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Introduction
Inductive types, such as the type of natural numbers and types of well-founded trees, are one
of the fundamental ingredients of dependent type theories, including Martin-Löf ’s type theo-
ries [Nordström et al. 2000] and the Calculus of Inductive Constructions [Bertot and Castéran
2004; Coquand and Paulin-Mohring 1990]. In the present work, we investigate inductive types
using the insights provided by homotopy type theory [Univalent Foundations Program 2013]
and univalent foundations of mathematics [Voevodsky 2015].

As an introduction to the general problem that we investigate, let us consider the case of
the type of natural numbers. Its elimination rule can be seen as the propositions-as-types
translation of the familiar induction principle:

x :N ` E(x) : type c :E(0) x :N, y :E(x) ` d(x, y) :E(succ(x))

x :N ` elim(x, c, d) :E(x) .
(E)

Here, E is considered as a predicate on the type N, c as a proof that E holds for 0, and d as a
program that transforms a proof y that E holds for x :N into a proof d(x, y) that E holds for the
successor succ(x). As is well-known, the special case of the rule (E) obtained by considering the
dependent type in its premiss to be constant provides a counterpart of the familiar principle
of definition of a function by recursion:

Steve Awodey gratefully acknowledges the support of the National Science Foundation (under agreement no. DMS-
1001191), the Air Force Research Laboratory (grant no. 11NL035 and MURI grant no. FA9550-15-1-0053). Nicola
Gambino gratefully acknowledges the support of the National Science Foundation, (under agreement no. DMS-
0635607), the Air Force Research Laboratory (under agreement no. FA8655-13-1-3038), the John Templeton Foun-
dation (under grant no. 48138), and EPSRC (under grant no. EP/M01729X/1). Kristina Sojakova gratefully acknowl-
edges the support of CyLab at Carnegie Mellon (under grants DAAD19-02-1-0389 and W911NF-09-1-0273 from the
Army Research Office), and of the Air Force Research Laboratory (MURI Grant Number FA9550-15-1-0053).
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
c© 2016 ACM. 0004-5411/2016/01-ART1 $15.00
DOI: 0000001.0000001

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 2016.



1:2 S. Awodey et al.

A : type c :A y :A ` d(y) :A

x :N ` rec(x, c, d) :A .
(R)

This rule is closely related to Lawvere’s notion of a natural number object in a category [Law-
vere 1964]. Indeed, it allows us to define a function f :N → A such that each face in the
following diagram commutes:

N succ //

f

��

N

f

��

1

0
66

c ((
A

d
// A .

Within type theory, the commutativity of the diagram is expressed by judgemental equalities

f(0) = c :A , x :N ` f(succ(x)) = d(f(x)) :A ,

which can be proved as a special case of the computation rules for N.
In the notion of a natural number object, however, one not only requires the existence of

such a function f , but also its uniqueness. Remarkably, within type theories, it is possible to
use the elimination rule (E) to show that such a function f is unique up to a pointwise propo-
sitional equality, i.e. that given another function g :N→ A making the corresponding diagram
commute, there are propositional equalities φx : IdA(fx, gx) for every x :N. This suggests the
possibility of characterizing inductive types, such as the type of natural numbers, by means
of standard category-theoretic universal properties. Unfortunately, this seems to be possible
only in the presence of additional extensionality principles such as the equality reflection
rule (which forces propositional equality to coincide with judgemental equality) [Dybjer 1997;
Goguen and Luo 1993; Moerdijk and Palmgren 2000]. Without these principles, the unique-
ness up to pointwise propositional equality of the functions defined by recursion does not seem
to be sufficient to derive the elimination and computation rules for inductive types. Indeed, the
elimination rules imply not only the existence of pointwise propositional equalities, as above,
but also their essential uniqueness, expressed by a system of higher and higher propositional
equalities whose combinatorics are difficult to axiomatize directly.

The aim of this paper is to solve this problem using ideas inspired by the recent connec-
tions between type theory, homotopy theory and higher-dimensional category theory [Awodey
and Warren 2009; van den Berg and Garner 2011; Gambino and Garner 2008; Kapulkin and
Lumsdaine 2016; Lumsdaine 2010b], which are at the core of homotopy type theory [Univa-
lent Foundations Program 2013] and Voevodsky’s univalent foundations of mathematics pro-
gramme [Voevodsky 2009]. Our analysis focuses on well-ordering types (W-types for short),
which can be easily characterized as initial algebras for polynomial functors within exten-
sional type theories [Abbott et al. 2005; Dybjer 1997; Gambino and Hyland 2004; Moerdijk and
Palmgren 2000]. Our results show that in the system under consideration, a type is equivalent
to a W-type if and only if it is a homotopy-initial algebra for a polynomial functor. The notion of
homotopy-initial algebra, which we introduce here, is intended as a generalization of the stan-
dard category-theoretic notion of an initial algebra, obtained by replacing the usual existence
and uniqueness requirements by asking for the contractibility of suitable types of algebra
morphisms. The notion of homotopy-initial algebra is entirely type-theoretic, but it is inspired
by ideas of higher-dimensional category theory, where standard category-theoretic universal
properties are generalized using the topological notion of contractibility [Lurie 2009]. Our
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Homotopy-initial algebras in type theory 1:3

account of homotopy-initial algebras is entirely syntactic, and we expect future semantic ac-
counts would be given using homotopy-invariant versions of initial algebras for polynomial
functors (cf. [van den Berg and Moerdijk 2015]).

As part of our development, we also establish several results that do not have counterparts
in the extensional setting. For example, we show how the elements of the identity type be-
tween two algebra morphisms are essentially type-theoretic counterparts of the notion of an
algebra 2-cell [Blackwell et al. 1989]. This surprising fact provides further evidence for the
idea that the rules for identity types encapsulate some higher-dimensional categorical struc-
ture [van den Berg and Garner 2011; Lumsdaine 2010b]. We also analyze the complexity of
the types of proofs that a given type is homotopy-initial, showing that it is a mere proposition,
i.e. a type of homotopy level 1 [Voevodsky 2015]. Finally, we show that, under the assump-
tion of Voevodsky’s univalence axiom, a version of univalence also holds for algebras and that
such algebras, when they exist, are essentially unique, i.e. unique up to a contractible type
of propositional equalities. It may be noted that, because of the higher-dimensional structure
provided by identity types, polynomial functors may acquire further aspects not present in the
extensional setting, since the dependent types that determine polynomial functors may have
homotopy level greater than 2 (cf. [Kock 2012]).

Our development can be extended without difficulty to other kinds of inductive types, such
as coproducts A + B and the natural numbers N. In fact, in order to illustrate our ideas,
we begin the paper by considering the simpler case of the type Bool of Boolean truth values,
establishing analogues of the results proved later for W-types.

Some of the results presented here were announced in our extended abstract [Awodey et al.
2012], and are summarized in the book [Univalent Foundations Program 2013]. The present
paper expands the material outlined there by including not only all of the omitted proofs
(which requires the statement of auxiliary lemmas), but also a new, more algebraic treatment
of the elimination and computation rules for inductive types, as well as an analysis of the
complexity of the type of proofs that a type is homotopy-initial, and an investigation of the
further consequences of the univalence axiom.
Formalization. This paper is accompanied by computer files with formalized versions of our
results, written for the Coq proof assistant. The files, which are available as supplemenary
material for this paper, can be compiled with version 8.5 of the Coq proof assistant, on top
of the existing library for homotopy type theory (see the files for details). Let us point out
that, although the formalization uses only a small fragment of the type theory implemented
in Coq 8.5, it does make use of the judgemental η-rules for both Π-types and Σ-types that
are part of it; the results in this paper, instead, use the judgemental η-rule for Π-types, but
not that for Σ-types1. Because of this, we expect that our results can be formalized in other
proof-checkers, such as Agda and Lean, in which the judgemental η-rule for Σ-types is not
assumed. The reader is invited to refer to Remark 4.1 for a discussion of how the assumption
of the judgemental η-rule for Σ-types would allow minor simplifications of some of our proofs.
Organization of the paper. Section 1 reviews all of the preliminaries necessary to read the
paper and introduces the type theory H which will provide the background theory for our in-
vestigations. The rest of the paper is divided in two parts. The first part considers the type
Bool. We begin in Section 2 by defining the notions of a bipointed type, bipointed morphism,
fibered bipointed type, bipointed section analyzing homotopies between morphisms and sec-
tions in terms of identity types. We also discuss the notion of equivalence between bipointed
types. Section 3 introduces the notions of inductive bipointed type and homotopy-initial bi-
pointed type, so as to arrive at the main results, characterizing Bool up to equivalence and
exploring consequences of the univalence axiom. The second part, which comprises Sections 4

1In fact, in the extended abstract [Awodey et al. 2012] we avoided the use of the judgemental rule for Π-types as well.
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and 5, proceeds in parallel with the first part, but with algebras for a polynomial functor in-
stead of bipointed types. This second part forms the main contribution of the paper, while
the first part provides a simpler setting in which to introduce the new concepts and methods
of proof. The formal structure of the two parts is intentionally parallel, in order to guide the
reader through the more difficult, second part. We conclude the paper in Section 6 by outlining
some directions for future research.

1. HOMOTOPY-THEORETIC CONCEPTS IN TYPE THEORY
Review of type theory.
The type theories considered in this paper are formulated using the following four forms of
judgement:

A : type , A = B : type , a :A , a = b :A .

We refer to the equality relation in these judgements as judgemental equality, which should
be contrasted with the notion of propositional equality defined below. Each kind of judgement
can also be made relative to a context of variable declarations Γ, e.g. Γ ` A : type. However,
when stating deduction rules we may omit the mention of a context common to premisses
and conclusions of the rule, and we make use of other standard conventions to simplify the
exposition.

We begin by introducing a very basic version of Martin-Löf ’s type theory, denoted by M.
This type theory has rules for the following forms of type:

(Σx :A)B(x) , (Πx :A)B(x) , IdA(a, b) , U .

The rules for these types are recalled in Tables I, II, III and IV, respectively. The rules are as
in [Nordström et al. 2000], except that the rules for the type universe U are stated à la Russell
for simplicity. As usual, we refer to an element of the form appearing in the conclusion of an
introduction rule as a canonical element.

Table I. Rules for Σ-types

x :A ` B(x) : type

(Σx :A)B(x) : type

a :A b(a) :B(a)

pair(a, b) : (Σx :A)B(x)

z : (Σx :A)B(x) ` E(z) : type x :A, y :B(x) ` e(x, y) :E(pair(x, y))

z : (Σx :A)B(x) ` split(z, e) :E(z)

z : (Σx :A)B(x) ` E(z) : type x :A, y :B(x) ` e(x, y) :E(pair(x, y))

x :A, y :B(x) ` split(pair(x, y), e) = e(x, y) :E(pair(x, y))

Let us establish some notation and recall some basic facts and terminogy. First of all,
for f : (Πx :A)B(x) and a :A, we write f(a) or fa instead of app(f, a). We may also write (a, b)
instead of pair(a, b) to denote canonical elements of Σ-types. Given types A and B, the product
type A×B and the function type A→ B are defined via Σ-types and Π-types in the usual way.
As is standard, we let A↔ B =def (A→ B)× (B → A). The rules for Σ-types allow us to derive
the rules for projections
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Table II. Rules for Π-types

x :A ` B(x) : type

(Πx :A)B(x) : type

x :A ` b(x) :B(x)

(λx :A)b(x) : (Πx :A)B(x)

f : (Πx :A)B(x) a :A

app(f, a) :B(a)

x :A ` b(x) :B(x)

app((λx :A)b(x), a) = b(a) :B(a)

Table III. Rules for Id-types

A : type a :A b :A

IdA(a, b) : type

a :A

refl(a) : IdA(a, a)

x, y :A, u : IdA(x, y) ` E(x, y, u) : type x :A ` e(x) :E(x, x, refl(x))

x, y :A, u : IdA(x, y) ` J(x, y, u, e) :E(x, y, u)

x, y :A, u : IdA(x, y) ` E(x, y, u) : type x :A ` e(x) :E(x, x, refl(x))

x :A ` J(x, x, refl(x), e) = e(x) :E(x, x, refl(x))

Table IV. Rules for the type universe U

A : U x :A ` B(x) : U

(Σx :A)B(x) : U

A : U x :A ` B(x) : U

(Πx :A)B(x) : U

A : U a :A b :A

IdA(a, b) : U

A : U

A : type

c : (Σx :A)B(x)

π1(c) :A

c : (Σx :A)B(x)

π2(c) :B(π1(c)) .

We say that two elements a, b :A are propositionally equal if the type IdA(a, b) is inhabited
and write a ∼= b to denote this situation. The rules for Σ-types allow us to prove the following
propositional form of the η-rule for Σ-types:

c : (Σx :A)B(x)

ηc : Id(c, pair(π1(c), π2(c))) .
(1)

This rule asserts that every element of a Σ-type is propositionally equal to one of canonical
form.
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Remark 1.1. The judgemental version of the η-rule for Σ-types, instead, is stated as fol-
lows:

c : (Σx :A)B(x)

c = pair(π1(c), π2(c)) : (Σx :A)B(x) .
(2)

None of the type theories considered in this paper include this rule, which is instead part of
the type theory implemented in version 8.5 of the Coq proof assistant (see the formalisation
files for details). We prefer not to assume it to keep our type theories as close as possible to
Martin-Löf ’s type theories, where judgemental η-rules for inductive types are not assumed.
Remark 4.1 explains the effect of assuming the rule in (2) for our development.

The presence of the type universe U allows us to define the notion of a small type: as usual,
we say that a type A is small if it is an element of the type universe, i.e. A : U.

We write Mext for the extensional type theory obtained from M by adding the following
rule, known as the identity reflection rule:

p : IdA(a, b)

a = b :A .
(3)

This rule collapses propositional equality to definitional equality, thus making the overall sys-
tem somewhat simpler to work with, but makes type-checking undecidable [Hofmann 1997].
For this reason, it is not assumed in the most recent formulations of Martin-Löf type theo-
ries [Nordström et al. 2000] or in automated proof assistants like Coq [Bertot and Castéran
2004]. Rather than working in Mext, we work in a weaker extension of M which we now
describe.

The type theory H
The type theory H which will serve as the background theory for our development extends
the type theory M described above with two additional rules. The first additional rule is a
judgemental form of the η-rule for Π-types:

f : (Πx :A)B(x)

f = (λx :A)app(f, x) : (Πx :A)B(x) .
(4)

An immediate consequence of this rule is that we can identify a family of small types, given
by a dependent type x :A ` B(x) : U with functions B :A → U. In the following, we shall
refer to both of these as small dependent types. The second additional rule is the function
extensionality axiom, which is considered here with propositional equalities:

f : (Πx :A)B(x) g : (Πx :A)B(x) x :A ` αx : IdB(x)(f(x), g(x))

funext(f, g, α) : Id(Πx :A)B(x)(f, g) .
(5)

As we recall below, this axiom implies that the types Id(Πx :A)B(x)(f, g) and
(Πx :A)IdB(x)(fx, gx) are equivalent, which is a seemingly stronger form of function ex-
tensionality.

Note thatH does not have any ground types apart from the type universe U. This is because
these type theories are intended as background theories for our study of inductive types. The
type theory H does not include any global extensionality principles, like the identity reflec-
tion rule, the K rule, or the uniqueness of identity proofs (UIP) principle [Streicher 1993].
This makes it possible for H to have not only straightforward set-theoretic models (where
those extensionality principles are valid), but also with homotopy-theoretic models, such as
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the groupoid model [Hofmann and Streicher 1998] and the simplicial model [Kapulkin and
Lumsdaine 2016], in which the rules of H, but not the extensionality principles mentioned
above, remain valid. Indeed, H is a subsystem of the type theory used in Voevodsky’s uni-
valent foundations of mathematics programme [Voevodsky 2015]. In particular, the function
extensionality axiom in (5) is formally implied by the univalence axiom [Voevodsky 2014]
(using the fact that function extensionality, as stated in (5), follows from its special case for
function types). But, in contrast with the univalence axiom, the function extensionality axiom
is valid also in set-theoretic models. Uses of the univalence axiom will be explicitly noted.

We write Hext for the extension of H with the identity reflection rule in (3).

Remark 1.2. Our results continue to hold when the judgemental η-rule for Π-types in (4)
is weakened by replacing the judgemental equality in its conclusion with a propositional one,
which is derivable if Π-types are defined as inductive types, as done in [Nordström et al. 1990].
However, since some of our proofs can be simplified in its presence and the current version of
the Coq proof assistant assumes the rule (4), we prefer to work with it in order to keep our
presentation simpler and closer to the formalization.

Homotopy-theoretic notions in type theory
For the convenience of the reader, we review some ideas developed in more detail in [Univalent
Foundations Program 2013; Voevodsky 2015]. First of all, we will frequently refer to elements
of identity types of the form p : IdA(a, b) as paths (from a to b in A). By the Id-elimination rules,
for every dependent type

x :A ` E(x) : type , (6)

a path p : IdA(a, b) determines the so-called transport functions

p ! :E(a)→ E(b) , p∗ :E(b)→ E(a) .

These are defined so that, for x :A, the functions refl(x) ! and refl(x)∗ are definitionally equal to
the identity function 1E(x) :E(x)→ E(x). In order to emphasize the fact that dependent types
are interpreted as fibrations in homotopy-theoretic models, we sometimes refer to a dependent
type as in (6) as a fibered type over A. Accordingly, elements of the type (Πx :A)E(x) may be
referred to as sections of the fibered type. This terminology is supported by the fact that a
section f : (Πx :A)E(x) determines a function f ′ :A → E′, where E′ =def (Σx :A)E(x), defined
by f ′ =def (λx :A)pair(x, fx), which is such that π1f

′(x) = x for every x :A. We represent such
a situation with the diagram

E′

π1

��

A .

f ′

^^

Let us now review the notion of an equivalence of types. In order to do this, we need some
auxiliary notions. Recall that a type A is said to be contractible if the type

iscontr(A) =def (Σx :A)(Πy :A)IdA(x, y) (7)

is inhabited. The type iscontr(A) can be seen as the propositions-as-types translation of the
formula stating that A has a unique element. However, its homotopical interpretation is as
a space that is inhabited if and only if the space interpreting A is contractible in the usual
topological sense. Next, we define the homotopy fiber of a function f :A → B over y :B as the
type

hfiber(f, y) =def (Σx :A) IdB(fx, y) .
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A function f :A → B is then said to be an equivalence if and only if all of its homotopy fibers
are contractible, i.e. the type

isequiv(f) =def (Πy :B) iscontr(hfiber(f, y))

is inhabited. This notion of an equivalence was defined in [Voevodsky 2015] and is inspired by
homotopy-theoretic ideas. It is of particular importance since it provides a fully internal notion
of isomorphism between types. For types A and B, the type Equiv(A,B) of equivalences from A
to B is defined so that its canonical elements are pairs consisting of a function f :A → B and
a proof that it is an equivalence, i.e. we let

Equiv(A,B) =def (Σf :A→ B) isequiv(f) . (8)

We write A ' B if there is an equivalence from A to B. For example, the well-known ΠΣ-
distributivity, which is sometimes referred to as the type-theoretic axiom of choice [Martin-Löf
1984], can be expressed as an equivalence

(Πx :A)(Σy :B(x))E(x, y) ' (Σu : (Πx :A)B(x))(Πx :A)E(x, ux) . (9)

It can be shown within the type theoryH that a function f :A→ B is an equivalence if and only
if it has a two-sided inverse, i.e. there exists a function g :B → A such that the types Id(gf, 1A)
and Id(fg, 1B) are inhabited. However, the type of equivalences is not equivalent to the type
of functions with a two-sided inverse as above, but instead (as suggested by André Joyal,
cf. [Kapulkin and Lumsdaine 2016, Definition 3.1.1]) to the type of functions that have a left
inverse and a right inverse, i.e. functions g :B → A and h :B → A such that the types Id(gf, 1A)
and Id(fh, 1B) are inhabited. More precisely, for every f :A→ B, there is an equivalence

isequiv(f) '
(
(Σg :B → A)Id(gf, 1A)× (Σh :B → A)Id(fh, 1B)

)
. (10)

For our purposes, the idea of equivalences as functions with a left and a right inverse will be
most easily generalized when we consider types equipped with additional structure.

Because of the presence of the principle of function extensionality in H, identity types of
function types and of Π-types admit an equivalent description in terms of the notion of a
homotopy, which we now review. For f , g : (Πx :A)B(x), the type of homotopies between f and
g is defined by letting

Hot(f, g) =def (Πx : A)IdB(x)(fx, gx) .

We sometimes write α : f ∼ g rather than α : Hot(f, g).
One of the key insights derived from the homotopy-theoretic interpretation of type theories

is that the notion of contractibility in (7) can be used to articulate the world of types into a
hierarchy of so-called homotopy levels (or h-levels for short) according to their homotopical
complexity [Voevodsky 2015]. These are defined inductively by saying that a type A has level
0 if it is contractible and it has level n + 1 if for every x, y :A the type IdA(x, y) has level n.
Types of h-level 1 are called here mere propositions. By definition, a type A is said to be a mere
proposition if the type

isprop(A) =def (Πx :A)(Πy :A) iscontr(IdA(x, y))

is inhabited.

Characterization of identity types
We now recall that the identity types of various kinds of compound types admit an equivalent
description. We begin by considering product types and function types. Let A and B be types.
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For any c, d :A×B, and any f, g :A→ B, we have canonical maps

ext×c,d : IdA×B(c, d)→ IdA(π1c, π1d)× IdB(π2c, π2d) ,

ext→f,g : IdA→B(f, g)→ (Πx :A)IdB(fx, gx) .

Note that the codomain of the second map is Hot(f, g). These functions can be easily general-
ized to Σ-types and Π-types, so as to obtain functions

extΣ
c,d : Id(Σx :A)B(x)(c, d)→ (Σp : IdA(π1c, π1d)) IdB(π2d)(p!(π2c), π2d) ,

extΠ
f,g : Id(Πx :A)B(x)(f, g)→ (Πx :A)IdB(x)(fx, gx) .

Again, the codomain of the second map is Hot(f, g). Furthermore, for the type universe U,
there is an evident function

extU
A,B : IdU(A,B)→ Equiv(A,B) .

We refer to these functions as the extension functions for product types, function types, Σ-
types, Π-types and U, respectively. We then have that the extension functions for product types
and Σ-types can be shown to be equivalences within the type theoryM, using the (provable) η-
rule for Σ-types in (1). In [Voevodsky 2015] Voevodsky has shown that the extension functions
for function types and for Π-types, for their part, are equivalences within the type theory H,
using the function extensionality principle in (5) that is part of H. Finally, the assertion that
the extension function for the type universe is an equivalence is exactly the univalence axiom.
Thus, within the type theory H we have the following inverses to the extension functions

int×c,d :
(
IdA(π1c , π1d)× IdB(π2c, π2d)

)
→ IdA×B(c, d)

int→f,g :
(
(Πx :A)IdB(fx, gx)

)
)→ IdA→B(f, g)

intΣ
c,d :

(
(Σp : IdA(π1c, π1d))IdB(π2c)(p!π2c, π2d)

)
→ Id(Σx :A)B(x)(c, d)

intΠ
f,g : (Πx :A)IdB(x)(fx, gx)→ Id(Πx :A)B(x)(f, g) ,

and, in the extension of H with the univalence axiom, also the inverse

intU
A,B : IdU(A,B)→ Equiv(A,B) .

In the following, if the context does not create any confusion, we may omit superscripts and
subscripts when manipulating these functions, writing simply ext and int. Let us also remark
that for Σ-types we could have also used p∗ instead of p!, making the evident changes. In the
following, we shall use both, depending on which is more convenient.

Higher-dimensional categorical structure
Even if our development is entirely syntactic, many of the ideas presented in the paper are
inspired by concepts of homotopy theory and higher-dimensional algebra. Therefore, we con-
clude this preliminary section by discussing some aspects of the relationship with higher-
dimensional category theory, so as to provide further insight into our development.

First of all, observe that types and functions can be organized into an ordinary category,
where the composition and identity laws hold as judgemental equalities. Indeed, if we define
the composite g ◦ f :A→ C of f :A→ B and g :B → C by letting

g ◦ f =def (λx :A)g(fx) ,

and the identity 1A :A→ A by letting 1A =def (λx :A)x, the presence of the judgemental η-rule
for Π-types in (4) in H implies that we have judgemental equalities

h ◦ (g ◦ f) = (h ◦ g) ◦ f , 1B ◦ f = f , f ◦ 1A = f . (11)
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Because of the strict associativity, we may omit bracketing of multiple composites and some-
times write simply gf instead of g ◦ f .

The presence of identity types in our type theories, however, equips this category with
additional structure. Each type A is a weak ∞-groupoid, having elements of A as objects,
paths p : IdA(a, b) as 1-morphisms (from a to b) and elements of iterated identity types as n-
morphisms [Lumsdaine 2010b; van den Berg and Garner 2011]. We may write

q · p : IdA(a, c) , 1a : IdA(a, a) , p−1 : IdA(b, a) ,

for the path obtained by composing p : IdA(a, b) and q : IdA(a, c), for the path refl(a) : IdA(a, a),
and for the quasi-inverse of p : IdA(a, b), respectively [Hofmann and Streicher 1998]. When
manipulating this structure, we refer to the propositional equalities holding between various
composites as the groupoid laws.

The category of types and functions can then be considered informally as enriched in ∞-
groupoids (and hence as an (∞, 1)-category2), since function types A → B, just like any other
type, are ∞-groupoids. This (∞, 1)-category has types as objects, functions as 1-morphisms,
paths p : IdA→B(f, g) as 2-morphisms, and higher paths as n-morphisms. We will not need all
the structure of this higher-dimensional category (for which see [Lumsdaine 2010a]), but only
some low-dimensional layers of it which can be defined easily. For example, given functions
f1, f2 :A→ B, g :B → C and a path p : IdA→B(f1, f2), represented diagrammatically as

A

f1

""

f2

??
⇓ p B

g
// C ,

it is possible to define a path g ◦ p : IdA→C(g ◦ f1 , g ◦ f2).
Because of the equivalences Id(f, g) ' Hot(f, g) recalled above, this (∞, 1)-category can

be described equivalently as having types as objects, functions as 1-morphisms, homo-
topies α : Hot(f, g) as 2-morphisms, and higher homotopies as n-morphisms. For example,
given functions f1, f2 :A → B, g :B → C and a homotopy α : Id(f1, f2), there is a homo-
topy g ◦ α : Hot(g ◦ f1, g ◦ f2) which is defined so that, for every path p : IdA→B(f1, f2), the ho-
motopies ext(g ◦ p) and g ◦ ext(p) are propositionally equal, where ext denotes the extension
function for function types.

For the convenience of the reader, we summarize the different kinds of equalities (including
logical equivalence) used in the paper in Table V.

Table V. Symbols for equivalence relations

A = B Definitional equality of types
A ' B Equivalence of types
A↔ B Logical equivalence of types
a = b Definitional equality of elements
a ∼= b Propositional equality of elements
f ∼ g Homotopy of functions

2We follow convention of using (∞, n)-category to denote an∞-category in which k-morphisms, for k > n, are invert-
ible. An∞-groupoid is then the same thing as an (∞, 0)-category.
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2. BIPOINTED TYPES
Bipointed types and bipointed morphisms
In this section and the next, we focus on the type Bool of Boolean truth values. Our develop-
ment in these sections provides a template for what we will do for W-types in Section 4 and
Section 5 and allows us to present the key ideas in a simpler context.

The rules for the type Bool that we consider here are given in Table VI. The introduction
rules state that we have two canonical elements in Bool, written 0 and 1 here. The elimination
rule can be understood as the propositions-as-types translation of an induction principle for
Bool. Finally, the computation rules specify what happens if one applies the elimination rule
immediately after applying the introduction rule.

Table VI. Rules for the type of Boolean truth values

Bool : type 0 : Bool 1 : Bool Bool : U

x ∈ Bool ` E(x) : type e0 :E(0) e1 :E(1)

x : Bool ` boolelim(x, e0, e1) :E(x)

x ∈ Bool ` E(x) : type e0 :E(0) e1 :E(1)

boolelim(0, e0, e1) = e0 :E(0) ,

x ∈ Bool ` E(x) : type e0 :E(0) e1 :E(1)

boolelim(1, e0, e1) = e1 :E(1)

Let us now suppose that we have a small type A : U and an equivalence f : Bool → A. Then,
the type A has two distinguished elements a0 =def f(0) and a1 =def f(1), and it satisfies ana-
logues of the elimination and computation rules for Bool, except that the conclusions of the
computation rules need to be modified by replacing the judgemental equalities with proposi-
tional ones. Our aim in this section is to provide a characterisation of the small types equiva-
lent to Bool by means of a type-theoretical universal property. But in our development we do
not need to assume to have the type Bool, and rather work in the type theory H specified in
Section 1. We begin by introducing the notion of a bipointed type.

Definition 2.1. A bipointed type (A, a0, a1) is a typeA equipped with two elements a0 , a1 :A.

When referring to a bipointed type we sometimes suppress mention of its distinguished
elements and write A = (A, a0, a1) to recall this abuse of language. Similar conventions will be
used throughout the paper for other kinds of structures. In the following, it will be convenient
to represent a bipointed type A diagrammatically as follows:

1
a0 // A 1 .

a1oo

Here, the symbol 1 is purely a notational device, and does not represent the unit type, which
is not assumed as part the type theory H. The type Bool and its canonical elements 0, 1 : Bool
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give us a bipointed type:

1
0 // Bool 1 .

1oo

We say that a bipointed type A = (A, a0, a1) is small if the type A is a small type, i.e. A : U.
Accordingly, the type of small bipointed types (which is not small) is then defined by letting

Bip =def (ΣA : U)(A×A) .

Next, we introduce the notion of a bipointed morphism between bipointed types. As one might
imagine, a bipointed morphism consists of a function between the underlying types which
preserves the bipointed structure. In our context, we formalize this by requiring the existence
of appropriate paths, witnessing the preservation of structure, as the next definition makes
precise.

Let us fix two bipointed types A = (A, a0, a1) and B = (B, b0, b1).

Definition 2.2. A bipointed morphism (f, f̄0, f̄1) :A → B is a function f :A → B equipped
with paths f̄0 : Id(fa0, b0) and f̄1 : Id(fa1, b1).

Diagrammatically, we represent a bipointed morphism as follows:

1 //
a0 //

⇓ f̄0

A

f

��

1
a1oo

⇓ f̄1

1
b0

// B 1 .
b1

oo

(12)

The type of bipointed morphisms from A to B is then defined by letting

Bip(A,B) =def (Σf :A→ B)
(
Id(fa0, b0)× Id(fa1, b1)

)
.

Bipointed types and their morphisms behave much like objects and morphisms in a category.
Given two bipointed morphisms (f, f̄0, f̄1) :A → B and (g, ḡ0, ḡ1) :B → C, we can define their
composite as the triple consisting of the composite gf :A → C and the paths represented by
the following pasting diagram:

1 //
a0 //

⇓ f̄0

A

f

��

1
a1oo

⇓ f̄1

1
b0

//

⇓ ḡ0

B

g

��

1
b1

oo

⇓ ḡ1

1
c0

// C 1 .
c1

oo

Explicitly, for k ∈ {0, 1}, the path (gf)k : Id(gfak, ck) is obtained as the composite

gfak
g◦f̄k // gbk

ḡk // ck .

Also, for any bipointed type A = (A, a0, a1), the identity function 1A :A → A can be
equipped with the structure of a bipointed morphism by taking (1A)k : Id(1A(ak), ak) to be
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1ak = refl(ak) : Id(ak, ak) for k ∈ {0, 1}. We represent this as the diagram

1
a0 //

⇓ 1a0

A

1A
��

1
a1oo

⇓ 1a1

1
a0

// A 1.
a1

oo

(13)

Note that, even if associativity and unit laws for composition for functions between types hold
strictly (i.e. up to judgemental equality, cf. (11)), the associativity and unit laws for bipointed
morphisms do not. This is due to the presence of paths in their definition, in complete analogy
with the well-known situation in homotopy theory [Boardman and Vogt 1973].

We have seen in Section 1 that for types A and B, the identity type of the function type A→
B can be described equivalently as the type of homotopies between functions from A to B. As
we show next, it is possible to extend this equivalence to bipointed morphisms. In order to do
so, the next definition introduces the notion of a bipointed homotopy.

Let us now fix two bipointed morphisms f = (f, f̄0, f̄1) and g = (g, ḡ0, ḡ1) from A to B.

Definition 2.3. A bipointed homotopy (α, ᾱ0, ᾱ1) : f → g is a homotopy α : Hot(f, g) equipped
with paths ᾱ0 : Id(f̄0, ḡ0 · αa0

) and ᾱ1 : Id(f̄1, ḡ1 · αa1
).

Diagrammatically, we represent the paths involved in a bipointed homotopy as follows:

fak
αak //

f̄k --

⇒ ᾱk

gak

ḡk

��

bk ,

for k ∈ {0, 1}. The type of bipointed homotopies between f and g is then defined by letting

BipHot
(
(f, f̄0, f̄1), (g, ḡ0, ḡ1)

)
=def (Σα : Hot(f, g))

(
Id
(
f̄0, ḡ0 · αa0

)
× Id

(
f̄1, ḡ1 · αa1

))
.

Lemma 2.4 essentially says that paths between bipointed morphisms are essentially the same
thing as bipointed homotopies. This is the first instance of the suprising phenomenon, men-
tioned in the introduction, that identity types capture higher-dimensional algebraic structures
in an apparently automatic way. It should also be pointed out that, as a consequence of the
lemma, types of bipointed homotopies satisfy analogues of the rules for identity types.

LEMMA 2.4. The canonical function

extBip
f,g : Id

(
(f, f̄0, f̄1), (g, ḡ0, ḡ1)

)
→ BipHot

(
(f, f̄0, f̄1), (g, ḡ0, ḡ1))

)
.

is an equivalence of types.

PROOF. Recall that, for a path p : Id(f, g), we write ext p : Hot(f, g) for the corresponding ho-
motopy. We then have

Id
(
(f, f̄0, f̄1), (g, ḡ0, ḡ1)

)
' (Σp : Id(f, g)) Id

(
(f̄0, p

∗(ḡ0)
)
× Id

(
f̄1, p

∗(ḡ1)
)

' (Σp : Id(f, g)) Id(f̄0, ḡ0 · (ext p)a0)× Id(f̄1, ḡ1 · (ext p)a1)
)

' (Σα : Hot(f, g)) Id(f̄0, ḡ0 · αa0
)× Id(f̄1, ḡ1 · αa1

)

= BipHot
(
(f, f̄0, f̄1) (g, ḡ0, ḡ1)

)
,

as required.
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Fibered bipointed types and bipointed sections
Recall that for a dependent type

x :A ` E(x) : type

we referred to an element f : (Πx :A)E(x) as a section of the dependent type. It will be conve-
nient to extend this notion to bipointed types by introducing the following definition.

Let us fix a bipointed type A = (A, a0, a1).

Definition 2.5. A fibered bipointed type (E, e0, e1) over A is a dependent type x :A `
E(x) : type equipped with elements e0 :E(a0) and e1 :E(a1).

The type of small fibered bipointed types over a bipointed type A is then defined by letting

FibBip(A) =def (ΣE :A→ U)
(
E(a0)× E(a1)

)
.

Let us now fix a fibered bipointed type E = (E, e0, e1) over A.

The type E′ =def (Σx :A)E(x) can be equipped with the structure of a a bipointed type by
considering e′k =def pair(ak, ek) (for k ∈ {0, 1}) as distinguished elements of E′. In this way, the
first projection π1 :E′ → A becomes a bipointed morphism:

1
e′0 //

(π1)0

E′

π1

��

1
e′1oo

(π1)1

1
a0

// A 1 .
a1

oo

Definition 2.6. A bipointed section (f, f̄0, f̄1) of E is a section f : (Πx :A)E(x) equipped with
paths f̄0 : IdE(a0)(fa0, e0) and f̄1 : IdE(a1)(fa1, e1).

The type of bipointed sections of E is then defined by letting

BipSec(A,E) =def (Σf : (Πx :A)E(x))
(
IdE(a0)(fa0, e0)× IdE(a1)(fa1, e1)

)
.

Given a bipointed section f = (f, f̄0, f̄1) of E, we can define a bipointed morphism f ′ :A →
E′, where E′ = (E′, e′0, e

′
1) is the bipointed type associated to E. Its underlying function is

defined by f ′ =def (λx :A)pair(x, fx). With this definition, it is immediate to get the required
paths f̄ ′k : Id(f ′ak, e

′
k), for k ∈ {0, 1}. Note that the morphism f ′ :A → E′ provides a right

inverse for π1 :E′ → A, since for every x :A we have the judgemental equalities π1(f ′x) =
π1 pair(x, fx) = x. We represent this situation with the diagram

E′

π1

��

A.

f ′

aa

We characterize the identity type between two bipointed sections, using the notion of a bi-
pointed homotopy. This is in complete analogy with what was done for bipointed morphisms
in Lemma 2.4.

Let us now fix two bipointed sections f = (f, f̄0, f̄1) and g = (g, ḡ0, ḡ1) of E.

Definition 2.7. A bipointed section homotopy (α, ᾱ0, ᾱ1) : f → g is a homotopy α : Hot(f, g)
equipped with paths ᾱ0 : Id(f̄0, ḡ0 · αa0

) and ᾱ1 : Id(f̄1, ḡ1 · αa1
).
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The type of bipointed section homotopies between f and g as above is then defined by letting:

BipHot
(
(f, f̄0, f̄1), (g, ḡ0, ḡ1)

)
=def (Σα : Hot(f, g))

(
Id
(
f̄0, ḡ0 · αa0

)
× Id

(
f̄1, ḡ1 · αa1

))
.

LEMMA 2.8. The canonical function

extBipHot
f,g : Id

(
(f, f̄0, f̄1), (g, ḡ0, ḡ1)

)
→ BipHot

(
(f, f̄0, f̄1), (g, ḡ0, ḡ1)

)
is an equivalence of types.

PROOF. The claim follows by an argument analogous to that of Lemma 2.4.

Bipointed equivalences
We introduce the notion of equivalence between bipointed types and show in Proposition 2.12
that a bipointed morphism is an equivalence of bipointed types if and only if its underlying
function is an equivalence of types. For this, we will use the characterization of equivalence of
types as functions with a left and right inverse, which we recalled in Section 1. The character-
ization of bipointed equivalences given below will be used in Section 3 where we consider the
counterpart of the univalence axiom for bipointed types.

Definition 2.9. We say that a bipointed morphism f :A → B is a bipointed equiva-
lence if there exist bipointed morphisms g :B → A and h :B → A which provide a left
and a right bipointed inverse for f , i.e. such that there exist paths p : IdBip(A,A)(gf, 1A) and
q : IdBip(B,B)(fh, 1B).

For a bipointed morphism f :A → B, the type of proofs that f is a bipointed equivalence is
then defined by letting

isbipequiv(f) =def (Σg : Bip(B,A)) IdBip(A,A)(gf, 1A)× (Σh : Bip(A,B)) IdBip(B,B)(fh, 1B) ,

and type of bipointed equivalences between A and B is defined by letting

BipEquiv(A,B) =def (Σf : Bip(A,B)) isbipequiv(f) .

Since a bipointed equivalence is an equivalence with additional structure which ensures that
it is well-behaved with respect to the bipointed structure, Lemma 2.10 below is essentially
straightforward, but we include the details of the proof since we will need them to establish
Proposition 2.12.

LEMMA 2.10. The underlying function of a bipointed equivalence is an equivalence of types.
In particular, for every bipointed morphism f :A→ B there is a function

πf : isbipequiv(f)→ isequiv(f) .

PROOF. Let f = (f, f̄0, f̄1) be a bipointed morphism from A to B. Unfolding the definition of
isbipequiv(f) yields the type

(Σg :B → A)(Σḡ0 : Id(gb0, a0))(Σḡ1 : Id(gb1, a1))G(g, ḡ0, ḡ1)×
(Σh :B → A)(Σh̄0 : Id(hb0, a0))(Σh̄1 : Id(hb1, a1))H(h, h̄0, h̄1) , (14)

where

G(g, ḡ0, ḡ1) =def Id
(

(gf , gf0 , gf1) , (1A , 1a0
, 1a1

)
)
,

H(h, h̄0, h̄1) =def Id
(
(fh , fh0 , fh1) , (1B , 1b0 , 1b1)

)
.

The type G(g, ḡ0, ḡ1) can be thought of as the type of proofs that the bipointed morphism
gf :A → A is propositionally equal to the identity bipointed morphism 1A :A → A, while
H(h, h̄0, h̄1) can be thought of as the type of proofs that the bipointed morphism fh :B → B
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is propositionally equal to the identity bipointed morphism 1B :B → B. In particular, the
elements of G(g, ḡ0, ḡ1) can be thought of as proofs that the pasting diagram

1
a0 //

⇓ f̄0

A

f

��

1
a1oo

⇓ f̄1

1
b0

//

⇓ ḡ0

B

g

��

1
b1

oo

⇓ ḡ1

1
a0

// A 1
a1

oo

is propositionally equal to the diagram in (13) representing the identity bipointed morphism.
Using the characterization of identity types of Σ-types in Section 1, the type G(g, ḡ0, ḡ1) can

be expressed equivalently as

(Σp : Id(gf, 1A)) Id
(
(gf0 , gf1) , p∗(1a0 , 1a1)

)
,

where, for p : Id(gf, 1A),

p∗ :
(
Id(1A(a0), a0)× Id(1A(a1), a1)

)
→

(
Id(gf(a0), a0)× Id(gf(a1), a1)

)
is a transport function associated to p. Similarly, the type H(h, h̄0, h̄1) is equivalent to

(Σq : Id(fh, 1B)) Id
(
(fh0 , fh1) , q∗(1b0 , 1b1)

)
.

Thus, rearranging the order of the Σ-types in (14) and using the characterization of identity
types in product types, we get that

isbipequiv(f) '
(Σg :B → A)(Σp : Id(gf, 1A))G′(g, p)× (Σh :B → A)(Σq : Id(fh, 1B))H ′(h, q) , (15)

where

G′(g, p) =def (Σḡ0 : Id(gb0, a0)) Id(gf0, p
∗(1a0

))× (Σḡ1 : Id(gb1, a1)) Id(gf1, p
∗(1a1

)) , (16)

H ′(h, q) =def (Σh̄0 : Id(hb0, a0)) Id(fh0, q
∗(1b0))× (Σh̄1 : Id(hb1, a1)) Id(fh1 , q

∗(1b1)) . (17)

Note that the elements of G′(g, p) are 4-tuples consisting of paths ḡ0, ḡ1 making the func-
tion g into a bipointed morphism and of paths p̄0, p̄1 making the path p into a path between
bipointed morphisms. Of course, the elements H ′(h, q) admits a similar description. The re-
quired function is then obtained by composing the equivalence in (15), the projection forgetting
the components from G′(g, p) and H ′(h, q), and the equivalence in (10).

In Proposition 2.12 we will give an alternative characterisation of bipointed equivalences,
which will be used in the proof of Theorem 3.12 and Corollary 3.7. Intuitively, it asserts that for
every bipointed morphism (f, f̄0, f̄1), if the underlying function f is an equivalence of types,
there is an essentially unique way of making (f, f̄0, f̄1) into a bipointed equivalence, i.e. of
equipping the left and right inverses of f with the structure of bipointed morphisms so as to
obtain bipointed inverses.3 In order to prove this result, we need the following straightforward
lemma.

3This has several analogues in category theory. For example, consider monoidal categories C and D and a strong
monoidal functor F :C→ D which is an equivalence of categories. There is then an essentially unique way of making
a quasi-inverse of F into a strong monoidal functor so as to obtain a monoidal equivalence.
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LEMMA 2.11.

(i) Let A be a type and a, a1, a2 :A. For paths p1 : Id(a, a1), p2 : Id(a, a2), the type

(Σq : IdA(a1, a2)) Id(q · p1 , p2)

is contractible.
(ii) Let f :A → B be an equivalence, a1, a2 :A and b :B. For paths p1 : Id(b, fa1), p2 : Id(b, fa2),

the type

(Σq : IdA(a1, a2)) Id((f ◦ q) · p1, p2)

is contractible.

PROPOSITION 2.12. A bipointed morphism (f, f̄0, f̄1) :A → B is a bipointed equivalence if
and only if its underlying function f :A→ B is an equivalence. In fact, the function

πf : isbipequiv(f, f̄0, f̄1)→ isequiv(f) .

is an equivalence of types.

PROOF. Let (f, f̄0, f̄1) :A→ B be a bipointed morphism. We wish to show that the homotopy
fibers of the function πf are contractible. So, let us fix a canonical element of isequiv(f), given
by functions g :B → A, h :B → A and paths p : Id(gf, 1A) and q : Id(fh, 1B). By the definition
of πf and standard facts about the homotopy fibers, we have an equivalence

hfiber(πf , (g, h, p, q)) ' G′(g, p)×H ′(h, q) ,

where G′(g, p) and H ′(h, q) are defined in (16) and (17), respectively. We claim that G′(g, p) and
H ′(h, q) are contractible. Since the proofs are essentially the same, we consider only G′(g, p).

Let k ∈ {0, 1}. For a path p : Id(gf, 1A), the path p∗(1ak) : Id(gfak, bk) can be proved by Id-
elimination to be propositionally equal to (ext p)ak : Id(gfak, bk), where ext p : Hot(gf, 1A). Com-
bining this fact with the definition of composition of bipointed morphisms, we obtain that
G′(g, p) is equivalent to the product of the types

(Σḡk : Id(gbk, ak)) Id(ḡk · (g ◦ f̄k), (ext p)ak) ,

for k ∈ {0, 1}, which are contractible by part (i) of Lemma 2.11. Hence G′(h, p) is contractible,
as required.

COROLLARY 2.13. For any bipointed morphism (f, f̄0, f̄1), the type isbipequiv(f, f̄0, f̄1) is a
mere proposition.

3. HOMOTOPY-INITIAL BIPOINTED TYPES
Inductive bipointed types
As we mentioned at the beginning of Section 2, if a typeA is equivalent to Bool, then it satisfies
the counterparts of the elimination and computation rules for Bool in which the computation
rule is weakened by replacing the judgmental equality in its conclusion with a propositional
equality. Using the notions of a fibered bipointed type and of a bipointed section introduced
in Section 2, it is immediate to see that the these rules can be expressed equivalently by
saying that every fibered bipointed type over A has a bipointed section (cf. [Joyal 2014]). Since
bipointed types A of this kind play an important role in the following, we introduce some
terminology4 to refer to them.

4We use ‘inductive’ in analogy with the terminology used in set theory. This is not to be confused with the general
notion of an inductive type.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 2016.



1:18 S. Awodey et al.

Definition 3.1. A bipointed type A is said to be inductive if every small fibered bipointed
type over it has a bipointed section, i.e. the type

isind(A) =def (ΠE : FibBip(A))BipSec(A,E)

is inhabited.

As we will see in Proposition 3.4, the type isind(A) is a mere proposition. We define the type
of small inductive bipointed types by letting

BipInd =def (ΣA : Bip)isind(A) .

Thus, a canonical inductive bipointed type is given by a bipointed type A = (A, a0, a1) together
with a function which, given a fibered bipointed type E = (E, e0, e1) over A, returns a bipointed
section of E. Clearly, the type Bool is an inductive bipointed type. Furthermore, the property
of being inductive can be transported along equivalences, in the sense that if A and B are
equivalent bipointed types and A is inductive, then so is B. Thus, a type is equivalent to Bool
if and only if it is inductive. Below, we begin to explore some consequences of the assumption
that a bipointed type is inductive, with the goal of arriving at a characterisation of inductive
bipointed types in Theorem 3.9.

PROPOSITION 3.2. Let A = (A, a0, a1) be a bipointed type. Then A is inductive if and only
if we can derive rules of the form

(i) the elimination rule
x :A ` E(x) : U e0 :E(a0) e1 :E(a1)

x :A ` elim(x, e0, e1) :E(x) ,

(ii) the computation rules

x :A ` E(x) : U e0 :E(a0) e1 :E(a1)

compk(e0, e1) : Id
(
elim(ak, e0, e1), ek

)
,

where k ∈ {0, 1}.
PROOF. Immediate.

In the following, when we speak of an inductive bipointed type, we always assume that it
comes equipped with functions elim and compk (for k ∈ {0, 1}) as in Proposition 3.2. Note that
the rules in Proposition 3.2 are exactly the counterparts for A of the elimination rule and the
weakening computation rules for Bool obtained by restricting the eliminating type to families
of small dependent types5 and, most importantly, replacing the judgemental equality in the
conclusion with a propositional one, as mentioned above. The next proposition shows that, for
an inductive bipointed type A, not only every fibered bipointed type over it has a section, but
that such a section is unique up to a bipointed homotopy.

PROPOSITION 3.3. Let A = (A, a0, a1) be a bipointed type. If A is inductive, then the follow-
ing rules are derivable:

(i) the η-rule

x :A ` E(x) : U e0 :E(a0) e1 :E(a1) x :A ` fx :E(x) f̄0 : Id(fa0, e0) f̄1 : Id(fa1, e1)

x :A ` ηx : Id(fx, elim(x, e0, e1))

5See Remark 3.11 for further discussion of this point.
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(ii) the coherence rule
x :A ` E(x) : U e0 :E(a0) e1 :E(a1) x :A ` f(x) :E(x) f̄0 : Id(fa0, e0) f̄1 : Id(fa1, e1)

η̄k : Id
(
compk(e0, e1) · ηak , f̄k

)
where k ∈ {0, 1}.

Before proving Proposition 3.3, observe that the paths in the conclusion of the coherence
rule can be represented diagrammatically as follows:

fak
ηak //

f̄k ..

⇓ η̄k

elim(ak, e0, e1)

εk

��
ek ,

where εk =def compk(e0, e1), for k ∈ {0, 1}.
PROOF PROOF OF PROPOSITION 3.3. Let us assume the premisses of the η-rule. For x :A,

define F (x) : U by letting F (x) =def IdE(x)(fx, elim(x, e0, e1)). With this notation, proving the
conclusion of the η-rule amounts to defining ηx :F (x), for x :A. We do so using the elimination
rule for A, as stated in Proposition 3.2. Thus, we need to find elements pk :F (ak), for k ∈ {0, 1}.
Since

F (ak) = Id(fak, elim(ak, e0, e1)) ,

we define pk as the composite

fak
f̄k // ek

compk(e0,e1)−1

// elim(ak, e0, e1) .

For x :A, we can then defined the required element ηx :F (x) by letting ηx =def elim(x, p0, p1). In
order to prove the coherence rule, note that the computation rule of Proposition 3.2 gives us
a path in Id(ηak , pk), i.e. Id(ηak , compk(e0, e1)−1 · f̄k). The required paths can then be obtained
using the groupoid laws.

PROPOSITION 3.4. For every bipointed type A = (A, a0, a1), the type isind(A) is a mere
proposition.

PROOF. Recall that to prove that a type is a mere proposition, it suffices to do so under
the assumption that it is inhabited. Assume therefore that isind(A) is inhabited. Since the
dependent product of a family of mere propositions is again a mere proposition, it suffices
to show that BipSec(A,E) is a mere proposition for any E. But for any two bipointed sec-
tions f, g : BipSec(A,E), there is a bipointed homotopy α : BipHot(f, g) by Proposition 3.3 and
hence, by Lemma 2.8, there is a path p : Id(f, g), as required.

Homotopy-initial bipointed types
Let A be a small bipointed type and assume that it is inductive. We focus on the special
case of fibered bipointed types that are constant, i.e. we have E(x) = B for all x :A, where
B = (B, b0, b1) is a small bipointed type. Proposition 3.2 and Proposition 3.3 imply that there
exists a bipointed morphism f :A → B, which is unique in the sense that for any bipointed
morphism g :A→ B there is a bipointed homotopy α : BipHot(f, g). Thus, by Lemma 2.4, there
is a path p : IdBip(A,B)(f, g). Furthermore, it can be shown that such a path is itself unique up
to a higher path, which in turn is unique up to a yet higher path, and so on.

The key point in our development (described for Bool below and for W-types in Section 5)
is that this sort of weak ∞-universality, which apparently involves infinitely much data, can
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be captured fully within the system of type theory (without resorting to coinduction) using
ideas inspired by homotopy theory and higher-dimensional category theory. Indeed, in spite
of the fact that bipointed types and morphisms do not form a category in a strict sense, it is
possible to introduce the notion of a homotopy-initial bipointed type in completely elementary
and explicit terms, as in Definition 3.5 below. This provides the template for the definition of
a homotopy-initial algebra, which we will introduce in Section 5 in relation to W-types.

Definition 3.5. A small bipointed type A is said to be homotopy-initial if for any small
bipointed typeB, the type Bip(A,B) of bipointed morphisms fromA toB is contractible, i.e. the
type

ishinit(A) =def (ΠB : Bip) iscontr(Bip(A,B))

is inhabited.

Let us remark that the uniqueness implicit in Definition 3.5 requires that any two bipointed
morphisms are propositionally equal as tuples. It should also be noted that the property of be-
ing homotopy-initial can be transported along equivalences, in the sense that if two bipointed
types are equivalent, then one is homotopy-initial if and only if the other one is.

PROPOSITION 3.6. For every bipointed type A, the type ishinit(A) is a mere proposition.

PROOF. Recall that, for a type X, the type iscontr(X) is a mere proposition and that the
dependent product of family of mere propositions is again a mere proposition.

The next result is the counterpart of the familiar fact that objects characterized by universal
properties are unique up to a unique isomorphism.

PROPOSITION 3.7. Homotopy-initial small bipointed types are unique up to a contractible
type of bipointed equivalences, i.e. the type

(ΠA : Bip)(ΠB : Bip)
(
ishinit(A)× ishinit(B)→ iscontr(BipEquiv(A,B))

)
.

is inhabited.

PROOF. Let A and B be homotopy-initial bipointed types. Recall that
BipEquiv(A,B) = (Σf : Bip(A,B))isbipequiv(f) .

We know that Bip(A,B) is contractible. Recalling that the dependent sum of a family of con-
tractible types over a contractible type is contractible, it suffices to show that, for f : Bip(A,B),
the type isbipequiv(f) is contractible. Since isbipequiv(f) is a mere proposition by Proposi-
tion 2.12, we only need to prove that it is inhabited. But the existence of a right and a left
bipointed inverse for f follows immediately by the assumption that A and B are homotopy-
initial.

The next proposition spells out a characterization of homotopy-initial bipointed types in
terms of type-theoretic rules.

PROPOSITION 3.8. A small bipointed type A = (A, a0, a1) is homotopy-initial if and only if
we can derive rules of the following form:

(i) the recursion rule
B : U b0 :B b1 :B

x :A ` rec(x, b0, b1) :B ,

(ii) the β-rules
B : U b0 :B b1 :B

βk : Id(rec(ak, b0, b1), bk) ,

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 2016.



Homotopy-initial algebras in type theory 1:21

where k ∈ {0, 1},
(iii) the η-rule

(B, b0, b1) : Bip (f, f̄0, f̄1) : Bip(A,B)

x :A ` ηx : Id(fx, rec(x, b0, b1)) ,

(iv) the (β, η)-coherence rule

(B, b0, b1) : Bip (f, f̄0, f̄1) : Bip(A,B)

η̄k : Id(βk · ηak , f̄k) ,

where k ∈ {0, 1}.
PROOF. The claim follows by unfolding the definition of homotopy-initiality.

We illustrate the rules in Proposition 3.8 by considering the special case of B = A and
f = 1A. We obtain a function (λx :A)rec(x, a0, a1) :A → A, paths βk : Id(rec(ak, a0, a1), ak), for
k ∈ {0, 1}, and ηx : Id(x, rec(x, a0, a1) and higher paths η̄k fitting in the diagram

ak
ηak //

1ak ..

η̄k⇒

rec(ak, a0, a1)

βk

��
ak ,

for k ∈ {0, 1}. The next theorem provides a characterisation of inductive bipointed types.

THEOREM 3.9. The type
(ΠA : Bip)

(
isind(A) ' ishinit(A)

)
is inhabited. In particular, a small bipointed type is inductive if and only if it is homotopy-
initial.

PROOF. Let A = (A, a0, a1) be a small bipointed type. The type isind(A) is a mere proposition
by Proposition 3.4 and ishinit(A) is a mere proposition by Proposition 3.6. Hence, it suffices to
show that we have a logical equivalence

isind(A)↔ ishinit(A)

We prove the two implications separately. First, we show that if A is inductive then it is
homotopy-initial. For this, it is sufficient to observe that the rules characterizing homotopy-
initial bipointed types in Proposition 3.8 are special cases of the rules in Proposition 3.2 and
Lemma 3.3, which are provable for inductive bipointed types.

Secondly, let us assume thatA = (A, a0, a1) is homotopy-initial and prove that it is inductive.
For this, let E = (E, e0, e1) be a fibered small bipointed type over A. We need to show that there
exists a bipointed section (s, s̄0, s̄1) : BipSec(A,E). Let us consider the bipointed type associated
to E, with carrier E′ =def (Σx :A)E(x) and distinguished elements e′k =def pair(ak, ek), for k ∈
{0, 1}. In this way, the first projection π1 :E′ → A is a bipointed morphism. By the homotopy-
initiality of A, we have a bipointed morphism (f, f̄0, f̄1) : (A, a0, a1) → (E′, e′0, e

′
1), which we

represent with the diagram

1
a0 //

⇓ f̄0

A

f

��

1
a1oo

⇓ f̄1

1
e′0

// E′ 1
e′1

oo
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We can compose f :A → E′ with π1 :E′ → A and obtain a bipointed morphism π1f :A → A,
which is represented by the diagram

1
a0 //

⇓ f̄0

A

f

��

1
a1oo

⇓ f̄1

e′0 //

⇓ π̄0

E′

π1

��

1
e′1oo

⇓ π̄1

1
a0

// A 1 .
a1

oo

Since the identity 1A :A → A is also a bipointed morphism, by the homotopy-initiality of A
there is an element of IdBip(A,A)(π1f, 1A). By Lemma 2.4, this gives us a bipointed homotopy
(α, ᾱ0, ᾱ1) : BipHot(π1f, 1A). This amounts to a homotopy α : Hot(π1f, 1A) and paths

ᾱk : Id((π1f)k , αak · 1ak) ,

for k ∈ {0, 1}. We begin to define the required bipointed section by defining, for x :A,

s(x) =def (αx)!

(
π2fx

)
,

where (αx)! :E(π1fx)→ E(x). We now construct paths s̄k : Id(sak, ek), for k ∈ {0, 1}. First of all,
recall that f̄k : Id(fak, e

′
k), where e′k = pair(ak, ek) : (Σx :A)E(x). Using the characterization of

identity types of Σ-types, we define

pk =def π1 extΣ(f̄k) : Id(π1fak , π1e
′
k) , qk =def π2 extΣ(f̄k) : Id((pk)!(π2fak), π2e

′
k) .

Now, note that

IdA(π1fak , π1e
′
k) = IdA(π1fak, ak) , IdE(ak)((pk)!(π2fak), π2e

′
k) = IdE(ak)(sak, ek)

and that we have

(π1f)k
∼= (π1)k · (π1 ◦ f̄k) (by definition of π1f)

∼= 1ak · (π1 ◦ f̄k) (by definition of π1)

∼= (π1 ◦ f̄k) (by the groupoid laws)

∼= pk (by definition of extΣ) .

Therefore, we can construct the following chain of paths:

pk ∼= (π1f)k (by what we just proved)
∼= 1ak · αak (by the path ᾱk)
∼= αak (by the groupoid laws)

Hence, the required path s̄k : Id(sak, ek) can be defined as the following composite:

sak = (αak)!

(
π2fak

)
(by the definition of s)

∼= (pk)!

(
π2fak

)
(since pk ∼= αak)

∼= ek (by the path qk) .

This concludes the proof.
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The proof of Theorem 3.9 simplifies considerably within the extensional type theory Hext

obtained by adding to H the identity reflection rule in (3). In that type theory, there is a
judgemental equality between the composite π1f :A → A and the identity 1A :A → A, with
which the rest of the argument can be shortened considerably. In that setting, one obtains the
familiar characterisation of an inductive type as strict initial algebras.

The next proposition characterizes the type Bool up to equivalence. In its statement, we
refer to the rules for Bool in Table VI.

COROLLARY 3.10. Assuming the rules for the type Bool, for a bipointed type A = (A, a0, a1),
the following conditions are equivalent:

(i) A is inductive,
(ii) A is homotopy-initial,

(iii) A and Bool are equivalent as bipointed types.

In particular, Bool is a homotopy-initial bipointed type.

Remark 3.11. Note that the elimination rules for Bool allow us to eliminate over an ar-
bitrary, i.e. not necessarily small, dependent type. Instead, the definition of an inductive bi-
pointed type involve the existence of sections over small fibered bipointed types. In spite of
this apparent difference, since Bool is assumed to be a small type, one can prove an equiva-
lence between any inductive type A and Bool and hence derive counterparts of the elimination
rules for Bool for any inductive bipointed type.

Let us point out that there are at least two alternatives to the approach taken here regard-
ing universes. The first involves avoiding the restriction to small fibered bipointed types in the
definition of the notion of an inductive bipointed type. Accordingly, one drops the restriction of
mapping into small bipointed types in the definition of a notion of a homotopy-initial algebra.
With these changes, there is still a logical equivalence between the modified notions, but this
is no longer an internal statement in the type theory, as in Theorem 3.9. Alternatively, one
could assume to have a hiearchy of type universes U0 : U1 : . . . : Un : Un+1 : . . . and modify the
elimination rules for Bool by specifying that the types into which we are eliminating belong
to some universe. A counterpart of Theorem 3.9, now stated with appropriate universe levels,
would still hold.

Univalence for bipointed types
We conclude this section by showing that if the type universe U is assumed to be univalent,
then a form of the univalence axiom holds also for bipointed types, in the sense made pre-
cise by the next theorem, where we use notation analogous to the one introduced for exten-
sion functions in Section 1. This is an instance of the Structure Identity Principle considered
in [Aczel 2014].

THEOREM 3.12. Assuming the univalence axiom, for small bipointed types A,B : Bip, the
canonical function

extBip
A,B : IdBip

(
A,B

)
→ BipEquiv(A,B)

is an equivalence.

PROOF. Let (A, a0, a1), (B, b0, b1) be small bipointed types. By the characterization of the
identity types of Σ-types, the identity type Id

(
(A, a0, a1), (B, b0, b1)

)
is equivalent to the type

(Σp : IdU(A,B)) Id((a0, a1), p∗(b0, b1)) .

By Id-elimination and the characterization of paths in product types, this type is equivalent to
(Σp : IdU(A,B)) Id

(
(ext p)(a0), b0

)
× Id

(
(ext p)(a1), b1) ,
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where ext p :A → B is the equivalence of types associated to p : IdU(A,B). By the univalence
axiom, the above type is equivalent to

(Σf : Equiv(A,B)) Id
(
fa0, b0

)
× Id

(
fa1, b1

)
.

After rearranging, we get
(Σf :A→ B)(Σf̄0 : Id(fa0, b0))(Σf̄1 : Id(fa1, b1)) isequiv(f) ,

which is equivalent to BipEquiv(A,B) by Proposition 2.12. Finally, it is not hard to see that
the composition of the above equivalences yields the function extBip

A,B up to a homotopy, thus
showing that it is an equivalence, as required.

COROLLARY 3.13. Assuming the univalence axiom, homotopy-initial small bipointed types
are unique up to a contractible type of paths, i.e. the type

(ΠA : Bip)(ΠB : Bip)
(
ishinit(A)× ishinit(B)→ iscontr(IdBip(A,B))

)
.

is inhabited.

PROOF. This is an immediate consequence of Proposition 3.7 and Theorem 3.12.

4. POLYNOMIAL FUNCTORS AND THEIR ALGEBRAS
Algebras and algebra morphisms
The main aim of this paper is to carry out an analysis for well-ordering types (introduced
in [Martin-Löf 1975]), or W-types for short, analogous to the one we have just done for
the type Bool. We recall the rules for W-types in Table VII. There, we sometimes write W
for (Wx :A)B(x) for brevity. Informally, a W-type can be seen as the free algebra for a signa-
ture with arbitrarily many operations of possibly infinite arity, but no equations. The premises
of the formation rule can be thought of as specifying a signature that has the elements of
the type A as (names of) operations and in which the arity of a :A is (the cardinality of) the
type B(a). Then the introduction rule specifies the canonical way of forming an element of the
free algebra, and the elimination rule can be seen as the propositions-as-types translation of
the appropriate induction principle. As usual, the computation rule states what happens if we
apply the the elimination rule to a canonical element of the inductive type. Finally, we have a
rule expressing the closure of the type universe U under the formation of W -types.

We now consider a small type A : U and a small dependent type B :A→ U, which we consider
fixed for this section and the next. For C : U, we define

PC =def (Σx :A)(B(x)→ C) .

In this way, we obtain a function P : U → U. This operation on types extends to an operation
on functions, as follows. For f :C → D, we define Pf :PC → PD by Σ-elimination so that,
for x :A and u :B(x)→ C, we have

(Pf)((x, u)) = (x, fu) .

This assignment is pseudo-functorial in the sense that we have propositional equalities:
φf,g : Id(P (g ◦ f), Pg ◦ Pf) , φA : Id(P (1A), 1PA) (18)

for f :C → D, g :D → E. We still refer to P as the polynomial functor associated to A : U and
B :A → U, so as to highlight the analogy with the theory of polynomial functors on locally
cartesian closed categories [Gambino and Hyland 2004; Moerdijk and Palmgren 2000].

Remark 4.1. If one assumes the judgemental version of the η-rule for Σ-types, as in (2),
then P becomes a strict functor, in the sense that we have judgemental equalities

P (g ◦ f) = Pg ◦ Pf , P (1A) = 1PA .
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Table VII. Rules for W -types

A : type x :A ` B(x) : type

(Wx :A)B(x) : type

a :A t :B(a)→W

sup(a, t) :W

w :W ` E(w) : type x :A, u :B(x)→W, v : (Πy :B(x))E(uy) ` e(x, u, v) :E(sup(x, u))

w :W ` elim(w, e) :E(w)

w :W ` E(w) : type x :A, u :B(x)→W, v : (Πy :B(x))E(uy) ` e(x, u, v) :E(sup(x, u))

x :A, u :B(x)→W ` elim(sup(x, u), e) = e(x, u, (λy :B(x)) elim(uy, e)) :E(sup(x, u))

A : U x :A ` B(x) : U

(Wx :A)B(x) : U

The strict functoriality of P would allow us to make some minor simplifications in our devel-
opment. For example, it would lead to a more direct definition of the composition operation
for P -algebra morphisms and of identity P -algebra morphisms, represented in (21) and (22),
respectively. But, as far as we know, it is the only consequence of the judgemental η-rule for
Σ-types that would play a role in our development.

We shall also use that P acts on homotopies: given functions f, g :C → D and a homo-
topy α : Hot(f, g), it is possible to define a homotopy Pα : Hot(Pf, Pg). Explicitly, for x :A and
u :B(x)→ C, we define (Pα)x,u : Id((x, fu), (x, gu)) by letting

(Pα)x,u =def intΣ(refl(x), intΠ(αu)) , (19)

where αu is the evident homotopy between fu and gu, and int is the function transforming
homotopies into paths discussed in Section 1.

Definition 4.2. A P -algebra (C, supC) is a small type C : U equipped with a function
supC : PC → C.

The type of P -algebras is then defined as

Alg =def (ΣC : U)(PC → C) .

Given a P -algebra C = (C, supC), we refer to the type C as the carrier or underlying type of
the algebra and to the function supC :PC → C as the structure map of the P -algebra. In the
presence of W-types, an example of P -algebra is given by the type W =def (Wx :A)B(x), with
structure map given by the introduction rule for W-types.

Let us now fix P -algebras C = (C, supC) and D = (D, supD).

Definition 4.3. A P -algebra morphism (f, f̄) :C → D is a function f :C → D equipped with
a path f̄ : Id(f ◦ supC , supD ◦ Pf).

Note that the homotopy associated to a path f̄ as above has components

(extf̄)x,u : Id
(
f(supC(x, u)), supD(x, fu)

)
.
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for x :A, u :B(x) → C. A P -algebra morphism as above can be represented with a diagram of
the form

PC
supC //

Pf

��

⇓ f̄

C

f

��

PD
supD

// D .

We use this slighly unconventional orientation of the diagram in order to stress the analogy
with bipointed morphisms (cf. the diagram in (12)). Informally, one can think of the path f̄ as a
proof that the diagram commutes (which is the requirement defining the notion of morphism
of endofunctor algebras in category theory) or as an invertible 2-cell (as in the notion of a
pseudo-morphism between algebras in 2-dimensional category theory [Blackwell et al. 1989]).
For later use, let us introduce some auxiliary notation. For P -algebras C = (C, supC), D =
(D, supD) and a function f :C → D between their underlying types, let us define

isalghom(f) =def Id(f ◦ supC , supD ◦ Pf) . (20)

Note that this type is not, in general, a mere proposition. Informally, isalghom(f) is the type of
paths f̄ witnessing that f is a P -algebra morphism, fitting in a diagram as above. Accordingly,
the type of P -algebra morphisms between C and D is defined by

Alg(C,D) =def (Σf : C → D) isalghom(f) .

We now define the composition operation for P -algebra morphisms. Given (f, f̄) :C → D
and (g, ḡ) :D → E, their composite (gf, gf) : (C, supC) → (E, supE) is obtained as follows. Its
underlying function is given by gf :C → E, and so the the required path must be of the form

(gf) : Id
(
(g ◦ f) ◦ supC , supE ◦ P (g ◦ f)

)
.

Such a path is obtained by pasting the diagrams

PC
supC //

Pf

��

⇓ f̄

C

f

��

PD
supD

//

Pg

��

⇓ ḡ

D

g

��

PE
supE

// E .

(21)

More precisely, it is given by the following composition of paths:

g ◦ f ◦ supC
g◦f̄

// g ◦ supD ◦ Pf
ḡ◦Pf

// supE ◦ Pg ◦ Pf
supE◦φ

−1
f,g
// supE ◦ P (g ◦ f) ,

where we used the pseudo-functoriality of P in (18). For a P -algebra C, the identity function
1C :C → C has an evident structure of P -algebra morphism, represented in the diagram

PC

P (1C)

��

supC //

⇓ 1C

C

1C
��

PC
supC

// C .

(22)
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As in the case of bipointed types, the associativity and unit laws for a category do not hold up
to judgemental equality, but only so up to a system of higher and higher paths.

We will require an alternative description of the identity type between two P -algebra mor-
phisms. For this, we introduce the notion of a P -algebra homotopy in the next definition.

Let us fix P -algebra morphisms f = (f, f̄) and g = (g, ḡ) from C to D. The next definition
makes use of the action of P on homotopies defined in (19).

Definition 4.4. A P -algebra homotopy (α, ᾱ) : f → g is a homotopy α : Hot(f, g) equipped
with a homotopy ᾱ : Hot

(
(supD ◦ Pα) · (ext f̄) , (ext ḡ) · (α ◦ supC)

)
.

Note that in the definition α◦ supC and supD ◦Pα are obtained by pre-composition and post-
compositions, respectively, of functions with homotopies. The homotopy ᾱ can be thought of as
a proof that the two homotopies produced by the pasting diagrams

PC
supC //

Pg

��

Pf

��

⇐ f̄⇐Pα

C

f

��

PD
supD

// D

PC
supC //

Pg

��

⇐ ḡ

C

f

��

g

��

⇐α

PD
supD

// D

are equal, which is analogous to the condition defining an algebra 2-cell in 2-dimensional
category theory [Blackwell et al. 1989]. Explicitly, the component of ᾱ associated to x :A and
u :B(x)→ C fits into diagrams of the form

f(supC(x, u))
(extf̄)x,u

//

αsupC (x,u)

��

⇓ ᾱx,u

supD(x, fu)

supD(x,int(αu))

��

g(supC(x, u))
(extḡ)x,u

// supD(x, gu) ,

where int(αu) denotes the path associated to the homotopy (λy :B(x))αuy between fu and gu.
The type of P -algebra homotopies is then defined by

AlgHot
(
(f, f̄), (g, ḡ)

)
=def (Σα : Hot(f, g)) Hot

(
(supD ◦ Pα) · (ext f̄) , ((ext ḡ)) · (α ◦ supC)

)
.

LEMMA 4.5. The canonical function

extAlg
f,g : Id

(
(f, f̄), (g, ḡ)

)
→ AlgHot

(
(f, f̄), (g, ḡ)

)
.

is an equivalence of types.

PROOF. For p : Id(f, g) we have p!(f̄) : Id(g ◦ supC , supD ◦ Pg) and it can be shown by Id-
elimination that there exists a path q : Id

(
(supD ◦ P (p)) · f̄ , p!(f̄) · (p ◦ supC)

)
, which can be

represented with the diagram

f ◦ supC

p◦supC

��

f̄
//

⇓ q

supD ◦ P (f)

supD◦P (p)

��

g ◦ supC
p!(f̄)

// supD ◦ P (g) .
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We then have

Id
(
(f, f̄), (g, ḡ)

)
' (Σp : Id(f, g)) Id(p!(f̄) , ḡ)

' (Σp : Id(f, g)) Id
(
(supD ◦ P (p)) · f̄ · (p ◦ supC)−1 , ḡ

)
' (Σp : Id(f, g)) Id

(
(supD ◦ P (p)) · f̄ , ḡ · (p ◦ supC)

)
' (Σα : Hot(f, g)) Hot

(
(supD ◦ P (α)) · (extf̄) , (extḡ) · (α ◦ supC)

)
= AlgHot

(
(f, f̄) (g, ḡ)

)
.

Lemma 4.5 is another case of the identity type encoding higher-categorical structure. It
should be noted that its proof does not require the univalence axiom.

Fibered algebras and algebra sections
We now introduce the fibered versions of the notions of a P -algebra, P -algebra morphism, and
P -algebra homotopy. Some preliminary remarks will help us to motivate our definitions. Let
us consider a fixed P -algebra C = (C, supC). Given a dependent type E :C → U, we wish to
describe what data determines a P -algebra structure on the type E′ =def (Σz :C)E(z). First of
all, using a special case of the ΠΣ-distributivity law recalled in (9), we have

PE′ ' (Σx :A)(Σu :B(x)→ C)(Πy :B(x))E(uy) .

Therefore, we obtain

PE′ → E′ '
(

(Σx :A)(Σu :B(x)→ C)(Πy :B(x))E(uy)
)
→ (Σz :C)E(z)

' (Πx :A)(Πu :B(x)→ C)(Πv : (Πy :B(x))E(uy))(Σz :C)E(z) ,

and so a structure map supE′ :PE
′ → E′ can be viewed equivalently as a function which takes

arguments x :A, u :B(x) → C, v : (Πy :B(x))E(uy) and returns an element of E′. Thus, if we
wish to ensure that the structure map supE′ :PE

′ → E′ is such that the projection function
π1 :E′ → C is a P -algebra morphism, i.e. that we can find a path fitting in the diagram

PE′

Pπ1

��

supE′ //

⇓π1

E′

π1

��

PC
supC

// C ,

it is sufficient to require the existence of a function of the form

e : (Πx :A)(Πu :B(x)→ C)(Πv : (Πy :B(x))E(uy))E(supC(x, u)) .

Note that such a function appears also in one of the premisses of the elimination rule for
W -types in Table VII. We are therefore led to make the following definition.

Definition 4.6. A fibered P -algebra over C consists of a dependent type E :C → U and a
function e : (Πx :A)(Πu :B(x)→ C)((Πy :B(x))E(uy))E(supC(x, u)).

We define the type of fibered P -algebras over C as follows:

FibAlg(C) =def (ΣE :C → U)(Πx :A)(Πu :B(x)→ C)((Πy :B(x))E(uy))E(supC(x, u))

Let us consider a fixed fibered P -algebra E = (E, e) over C.
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We define the P -algebra E′ = (E′, supE′), to which we shall refer as the P -algebra asso-
ciated to E, as follows. As before, we define E′ =def (Σz :C)E(z) and supE′ :PE

′ → E′ by
Σ-elimination so that, for x :A and u :B(x)→ E′, we have

supE′(x, u) = pair
(
supC(x, π1u) , e(x, π1u, π2u)

)
.

Here, note that π1u :B(x) → C and π2u : (Πy :B(x))E(π1uy) and so, by the type of e, we have
that e(x, π1u, π2u) :E(supC(x, π1u)), as required. It can be then checked that this P -algebra
structure on E′ is such that the projection function π1 :E′ → C is a P -algebra morphism.

Below, in Definition 4.7, we introduce the notion of a P -algebra section. This notion isolates
structure on an element f : (Πz :C)E(z) that suffices make the function f ′ :C → E′, defined by
letting

f ′(z) =def pair(z, f(z)) , (23)

into a P -algebra section to π1 :E′ → C, i.e. into a morphism such that π1f
′ :C → C is proposi-

tionally equal to 1C :C → C. In order describe this structure succintly, it is convenient to give
an alternative description of the composite

PE′
P (f ′)

// E′
supE′ // E′ .

In order to do this, we define ef : (Πv :PC)E(supC(v)) by letting

ef (x, u) =def e(x, u, fu) (24)

where x :A, u :B(x)→ C. Here, note that for y :B(x), we have uy :C and hence fuy :E(uy), as
required. It is now immediate to check that(

supE′ ◦ P (f ′)
)
pair(x, u) = pair(supC(x, u), ef (x, u)) . (25)

Definition 4.7. A P -algebra section (f, f̄) of E is a section f : (Πz :C)E(z) equipped with a
path f̄ : Id

(
f supC , ef

)
.

Observe that the components of the homotopy ext f̄ associated to a path f̄ as above have the
form (ext f̄)x,u : Id

(
f(supC(x, u)) , e(x, u, fu)

)
. We define the type of P -algebra sections of E by

letting

AlgSec(C,E) =def (Σf : (Πx :C)E(x)) Id
(
f supC , ef

)
.

It can be checked easily that a P -algebra section (f, f̄) has the expected properties. In par-
ticular, the function f ′ :C → E′ defined in (23) has the structure of a P -algebra morphism,
given by a path fitting in the diagram

PC

P (f ′)
��

supC //

⇓ f ′

C

f ′

��

PE′
supE′

// E′ .

Indeed,

f ′ supC(x, u) = pair
(
supC(x, u), f supC(x, u)

)
, by definition of f ′,

∼= pair
(
supC(x, u), ef (x, u)

)
, by f̄ ,

=
(
supE′ ◦ P (f ′)

)
pair(x, u) , by (25).
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Furthermore, this P -algebra morphism provides a section of the P -algebra morphism π1 :E′ →
C, in the sense specified above.

We will require an analysis of paths between of P -algebra sections and thus we introduce, in
Definition 4.8 below, the notion of a homotopy between P -algebra sections. In order to state the
definition more briefly, let us introduce some notation. For a fibered P -algebra E = (E, e), sec-
tions f, g : (Πz :C)E(z) and a path p : Id(f, g), we write ep : Id(ef , eg) for the evident path defined
by Id-elimination, where ef and eg are defined as in (24). By the characterisation of identity
types of function types, a homotopy α : Hot(f, g) determines also a homotopy eα : Hot(ef , eg).
For x :A and u :B(x) → C, the component (eα)x,u of this homotopy is given by e(x, u, int(αu)),
where int(αu) is the path associated to the homotopy (λy :B(x))αuy.

Let us now fix two P -algebra sections of E, f = (f, f̄) and g = (g, ḡ).

Definition 4.8. A P -algebra section homotopy (α, ᾱ) : f ∼ g is a homotopy α : Hot(f, g)
equipped with a homotopy ᾱ : Hot

(
eα · ext(f̄) , ext(ḡ) · (α ◦ supC)

)
.

The components of the homotopy ᾱ that is part of a P -algebra section homotopy as above
can be represented diagrammatically as fitting in the following diagram

f(supC(x, u))

αsupC (x,u)

��

(ext f̄)x,u
//

⇓ ᾱx,u

e(x, u, fu)

e(x,u,int(αu))

��

g(supC(x, u)))
(ext ḡ)x,u

// e(x, u, gu) .

Accordingly, we define the type of P -algebra homotopies of sections as follows:

AlgSecHot((f, f̄), (g, ḡ)) =def (Σα : Hot(f, g)) Hot
(
eα · ext(f̄) , ext(ḡ) · (α ◦ supC)

)
.

Remarkably, in spite of the complexity of its definition, the notion of a P -algebra homotopy is
equivalent to that of an identity proof between P -algebra sections, as the next lemma makes
precise.

LEMMA 4.9. The canonical function

extAlgSec
(f,f̄),(g,ḡ)

: Id
(
(f, f̄), (g, ḡ)

)
→ AlgSecHot

(
(f, f̄), (g, ḡ)

)
is an equivalence of types.

PROOF. For p : Id(f, g) we have p!(f̄) : Id(g ◦ supC , eg) and it can be shown by Id-elimination
that there exists a path q : Id

(
ep ·f̄ , p!(f̄)·(p◦supC)

)
, which can be represented with the diagram

f ◦ supC

p◦supC

��

f̄
//

⇓ q

ef

ep

��
g ◦ supC

p!(f̄)

// eg .
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We then have

Id
(
(f, f̄), (g, ḡ)

)
' (Σp : Id(f, g)) Id(p!(f̄) , ḡ)

' (Σp : Id(f, g)) Id
(
ep · f̄ · (p ◦ supC)−1 , ḡ

)
' (Σp : Id(f, g)) Id

(
ep · f̄ , ḡ · (p ◦ supC)

)
' (Σp : Id(f, g))Hot

(
eextp · ext(f̄) , ext(ḡ) · ((ext p) ◦ supC)

)
' (Σα : Hot(f, g)) Hot

(
eα · ext(f̄) , ext(ḡ) · (α ◦ supC)

)
= AlgSecHot

(
(f, f̄) (g, ḡ)

)
.

Note that Lemma 4.5, which we left without proof, follows as a special case of Lemma 4.9.

Algebra equivalences
We introduce the notion of equivalence between P -algebras. This will be useful in Section 5,
where we will prove that assuming the univalence axiom, a form of univalence holds also for
P -algebras.

Definition 4.10. We say that a P -algebra morphism f :C → D is a P -algebra equivalence if
there exist P -algebra morphisms g, h :D → C which provide a left and a right P -inverse for f
as a P -algebra morphism, i.e. for which there are paths of P -algebra morphisms

p : IdAlg(C,C)(gf, 1C) , q : IdAlg(D,D)(fh, 1D) .

Given a P -algebra morphism f :C → D, we define the type of proofs that f is an equivalence
of P -algebras as follows:

isalgequiv(f) =def (Σg : Alg(D,C))IdAlg(C,C)(gf, 1C)× (Σh : Alg(D,C))IdAlg(D,D)(fh, 1D) .

We then define the type of P -algebra equivalences between C and D as

AlgEquiv(C,D) =def (Σf : Alg(C,D)) isalgequiv(f) .

LEMMA 4.11. The underlying function of a P -algebra equivalence is an equivalence, i.e. for
every P -algebra morphism (f, f̄) :C → D there is a function

πf : isalgequiv(f, f̄)→ isequiv(f) .

PROOF. Let (f, f̄) :C → D be a P -algebra morphism. Unfolding the definition, we have

isalgequiv(f, f̄) =def

(Σg :D → C)
(
Σḡ : isalghom(g)

)
G(g, ḡ)× (Σh :D → C)

(
Σh̄ : isalghom(h)

)
H(h, h̄) ,

where we used the notation introduced in (20) and

G(g, ḡ) =def Id
(
(gf, gf), (1C , 1C)

)
, H(h, h̄) =def Id

(
(fh, fh), (1D, 1D)

)
.

The types G(g, ḡ) and H(h, h̄) can be thought of as the types of proofs that (g, ḡ) and (h, h̄) are
a left and right inverse for (f, f̄) as P -algebra morphisms, respectively. For the right inverse,
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this amounts to requiring that the pasting diagram

PC
supC //

Pf

��

⇓ f̄

C

f

��

PD
supD //

Pg

��

⇓ ḡ

D

g

��

PC
supC

// C

is propositionally equal to the diagram for the identity P -algebra morphism on C in (22). By
the characterization of paths in Σ-types, we have

G(g, ḡ) ' (Σp : Id(gf, 1C)) Id
(
gf, p∗(1C)

)
, H(h, h̄) ' (Σq : Id(fh, 1C)) Id

(
fh, q∗(1C)

)
.

Thus, rearranging the Σ-types in the definition, we have

isalgequiv(f, f̄) '
(Σg :D → C)(Σp : Id(gf, 1C))G′(g, p)× (Σh :D → C)(Σq : Id(fh, 1C))H ′(h, q) , (26)

where

G′(g, p) =def (Σḡ : isalghom(g)) Id(gf, p∗(1̄C)) , (27)

H ′(h, q) =def (Σh̄ : isalghom(h)) Id(fh, q∗(1̄D))) . (28)

The canonical elements of G(g, p) are pairs (ḡ, p̄) consisting of a path ḡ making g into a P -
algebra morphism and a path p̄ making p : Id(gf, 1C) into a propositional equality between
the P -algebra morphisms (gf, gf) and (1C , 1̄C). It is now clear that we can obtain the required
function πf by composing the equivalence in (26) with the evident projections and the equiva-
lence in (10).

Proposition 4.12 below can be understood informally as saying that for a P -algebra mor-
phism f , there is an essentially unique way of turning an inverse of f as a function into an
inverse of f as a P -algebra morphism.

PROPOSITION 4.12. A P -algebra morphism (f, f̄) :C → D is an equivalence of P -algebras
if and only if its underlying function f :C → D is an equivalence of types, i.e. the function

πf : isalgequiv(f, f̄)→ isequiv(f)

is an equivalence.

PROOF. Let (f, f̄) : (C, supC) → (D, supD) be a P -algebra morphism. We will show that all
the homotopy fibers of the function πf are contractible. So, let us consider a canonical element
of the codomain of πf , given by a 4-tuple (g, h, p, q) : isequiv(f) consisting of functions g :D → C
and h :D → C and paths p : Id(gf, 1C), q : Id(fh, 1D), exhibiting g and h as a right and a left
inverse of f (as a function, not as a P -algebra morphism), respectively.

The homotopy fiber of πf over this element can be thought of as the type consisting of all
the data that is missing from having a left and a right inverse of f as a P -algebra morphism.
In particular, we have

hfiber(πf , (g, h, p, q)) ' G′(g, p)×H ′(h, q) ,
where G′(g, p) and H ′(h, q) are defined as in (27) and (28), respectively. Therefore, it suffices
to prove that G′(g, p) and H ′(h, q) are contractible. The proofs that G′(g, p) and H ′(h, q) are
contractible are essentially identical, so we consider only G′(h, p).
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First of all, recall that the path gf : isalghom(gf) is given by gf =def (g ◦ f̄) · (ḡ ◦ Pf), where
we suppressed the path relative to the pseudo-functoriality of P , as in (18), for convenience.
By Id-elimination on p, the path p∗(1C) : isalghom(gf) is propositionally equal to the composite
path

(gf) ◦ supC
p◦supC // 1C ◦ supC

1̄C // supC ◦ P (1C)
supC◦P (p−1)

// supC ◦ P (gf) .

Hence, we have

G(g, p) ' (Σḡ : AlgHom(g)) Id
(
(g ◦ f̄) · (ḡ ◦ Pf) , (supC ◦ P (p−1)) · 1̄C · (p ◦ supC)

)
' (Σḡ : AlgHom(g)) Id

(
ḡ ◦ Pf , (g ◦ f̄)−1 · (supC ◦ P (p−1)) · 1̄C · (p ◦ supC)

)
.

Now, since f :C → D is an equivalence, Pf :PC → PD is also an equivalence and hence so is
the function mapping a path r : IdPD→C(s, t) to the composite r ◦ Pf : IdPC→C(s ◦ Pf, t ◦ Pf).
Thus, by part (ii) of Lemma 2.11, G′(g, p) is contractible, as required.

COROLLARY 4.13. For every P -algebra morphism (f, f̄), the type isalgequiv(f, f̄) is a mere
proposition.

5. HOMOTOPY-INITIAL ALGEBRAS
Inductive algebras
Given a P -algebra C = (C, supC) and a type D, an equivalence of types f :C → D makes D
into a P -algebra with structure map supD :PD → D given by the composite

PD
P (f−1)

// PC
supC // C

f
// D ,

where f−1 :D → C is a quasi-inverse of f :C → D. In particular, for W = (Wx :A)B(x), if we
have an equivalence f :W → D, then the induced P -algebra structure supD :PD → D defined
as above is such that D also satisfies a form of the elimination rule for W -types. We shall see
that D satisfies the other rules as well, but with a weakened computation rule.

Definition 5.1. We say that a P -algebra C is inductive if every fibered P -algebra over it
has a P -algebra section, i.e. the type

isind(C) =def (ΠE : FibAlg(C)) AlgSec(C,E)

is inhabited.

In complete analogy with the case of bipointed types, for a P -algebra C, the type isind(C) is
a mere proposition. We also have the following analogue of Proposition 3.7.

PROPOSITION 5.2. Homotopy-initial P -algebras are unique up to a contractible type of
algebra equivalences, i.e. the type

(ΠC : Alg)(ΠD : Alg)
(
ishinit(C)× ishinit(D)→ iscontr(AlgEquiv(C,D))

)
.

is inhabited.

PROOF. Let C and D be P -algebras. The type Alg(C,D) is contractible by homotopy-
initiality of C. Since the dependent sum of a family of mere propositions over a mere propo-
sition is again a mere proposition, it suffices to prove iscontr(isalgequiv(f)) for any P -algebra
morphism f . This type is a mere proposition, as remarked earlier; thus it suffices to show it
is inhabited. Since D is homotopy-initial, there exists a P -algebra morphism g :D → C. Again
by homotopy-initiality of C and D, we have Id(g ◦ f, 1C) and Id(f ◦ g, 1D), which gives us the
desired P -algebra equivalence between C and D.
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The next proposition characterizes inductive P -algebras by means of deduction rules, where
we display premisses in multiple lines for lack of space.

PROPOSITION 5.3. Let C = (C, supC) be a P -algebra. Then C is inductive if and only if we
can derive rules of the form

(i) the elimination rule,

z :C ` E(z) : U
x :A , u :B(x)→ C, v : (Πy :B(x))E(uy) ` e(x, u, v) :E(supC(x, u))

z :C ` elim(z, e) :E(z)

(ii) the computation rule,

z :C ` E(z) : U
x :A, u :B(x)→ C, v : (Πy :B(x))E(uy) ` e(x, u, v) :E(supC(x, u))

x :A, u :B(x)→ C ` comp(x, u, e) : Id
(
elim(supC(x, u), e), e(x, u, (λy :B(x))elim(uy, e))

)
.

PROOF. The rules are simply an unfolding of the definition of an inductive algebra.

Below, when working with an inductive P -algebra, we will always assume to have constants
elim and comp as in Proposition 5.3. We now show the essential uniqueness of algebra sections
of inductive fibered algebras.

PROPOSITION 5.4. Let C = (C, supC) be a P -algebra. If C is inductive, then we can derive
rules of the following form:

(i) the η-rule,

z :C ` E(z) : U
x :A, u :B(x)→ C, e : (Πy :B(x))E(uy) ` e(x, u, v) :E(supC(x, u))

z :C ` f(z) :E(z)
x :A , u :B(x)→ C ` φx,u : Id

(
f(supC(x, u)), e

(
x, u, fu)

)
z :C ` ηz : Id(f(z), elim(z, e))

(ii) the coherence rule,

z :C ` E(z) : U
x :A, u :B(x)→ C, v : (Πy :B(x))E(uy) ` e(x, u, v) :E(supC(x, u))

z :C ` f(z) :E(z)
x :A , u :B(x)→ C ` φx,u : Id

(
f(supC(x, u)), e

(
x, u, fu)

)
x :A, u :B(x)→ C ` η̄x,u : Id

(
ηsupC(x,u) · comp(x, u, e), φx,u · e(x, u, int(ηu))

)
Before proving the proposition, observe that the paths η̄x,u in the conclusion of the coherence

rule can be seen as fitting in the diagram

f(supC(x, u))
ηsupC (x,u)

//

φx,u

��

⇓ η̄x,u

elim(supC(x, u), e))

comp(x,u,e)

��

e(x, u, fu)
e(x,u,int(ηu))

// e(x, u, elim(x, u, (λy :B(x)) elim(uy, e)))
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PROOF PROOF OF PROPOSITION 5.4. For z :C, let us define T (z) =def Id
(
f(z), elim(z, e)).

With this notation, proving the η-rule amounts to defining ηz :T (z), for z :C. In order to
do so, we apply the elimination rule for C. We need to show that, for x :A, u :B(x) → C
and v : (Πy :B(x))T (uy), there is

t(x, u, v) :T (supC(x, u)) .

Note that v is a homotopy between fu and (λy :B(x)) elim(uy, e). Hence, we have a correspond-
ing path int(v). We can construct the required path as follows:

f(supC(x, u)) ∼= e
(
x, u, fu

)
by φx,u

∼= e
(
x, u, (λy :B(x)) elim(uy, e)

)
by int(v)

∼= elim(supC(x, u), e) by comp(x, u, e)−1.

For z :C, we can then define

ηz =def elim(z, t) .

For x :A and u :B(x)→ C, the computation rule of Proposition 5.3 then gives us

ηsupC(x,u)
∼= φx,u · e(x, y, int(ηu)) · comp(x, u, e)−1 .

The path required to prove the coherence rule is then obtained using the groupoid laws.

COROLLARY 5.5. For every P -algebra C, the type isind(C) is a mere proposition.

PROOF. Analogous to that of Corollary 3.4.

Homotopy-initial algebras
Exactly as in the case of bipointed types, the hypothesis that a P -algebra C is inductive allows
us to show that for any P -algebra D, there is a P -algebra morphism f :C → D which is unique
up to a P -algebra path, itself is unique up to a higher path, which in turn is unique up to a yet
higher path, and so on. As before, we shall characterize this kind of universal property using
the notion of a homotopy-initial P -algebra, which we define next.

Definition 5.6. Let C = (C, supC) be a P -algebra. We say that C is homotopy-initial if
for any P -algebra D = (D, supD), the type Alg(C,D) of P -algebra morphisms from C to D is
contractible, i.e. the following type is inhabilited

ishinit(C) =def (ΠD : Alg) iscontr
(
Alg(C,D)

)
.

We stress again that homotopy-initiality is a purely type-theoretic notion. Also note that,
exactly as for homotopy-initiality of bipointed types, for a P -algebra C, the type ishinit(C) is
a mere proposition. We have the following type-theoretic analogue of Lambek’s lemma, which
will be used in the proof of Proposition 5.12 below.

LEMMA 5.7. Let C = (C, supC) be a P -algebra. If C is homotopy-initial, then the structure
map supC :PC → C is an equivalence.

PROOF. This is a straightforward translation of the standand category-theoretic proof, but
we provide some details to illustrate where the contractibility condition in the definition of a
homotopy-initial algebra is used. For brevity, let us write s :PC → C for the structure map of
C.

We wish to construct a quasi-inverse to s :PC → C. In order to do so, we use the homotopy-
initiality of C. First of all, observe that PC can be made into a P -algebra by considering the
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structure map Ps :PPC → PC. Thus, by the contractibility of the type Alg(C,PC), there exists
a P -algebra morphism (t, t̄) :C → PC. We represent it as the diagram

PC

Pt
��

s //

⇓t̄

C

t

��

PPC
Ps

// PC

Now, the composite st :C → C and the identity 1C :C → C are both P -algebra morphisms and
so, by the contractibility of Alg(C,C), there has to be a path p : Id(s ◦ t, 1C). Using this fact, we
can also show that there is a path q : Id(ts, 1PC). Indeed, we have

t ◦ s ∼= Ps ◦ Pt ∼= P (s ◦ t) ∼= P (1C) ∼= 1PC ,

where the first path is given by t̄, the second by the pseudo-functoriality of P , as in (18),
the third is the path p constructed above, and the fourth one is given again by the pseudo-
functoriality of P , as in (18).

PROPOSITION 5.8. A P -algebra C = (C, supC) is homotopy-initial if and only if we can
derive rules of the following form:

(i) the recursion rule,
D : U x :A , u :B(x)→ D ` supD(x, u) :D

z :C ` rec(z, supD) :D

(ii) the β-rule,

D : U x :A , u :B(x)→ D ` supD(x, u) :D

x :A, u :B(x)→ D ` β(x, u, supD) : Id
(
rec(supC(x, u), supD) , supD

(
x, (λy :B(x)) rec(uy, supD)

))
(iii) the η-rule,

D : U
x :A, u :B(x)→ D ` supD(x, u) :D

z :C ` f(z) :D
x :A, u :B(x)→ D ` φx,u : Id(f(supC(x, u)), supD(x, fu))

z :A ` ηz : Id(f(z), rec(z, supD))

(iv) the (β, η)-coherence rule,

D : U
x :A, u :B(x)→ D ` supD(x, u) :D

z :C ` f(z) :D
x :A, u :B(x)→ D ` φx,u : Id(f(supC(x, u)), supD(x, f ◦ u))

x :A, u :B(x)→ C ` η̄x,u : Id(β(x, u, supD) · ηsupC(x,u) , supD(x, int(ηu)) · φx,u)

PROOF. The rules can be read as follows. The recursion rule says that, given any type D
together with the function supD :PD → D, i.e. any P -algebra, there is a function r :C → D
defined by letting, for z :C, r(z) = rec(z, supD). The β-rule implies that we have a homotopy
β : Hot(r ◦ supC , supD ◦ Pr) and so, by function extensionality, we get a path r̄ fitting in the
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diagram

PC

r

��

supC //

⇓ r̄

C

r

��

PD
supD

// D .

We therefore obtain a P -algebra morphism (r, r̄) :C → D. The η-rule says that if f :C → D is
a P -algebra morphism, then there is a homotopy η : Hot(f, r). And the (β, η)-compatibility rule
says that η is in fact a P -algebra homotopy. Using again Proposition 4.9, this shows that there
is a path from (r, r̄) to (f, f̄), thus proving the contractibility of Alg(C,D).

As for bipointed types, we illustrate the special case of the rules in Proposition 5.8 in a
simple case, obtained by considering C = D and f = 1C . By the recursion rule, we obtain
a function r :C → C defined by r = (λz :C)rec(z, supC). The β-rule gives a homotopy with
components βx,u : Id(r(supC(x, u)), supC(x, ru)), the η-rule gives a homotopy with components
ηz : Id(z, r(z)) and, finally, the (β, η)-coherence rule, gives us a homotopy with components fit-
ting in the diagram

supC(x, u)
ηsupC (x,u)

//

supC(x,int(ηu)) ,,

η̄x,u⇒

r(supC(x, u))

βx,u

��

supC(x, ru) .

We can now state and prove our main result.

THEOREM 5.9. The type

(ΠC : Alg)
(
isind(C) ' ishinit(C)

)
is inhabited. In particular, a P -algebra is inductive if and only if it is homotopy-initial.

PROOF. Let C = (C, supC) be an inductive P -algebra. The types isind(C) and ishinit(C) are
mere propositions, so it suffices to show that the type

isind(C)↔ ishinit(C)

is inhabited. First, we assume that C is inductive and show that it is homotopy initial. To
do this, it suffices to observe that the rules in Proposition 5.8 characterizing homotopy-initial
algebras are a special case of those given in Proposition 5.3 and Proposition 5.4, by considering
a constant dependent type.

For the converse implication, we proceed as in the proof of Theorem 3.9. Let E = (E, e) be
a fibered algebra over C. We need to show that there exists a P -algebra section (s, s̄), where
s : (Πx :C)E(x) and

s̄ : (Πx :A)(Πu :B(x)→ C)Id
(
s(supC(x, u)), e(x, u, su)

)
We consider the P -algebra (E′, supE′) associated to E. Recall that E′ =def (Σz :C)E(z) and
supE′ :PE

′ → E′ is defined so that, for x :A and u :B(x)→ E′, we have

supE′(x, u) =
(
supC(x, π1u) , e(x, π1u, π2u)

)
.
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In this way, the first projection π1 :E′ → C is an algebra morphism, represented by the dia-
gram

PE′

Pπ1

��

supE′ //

⇓π1

E′

π1

��

PC
supC

// C .

By the homotopy-initiality of C, there exists an algebra morphism (f, f̄) : (C, supC) →
(E′, supE′), which we represent with the diagram

PC
supC //

Pf

��
⇓ f̄

C

f

��

PE′
supE′

// E′ .

It is convenient to have a name for the homotopy associated to the path f̄ , so let us define

φ =def (extf̄) . (29)

We write f1 :C → C for the composite π1f :C → C, which is a P -algebra morphism. The path

PC

Pf1

��

supC //

⇓ f1

C

f1

��

PC
supC

// C

is given by the pasting diagram

PC
supC //

Pf

��

⇓ f̄

C

f

��

PE
supE′

//

Pπ1

��

⇓ π̄1

E′

π1

��

PC
supC

// C .

Let φ1 =def (ext f̄1) be the homotopy associated to the path f̄1. Unfolding the definitions, we
have that

(φ1)x,u ∼= π1 extΣ φx,u . (30)

for x :A, u :B(x)→ C. Furthermore, let us define f2 : (Πz :C)E(f1z) by setting

f2 =def (λz :C)π2fz .

In order to define the required section, observe that, by the homotopy-initiality of C and
Lemma 4.5, there exists a P -algebra homotopy

(α, ᾱ) : AlgHot(f1, 1C) ,
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where α : Hot(f1, 1C) and, for x :A, u :B(x)→ C, the path ᾱx,u fits into the diagram

f1supC(x, u)
(φ1)x,u

//

αsupC (x,u)

��

⇓ ᾱx,u

supC(x, f1u)

supC(x,int(αu))

��

supC(x, u)
1̄x,u

// supC(x, u) .

(31)

Here, int(αu) : Id(f1u , u) is the path associated to the homotopy (λy :B(x))αuy : Hot(f1u, u). We
define the required section s : (Πz :C)E(z) by letting

sz =def (αz)!

(
f2z

)
,

for z :C, where (αz)! : E(f1z) → E(z) is a transport map associated to the path αz : Id(f1z, z).
It now suffices to define, for each x :A and u :B(x)→ C, a path

s̄(x, u) : Id
(
s(supC(x, u)) , es(x, u)

)
,

where es is defined using the formula in (24). Unfolding the definitions, our goal is to show
that

(αsupC(x,u))!(f2 supC(x, u)) ∼= e(x, u, (λy :B(x))(αuy)!(f2uy)) . (32)

Our goal will follow once we show the following:
Claim 1. αsupC(x,u)

∼= supC(x, int(αu)) · (φ1)x,u

Claim 2. ((φ1)x,u)!(f2 supC(x, u)) ∼= e(x, f1u, f2u) .

Claim 3. (supC(x, int(αu)))! e(x, f1u, f2u) ∼= e
(
x, u, (λy :B(x))(αuy)!(f2uy)

)
.

Inded, the required propositional equality in (32) can then be obtained as follows:
(αsupC(x,u))!(f2 supC(x, u)) ∼= (supC(x, int(αu)))! ((φ1)x,u)!(f2 supC(x, u)) (by Claim 1)

∼= (supC(x, int(αu)))! e(x, f1u, f2u) (by Claim 2)
∼= e(x, u, (λy :B(x))(αuy)!(f2uy)) (by Claim 3).

We conclude by proving the auxiliary claims stated above.

PROOF PROOF OF CLAIM 1.. This follows by the path in the diagram in (31).

PROOF PROOF OF CLAIM 2. Observe that the homotopy φ in (29) has components
φx,u : Id

(
f supC(x, u) , supE′(x, fu)

)
.

Thus, by the characterization of paths in Σ-types, we have
p : Id(f1supC(x, u), supC(x, f1u)) , q : Id

(
p!(f2 supC(x, u)) , e(x, f1u, f2u)

)
,

where p =def π1 extΣφx,u and q =def π2 extΣ φx,u. The claim now follows by (30).

PROOF PROOF OF CLAIM 3. Observe that for all a :A, p : IdB(a)→C(t1, t2) and
v : (Πy :B(a))E(t1y), we have

(supC(a, p))! e(a, t1, v) ∼= e
(
a, t2, (λy :B(a))((ext p)y)! vy

)
.

by Id-elimination. If we apply this to x :A, int(αu) : Id(f1u, u), and f2u : (Πy :B(x))E(f1uy), we
get (

supC(x, int(αu))
)

!
e(x, f1u, f2u) ∼= e

(
x, u, (λy :B(x))

(
(αuy

)
!
f2uy

))
,

as required.
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Below, when we assume the rules forW -types (as in Table VII), we writeW for (Wx :A)B(x).

COROLLARY 5.10. Assuming the rules for W -types, for a P -algebra C the following condi-
tions are equivalent:

(i) C is inductive,
(ii) C is homotopy initial,

(iii) C is equivalent to W as a P -algebra.

In particular, the type W is a homotopy-initial P -algebra.

Corollary 5.10 provides the analogue in our setting of the characterization of W-types as
a strict initial algebra in extensional type theory. It makes precise the informal idea that, in
intensional type theory, W-types are a kind of initial algebra in the weak (∞, 1)-category of
types, functions, paths and higher paths.

LEMMA 5.11. Assuming the rules for W -types, for all a1, a2 :A, t1 :B(x1)→W , t2 :B(x2)→
W , there is an equivalence of types

IdW (supW (a1, t1), supW (a2, t2)) ' IdPW
(
(a1, t1), (a2, t2)

)
.

PROOF. By Lemma 5.7 and Corollary 5.10, supW :PW →W is an equivalence.

We remark that W -types preserve homotopy levels, as already shown by N. A. Danielsson.6

PROPOSITION 5.12 (DANIELSSON). Assuming the rules for W -types, if A has h-level n+ 1,
then so does the W -type (Wx : A)B(x).

PROOF. We need to show that for all w,w′ :W the type IdW (w,w′) has h-level n. We do so
applying the elimination rule for W-types on w :W . So, let x :A, u :B(x)→ W and assume the
induction hypothesis

(∗) for every y :B(x), for every w′ :W , the type IdW (uy,w′) has h-level n,

and show that for every w′ :W the type Id(supW (x, u), w′) has h-level n. We apply again the
elimination rule for W-types. So, let x′ :A, u′ :B(x′)→W and assume the induction hypothesis
(which we do not spell out since we will not need it) and show that Id(supW (x, u), supW (x′, u′))
has h-level n. We have

IdW (supW (x, u), supW (x′, u′)) ' IdPW ((x, u), (x′, u′))

' (Σp : IdA(x, x′)) IdB(x)→W (u, p∗(u′))

' (Σp : IdA(x, x′)) Id
(
u, (λy :B(x))u′(p! y)

)
' (Σp : IdA(x, x′))(Πy :B(x)) IdW

(
uy, u′(p! y)

)
.

Here, the first equivalence follows by Lemma 5.11 and the other equivalences follow by
standard properties of the transport functions. Since A has h-level n + 1 by assumption,
we have that IdA(x, x′) has h-level n. Also, for any p : IdA(x, x′) and u :B(x) → W , the
type IdW (uy, u′(p! y)) has h-level n by the induction hypothesis in (∗). The claim follows by
recalling that the h-levels are closed under arbitrary dependent products and under depen-
dent sums over types of the same h-level.

We note that the h-level of (Wx :A)B(x) does not depend on that of B(x). Furthermore,
assuming that we have a unit type 1, the lemma is no longer true if n+ 1 is replaced by n, as
the following example illustrates: if A =def 1 and B(x) =def 1, then (Wx :A)B(x) ' 0, which is
not contractible.

6Post on the Homotopy Type Theory blog, 2012.
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Univalence for algebras
We conclude the paper with some applications of the univalence axiom. The first is that, just
as for bipointed types, a form of univalence holds also for P -algebras, as the next theorem
makes precise.

THEOREM 5.13. Assuming the univalence axiom, the canonical function

extAlg
C,D : Id

(
C,D

)
→ AlgEquiv(C,D)

is an equivalence for every pair of P -algebras C and D.

PROOF. Let C = (C, supC) and D = (D, supD) be P -algebras. By the characterization of
paths in Σ-types, Id

(
(C, supC), (D, supD)

)
can be expressed as the type

(Σp : Id(C,D)) Id
(
supC , p

∗(supD)
)
.

By path induction on p and the characterization of paths in Π-types, this type is equivalent to

(Σp : Id(C,D))(Πx : A)(Πu :B(x)→W )Id
(
(ext p)(supC(x, u)), supD(x, (ext p) ◦ u)

)
,

where ext : Id(C,D) → Equiv(C,D) is the canonical extension function for the identity types of
elements of U, asserted to be an equivalence by the univalence axiom. Hence, the above type
is equivalent to

(Σf : Equiv(C,D))(Πx :A)(Πy :B(x)→W ) Id
(
f(supC(x, u)), supD(x, fu)

)
.

After rearranging, we get

(Σf : Alg((C, supC), (D, supD)) isequiv(f) .

By Proposition 4.12, this type is equivalent to AlgEquiv
(
(C, supC), (D, supD)

)
, as desired. Fi-

nally, it is not hard to see that the composition of the above equivalences yields, up to a homo-
topy, the canonical function ext which is therefore an equivalence, as required.

The following corollary, still obtained under the assumption of the univalence axiom, shows
that homotopy-initial algebras are unique up to a unique path.

COROLLARY 5.14. Assuming the univalence axiom, homotopy-initial P -algebras are unique
up to a contractible type of paths, i.e. the type

(ΠC : Alg)(ΠD : Alg)
(
ishinit(C)× ishinit(D)→ iscontr(Id(C,D))

)
.

is inhabited.

PROOF. This is an immediate consequence of Theorem 5.13 and Proposition 5.2.

6. CONCLUSION
We have shown how the familiar characterization of W-types as initial algebras for polynomial
endofunctors can be recovered in the setting of homotopy type theory by introducing the new
concept of a homotopy-initial algebra. Using this notion, much of the classical theory carries
over mutatis mutandis, including the equivalence between the induction principle and the
combination of a recursion rule and a uniqueness principle. We conclude the paper by men-
tioning two possible directions of research on the concept of homotopy initiality: reduction of
more general forms of inductive types and higher inductive types.
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General inductive types
Recall that in extensional type theories, many inductive types can be reduced to W-types
(see [Abbott et al. 2005; Dybjer 1997; Gambino and Hyland 2004; Goguen and Luo 1993;
Martin-Löf 1984; Moerdijk and Palmgren 2000]). For instance, in that setting the usual rules
for N as an inductive type can be derived from its formalization as the following W-type.
Consider the signature with two operations, one of which has arity zero (i.e. a constant) and
one of which has arity one (i.e. a unary operation); it is presented type-theoretically by a
dependent type with corresponding polynomial functor (naturally isomorphic to)

P (X) = 1 +X .

The natural numbers N, together with the canonical element 0 : N and the successor function
s : N→ N, form an initial P -algebra

(0, s) : 1 + N→ N .

As remarked in [Dybjer 1997], this reduction of N to a W-type is not available in conventional
intensional type theory, because the elimination and computation rules for the former are not
derivable from those for the latter.

The limited form of extensionality that is assumed in the type theory H used here, namely
the principle of function extensionality, allows us to overcome the obstacles in defining various
inductive types as W-types, provided that both are understood in the appropriate way as
homotopy-initial algebras, i.e. with all types formulated with propositional computation rules.
In particular, in the paradigmatic case of the natural numbers, we work in an extension of the
type theory H with:

— formation, introduction, elimination and propositional computation rules for types 0, 1 and
2 that have zero, one and two canonical elements, respectively;

— formation, introduction, elimination and propositional computation rules for W-types;
— rules for a type universe U reflecting all the forms of types of H, 0, 1, 2, and W-types.

In particular, the rules for 2 are those given for Bool in Table VI at the start of Section 2. We
then proceed as follows. We begin by setting A = 2, as in the extensional case. We then define
a dependent type

x : A ` B(x) : U

by 2-elimination, so that the propositional 2-computation rules give us propositional equalities

p0 : IdU (0, B(0)) , p1 : IdU (1, B(1)) .

Because of the invariance of the rules for 0 and 1 under propositional equalities, we can then
derive that the types B(0) and B(1) satisfy rules analogous to those for 0 and 1, respectively.
This allows us to show that the type

N =def (Wx : A)B(x)

satisfies the introduction, elimination and propositional computation rules for the type of nat-
ural numbers. Observe that, as a W-type, N is therefore also an homotopy-initial algebra for
the equivalent polynomial functor P (X) = 1 +X, as expected.

More generally, in the setting of extensional type theory, Dybjer [Dybjer 1997] showed that
every strictly positive definable functor can be represented as a polynomial functor, so that
all such inductive types are in fact W-types. This result should also generalize to the present
setting in a straightforward way.

Also in the extensional setting, general tree types (see [Nordström et al. 1990, Chapter 16]
and [Petersson and Synek 1989]), viewed as initial algebras for general polynomial functors,
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can be constructed from W-types in locally cartesian closed categories, using equalizers [Gam-
bino and Hyland 2004]. We expect this result to carry over to the present setting as well, using
Id-types in place of equalizers.

Finally, in [Voevodsky 2009], Voevodsky described how all inductive types of the Calculus
of Inductive Constructions [Coquand and Paulin-Mohring 1990; Paulin-Mohring 1993] can be
reduced to the following special cases:

— 0, 1, A+B, (Σx : A)B(x),
— IdA(a, b),
— general tree types.

Combining this with the foregoing, we expect that our our main result, Theorem 5.9, can be
extended to the full system of inductive types underlying the Calculus of Inductive Construc-
tions.

Higher inductive types
One of the most exciting developments in homotopy type theory is the idea of Higher Inductive
Types (HITs), which can also involve (possibly higher) identity terms in their signature [Lums-
daine 2011; Shulman 2011]. This allows, firstly, for algebras with equations between terms,
like associative laws, coherence laws, etc., representing an important extension of the range
of generalized inductive types available in type theory. Moreover, a vast further extension
comes from the homotopical interpretation of identity terms as paths. Viewed thus, HITs also
permit direct formalization of many basic geometric spaces and constructions, such as the
spheres Sn; cell complexes; truncations, such as the [bracket] types [Awodey and Bauer 2004];
various kinds of quotient types; general homotopy colimits; and many more fundamental and
fascinating objects not previously captured by type-theoretic formalizations.

Our investigation of conventional inductive types in the homotopical setting should lead to a
deeper understanding of these new and important geometric analogues. Indeed, the extension
of our main results to some special cases of HITs is the subject of recent work by the third-
named author [Sojakova 2014; 2015; 2016].
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Y. Bertot and P. Castéran. 2004. Interactive Theorem Proving and Program Development. Coq’Art: the Calculus of

Inductive Constructions. Springer-Verlag.

Journal of the ACM, Vol. 1, No. 1, Article 1, Publication date: January 2016.



1:44 S. Awodey et al.

R. Blackwell, G. M. Kelly, and A. J. Power. 1989. Two-dimensional monad theory. Journal of Pure and Applied Algebra
59, 1 (1989), 1–41.

M. Boardman and R. Vogt. 1973. Homotopy-invariant algebraic structures on topological spaces. Number 347 in
Lecture Notes in Mathematics. Springer-Verlag.

T. Coquand and C. Paulin-Mohring. 1990. Inductively defined types. In International Conference on Computer Logic
(COLOG ’88) (LNCS), Vol. 417. Springer, 50–66.

P. Dybjer. 1997. Representing inductively defined sets by well-orderings in Martin-Löf ’s type theory. Theoretical Com-
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