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Abstract
Homotopy Type Theory is a new field of mathematics based on
the recently-discovered correspondence between Martin-Löf’s con-
structive type theory and abstract homotopy theory. We have a pow-
erful interplay between these disciplines - we can use geometric in-
tuition to formulate new concepts in type theory and, conversely,
use type-theoretic machinery to verify and often simplify existing
mathematical proofs.

Higher inductive types form a crucial part of this new sys-
tem since they allow us to represent mathematical objects, such as
spheres, tori, pushouts, and quotients, in the type theory. We inves-
tigate a class of higher inductive types called W-suspensions which
generalize Martin-Löf’s well-founded trees. We show that a propo-
sitional variant of W-suspensions, whose computational behavior
is determined up to a higher path, is characterized by the universal
property of being a homotopy-initial algebra. As a corollary we get
that W-suspensions in the strict form are homotopy-initial.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic

Keywords homotopy-initial algebra; W-suspension; higher induc-
tive type; homotopy type theory

1. Introduction
Homotopy Type Theory (HoTT) has recently generated significant
interest among type theorists and mathematicians alike. It uncov-
ers deep connections between Martin-Löf’s dependent type theory
([17, 18]) and the fields of abstract homotopy theory, higher cate-
gories, and algebraic topology ([2, 6–9, 12, 14, 24–27]). Insights
from homotopy theory are used to add new concepts to the type
theory, such as the representation of various geometric objects as
higher inductive types. Conversely, type theory is used to formalize
and verify existing mathematical proofs using proof assistants such
as Coq [5] and Agda [19]. Moreover, type-theoretic insights often
help us discover novel proofs of known results which are simpler
than their homotopy-theoretic versions: the calculation of πn(Sn)
([11, 13]); the Freudenthal Suspension Theorem [23]; the Blakers-
Massey Theorem [23], etc.

As a formal system, HoTT [23] is a generalization of inten-
sional Martin-Löf Type Theory with two features motivated by ab-
stract homotopy theory: Voevodsky’s univalence axiom ([9, 26])
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and higher-inductive types ([15, 20]). The slogan in HoTT is that
types are topological spaces, terms are points, and proofs of iden-
tity are paths between points. The structure of an identity type in
HoTT is thus far more complex than just consisting of reflexivity
paths, despite the definition of IdA(x, y) as an inductive type with
a single constructor reflA(x) : IdA(x, x). It is a beautiful, and per-
haps surprising, fact that not only does this richer theory admit an
interpretation into homotopy theory ([2], [9]) but that many fun-
damental concepts and results from mathematics arise naturally as
constructions and theorems of HoTT.

For example, the unit circle S1 is defined as a higher inductive
type with a point base and a loop loop based at base. It comes
with a recursion principle which says that to construct a function
f : S1 → X , it suffices to supply a point x : X and a loop
based at x. The value f(base) then computes to x. Such definitional
computation rules are convenient to work with but also pose some
conceptual difficulties. For instance, an alternative encoding of the
circle as a higher inductive type S1

a specifies two points south,
north and two paths from north to south, called east and west. The
recursion principle then says that in order to construct a function
f : S1

a → X , it suffices to supply two points x, y : X and
two paths between them. The values f(north) and f(south) then
compute to x and y respectively.

We have a natural way of relating these two representations via
an equivalence: in one direction, map base to north and loop to
east; in the other direction, map both north and south to base and
map east to loop and west to the identity path at base. Unfortu-
nately, the types S1, S1

a related this way, while equivalent, do not
satisfy the same definitional laws, which poses a compatibility is-
sue. Even more importantly, we do not have a way of internalizing
these notions of a circle and working with them inside the type
theory, since we can only talk about definitional equalities on the
meta-level.

In this paper we thus study higher inductive types abstractly, as
arbitrary types endowed with certain constructors and propositional
computation behavior: in the case of S1, for example, we say that a
type C with constructors b : C and l : c = c satisfies the recursion
principle for a circle if for any other type X , point x : X and loop
based at x, there exists a function f : C → X for which there is
a path between f(b) and x (and which satisfies a higher coherence
condition). We note that we require no change to the underlying
type theory: the particular higher inductive type S1 just becomes
a specific instance of the abstract definition of a circle, one whose
computation rules happen to hold definitionally.

A major advantage of types with propositional computation
rules is that we can internalize the definitions and reason about
them within the type theory - and in particular, use proof assistants
to verify the results. In this respect, our work is complementary
to [16], which gives an external, category-theoretic semantics for
a certain class of higher inductives. Another advantage of propo-
sitional computation behavior is portability: relaxing the compu-
tation laws satisfied by the types S1 and S1

a to their propositional



counterparts results in two notions of a circle that are equivalent.
This in particular means that any type C which is a circle in one
sense is also a circle in the alternate sense. We can thus state and
prove results about either of these specifications, knowing that the
proofs carry over to any particular implementation - be it S1, S1

a,
or a third one.

It further turns out that types with propositional rules tend to
keep many of their desirable properties; for instance, it can be
shown that the main result of [13], that the fundamental group of
the circle is the group of integers, carries over to the case when
both the circle and the integer types have propositional computa-
tional behavior. In addition, we can now show that higher induc-
tive types are characterized by the universal property of being a
homotopy-initial algebra. This notion was first introduced in [3],
where an analogous result was established for the “ordinary” in-
ductive type of well-founded trees (Martin-Löf’s W-types). In the
higher-dimensional setting, an algebra is a type X together with a
number of finitary operations f, g, h . . ., which are allowed to act
not only on X but also on any higher identity type over X . An al-
gebra homomorphism has to preserve all operations up to a higher
homotopy. Finally, an algebra X is homotopy-initial if the type of
homomorphisms from X to any other algebra Y is contractible.

Our main theorem is stated for a class of higher inductive
types which we call W-suspensions; they generalize ordinary W-
types as well as the higher inductive type S and others. We show
that the induction principle for W-suspensions is equivalent (as a
type) to homotopy-initiality. This extends the main result of [3]
for “ordinary” inductive types to the important, and much more
difficult, higher-dimensional case.

2. Basic Homotopy Type Theory
The core of HoTT is a dependent type theory with

• dependent pair types Σx:AB(x) and dependent function types
Πx:AB(x) (with the non-dependent versions A× B and A →
B). To stay consistent with the presentation in [23], we assume
definitional η-conversion for functions but do not assume it for
pairs.
• a cumulative hierarchy of universes U0 : U1 : U2 : . . . in the

style of Russell.
• intensional identity types IdA(x, y), also denoted x =A y. We

have the usual formation and introduction rules; the elimination
and computation rules are recalled below:

E : Πx,y:AIdA(x, y)→ Ui d : Πx:AE(x, x, reflA(x))

J(E, d) : Πx,y:AΠp:IdA(x,y)E(x, y, p)

E : Πx,y:AIdA(x, y)→ Ui
d : Πx:AE(x, x, reflA(x)) a : A

J(E, d)(a, a, reflA(a)) ≡ d(a) : E(a, a, reflA(a))

These rules are, of course, applicable in any context Γ; we fol-
low the standard convention of omitting it. If the type IdA(x, y)
is inhabited, we call x and y equal. If we do not care about the
specific equality witness, we often simply say that x =A y or
if the type A is clear, x = y. A term p : x =A y will be often
called a path and the process of applying the identity elimi-
nation rule will be referred to as path induction. Definitional
equality between x, y : A will be denoted as x ≡ y : A.

We emphasize that apart from the aforementioned identity rules,
univalence, and higher inductive types there are no other rules gov-
erning the behavior of identity types - in particular, we assert nei-
ther any form of Streicher’s K-rule [22] nor the identity reflection
rule.

The rest of this section describes the univalence axiom and
some key properties of identity types; higher inductive types are
discussed in Section. 3. For a thorough exposition of homotopy
type theory we refer the reader to [23].

2.1 Groupoid laws
Proofs of identity behave much like paths in topological spaces:
they can be reversed, concatenated, mapped along functions, etc.
Below we summarize a few of these properties:

• For any path p : x =A y there is a path p−1 : y =A x, and we
have reflA(x)−1 ≡ reflA(x).
• For any paths p : x =A y and q : y =A z there is a path
p � q : x =A z, and we have reflA(x) � reflA(x) ≡ reflA(x).
• Associativity of composition: for any paths p : x =A y,
q : y =A z, and r : z =A u we have (p � q) � r = p � (q � r).
• We have reflA(x) � p = p and p � reflA(y) = p for any
p : x =A y.
• For any p : x =A y, q : y =A z we have p � p−1 = reflA(x),
p−1 � p = reflA(y), and (p−1)

−1
= p, (p � q)−1

= q−1 � p−1.
• For any type family P : A→ Ui and path p : x =A y there are

functions pP∗ : P (x) → P (y) and p∗P : P (y) → P (x), called
the covariant transport and contravariant transport, respec-
tively. We furthermore have reflA(x)P∗ ≡ reflA(x)∗P ≡ idP (x).

• We have (p−1)
P

∗ = p∗P , (p−1)
∗
P = pP∗ and (p � q)P∗ = qP∗ ◦pP∗ ,

(p � q)∗P = p∗P ◦ q∗P for any family P : A → Ui and paths
p : x =A y, q : y =A z.
• For any function f : A → B and path p : x =A y, there is

a path apf (p) : f(x) =B f(y) and we have apf (reflA(x)) ≡
reflB(f(x)).

• We have apf (p−1) = apf (p)−1 and apf (p � q) = apf (p) �

apf (q) for any f : A→ B and p : x =A y, q : y =A z.

• We have apg◦f (p) = apg(apf (p)) for any f : A → B,
g : B → C and p : x =A y.
• For a dependent function f : Πx:AB(x) and path p : x =A y,

there are paths dapf (p) : pB∗ (f(x)) =B(y) f(y) and dapf (p) :
p∗B(f(y)) =B(x) f(x). We also have dapf (reflA(x)) ≡
dapf (reflA(x)) ≡ reflB(x)(f(x)).
• All constructs respect propositional equality.

2.2 Homotopies between functions
A homotopy between two functions is in a sense a “natural trans-
formation”:

Definition 1. For f, g : Πx:AB(x), we define the type

f ∼ g := Πa:A(f(a) =B(a) g(a))

and call it the type of homotopies between f and g.

Definition 2. For f : A→ B and g : A′ → B, we define the type

f ∼H g := Πa:AΠa′:A(f(a) =B g(a′))

and call it the type of heterogeneous homotopies between f and g.

We now introduce some notation that will be needed later.

• For any f, g : X → Y , p : x =X y, α : f ∼ g, there is a path

nat(α, p) : α(x) � apg(p) = apf (p) � α(y)

• For any f : X → Z, g : Y → Z, p : x1 =X x2, q : y1 =Y y2,
α : f ∼H g, there is a path

natH(α, p, q) : α(x1, y1) � apg(q) = apf (p) � α(x2, y2)



2.3 Truncation levels
In general, the structure of paths on a typeA can be highly nontriv-
ial - we can have many distinct 0-cells x, y, . . . : A; there can be
many distinct 1-cells p, q, . . . : x =A y; there can be many distinct
2-cells γ, δ, . . . : p =x=Ay q; ad infinitum. The hierarchy of trun-
cation levels describes those types which are, informally speaking,
trivial beyond a certain dimension: a type A of truncation level n
can be characterized by the property that all m-cells for m > n
with the same source and target are equal. From this intuitive de-
scription we can see that the hierarchy is cumulative.

It is customary to also speak of truncation levels −2 and −1,
called contractible types and mere propositions respectively:

Definition 3. A type A : Ui is called contractible if there exists a
point a : A such that any other point x : A is equal to a:

is-contr(A) := Σa:AΠx:A(a =A x)

A type A : Ui is called a mere proposition if all its inhabitants are
equal:

is-prop(A) := Πx,y:A(x =A y)

Thus, a contractible type can be seen as having exactly one
inhabitant, up to equality; a mere proposition can be seen as having
at most one inhabitant, up to equality. Clearly:

Lemma 4. If A is contractible then A is a mere proposition.

The existence of a path between any two points implies more
than just path-connectedness:

Lemma 5. If A is a mere proposition, then x =A y is contractible
for any x, y : A.

Thus, contractible types are in a sense the “nicest” possible:
any two points are equal up to a 1-cell, which itself is unique up
to a 2-cell, which itself is unique up to a 3-cell, and so on. Mere
propositions are the “nicest” ones after contractible spaces. We can
now easily show:

Corollary 6. For any A, is-contr(A) and is-prop(A) are mere
propositions.

2.4 Equivalences
A crucial concept in HoTT is that of an equivalence between types.

Definition 7. A map f : A → B is called an equivalence if it has
both a left and a right inverse:

iseq(f) :=
(
Σg:B→A(g ◦ f ∼ idA)

)
×

(
Σh:B→A(f ◦ h ∼ idB)

)
We define

(A ' B) := Σf :A→B iseq(f)

and call A and B equivalent if the above type is inhabited.

Unsurprisingly, we can prove that A and B are equivalent by
constructing functions going back and forth, which compose to
identity on both sides1; this is also a necessary condition.

Lemma 8. Two types A and B are equivalent if and only if there
exist functions f : A → B and g : B → A such that g ◦ f ∼ idA
and f ◦ g ∼ idB .

We will refer to such functions f and g as forming a quasi-
equivalence and say that f and g are quasi-inverses of each other.
From this we can easily show:

Lemma 9. Equivalence of types is an equivalence relation.

1 Although the type of such functions itself is not equivalent to A ' B, see
Chpt. 4 of [23].

We callA andB logically equivalent if there are exist functions
f : A → B, g : B → A. It is immediate that if both types are
mere propositions then logical equivalence implies A ' B. For
example:

Corollary 10. For any A, is-contr(A) ' (A× is-prop(A)).

Many “diagram-like” operations on paths turn out to be equiva-
lences. For instance:

• For any u : a =X b, v : b =X d, w : a =X c, z : c =X d
there is a map

I1
� : (u = w � z � v−1)→ (u � v = w � z)

defined in the obvious way by induction on v and w. This map
is an equivalence.
• For any u : a =X b, v : b =X d, w : a =X c, z : c =X d

there is a map

I2
� : (u = w � z � v−1)→ (w−1 � u = z � v−1)

defined in the obvious way by induction on v and w. This map
is an equivalence.

2.5 Structure of path types
Let us first consider the product typeA×B. We would like for two
pairs c, d : A×B to be equal precisely when their first and second
projections are equal. By path induction we can easily construct a
function

=E×c,d : (c = d)→ (π1(c) = π1(d))× (π2(c) = π2(d))

We can show:

Lemma 11. The map =E×c,d is an equivalence for any c, d : A×B.

We will denote the quasi-inverse of =E×c,d by ×E=
c,d. For brevity we

will often omit the subscripts.
We have a similar correspondence for dependent pairs; however,

the second projections of c, d : Σx:AB(x) now lie in different
fibers of B and we employ (covariant) transport. By path induction
we can define a map

=EΣ
c,d : (c = d)→ Σ(p:π1(c)=π1(d))(p

B
∗ (π2(c)) = π2(d))

Lemma 12. The map =EΣ
c,d is an equivalence for any c, d :

Σx:AB(x).

We will denote the quasi-inverse of =EΣ
c,d by ΣE=

c,d. We also have
an analogous correspondence using a contravariant transport.

We would like for two types A,B : Ui to be equal precisely
when they are equivalent. As before, we can easily obtain a function

=E'A,B : (A = B)→ (A ' B)

The univalence axiom now states that this map is an equivalence:

Axiom 1 (Univalence). The map =E'A,B is an equivalence for any
A,B : Ui.

We will denote the quasi-inverse of =E'A,B by 'E=
A,B .

It follows from univalence that equivalent types are equal and
hence they satisfy the same properties:

Lemma 13. For any type family P : Ui → Uj , and typesA,B : Ui
with A ' B, we have that P (A) ' P (B). Thus in particular,
P (A) is inhabited precisely when P (B) is.

Finally, two functions f, g : Πx:AB(x) should be equal pre-
cisely when there exists a homotopy between them. Constructing a
map

=EΠ
f,g : (f = g)→ (f ∼ g)



is easy. Showing that this map is an equivalence (or even construct-
ing a map in the opposite direction) is much harder, and is in fact
among the chief consequences of univalence:

Lemma 14. The map =EΠ
f,g is an equivalence for any f, g :

Πx:AB(x).

Proof. See Chpt. 4.9 of [23].

We will denote the quasi-inverse of =EΠ
f,g by ΠE=

f,g .

3. Higher Inductive Types
In this section we describe some higher inductive types of interest
and use these specific examples as an introduction to the terminol-
ogy and methodology that will follow in Sect. 4.

An inductive type X can be understood as being freely gener-
ated by a collection of constructors: in the familiar case of natural
numbers, we have the two constructors for zero and successor. The
property of being freely generated can be stated as an induction
principle: in order to show that a property P : N → Ui holds for
all n : N, it suffices to show that it holds for zero and is preserved
by the successor operation. As a special case, we get the recursion
principle: in order to define a map f : N→ C, is suffices to deter-
mine its value at zero and its behavior with respect to successor.

Higher inductive types generalize ordinary inductive types by
allowing constructors involving path spaces of X rather than just
X itself, as the next example shows.

3.1 The circle
The unit circle S1 is represented as an inductive type S : U0 with
two constructors [13]:

base : S
loop : base =S base

pictured as

base

loop

This in particular means that we have further paths, such as loop−1 �
loop � loop � reflS(base) (which is equal to loop).

We can reason about the circle using the principle of circle
recursion, also called simple elimination for S, which tells us that
in order to construct a function out of S into a type C, it suffices to
supply a point c : C and a loop s : c =C c.

C : Ui c : C s : c =C c

recS(C, c, s) : S→ C

Furthermore, the recursor has the expected behavior on the 0-cell
constructor base (we omit the premises):

recS(C, c, s)(base) ≡ c : C

We also have a computation rule for the 1-cell constructor loop:

aprecS(C,c,s)(loop) =IdC(c,c) s

This rule type-checks by virtue of the previous one. We note that in
order to record the effect of the recursor on the path loop, we use the
“action-on-paths” construct ap. Since this is a derived notion rather
than a primitive one, we state the rule as a propositional rather than
definitional equality.

We also have the more general principle of circle induction,
also called dependent elimination for S, which subsumes recursion.
Instead of a type C : Ui we now have a type family E : S → Ui.
Where previously we required a point c : C, we now need a point
e : E(base). Finally, an obvious generalization of needing a loop
s : c =C c would be to ask for a loop d : e =E(base) e. However,
this would be incorrect: once we have our desired inductor of type
Πx:SE(x), its effect on loop is not a loop at e in the fiber E(base)
but a path from loopE∗ (e) to e in E(base) (or its contravariant
version). The induction principle thus takes the following form:

E : S→ Ui e : E(base) d : loopE∗ (e) =E(base) e

indS(E, e, d) : Πx:SE(x)

We have the associated computation rules:

indS(E, e, d)(base) ≡ e : E(base)

dapindS(E,e,d)(loop) =IdE(base)(loopE∗ (e),e) d

3.2 The circle, round two
We could have alternatively represented the circle as an inductive
type Sa : U0 with four constructors:

north : Sa
south : Sa

east : north =Sa south

west : north =Sa south

pictured as

north

south

east west

We now have the recursion principle

C : Ui c : C d : C p : c =C d q : c =C d

recSa(C, c, d, p, q) : Sa → C

with the computation rules

recSa(C, c, d, p, q, north) ≡ c : C

recSa(C, c, d, p, q, south) ≡ d : C

and

aprecSa (C,c,d,p,q)(east) = p

aprecSa (C,c,d,p,q)(west) = q

The corresponding induction principle is

E : Sa → Ui u : E(north) v : E(south)

µ : eastE∗ (u) =E(south) v ν : westE∗ (u) =E(south) v

indSa(E, u, v, µ, ν) : Πx:SaE(x)

with the associated computation rules

indSa(E, u, v, µ, ν, north) ≡ u : E(north)

indSa(E, u, v, µ, ν, south) ≡ v : E(south)

and

dapindSa (E,u,v,µ,ν)(east) = µ

dapindSa (E,u,v,µ,ν)(west) = ν



As expected, the two circle types are equivalent:

Lemma 15. We have S ' Sa.

Proof sketch. From left to right, map base to north and loop to
east � west−1. From right to left, map both north and south to
base, east to loop, and west to reflS(base). Using the respective
induction principles, show that these two mappings compose to
identity on both sides and apply Lem. 8.

3.3 Computation laws, revisited
By Lem. 15 the types S and Sa are equivalent and hence satisfy the
same properties (see Lem. 13). We would thus expect the induction
principle for S to carry over to Sa, and vice versa. Indeed, with a
little effort we can show the former:

Lemma 16. The type Sa satisfies the induction and computation
laws for S, with north acting as the constructor base and east �
west−1 acting as the constructor loop.

In the other direction, though, we hit a snag - the only obvious
choice we have is to define both points north and south to be base,
one of the paths west and east to be loop, and the other one the
identity path at base. This, however, does not give us the desired
induction principle: unless the two given points u : E(base) and
v : E(base) happen to be definitionally equal, we will not be able
to map base to both of them, as required by the computation rules.

This poses more than just a conceptual problem - in mathe-
matics, we often have several possible definitions of a given no-
tion, all of which are interchangeable from the point of view of a
“user”. Having two definitions of a circle which are not (known
to be) interchangeable, however, can be problematic: any theorem
we establish about or by appealing to Sa might no longer hold -
or even type-check! - when using S instead. To see this, take the
second computation law for Sa, dapindSa (E,u,v,µ,ν)(west) = ν. If
we attempt to “implement” Sa using the circle S instead - by tak-
ing north, south := base, east := loop, west := reflS(base) as in
the proof of Lem. 15 - the computation law is no longer well-typed
since the left-hand side reduces to a reflexivity path whereas the
right hand side is a path from u to v.

This is one of the motivations for considering inductive types
with propositional computation behavior: we now want to investi-
gate types which “act like the circle” up to propositional equality.
In the case of S, such a type C : Ui should come with a point b : C
and loop l : c =C c. In the case of Sa, such a type should come
with two points n, s : C and two paths e, w : n =C s. We can
express this more concisely as follows:

Definition 17. Define the type of S-algebras on a universe Ui as

S-AlgUi := ΣC:UiΣb:C(b = b)

Definition 18. Define the type of Sa-algebras on a universe Ui as

Sa-AlgUi := ΣC:UiΣn,s:C(n = s)× (n = s)

We are now interested in maps between algebras which in a
suitable sense preserve the distinguished points and paths, i.e., al-
gebra homomorphisms. A homomorphism between two S-algebras
(C, c, p) and (D, d, q) should be a function f : C → D for which
we have a path β : f(c) = d. Furthermore, f should also appropri-
ately relate p and q. To figure out what this means, we observe that
if we map p along f , we obtain a path apf (p) : f(c) = f(c). Each
of the (identical) endpoints is equal to d, via the path β. Thus, we
now have another path β−1 � apf (p) � β : d = d. It is reasonable to
require that this path be equal to q, i.e., that the following diagram
commutes:

f(c) f(c)

d d

apf (p)

β β

q

Likewise, a homomorphism between two Sa-algebras (C, a, b, p, q)
and (D, c, d, r, s) should be a function f : C → D for which we
have paths β : f(a) = c, γ : f(b) = d and for which the following
diagrams commute:

f(a) f(b)

c d

apf (p)

β γ

r

f(a) f(b)

c d

apf (q)

β γ

s

In other words, an S- or Sa-homomorphism behaves just like a
function constructed by the appropriate circle recursion, albeit with
propositional computation laws for points and paths. We can ex-
press this as follows:

Definition 19. For algebras X : S-AlgUi , Y : S-AlgUj , define the
type of S-homomorphisms from X to Y by

S-Hom (C, c, p) (D, d, q) :=

Σf :C→DΣβ:f(c)=d

(
apf (p) � β = β � q

)
Definition 20. For algebras X : Sa-AlgUi , Y : Sa-AlgUj , define
the type of Sa-homomorphisms from X to Y by

Sa-Hom (C, a, b, p, q) (D, c, d, r, s) := Σf :C→DΣβ:f(a)=c

Σγ:f(b)=d

(
apf (p) � γ = β � r

)
× (apf (q) � γ = β � s)

We note that to be able to form the type of homomorphisms
as we just did, it is crucial to have the computation laws stated
propositionally. The recursion principle now becomes a property
internal to the type theory and can be expressed compactly as
saying that there is a homomorphism into any other algebra Y:

Definition 21. An algebra X : S-AlgUi satisfies the S-recursion
principle on a universe Uj if for any algebra Y : S-AlgUj there
exists a homomorphism from X to Y:

has-S-recUj (X ) :=
(
ΠY : S-AlgUj

)
S-Hom X Y

Definition 22. An algebra X : Sa-AlgUi satisfies the Sa-recursion
principle on a universe Uj if for any algebra Y : Sa-AlgUj there
exists a homomorphism from X to Y:

has-Sa-recUj (X ) :=
(
ΠY : Sa-AlgUj

)
Sa-Hom X Y

To express the induction principle in a similar fashion, we first
need to introduce dependent or fibered versions of algebras and
algebra homomorphisms:

Definition 23. Define the type of fibered S-algebras on a universe
Uj over an algebra X : S-AlgUi by

S-Fib-AlgUj (C, c, p) := ΣE:C→Uj Σe:E(c)

(
pE∗ (e) = e

)
Definition 24. Define the type of fibered Sa-algebras on a universe
Uj over an algebra X : Sa-AlgUi by

Sa-Fib-AlgUj (C, c, d, p, q) :=

ΣE:C→Uj Σu:E(c)Σv:E(d)

(
pE∗ (u) = v

)
×

(
qE∗ (u) = v

)



Definition 25. For algebras X : S-AlgUi , Y : S-Fib-AlgUj X ,
define the type of fibered S-homomorphisms from X to Y by

S-Fib-Hom (C, c, p) (E, e, q) :=

Σf :(Πx:C)E(x)Σβ:f(c)=e

(
dapf (p) � β = appE∗ (β) � q

)
Pictorially, the last component witnesses the commuting diagram

pE∗ (f(c)) f(c)

pE∗ (e) e

dapf (p)

appE∗
(β) β

q

Definition 26. For algebras X : Sa-AlgUi , Y : Sa-Fib-AlgUj X ,
define the type of fibered Sa-homomorphisms from X to Y by

Sa-Fib-Hom (C, a, b, p, q) (D, c, d, r, s) := Σf :(Πx:C)E(x)

Σβ:f(a)=cΣγ:f(b)=d

(
dapf (p) � γ = appE∗ (β) � r

)
×

(dapf (q) � γ = apqE∗ (β) � s)

Pictorially, the last two components witness the commuting dia-
grams

pE∗ (f(a)) f(b)

pE∗ (c) d

dapf (p)

appE∗
(β) γ

r

pE∗ (f(a)) f(b)

pE∗ (c) d

dapf (q)

appE∗
(β) γ

s

The induction principle can now be expressed as saying that there
is a fibered homomorphism into any fibered algebra Y:

Definition 27. An algebra X : S-AlgUi satisfies the S-induction
principle on a universe Uj if for any fibered algebraY : S-AlgUj X
there exists a fibered homomorphism from X to Y:

has-S-indUj (X ) :=
(
ΠY : S-Fib-AlgUj

)
S-Fib-Hom X Y

Definition 28. An algebra X : Sa-AlgUi satisfies the Sa-induction
principle on universe Uj if for any fibered algebra Y : Sa-AlgUj X
there exists a fibered homomorphism from X to Y:

has-Sa-indUj (X ) :=
(
ΠY : Sa-Fib-AlgUj

)
Sa-Fib-Hom X Y

3.4 Relating the two circles
We first note that the notions of S-algebras and Sa-algebras are in
fact the same:

Lemma 29. We have a function

S-to-Sa-AlgUi : S-AlgUi → Sa-AlgUi
which is an equivalence.

Proof. Define the equivalence between S-AlgUi and Sa-AlgUi by
the quasi-inverses

(C, c, p) 7→ (C, c, c, p, refl(c))

(C, a, b, p, q) 7→ (C, a, p � q−1)

Next, we note that the notions of fibered S-algebras and fibered
Sa-algebras are the same, in the following sense:

Lemma 30. For any algebra X : S-AlgUi we have a function

S-to-Sa-Fib-AlgUi(X ) :

S-Fib-AlgUi X → Sa-Fib-AlgUi
(
S-to-Sa-AlgUi X

)
which is an equivalence.

Proof. Fix algebra (C, c, p) : S-AlgUi . Define the equivalence be-
tween S-Fib-AlgUi (C, c, p) and Sa-Fib-AlgUi (C, c, c, p, refl(c))
by the quasi-inverses

(E, e, q) 7→ (E, e, e, q, refl(e))

(E, a, b, r, s) 7→ (E, a, r � s−1)

The notions of S-homomorphisms and Sa-homomorphisms also
coincide:

Lemma 31. For any algebras X : S-AlgUi , Y : S-AlgUj we have

S-Hom X Y ' Sa-Hom
(
S-to-Sa-AlgUi X

) (
S-to-Sa-AlgUi Y

)
Finally, the respective fibered versions of S-homomorphisms

and Sa-homomorphisms coincide:

Lemma 32. For any algebras X : S-AlgUi , Y : S-Fib-AlgUj X
we have

S-Fib-Hom X Y '
Sa-Fib-Hom

(
S-to-Sa-AlgUi X

) (
S-to-Sa-Fib-AlgUi(X ) Y

)
We can now show that S-recursion is the same as Sa-recursion,

and likewise for induction:

Lemma 33. For any X : S-AlgUi we have

has-S-recUj (X ) ' has-Sa-recUj (S-to-Sa-AlgUi(X ))

has-S-indUj (X ) ' has-Sa-indUj (S-to-Sa-AlgUi(X ))

Corollary 34. The Sa-algebra (S, base, base, loop, reflS(base))
satisfies the Sa-induction principle on any universe Uj .

Corollary 35. The S-algebra (Sa, north, east � west−1) satisfies
the S-induction principle on any universe Uj .

3.5 Propositional truncation
Another example of a higher inductive type is the propositional
truncation ||A|| : Ui of a type A : Ui, investigated in [1] in an
extensional setting under the name bracket types. Intuitively, ||A||
represents the “squashing” of A which makes all the elements in
A equal. The need for such a type arises when we wish to hide
information: having a term a : A is very different from having
a b : ||A||. In the latter case, we know that the provable failure
of A to be inhabited, that is, a term of type A → 0, would lead
to a contradiction. However, we do not have a generic way of
constructing an inhabitant of A.

Formally, we define ||A|| as the higher inductive type generated
by a constructor | · |, which projects a given element of A down to
||A||, and a truncation constructor, which states that ||A|| is indeed
a mere proposition2:

| · | : A→ ||A||
sq : Πx,y:||A||(x =||A|| y)

As usual, the recursion principle states that given a structure of
the same form, we have a function out of ||A|| which preserves the
constructors:

C : Uj c : A→ C s : Πx,y:C(x =C y)

rec||A||(C, c, s) : ||A|| → C

where for each a : A we have

rec||A||(C, c, s, |a|) ≡ c(a) : C

2 Hence the name propositional truncation; see Chpt. 6 of [23] for other
kinds of truncation.



and for each k, l : ||A|| we have

aprec||A||(C,c,s)
(sq(k, l)) =

s
(
rec||A||(C, c, s, k), rec||A||(C, c, s, l)

)
We note that we are only able to eliminate into types which are
themselves mere propositions. This together with Lem. 5 implies
that the second computation law always holds. We have included it
nonetheless to illustrate the general pattern.

To state the induction principle, we need to suitably general-
ize the last hypothesis. As before, we note that once the desired
map f : Πx:||A||E(x) is constructed, it will give us a path from
sq(k, l)E∗ (f(k)) to f(l) in E(l) for any k, l : ||A||. Hence, E
should already come equipped with such a family of paths - except,
of course, we have no way of referring to f(k) and f(l) before f is
constructed. Thus, we simply require that such a path exists for all
points u : E(k) and v : E(l):

E : ||A|| → Uj e : Πa:AE(|a|)
q : Πx,y:||A||Πu:E(x)Πv:E(y)

(
sq(x, y)E∗ (u) =E(y) v

)
ind||A||(E, e, q) : Πx:||A||E(x)

where for each a : A we have

ind||A||(E, e, q, |a|) ≡ e(a) : E(|a|)
and for each k, l : ||A|| we have

dapind||A||(E,e,q)
(sq(k, l)) =

q
(
k, l, ind||A||(E, e, q, k), ind||A||(E, e, q, l)

)
The second rule again turns out to always hold, as we will see
shortly.

3.6 Revisiting the truncation computation laws
We point out that the truncation ||A|| as defined has its share
of unexpected behavior. For instance, as the type N of natural
numbers is inhabited, it follows that ||N|| = 1. It is not obvious,
however, how to turn 1 itself into a truncation of N, since the first
computation law ought to hold definitionally. More surprising yet
is the observation by N. Kraus in [10] that there exists a map f such
that f ◦ | · | ≡ idN; this is another somewhat strange side effect of
the definitional computation law for | · |.

In light of these issues, we follow our methodology for circles
and investigate types which “act like the type ||A||” up to proposi-
tional equality. We have the following:

Definition 36. Define the type of ||A||-algebras on a universe Uj
as

||A||-AlgUj := ΣC:Uj (A→ C)× is-prop(C)

A natural definition of an algebra homomorphism between two
||A||-algebras (C, c, p) and (D, d, q) is a map f : C → D together
with path families

β : Πa:A

(
f(c(a)) = d(a)

)
γ : Πx,y:C

(
apf (p(x, y)) = q(f(x), f(y))

)
However, the type D is a mere proposition. Thus by Lem. 5 and
the fact that a family of contractible types is itself contractible, it
follows that both of the above types are equivalent to 1. Hence, we
have the simple definition:

Definition 37. For algebras X : ||A||-AlgUj , Y : ||A||-AlgUk ,
define the type of ||A||-homomorphisms from X to Y by

||A||-Hom (C, c, p) (D, d, q) := C → D

As before, the recursion principle states that there is a homomor-
phism to any other algebra Y:

Definition 38. An algebra X : ||A||-AlgUj satisfies the recursion
principle on a universe Uk if for any algebra Y : ||A||-AlgUk there
exists a ||A||-homomorphism from X to Y:

has-||A||-recUk (X ) :=
(
ΠY : ||A||-AlgUk

)
||A||-Hom X Y

Based on the ||A||-elimination rule, a natural definition of a
fibered algebra over (C, c, p) is a family of types E : C → Uk
endowed with a function e : Πa:AE(c(a)) and path family

q : Πx,y:CΠu:E(x)Πv:E(y)(p(x, y)E∗ (u) = v)

Using the fact that C is a mere proposition, we can show, however,
that the above type is equivalent to the condition that E is a family
of mere propositions, Πx:C is-prop(E(x)). We can thus define:

Definition 39. Define the type of fibered ||A||-algebras on a uni-
verse Uk over X : ||A||-AlgUj by

||A||-Fib-AlgUk (C, c, p) :=

ΣE:C→Uk
(
Πa:AE(c(a))

)
×

(
Πx:C is-prop(E(x))

)
Analogously to the non-fibered case, a natural definition of a

fibered ||A||-homomorphism from (C, c, p) to (E, e, q) is a func-
tion f : Πx:CE(x) together with path families

β : Πa:A

(
f(c(a)) = e(a)

)
γ : Πx,y:C

(
dapf (p(x, y)) = q(x, y, f(x), f(y))

)
Since E is a family of mere propositions, by exactly the same
reasoning we get that both of the above types are equivalent to 1.
Hence, we can define:

Definition 40. For algebras X : ||A||-AlgUj , Y : ||A||-AlgUk X ,
define the type of fibered ||A||-homomorphisms from X to Y by

||A||-Fib-Hom (C, c, p) (E, e, q) := Πx:CE(x)

As before, the induction principle states that there is a fibered
homomorphism to any fibered algebra Y:

Definition 41. An algebra X : ||A||-AlgUj satisfies the ||A||-
induction principle on a universe Uk if for any fibered algebra
Y : ||A||-AlgUk X there exists a fibered homomorphism from X
to Y:

has-||A||-indUk (X ) :=(
ΠY : ||A||-AlgUk X

)
||A||-Fib-Hom X Y

It is now easy to show that induction and recursion for ||A|| are
in fact equivalent. As we will see in the next section, this result is
an analogue of our main theorem 53. The proof given below for
truncations illustrates the basic idea behind the proof of Thm. 53.

We note that since universe levels are cumulative, the technical
restriction that k ≥ j does not pose a problem.

Lemma 42. For A : Ui, the following conditions on an algebra
X : ||A||-AlgUj are equivalent:

• X satisfies the induction principle on the universe Uk
• X satisfies the recursion principle on the universe Uk

for k ≥ j. In other words, we have

has-||A||-indUk (X ) ' has-||A||-recUk (X )

provided k ≥ j. Moreover, the two types above are mere proposi-
tions.

Proof. The fact that the types are mere propositions is clear. The di-
rection from right to left is obvious. For the other direction, fix alge-
bras (C, c, p) : ||A||-AlgUj , (E, e, q) : ||A||-Fib-AlgUk (C, c, p).
The total space Σx:CE(x) : Uk is a mere proposition, we can thus



apply recursion with the projection map a 7→ (c(a), e(a)) to get
a function f : C → Σx:CE(x). A homotopy α : fst ◦ f ∼ idC
exists as C is a mere proposition. Applying second projection and
transporting gives us a map x 7→ α(x)E∗ (π2(f(x))) and we are
done.

4. W-Suspensions as Homotopy-Initial Algebras
Here we consider a class of higher inductive types which we call
W-suspensions; informally, they combine Martin-Löf’s W-types
[18], also known as well-founded trees, with (a generalized form
of) suspensions ([23], Chpt. 6.5). Ordinary W-types allow proper
induction on the level of points but have no higher-dimensional
constructors. Suspensions, on the other hand, only provide vacuous
induction on the point level, in the form of two nullary constructors;
however, they allow us to specify an arbitrary number of path
constructors between these two points. A suitable combination of
these two classes of types keeps the phenomenons of induction and
higher-dimensionality orthogonal, which gives us a well-behaved
elimination principle.

4.1 W-suspensions
Formally, given types A,C : Ui, a type family B : A → Ui, and
functions l, r : C → A, the W-suspension W(A,B,C, l, r) : Ui
is the higher inductive type generated by the constructors

sup : Πa:A

(
B(a)→W(A,B,C, l, r)

)
→W(A,B,C, l, r)

cell : Πc:CΠt:B(l c)→W(A,B,C,l,r)Πs:B(r c)→W(A,B,C,l,r)

sup(l c, t) = sup(r c, s)

From now on we will write W instead of W(A,B,C, l, r), unless
indicated otherwise.

As in the case of ordinary W-types, the type A can be thought
of as the type of labels for points and for any a : A, the type B(a)
represents the arity of the label a, i.e., it is the index type for the
arguments of a. Similarly, the type C represents the type of labels
for paths between points. For any c : C, the terms l(c) and r(c)
determine the respective labels of the left and right endpoints of
the paths labeled by c. As can be read off from the type of the
constructor cell, each label c : C determines a family of paths in W,
one for each pair of terms t : B(l c)→W and s : B(r c)→W.

An ordinary W-type Wx:AB(x) arises as a W-suspension in the
obvious way by taking A := A, B := B, C := 0, and letting both
l and r be the canonical function from 0 intoA. We can encode the
circle S by taking A,C := 1, B(−) := 0, l(−) := ?, r(−) := ?.
The circle Sa arises when we take A,C := 2, B(−) := 0,
l(−) := >, r(−) := ⊥. Other types which can be represented in
this form include the interval type, suspensions - hence in particular
all the higher spheres Sn - and of course all ordinary inductive
types arising as W-types, e.g., natural numbers, lists, and so on.

As an additional example we consider positive integers modulo
two. Let 4 be the inductive type with constructors tt, tf, ft,ff : 4.
We put A := 4; B(tt) := 0, B(ff) := 0, B(tf) := 1, B(ft) := 1;
C := 2; l(>) := tt, l(⊥) := ff; r(>) := tf, r(⊥) := ft. The
nullary point labels tt and ff encode the positive integers one and
two, respectively. The unary point label tf represents the function
n 7→ 2n + 1 and the unary point label ft represents the function
n 7→ 2(n + 1). The path label > represents equations of the form
(tt,−) = (tf,−), to equate all odd positive integers. The path label
⊥ represents equations of the form (ff,−) = (ft,−), to equate all
even positive integers.

W-suspensions come with the expected recursion principle:
Given terms

• E : Uj
• e : Πa:A(B(a)→ E)→ E

• q : Πc:CΠu:B(l c)→EΠv:B(r c)→E
(
e(l c, u) = e(r c, v)

)
there is a recursor recW(E, e, q) : W → E. The recursor satisfies
the computation laws

• recW(E, e, q, sup(a, t)) ≡ e
(
a, recW(E, e, q) ◦ t

)
for any a : A, t : B(a)→W and

• aprecW(E,e,q)(cell(c, t, s)) =

q
(
c, recW(E, e, q) ◦ t, recW(E, e, q) ◦ s

)
for any c : C, t : B(l c) → W, s : B(r c) → W. Similarly, we
have an induction principle: Given terms

• E : W→ Uj
• e : Πa:AΠt:B(a)→W

(
Πb:B(a)E(t b)

)
→ E(sup(a, t))

• q : Πc:CΠt:B(l c)→WΠu:(Πb:B(l c))E(t b)Πs:B(r c)→W

Πv:(Πb:B(r c))E(s b)

(
cell(c, t, s)E∗ e(l c, t, u) = e(r c, s, v)

)
there is an inductor indW(E, e, q) : Πw:WE(w). The inductor
satisfies the computation laws

• indW(E, e, q, sup(a, t)) ≡ e
(
a, t, indW(E, e, q) ◦ t

)
for any a : A, t : B(a)→W and

• dapindW(E,e,q)(cell(c, t, s)) =

q
(
c, t, indW(E, e, q) ◦ t, s, indW(E, e, q) ◦ s

)
for any c : C, t : B(l c)→W, s : B(r c)→W.

Following the now-familiar pattern, we define W-suspension
algebras and homomorphisms:

Definition 43. Define the type of W-algebras on a universe Uj by

W-AlgUj (A,B,C, l, r) := type of triples (D, d, p)

where

• D : Uj
• d : Πa:A(B(a)→ D)→ D
• p : Πc:CΠu:B(l c)→DΠv:B(r c)→D

(
d(l c, u) = d(r c, v)

)
As before, we will keep the parameters A,B,C, l, r implicit if

no confusion arises in doing so.

Definition 44. Define the type of fibered W-algebras on a universe
Uk over X : W-AlgUj by

W-Fib-AlgUk (D, d, p) := type of triples (E, e, q)

where

• E : D → Uk
• e : Πa:AΠt:B(a)→D

(
Πb:B(a)E(t b)

)
→ E(d(a, t))

• q : Πc:CΠt:B(l c)→DΠs:B(r c)→DΠu:(Πb:B(l c))E(t b)

Πv:(Πb:B(r c))E(s b)

(
p(c, t, s)E∗ e(l c, t, u) = e(r c, s, v)

)
In order to express the type of homomorphisms between two W-

algebras, we again need to use propositional instead of definitional
equality.

Definition 45. For X : W-AlgUj and Y : W-AlgUk , define the
type of W-homomorphisms from X to Y by

W-Hom (D, d, p) (E, e, q) := type of triples (f, β, θ)

where

• f : D → E
• β : Πa:AΠt:B(a)→D

(
f(d(a, t)) = e(a, f ◦ t)

)



• θ : Πc:CΠt:B(l c)→DΠs:B(r c)→D

(
apf (p(c, t, s)) =

β(l c, t) � q(c, f ◦ t, f ◦ s) � β(r c, s)−1
)

Pictorially, θ(c, t, s) witnesses the commuting diagram:

f(d(l c, t)) f(d(r c, s))

e(l c, f ◦ t) e(r c, f ◦ s)

apf (pc,t,s)

βl(c),t βr(c),s

qc,f◦t,f◦s

Definition 46. For X : W-AlgUj and Y : W-Fib-AlgUk X , define
the type of fibered W-homomorphisms from X to Y by

W-Fib-Hom (D, d, p) (E, e, q) := type of triples (f, β, θ)

where

• f : Πx:DE(x)
• β : Πa:AΠt:B(a)→D

(
f(d(a, t)) = e(a, t, f ◦ t)

)
• θ : Πc:CΠt:B(l c)→DΠs:B(r c)→D

(
dapf (p(c, t, s)) =

app(c,t,s)E∗ (β(l c, t)) � q(c, t, s, f ◦ t, f ◦ s) � β(r c, s)−1
)

Pictorially, θ(c, t, s) witnesses the commuting diagram:

(pc,t,s)
E
∗ (f(d(l c, t))) f(d(r c, s))

(pc,t,s)
E
∗ (e(l c, t, f ◦ t)) e(r c, s, f ◦ s)

dapf (pc,t,s)

app(c,t,s)E∗ (βl(c),t) βr(c),s

qc,t,s,f◦t,f◦s

The recursion and induction principles are defined as usual:

Definition 47. An algebra X : W-AlgUj satisfies the recursion
principle on a universe Uk if for any algebra Y : W-AlgUk there
exists a W-homomorphism from X to Y:

has-W-recUk (X ) :=
(
ΠY : W-AlgUk

)
W-Hom X Y

Definition 48. An algebra X : W-AlgUj satisfies the induc-
tion principle on a universe Uk if for any fibered algebra Y :
W-AlgUk X there exists a fibered W-homomorphism from X to
Y:

has-W-indUk (X ) :=
(
ΠY : W-Fib-AlgUk X

)
W-Fib-Hom X Y

We will also need the following uniqueness properties which
state that any two (fibered) homomorphisms into any (fibered)
algebra Y are equal:

Definition 49. An algebra X : W-AlgUj satisfies the recursion
uniqueness principle on a universe Uk if for any other algebra
Y : W-AlgUk the type of W-homomorphisms from X to Y is a
mere proposition:

has-W-rec-uniqUk (X ) :=(
ΠY : W-AlgUk

)
is-prop(W-Hom X Y)

Definition 50. An algebra X : W-AlgUj satisfies the induction
uniqueness principle on a universe Uk if for any fibered algebra
Y : W-AlgUk X the type of W-homomorphisms from X to Y is a
mere proposition:

has-W-ind-uniqUk (X ) :=(
ΠY : W-Fib-AlgUk X

)
is-prop(W-Fib-Hom X Y)

We now define the key concept of homotopy-initiality [3],
which translates the notion of existence plus uniqueness into the
homotopy type-theoretic setting as contractibility:

Definition 51. An algebra X : W-AlgUj is homotopy-initial on
a universe Uk if for any other algebra Y : W-AlgUk the type of
W-homomorphisms from X to Y is contractible:

is-W-hinitUk (X ) :=
(
ΠY : W-AlgUk

)
is-contr(W-Hom X Y)

Lemma 52. For any X : W-AlgUj we have

is-W-hinitUk (X ) ' has-W-recUk (X )× has-W-rec-uniqUk (X )

4.2 Main result
Our main result establishes the equivalence between the universal
property of being homotopy-initial and the satisfaction of the in-
duction principle:

Theorem 53. For A,C : Ui, B : A → Ui, l, r : C → A, the
following conditions on an algebra X : W-AlgUj (A,B,C, l, r)
are equivalent:

• X satisfies the induction principle on the universe Uk
• X is homotopy-initial on the universe Uk

for k ≥ j. In other words, we have

has-W-indUk (X ) ' is-W-hinitUk (X )

provided k ≥ j. Moreover, the two types above are mere proposi-
tions.

By Lem. 52, homotopy-intiality is equivalent to the principles
of recursion plus recursion uniqueness. The uniqueness condition
is necessary since in general, the recursion principle does not fully
determine an inductive type: the recursion principle for the circle,
for example, is also satisfied by the disjoint union of two circles.

Before we proceed to the proof of the general case, we look at
the analogue of the main theorem for propositional truncations. We
can define homotopy-initial ||A||-algebras as expected:

Definition 54. An algebra X : ||A||-AlgUj is homotopy-initial on
a universe Uk if for any other algebra Y : ||A||-AlgUk the type of
||A||-homomorphisms from X to Y is contractible:

is-||A||-hinitUk (X ) :=(
ΠY : ||A||-AlgUk

)
is-contr(||A||-Hom X Y)

Since we operate in the setting of mere propositions, we do
not have to formulate an analogous uniqueness condition, which
is uniquely satisfied and hence redundant. Instead, we have:

Lemma 55. For any X : ||A||-AlgUj we have

is-||A||-hinitUk (X ) ' has-||A||-recUk (X )

Thus, Lem. 42 is the analogue of our main result for truncations.

Proof outline A crucial step of the proof is the characterization
of the path space µ = ν between two (fibered) W-homomorphisms
µ, ν : X → Y in a more explicit form. For simplicity we only
consider the non-fibered case here. We recall that a homomorphism
between two algebras (D, d, p), (E, e, q) is a triple (f, β, θ), where
f : C → D is a function between the carrier types, β specifies
the behavior of f on the 0-cells, i.e., the value of f(d(a, t)), and
θ specifies the behavior of f on the 1-cells, i.e., the value of
apf (p(c, t, s)).

Using the characterization of paths between tuples together
with function extensionality, the path space (f, β, θ) = (g, γ, φ)
between two homomorphisms should be equivalent to a type of
triples (α, η, ψ), where α : f ∼ g is a homotopy relating the



two underlying mappings, and η, ψ relate β to γ resp. θ to φ
in an appropriate way. We will call such a triple (α, η, ψ) a W-
cell. The recursion uniqueness condition on an algebra X can then
be equivalently expressed as saying that for any algebra Y and
homomorphisms µ, ν from X to Y , there exists a W-cell between
µ and ν.

We point out that this uniqueness condition can itself be under-
stood as a certain form of induction, albeit a very specific one. The
existence of a W-cell between any two homomorphisms (f, β, θ),
(g, γ, φ) in particular guarantees the existence of a dependent func-
tion α : Πx:X(f(x) = g(x)) - the “inductor”. The behavior of
α on the 0-cells, i.e., the value of α(d(a, t)), is specified by the
term η, which thus serves as a witness for the first “computation
rule”. Finally, the behavior of α on the 1-cells, i.e., the value of
dapα(p(c, t, s)), is specified by the term ψ, which hence serves
as a witness for the second “computation rule.” We observe the
same pattern in the case of propositional truncations: homomor-
phisms between ||A||-algebras are just maps between the carrier
types, hence there are no “computation rules” to speak of. A cell
between ||A||-homomorphisms f and g would just be a homotopy
α : Πx:X(f(x) = g(x)) - the “inductor”. The existence of such α
is of course a moot point since we work with mere propositions.

We can thus see why the full induction principle for W-
suspensions gives us homotopy-initiality: the latter essentially
amounts to the recursion principle plus a specific form of induction,
both of which are implied by the general induction principle. The
hardest part of the proof is showing the converse, i.e., that the gen-
eral induction principle can be recovered from homotopy-initiality.

We are now ready to give the formal definition of a W-cell.
There is an analogous definition of a fibered W-cell, which uses
the fibered versions of W-algebras and homomorphisms, and for
which we refer the reader to [21].

Definition 56. For algebras X : W-AlgUj , Y : W-AlgUk and
homomorphisms µ, ν : W-Hom X Y , we define the type of W-
cells between µ and ν by

W-Cell (D, d, p) (E, e, q) (f, β, θ) (g, γ, φ) :=

type of triples (α, η, ψ)

where

• α : f ∼ g
• η : Πa:AΠt:B(a)→D

(
α(d(a, t)) =

β(a, t) � ape(a)(
ΠE=(α ◦ t)) � γ(a, t)−1

)
• ψ asserts the commutativity of the diagram in Fig. 1 for any
c : C, t : B(l c)→ D, s : B(r c)→ D.

Pictorially, η(a, t) witnesses the commuting diagram:

f(d(a, t)) g(d(a, t))

e(a, f ◦ t) e(a, g ◦ t)

α(d(a, t))

β(a, t) γ(a, t)

ape(a)(
ΠE=(α ◦ t))

We will often leave the algebra arguments to a W-cell implicit.
Remark: Although the diagram in Fig. 1 does not explicitly

mention the term dapα(p(c, t, s)), it nevertheless specifies its value
uniquely since this term is expressible using nat(α, p(c, t, s)).

Lemma 57. For algebras X : W-AlgUj , Y : W-AlgUk and
homomorphisms µ, ν : W-Hom X Y , the path space µ = ν is

equivalent to the type of W-cells between µ and ν:

µ = ν ' W-Cell µ ν

The proof of the main result now consists of the following steps:

1) Show that the induction principle implies the recursion princi-
ple, that is for any X : W-AlgUj we have

has-W-indUk (X )→ has-W-recUk (X )

2) Show that the induction principle implies both uniqueness con-
ditions, that is for any X : W-AlgUj we have:

has-W-indUk (X )→ has-W-ind-uniqUk (X )

has-W-indUk (X )→ has-W-rec-uniqUk (X )

3) Show that the recursion plus recursion uniqueness principles
imply the induction principle, that is for any X : W-AlgUj we
have:

has-W-recUk (X )× has-W-rec-uniqUk (X )→
has-W-indUk (X )

Using Lem. 52 we thus obtain a logical equivalence between
has-W-indUk (X ) and is-W-hinitUk (X ). It remains to show that
both of these types are mere propositions. The latter is a mere
proposition by Lem. 6. To show that has-W-indUk (X ) is a mere
proposition, it is sufficient to do so under the assumption that it is
inhabited. Since X satisfies the induction principle, by the second
step it satisfies the induction uniqueness principle. This means that
for any fibered algebra Y , the type W-Fib-Hom X Y is a mere
proposition. Since a family of mere propositions is itself a mere
proposition, this finishes the proof.

We now sketch the proof of the crucial part, step three. Fix an al-
gebra (D, d, p) : W-AlgUj and assume that has-W-recUk (D, d, p)

and has-W-rec-uniqUk (D, d, p) hold. Fix any algebra (E, e, q)
fibered over (D, d, p). In order to apply the recursion principle,
we need to turn this into a non-fibered algebra (E′, e′, q′). The first
component is easy: the only reasonable choice we have is to put
E′ := Σx:DE(x); we note that since D : Uj , E : D → Uk, and
j ≤ k, we indeed have Σx:DE(x) : Uk as needed. For the second
component, we put e′(a, u) :=

(
d
(
a, π1◦u

)
, e
(
a, π1◦u, π2◦u

))
.

The last component we omit for brevity. The recursion princi-
ple then gives us a homomorphism (f, β, θ), where in particular
f : D → Σx:DE(x). We next show that the function π1 ◦ f is
in fact the identity on D (up to a homotopy). We can do this by
endowing both of the functions π1 ◦ f and idD with a homomor-
phism structure on the algebra (D, d, p); by the recursion unique-
ness principle it then follows that these homomorphisms are equal,
and in particular they are equal as maps. Thus we have a homotopy
α : π1 ◦ f ∼ idD and the underlying map of our desired fibered
homomorphism can be defined as x 7→ α(x)E∗ (π2(f(x))). Endow-
ing this map with a homomorphism structure involves a significant
amount of higher path manipulations.

To illustrate some of the issues that arise when dealing with
higher paths, we show the proof of step one. Fix an algebra
(D, d, p) : W-AlgUj and assume that has-W-indUk (D, d, p) holds.
Fix any other algebra (E, e, q). In order to apply the induction prin-
ciple, we need to turn this into a fibered algebra (E′, e′, q′). The
first two components are easy: put E′(x) := E and e′(a, t, u) :=
e(a, u). For the last component, we note that the transport be-
tween any two fibers of a constant type family is constant. We can
thus define q′(c, t, s, u, v) to be the path in Fig. 2 a). The induc-
tion principle then gives us a map f : D → E, a path family
β : Πa:CΠt:B(a)→D

(
f(d(a, t)) = e(a, f ◦ t)

)
, and for any c : C,



α(d(l c, t)) � apg(pc,t,s) apf (pc,t,s) � α(d(r c, s))

(
βl(c),t � ape(l c)(

ΠE=(α ◦ t)) � γ−1
l(c),t

)
� apg(pc,t,s) apf (pc,t,s) �

(
β(r c, s) � ape(r c)(

ΠE=(α ◦ s)) � γ−1
r(c),s

)
(
βl(c),t � ape(l c)(

ΠE=(α ◦ t))
)
�
(
γ−1
l(c),t

� apg(pc,t,s)
) (

apf (pc,t,s) � β(r c, s)
)
�
(

ape(r c)(
ΠE=(α ◦ s)) � γ−1

r(c),s

)
(
βl(c),t � ape(l c)(

ΠE=(α ◦ t))
)
�
(
qc,g◦t,g◦s � γ−1

r(c),s

) (
βl(c),t � qc,f◦t,f◦s

)
�
(

ape(r c)(
ΠE=(α ◦ s)) � γ−1

r(c),s

)

βl(c),t �
(

ape(l c)(
ΠE=(α ◦ t)) � qc,g◦t,g◦s

)
� γ−1

r(c),s βl(c),t �
(
qc,f◦t,f◦s � ape(r c)(

ΠE=(α ◦ s))
)
� γ−1

r(c),s

nat(α, p(c, t, s))

via η(l c, t) via η(r c, s)

via I2�(φ(c, t, s)) via I1�(θ(c, t, s))

via natH
(
q(c),ΠE=(α ◦ t),ΠE=(α ◦ s)

)−1

Figure 1. Diagram for the definition of a W-cell.

(pc,t,s)
7→Y
∗ (e(l c, u))

e(l c, u)

e(r c, v)

qc,u,v

a)

(pc,t,s)
7→Y
∗ (f(d(l c, t)))

f(d(l c, t))

f(d(r c, s))

apf (pc,t,s)

b)

Figure 2.

θ(c, t, s)

(pc,t,s)
7→Y
∗ (f(d(l c, t)))

f(d(r c, s))

(pc,t,s)
7→Y
∗ (e(l c, f ◦ t))

e(r c, f ◦ s)

e(l c, f ◦ t)dapf (pc,t,s)

app(c,t,s) 7→Y
∗

(β(l c, t))

β(r c, s)

qc,f◦t,f◦s

Figure 3.

t : B(l c) → D, s : B(r c) → D a witness θ(c, t, s) for the
commutativity of the diagram in Fig. 3. Using path induction we
can express dapf (pc,t,s) equivalently as the path in Fig. 2 b). Thus
the outer rectangle in the diagram in Fig. 4 commutes. Suitable
path induction shows that rectangle A commutes; hence rectangle
B commutes too and we are done.

4.3 Definability
We now show how to derive the analogue of our main result for the
circle S; the cases of Sa and other inductive types presentable as W-
suspensions follow the same methodology. In the rest of this section
we work with a specific W-suspension W(A,B,C, l, r) : U0

where A,C := 1, B(−) := 0, l(−) := ?, r(−) := ?.

A

B

(pc,t,s)
7→Y
∗ (f(d(l c, t)))

f(d(r c, s))

(pc,t,s)
7→Y
∗ (e(l c, f ◦ t))

e(r c, f ◦ s)

e(l c, f ◦ t)f(d(l c, t))

apf (pc,t,s)

app(c,t,s) 7→Y
∗

(β(l c, t))

β(r c, s)

qc,f◦t,f◦s

β(l c, s)

Figure 4.

Definition 58. An algebra X : S-AlgUj is homotopy-initial on a
universe Uk if for any other algebra Y : S-AlgUk the type of S-
homomorphisms from X to Y is contractible:

is-S-hinitUk (X ) :=
(
ΠY : S-AlgUk

)
is-contr(S-Hom X Y)

Lemma 59. We have a function

S-to-W-AlgUi : S-AlgUi →W-AlgUi

which is an equivalence.

Proof. We define the function by the mapping

(D, d, p) 7→
(
D,λaλtd, λcλtλsp

)
It is not hard to see that this is an equivalence.

Lemma 60. For any algebra X : S-AlgUi we have a function

S-to-W-Fib-AlgUi(X ) :

S-Fib-AlgUi X →W-Fib-AlgUi
(
S-to-W-AlgUi X

)
which is an equivalence.

Proof. Fix an algebra (D, d, p) : S-AlgUi . We define the function
by the mapping

(E, e, q) 7→
(
E, λaλtλue, λcλtλuλsλvq

)
It is not hard to see that this is an equivalence.



Lemma 61. For any algebras X : S-AlgUi , Y : S-AlgUj we have

S-Hom X Y 'W-Hom
(
S-to-W-AlgUi X

) (
S-to-W-AlgUi Y

)
Lemma 62. For any algebras X : S-AlgUi , Y : S-Fib-AlgUj X
we have

S-Fib-Hom X Y '
W-Fib-Hom

(
S-to-W-AlgUi X

) (
S-to-W-Fib-AlgUi(X ) Y

)
Lemma 63. For any X : S-AlgUi we have

has-S-recUj (X ) ' has-W-recUj (S-to-W-AlgUi(X ))

has-S-indUj (X ) ' has-W-indUj (S-to-W-AlgUi(X ))

is-S-hinitUj (X ) ' is-W-hinitUj (S-to-W-AlgUi(X ))

Corollary 64. For an algebra X : S-AlgUi , the following condi-
tions are equivalent:

• X satisfies the induction principle on the universe Uj
• X is homotopy-initial on the universe Uj

In other words, we have

has-S-indUj (X ) ' is-S-hinitUj (X )

Moreover, the two types above are mere propositions.

Proof. We use Lem. 63 and 53.

5. Conclusion
We have investigated higher inductive types with propositional
computational behavior and shown that they can be equivalently
characterized as homotopy-initial algebras. We have stated and
proved this result for propositional truncations and for the so-called
W-suspensions, which subsume a number of other interesting cases
- ordinary W-types, the unit circle S1, the interval type I, all sus-
pensions, and thus all the higher spheres Sn. The characterization
of these individual types as homotopy-initial algebras can be easily
obtained as a corollary to our main theorem. Furthermore, we can
readily apply the method presented here to obtain an analogous re-
sult for set truncations and set quotients. We conjecture that similar
results can be established for other higher inductive types - such as
homotopy (co)limits, tori, group quotients, or real numbers - fol-
lowing the same methodology. We are planning to formalize the
results presented here in the Coq proof assistant.

Finally, we remark that the entire field of Homotopy Type The-
ory is a subject of intense research and many questions pertaining
to higher inductive types and univalence are yet to be satisfacto-
rily answered. Two important open problems are finding a unifying
schema for general higher inductive types (see [16] for progress to-
wards this goal) and developing a computational interpretation of
HoTT (partially answered by the cubical set model [4]).
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