameter Tuning: This step optimizes the weights
a, B, and v that appear in Equation 2. Note that
this step is only performed if tags exist. The param-
eter tuning step iteratively performs a greedy search
based on a fitness function that it tries to optimize.
The details of this step are available in our research
paper [16].

Similarity Computation: This step computes simi-
larity for various pairs of words based on the procedure
described in the Section 2.1 and the weights learned in
the parameter tuning step, if applicable. The result of
this step is our database.

2.3 Preliminary Validation Study

To test the effectiveness of our database construction ap-
proach, we have used it to infer a word similarity database
from 10,000 questions and answers posted in StackOverflow
in January 2011. We then performed a user-assisted study to
compare the accuracy of our database with a publicly avail-
able word similarity database constructed using WordNet
[12]. Details about this study are found in our research pa-
per [16]. Users gave the results produced using our database
an average Likert score that is 50.2% higher than the re-
sults produced using WordNet-based database, resulting in
an average discounted cumulative gain (DCG) that is 65.2%
higher. Thus we conclude that our database produces results
of substantially better quality.

3. METHODOLOGY FOR USERS

To make our results easily usable, we store word simi-
larities in an SQLite database.® We have chosen SQLite
because it implements a self-contained and server-less SQL
database engine. The current version of our database con-
tains similarities of 5,636,534 word pairs. We also release a
dump of the database, which can easily be imported to other
kinds of databases. Our database contains one table, named
“Word_Similarity”. To improve the efficiency of search in
database, we create indexes on words and similarity values.
Table 1 shows the structure of the table “Word_Similarity”.

We also provide a simple Java API to allow users to ex-
tract similarities easily from an SQLite database. Our API
consists of one class named WordSimDBFacade. The class
diagram of WordSimDBFacade is shown in Table 2.

3http://www.sqlite.org/

Table 1: Structure of the table “Word_Similarity”

Field Name Data Type(maximum length) Index

term_1 Varchar(30) Yes(Ascending)
term_2 Varchar(30) Yes(Ascending
similarity Double(20) Yes(Descending)

Table 2: WordSimFacade’s class diagram

WordSimDBFacade

+ WordSimDBFacade (dbFile:String)

+ stemWord(word:String) :String

+ isInDatabase(word:String) :Boolean

+ computeSimilarity(wordl:String,word2:String) :double

+ findMostSimilarWord(word:String) :String

+ findMostSimilarWords(word:String,minSim:double) :List(String)
+ findTopNWords (word:String,n:int) :List(String)

+ getAllWords() :List(String)

The first method is a constructor that accepts one argu-
ment, which is the location of the SQLite database. The
second method, stemWord, is a stemmer implementing the
Porter Stemming algorithm. It takes a word as input and
returns the root form of the word. This method should be
called before calling the other methods, because our database
only contains stemmed words. The third method, isIn-
Database, takes a word as an argument and checks whether
it exists in the database. This method allows a user to check
if our database can be used for a word that the user is inter-
ested in. The fourth method computeSimilarity takes as
input two words and returns the similarity between them.
This similarity ranges from 0 to 1 if input words exist in our
database, where 0 indicates that the words are unrelated and
1 indicates that the words are the same. If either word does
not appear in the database, computeSimilarity returns -1.

The fifth method, findMostSimilarWord, returns the most
similar word to an input word. The sixth method findMost-
SimilarMethods, returns all words whose similarity with the
input word (the first argument) is greater than or equal to
a minimum similarity threshold minSim (the second argu-
ment). The seventh method, findTopNWords, takes an in-
put word (the first argument) and a number n (the second
argument) and returns the top-n most similar words to the
input word. These three methods return null if the input
word does not exist in our database.

The last method, getAllWords, returns all words that ap-
pear in the database. With this method, a user can enumer-
ate all the words and perform additional processing, e.g.,
compute clusters of similar words, etc., by repeatedly invok-
ing the other methods in the class, e.g., computeSimilarity.

To help users understand our API, we document the API
using Javadoc. The compressed documentation is available
with the database. Figure 1 shows a piece of code that calls
all the methods in our API.

4. DISCUSSION
4.1 Range of Similarity Scores

Some readers might be interested in the similarity score
distribution of word pairs in our database. If all word pairs
have very low similarity scores, then our database would not
be useful. Figure 2 is a box plot showing the distribution
of the maximum similarity score. To draw the box plot, for
each word w in our database, we find the word pair (w,w’)
that has the maximum similarity score. The scores of these
pairs are shown as the box plot. The box plot shows that

570

public static void main(String args[]) {

//read in database

String inputFile=

WordSimDBFacade facade=new WordS1mDBFacade(1nputFlle)

word

inputWord= ;

stemmedInputWord=facade. stemWord(1nputWord)
compareWord=

stemmedCompareWord-facade stemWord (compareWord) ;

//stem
String
String
String
String

//set parameters
double minSimilarityScore=0.3;
int N=10;

//invoke API methods

System.out.print(

facade.isInDatabase (stemmedInputWord)+

System.out.print(

facade.computeSimilarity(stemmedInputWord,
stemmedComparedWord) +)

System.out.print(

facade.findMostSimilarWord(stemmedInputWord)+

System.out.print(

facade.findMostSimilarWords (stemmedInputWord,
minSimilarityScore)+);

System.out.print(

facade.findTopNWords (stemmedInputWord,N)+

System.out.print (

facade.getAllWords());

}

);

);

);

Figure 1: Sample code for API usage

50% of the words in our database, which is represented by
the box, have maximum similarity scores between 0.31 and
0.44. We also find that more than 13.5% of the words have
maximum similarity scores greater than 0.5. Some of them
have maximum similarity scores greater than 0.8.

0.6
Max Similarity Score

0.2 0.4

Figure 2: Distribution of maximum similarity score

4.2 Database Performance

To enable our database to be used in an interactive tool,
the time it takes to process a query should be short enough.
The March 2014 version of our SQLite database stores more
than 5 million word pairs. To test the efficiency of this
database, we randomly selected 1,000 words from a number
of StackOverflow questions. Based on these words, we ran-
domly generated 100 word pairs and queried our database
for their similarity scores. We perform this experiment on
an Intel Core i5 2.5GHz PC with 8GB of RAM running OS
X 10.9.2. We use the latest SQLite version (i.e, Version
3.8.4.1) to process queries. Figure 3 shows the distribution
of query time required to process each of the 100 word pairs.
We observe that more than 75% of the queries could be com-
pleted in less than 0.02 seconds. The median query time is
0.012 seconds.

T T T T T
0.000 0.005 0.010 0.015 0.020
Query Time(s)

Figure 3: Distribution of query time

5. RELATED WORK

Generic Word Similarity. Many studies in the NLP pro-
pose techniques to measure the similarity of words, typically
using WordNet [8, 14, 18]. Pedersen et al. have developed
a tool based on WordNet to allow end users to compute
similarities of words [11]. They have also pre-computed the
similarities of many words and created a publicly accessible
database containing these similarities [12]. Different from
the above studies, we do not leverage WordNet; instead, we
automatically construct a word similarity database from a
software-specific corpus.

There are also a number of approaches that construct a
thesaurus from a document corpus [3, 8]. These approaches
also analyze the co-occurrence of words. Different from
these studies, we leverage a software-specific corpus. We
also leverage the phenomenon of social tagging where users
assign tags to content in software information sites. These
tags are often important software-specific terms. The au-
tomatic tuning step of our database construction approach
assigns different weights for words that appear as popular
tags, unpopular tags, and other words.

Software Specific Word Similarity. Yang and Tan [20] an-
alyze comments and method signatures in software source
code files by a sequence alignment and clustering based ap-
proach to infer semantically related words. Similarly, Howard
et al. mine semantically similar verbs from comments and
method signatures [6]. We propose a different approach that
is tailored for content obtained from software information
sites. Many software-related words are not in source code
but in the mass of content posted by developers and users.
Thus, our work complements their work.

Wang et al. analyze tags in FreeCode and infer relation-
ships among these tags [17]. Our work generalizes Wang
et al.’s work by considering not only tags but also the en-
tire textual contents posted in StackOverflow. There are far
fewer tags than words in the content posted to StackOver-
flow or other software information sites. Indeed, Wang et
al. only measure similarities of 690 tags.

6. CONCLUSION AND FUTURE WORK

In this demo, we present our word similarity database
for the software engineering community: SEWordSim. This
database contains similarity information for 5,636,534 pairs
of words. Different from a general-purpose word similarity
database, such as one based on WordNet, our database is
trained from software-specific documents. Thus, word sim-
ilarity is considered in a software-specific context. Our ap-
proach takes as input software-specific documents, which
are abundant and can be easily downloaded from various
software information sites, e.g., StackOverflow, SourceForge,
FreeCode, etc. Our preliminary evaluation shows that con-
sidering the software context allows SEWordSim to be more

571

accurate than WordNet-based approaches on words related
to software development. We have created a simple API to
make it easy for researchers to use our database. Function-
alities of our API can be composed to realize more complex
functionalities, e.g., cluster similar words, etc.

In the future, we plan to incrementally release updated
versions of our database periodically by extracting word sim-
ilarities from an expanded software-specific document cor-
pus.

7. REFERENCES

[1] D. Bollegala, Y. Matsuo, and M. Ishizuka. Measuring
semantic similarity between words using web search
engines. In WWW, 2007.

H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and

H. Li. Context-aware query suggestion by mining
click-through and session data. In KDD, 2008.

L. Chen, P. Fankhauser, U. Thiel, and T. Kamps.
Statistical relationship determination in automatic
thesaurus construction. In CIKM, 2005.

L. Dai, B. Liu, Y. Xia, and S. Wu. Measuring semantic
similarity between words using HowNet. In ICCSIT, 2008.
S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia,
and T. Menzies. Automatic query reformulations for text
retrieval in software engineering. In ICSE, 2013.

M. J. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker.
Automatically mining software-based, semantically-similar
words from comment-code mappings. In MSR, 2013.

S. F. Hussain and G. Bisson. Text categorization using
word similarities based on higher order co-occurrences. In
SDM, 2010.

D. Lin. Automatic retrieval and clustering of similar words.
In COLING, 1998.

E. Linstead, S. K. Bajracharya, T. C. Ngo, P. Rigor, C. V.
Lopes, and P. Baldi. Sourcerer: mining and searching
internet-scale software repositories. Data Min. Knowl.
Discov., 18(2), 2009.

Y. Niwa and Y. Nitta. Co-occurrence vectors from corpora
vs. distance vectors from dictionaries. In COLING, 1994.
T. Pedersen, S. Patwardhan, and J. Michelizzi.
Wordnet:similarity-measuring the relatedness of concepts.
In AAAI 2004.

T. Pederson. Wordnet::similarity.
http://wn-similarity.sourceforge.net/.

Princeton University. WordNet: A lexical database for
English. http://wordnet.princeton.edu/.

P. Resnik. Using information content to evaluate semantic
similarity in a taxonomy. arXiv preprint cmp-lg/9511007,
1995.

P. Runeson, M. Alexandersson, and O. Nyholm. Detection
of duplicate defect reports using natural language
processing. In ICSE, 2007.

Y. Tian, D. Lo, and J. Lawall. Automated construction of
a software-specific word similarity database. In
CSMR-WCRE, 2014.

S. Wang, D. Lo, and L. Jiang. Inferring semantically
related software terms and their taxonomy by leveraging
collaborative tagging. In ICSM, 2012.

Z. Wu and M. Palmer. Verb semantics and lexical selection.
In ACL, 1994.

X. Xia, D. Lo, X. Wang, and B. Zhou. Tag recommendation
in software information sites. In MSR, 2013.

J. Yang and L. Tan. SWordNet: Inferring semantically
related words from software context. Empirical Software
FEngineering, 2013.

2]

(3]

(8]

[9]

(10]

(11]

(12]
(13]

14]

(15]

(16]

(17]

(18]
(19]

20]

