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Abstract
Sequential colimits are an important class of higher induc-
tive types. We present a self-contained and fully formalized
proof of the conjecture that in homotopy type theory se-
quential colimits appropriately commute with Σ-types. This
result allows us to give short proofs of a number of useful
corollaries, some of which were conjectured in other works:
the commutativity of sequential colimits with identity types,
with homotopy fibers, loop spaces, and truncations, and the
preservation of the properties of truncatedness and connect-
edness under sequential colimits. Our entire development
carries over to (∞, 1)-toposes using Shulman’s recent inter-
pretation of homotopy type theory into these structures.

CCS Concepts: • Theory of computation → Type the-
ory.

Keywords: sequential colimits, higher inductive types, ho-
motopy type theory
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1 Introduction
Homotopy type theory (HoTT) [The Univalent Foundations
Program, Institute for Advanced Study 2013] is an extension
of Martin-Löf’s dependent type theory [Martin-Löf 1975],
in which types are thought of as spaces, dependent types
as fibrations, terms of types as points of those spaces, and
terms of the identity type x = y for any x ,y : A as paths inA
from x to y. This is the so-called homotopy interpretation of
type theory, see [Awodey and Warren 2009]. Two further in-
gredients are then added to this type theory: the univalence
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axiom due to Voevodsky [Kapulkin and Lumsdaine 2012;
Voevodsky 2010, 2011] and higher inductive types due to
Bauer, Lumsdaine, Shulman, andWarren [Awodey et al. 2011;
Lumsdaine 2011; Lumsdaine and Shulman 2017; Shulman
2011]. The univalence axiom characterizes the identity type
of the universe, and higher inductive types allow (among
other things) constructions of new types by specifying their
points and identifications between those points, in a fashion
similar to introducing new algebras by generators and rela-
tions. Indeed, Sojakova [2016] showed that a large class of
higher inductive types arise as homotopy initial algebras. A
semantics of higher inductive types suitable for interpreting
the development in this paper is given in [Lumsdaine and
Shulman 2017].

An important class of examples of higher inductive types
are homotopy colimits, such as pushouts, coequalizers, and
sequential colimits. Sequential colimits in homotopy type
theory were first studied by Brunerie [2016], who showed
that the infinite dimensional sphere, defined as the colimit of
the finite dimensional spheres, is contractible. A sequential
colimit is the homotopy colimit of a diagram of the form

A(0) A(1) A(2) · · ·
a(0) a(1) a(2) (1)

Many interesting examples of types can be presented as
sequential colimits. For example, van Doorn [2016] showed
that the propositional truncation of a type can be obtained
as a sequential colimit. Brunerie [2016] performed the James
construction in HoTT, showing that the loop space of a sus-
pension can be presented as a sequential colimit. Rijke [2017]
showed that n-truncations can be obtained as sequential col-
imits, via a construction that was generalized in [Christensen
et al. 2018] to arbitrary reflective subuniverses. Moreover,
stable homotopy groups and homology groups can be de-
fined using a sequential colimit [Graham 2017]. We expect
many more interesting applications to follow. For example,
Shulman [2013] suggested that the spectrification of a pre-
spectrum can be presented as a sequential colimit, although
a proof that the resulting pre-spectrum is indeed a spectrum
is still work in progress.
Moreover, many constructions in the semantics of pro-

gramming languages take the form of sequential colimits.
For example, the existence of a certain class of inductive
types is guaranteed by a theorem of [Adamek 1974], which
shows that if an endofunctor preserves sequential colimits,
then initial algebras for this functor exist and can themselves
be characterized as sequential colimits. Sequential colimits
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are also ubiquitous in domain theory: for instance, Scott’sD∞

model of the untyped λ-calculus can be seen as a sequential
colimit of embeddings (chapter 18, page 480 of [Barendregt
1985]). We hope that the results in the present paper can be
used to develop the semantics of programming languages
internally in homotopy type theory, thereby also imbuing
these classic results with an ∞-categorical twist.

In HoTT, the sequential colimit of a sequence as in Dia-
gram 1 is defined as a higher inductive type called A∞. The
point constructor of A∞ is

ι : Πn:NA(n) → A∞

We note that we use a convention where→ binds stronger
than Π (we use a similar convention for Σ). The only path
constructor of A∞ is

κ : Πn:NΠx :A(n)ι(n + 1, a(n,x)) = ι(n,x)

Just like all higher inductive types, the sequential colimit
comes equipped with an induction principle and computa-
tion rules. Those principles essentially ensure that the type
A∞ indeed behaves as the homotopy colimit of the sequence
A(0) → A(1) → · · · . In fact, the induction principle implies
a dependent universal property.
To explain our main technical result, we consider the sit-

uation where we are given a type family B(n) : A(n) → U
over each A(n), equipped with functions b(n,a) : B(n,a) →
B(n + 1, a(n,a)) for each a : A(n). We picture this situation
as follows:

B(0) B(1) B(2) · · ·

A(0) A(1) A(2) · · · .

b(0) b(1) b(2)

a(0) a(1) a(2)

Here the double arrows indicate that the type family B(n)
is fibered over A(n). Now we can consider the sequence of
total spaces (i.e. Σ-types)

Σa:A(0)B(0,a) Σa:A(1)B(1,a) · · ·

and we write colim(Σ(A,B)) for its homotopy colimit. On
the other hand, we can form a type family B∞ : A∞ → U and
compare its total space with colim(Σ(A,B)). To construct B∞,
we first form for each a : A(n) the sequence

B(n,a) B(n + 1, a(n,a)) · · ·

and write B∞(n,a) its colimit. Now we can construct an
equivalence B∞(n,a) ≃ B∞(n + 1, a(n,a)) for any a : A(n), so
by univalence we obtain a type family B∞ : A∞ → U as a
result. Our main technical theorem, Theorem 5.1, states that
we have a commuting triangle

colim(Σ(A,B)) Σx :A∞
B∞(x)

A∞

π1

≃

in which the top map is an equivalence. Among the chief
consequences of our theorem (see section 7) is the charac-
terization of the identity type of a sequential colimit as a
sequential colimit of identity types. This corollary can be
seen as complementing the results of Kraus and von Raumer
[2019], who characterize the identity types of coequalizers
and pushouts.

Related Work. Our result has been conjectured for the
setting of homotopy type theory by E. Rijke in 2015. The
proof we give here, and the accompanying formalization, is
the original one with which we settled the conjecture for
homotopy type theory in July of 2017. Seven months later, R.
Bocquet gave an alternative formalization1 of our main result
that reasons about sequences and colimits in a stream-like
fashion reminiscent of coinduction. A disadvantage of this
technique is that certain crucial definitions become much
more complicated than necessary. For instance, in our devel-
opment the canonical map from the colimit of the sum to
the sum of colimits is easy to define (see Theorem 5.1); in
particular, it maps each canonical element ι(n, (a,b)) to a pair
of canonical elements (ι(n,a), ι(0,b)). In the stream-like pre-
sentation, however, even the mapping of canonical elements
already requires a significant amount of path algebra. This
is not optimal since from the user’s point of view, it is the
usability of the canonical map that matters rather than the
particulars of how this map is shown to be an equivalence
(as the latter is a mere proposition).

In 2017 Bocquet gave a formalization2 of the analogous re-
sult for a different type theory – a version of cubical type the-
ory – where he represents sequential colimits as an indexed
higher inductive type. This indexed HIT has constructors ι(a)
and κ(a) for a : A(0) (i.e., not for a general n : N but only for
the base case n B 0), plus an additional point constructor lift
that takes an element x : colim

(
n 7→ A(n + 1),n 7→ a(n + 1)

)
of the colimit of the lifted sequence that drops the first in-
dex, and produces a canonical element of the colimit of the
original sequence.
We do not wish to use indexed HITs for the following

reasons: they are not a standard feature of “book" HoTT;
their formal theory has not yet been fully developed; and
as our work shows, they are unnecessary for establishing
the result. We likewise wish to use homotopy type theory
as opposed to a version of cubical type theory for several
reasons: the former has a known interpretation into (∞, 1)-
toposes due to [Shulman 2019]; cubical type theories are not
1https://github.com/RafaelBocquet/CoinductiveSequentialColimits
2https://github.com/mortberg/cubicaltt/blob/seqcolim/examples/
seqcolim.ctt

https://github.com/RafaelBocquet/CoinductiveSequentialColimits
https://github.com/mortberg/cubicaltt/blob/seqcolim/examples/seqcolim.ctt
https://github.com/mortberg/cubicaltt/blob/seqcolim/examples/seqcolim.ctt
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yet known to be conservative over homotopy type theory;
we prefer to keep the assumptions on the underlying type
theory minimal; and since cubical type theories “interpret”
homotopy type theory, our proof can readily be adapted to
any of these alternative systems.

Comparison with Classical Results. A classical result
in 1-category theory states that filtered colimits over small
filtered categories commute with finite limits (see [MacLane
1971] or [Borceux 1994]). A generalization of this result to the
∞-categorical setting can be found in [Lurie 2009]: Proposi-
tion 5.3.3.3 implies that colimits over any κ-filtered category
commute with κ-small limits in homotopy types, and Exam-
ple 7.3.4.7 uses this result to establish that colimits over any
small filtered (∞, 1)-category into an (∞, 1)-topos commute
with finite limits. Our development of sequential colimits is
completely formalized, requires very little prior setup, and
relies exclusively on suitable induction principles. This is
in the spirit of homotopy type theory, which allows type
theorists with little knowledge of category theory to not
only understand but also to prove results from higher cat-
egory theory in an elementary fashion. Shulman’s recent
interpretation of homotopy type theory into (∞, 1)-topos
guarantees that our results hold in any (∞, 1)-topos.
As a conceptual contribution, we present our proof in a

fashion that aims to minimize the need for the explicit manip-
ulation of paths and relies instead on appropriate generaliza-
tions. As a prime example of our technique, we describe the
following trick: when establishing the equivalence between
colim(Σ(A,B)) and Σx :A∞

B∞(x), instead of directly using the
provided induction principles on the sum of two sequential
colimits – which is a nested induction with point-point, point-
path, path-point, and path-path cases – we prove instead that
the latter type satisfies the much easier induction principle
of the former type. The desired equivalence then follows
immediately.

Both the original formalization3 as well as the cleaned up
version4 use the proof assistant Lean 25. Lean 2 is an older
version of Lean6 that offers significantly more support for
HoTT [de Moura et al. 2015].

Overview. In Section 2 we briefly review some homotopy
type theory; in Section 3 we establish some basic properties
of sequences and colimits; in Section 4 we discuss fibered
sequences and construct the type family B∞; in Section 5 we
state our main result and show that it follows from a more
convenient induction principle on Σx :A∞

B∞(x); in Section 6
we sketch the proof of the aforementioned induction princi-
ple; and in Section 7 we give some important corollaries of
our main result.
3https://github.com/EgbertRijke/sequential_colimits/tree/
0da6c4c0f42ff9292fe815e21b97a5a56060e45f
4https://github.com/cmu-phil/Spectral/tree/master/colimit
5https://github.com/leanprover/lean2
6https://leanprover.github.io/

2 Homotopy Type Theory
We recall some basic notions and constructions from ho-
motopy type theory; for a full account of the theory, see
[The Univalent Foundations Program, Institute for Advanced
Study 2013]. We distinguish two forms of equality in homo-
topy type theory: judgmental equality and typal equality.
Judgmental equality is used for computation. When two
terms t1 and t2 of type A are syntactically equal, we write
t1 ≡ t2. For example, 1 + 1 ≡ 2 of type N. The second form
of equality is typal equality, which is introduced in the form
of Martin-Löf’s identity type. For any two terms x and y of
type A there is a type x = y, and proving that x = y holds
amounts to constructing a term of the type x = y, which is
called a path. The constant path from x to itself is called reflx .
For any path p : x = y we write p−1 : y = x for its inverse,
and for any two paths p : x = y and q : y = z, we write p � q
for their concatenation. Concatenation is defined in such a
way that reflx � reflx ≡ reflx , and there is an identification
(p � q) � r = p � (q � r ) for any three concatenatable paths.
Moreover, any function f : A → B respects paths: for any
path p : x = y in A there is a path apf (p) : f (x) = f (y).

We recall that a homotopy between two (dependent) maps
f ,д : Πx :AB(x) is a term of type f ∼ д B Πx :A f (x) = д(x).
An equivalence is then defined as a map f : A → B equipped
with a right and a left inverse, i.e., functions д : B → A and
h : B → A with homotopies f ◦д ∼ idB and h ◦ f ∼ idA. We
write A ≃ B for the type of equivalences from A to B. The
univalence axiom asserts that the canonical map (A = B) →
(A ≃ B) is an equivalence. We will write p : A → B for the
function associated to a path p : A = B in U. The function
extensionality principle (which follows from univalence)
states that for any f ,д : Πx :AB(x), the map (f = д) → (f ∼

д) is an equivalence. For f : A → B and y : B, the homotopy
fiber of f at y is defined as fibf (y) :=

(
Σx :A f (x) = y

)
.

An important concept in homotopy type theory is that
of transport. Given a type family B : A → U and a path
p : x = y in A, we have a function p #B : B(x) → B(y), with
reflx #B ≡ id. Using transport, we can also show that depen-
dent functions respect paths: for any dependent function
f : Πx :AB(x) and any path p : x = y in A, we can’t directly
compare f (x) of type B(x) with f (y) of type B(y), but there
is a path apdf (p) : p #B f (x) = f (y) in B(y).
The notion that a type A is n-truncated is defined by re-

cursion on n : Z, n ≥ −2. We say that A is (−2)-truncated
or contractible if we can find a inhabitant of Σx :AΠy :Ax = y.
The type A is (n + 1)-truncated if for all x ,y : A the type
x = y is n-truncated. For any type A we write ∥A∥n for its
n-truncation, i.e. ∥A∥n is an n-truncated type equipped with
a map |−|n : A → ∥A∥n such that for any n-truncated type
B the precomposition map (∥A∥n → B) → (A → B) is an
equivalence. A type A is n-connected if ∥A∥n is contractible.
A function f : A → B is called n-truncated (n-connected)
if for all y : B the type fibf (y) is n-truncated (n-connected).

https://github.com/EgbertRijke/sequential_colimits/tree/0da6c4c0f42ff9292fe815e21b97a5a56060e45f
https://github.com/EgbertRijke/sequential_colimits/tree/0da6c4c0f42ff9292fe815e21b97a5a56060e45f
https://github.com/cmu-phil/Spectral/tree/master/colimit
https://github.com/leanprover/lean2
https://leanprover.github.io/
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Properties of these notions are established in Chapter 7 of
[The Univalent Foundations Program, Institute for Advanced
Study 2013].

3 Sequences and Sequential Colimits
Our main ingredient, the sequential colimit, is a colimit of a
diagram of a particular shape:

Definition 3.1. A sequence is a pair (A, a) : Seq with
• A : N→ U
• a : Πn:NA(n) → A(n + 1)

Definition 3.2. The colimit colim(A, a) of a sequence (A, a)
is the higher inductive type generated by the following con-
structors:

ι : Πn:NA(n) → colim(A, a)

κ : Πn:NΠa:A(n)ι(n + 1, a(n,a)) = ι(n,a)

The constructor ι gives the canonical injection of a : A(n)
into the colimit, whereas the constructor κ provides the
glue that ensures that the respective injections of the points
a : A(n) and a(n,a) : A(n + 1) into the colimit coincide. The
higher dimensionality of this inductively-defined type comes
from the fact that κ does not construct a term of colim(A, a)
itself but rather of the identity type over colim(A, a). We will
sometimes denote colim(A, a) by colimn(A(n)) or A∞ if the
maps can be inferred from the context.
The constructors in Definition 3.2 are accompanied by the
following principle of induction: given

• E : colim(A, a) → U
• e : Πn:NΠa:A(n)E(ι(n,a))
• p : Πn:NΠa:A(n)κ(n,a) #E e(n + 1, a(n,a)) = e(n,a)

we have a map ind(E, e,p) : Πx :colim(A,a)E(x) such that for
any n : N,a : A(n),

• ind(E, e,p) ι(n,a) ≡ e(n,a)
• apdind(E,e,p)(κ(n,a)) = p(n,a)

The induction principle implies the following recursion prin-
ciple: given

• E : U
• e : Πn:NA(n) → E
• p : Πn:NΠa:A(n)e(n + 1, a(n,a)) = e(n,a)

there is a function rec(E, e,p) : colim(A, a) → E such that
for any n : N,a : A(n),

• rec(E, e,p) ι(n,a) ≡ e(n,a)
• aprec(E,e,p)(κ(n,a)) = p(n,a)

One important consequence of the induction principle is:

Lemma 3.3 (Uniqueness property of the sequential colimit).
Two functions F1, F2 : colim(A, a) → E out of the sequential
colimit are equal if there is a family of homotopies

• α : Πn:NF1 ◦ ι(n) = F2 ◦ ι(n)

such that the diagram of identifications below commutes for
all n : N, a : A(n).

F1
(
ι(n + 1, a(n,a))

)
F2
(
ι(n + 1, a(n,a))

)
F1(ι(n,a))

F2(ι(n,a))

α(n + 1, a(n,a)) α(n,a)

apF1 (κ(n,a))

apF2 (κ(n,a))

Morphisms of sequences are natural transformations:

Definition 3.4. Let (A, a) and (A′, a′) be sequences. A natu-
ral transformation (A, a) → (A′, a′) is a pair (τ ,H ) consisting
of a family of maps

τ : Πn:NA(n) → A′(n)

and a family of homotopiesH (n)witnessing that the diagram

A(0) A(1) A(2) · · ·

A′(0) A′(1) A′(2) · · ·

a(0)

τ (0)

a(1)

τ (1)

a(2)

τ (2)
a′(0) a′(1) a′(2)

commutes, i.e. Hn : τ (n + 1) ◦ a(n) ∼ a′(n) ◦ τ (n).
A natural equivalence is a natural transformation (τ ,H )

where τ (n) is an equivalence for all n.

The identity and composition of natural transformations
are defined in the obvious way.

Lemma 3.5 (Functoriality of the Sequential Colimit). We
have the following:

1. A natural transformation (τ ,H ) : (A, a) → (A′, a′)
induces a map colim(τ ,H ) or τ∞ : A∞ → A′

∞ given by

ι(n,a) 7→ ι(n,τ (n,a))

κ(n,a) 7→ apι(n+1)(H (n,a)) � κ(n,τ (n,a))

2. For 1 : (A, a) → (A, a), we have 1∞ ∼ idA∞
.

3. Given (τ ,H ) : (A, a) → (A′, a′) and (σ ,K) : (A′, a′) →
(A′′, a′′), we have (σ ◦ τ )∞ ∼ σ∞ ◦ τ∞.

4. Given (τ ,H ), (τ ′,H ′) : (A, a) → (A′, a′), if there is a
family of homotopies q : Πn:Nτ (n) ∼ τ ′(n) such that the
diagram of paths below commutes for all n : N, a : A(n),
then τ∞ ∼ τ ′∞.

τ ′(n + 1, a(n,a))

a′(n,τ (n,a))

τ ′(n + 1, a(n,a))

a′(n,τ ′(n,a))

H (n,a) H ′(n,a)

q(n + 1, a(n,a))

apa′(n)(q(n,a))

5. If (τ ,H ) is a natural equivalence then τ∞ is an equiva-
lence.

Given a sequence (A, a), the colimit colim(A, a) is in fact
equal to the colimit of the sequence

A(1) A(2) A(3) . . .
a(1) a(2) a(3)
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which drops the first index. This is intuitively clear since any
point ι(0,a) corresponding to a : A(0) is already present in
the colimit as the point ι(1, a(0,a)) corresponding to a(0,a) :
A(1), up to typal equality. Formally:

Lemma 3.6. We have

colim
(
n 7→ A(n + 1),n 7→ a(n + 1)

)
= colim(A, a)

as witnessed by the equivalence

ι(n,a) 7→ ι(n + 1,a)
κ(n,a) 7→ κ(n + 1,a)

Similarly:

Lemma 3.7. For n : N we have

colim
(
k 7→ A(n + k),k 7→ a(n + k)

)
= colim(A, a)

as witnessed by the equivalence

ι(k,a) 7→ ι(n + k,a)

κ(k,a) 7→ κ(n + k,a)

A term a : A(n) can be lifted to the term a(n,a) : A(n + 1),
which can be lifted to the term a(n+1, a(n,a)) : A(n+2), and
so on. Formally, let ΣA B Σn:NA(n) and define the liftings:

• x+ : ΣA for x : ΣA by (n,a)+ B (n + 1, a(n,a))
• x+k : ΣA for x : ΣA by x+0 B x , x+(k+1) B (x+k )+

• a+k : A(k) for a : A(0) by a+0 B a, a+(k+1) B a(k,a+k )

Since any term a : A(n) can be seen as a term a : A′(0)
for the sequence (A′, a′) B

(
k 7→ A(n + k),k 7→ a(n + k)

)
,

the k-fold lifting in the latter sequence yields a+k : A(n + k).
The expected relationships hold: lifting is associative up to
typal equality, i.e., we have x++k = x+k+1 for any x : ΣA; for
a : A(0) we have (0,a)+k = (k,a+k ); and for a : A(n) we have
(n,a)+k = (n + k,a+k ).

4 Fibered Sequences
We now shift our attention to a dependent version of se-
quences:

Definition 4.1. A sequence fibered over a sequence (A, a)
is a pair (B, b) : FibSeq(A, a) with

• B : ΣA → U
• b : Πx :ΣAB(x) → B(x+)

which can be visualized as the family of sequences below,
one for each x : ΣA.
B(x) B(x+1) B(x+2) . . .

b(x) b(x+1) b(x+2)

We say that (B, b) is equifibered if each b(x) is an equivalence.

The uniqueness property of the colimit plus univalence
imply that type families over colim(A, a) can be characterized
as equifibered sequences over (A, a):

Lemma 4.2. The type colim(A, a) → U is equivalent to the
type of equifibered sequences over (A, a), i.e.

colim(A, a) → U

≃ ΣC:Πn:NA(n)→UΠn:NΠa:A(n)C(n + 1, a(n,a)) ≃ C(n,a)

Since for any n : N we can form the type Σa:A(n)B
(
n,a),

there is a natural way to combine (A, a) and (B, b) into a
sequence:

Definition 4.3. We define the sequence Σ(A,a)(B, b) as the
pair

• n 7→ Σa:A(n)B(n,a)
• n, (a,b) 7→

(
a(n,a), b((n,a),b)

)
The canonical projection colim

(
Σ(A,a)(B, b)

)
→ colim(A, a)

is defined by:

ι(n, (a,b)) 7→ ι(n,a)

κ(n, (a,b)) 7→ κ(n,a)

We can informally describe the type colim
(
Σ(A,a)(B, b)

)
as

a “colim after Σ". The natural questions now are, what does
the dual type “Σ after colim" look like, and are the two types
equal? We will answer the former in this section and the
latter in the rest of the paper.
To define a dependent sum of colimits, we need a type

family B∞ : A∞ → U. By Lemma 4.2 it suffices to construct
an equifibered family (C∞, c∞), where C∞ : Πn:NA(n) → U
and c∞ : Πn:NΠa:A(n)C∞(n + 1, a(n,a)) ≃ C∞(n,a). For the
former, we define C : Πn:NA(n) → N→ U by

C(n,a, 0) B B(n,a)

C(n,a,k + 1) B C(n + 1, a(n,a),k)

and c : Πn:NΠa:A(n)Πk :NC(n,a,k) → C(n,a,k + 1) by

c(n,a, 0) B b(n,a)

c(n,a,k + 1) B c(n + 1, a(n,a),k)

and put

C∞(n,a) B colim
(
k 7→ C(n,a,k),k 7→ c(n,a,k)

)
To define c∞(x), we appeal to Lemma 3.6 to obtain the equiv-
alence:

C∞(n + 1, a(n,a))

≡ colim
(
k 7→ C

(
n + 1, a(n,a),k

)
,k 7→ c

(
n + 1, a(n,a),k

) )
≃ colim

(
k 7→ C(n,a,k),k 7→ c(n,a,k)

)
≡ C∞(n,a)

Wehave thus constructedB∞ : A∞ → U, whereB∞(ι(n,a)) ≡

C∞(n,a) and we have a witness βB∞
(n,a) : apB∞

(κ(n,a)) =
c(n,a) (we recall that overline denotes a map induced by a
path between types).
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5 Colimits and Sums
To show colim

(
Σ(A,a)(B, b)

)
≃ Σx :A∞

B∞(x), we want to con-
struct mutually inverse functions between these types. From
left to right, the only reasonable action on points is to map
ι(n, (a,b)) to the pair (ι(n,a), ι(0,b)), whichmakes sense since
b : B(n,a). Mapping the path constructor κ(n, (a,b)) requires
a path (

ι(n + 1, a(n,a)), ι
(
0, b((n,a),b)

) )
(
ι(n,a), ι(0,b)

)??

The constructor κ(0,b) for the sequential colimit C∞(n,a)
gives us a path ι

(
1, b((n,a),b)

)
= ι(0,b) that we can use as

follows: (
ι(n + 1, a(n,a)), ι

(
0, b((n,a),b)

) )
(
ι(n,a), ι

(
1, b((n,a),b)

) )
(
ι(n,a), ι(0,b)

)

??

ap(ι(n,a),−)(κ(0,b))

In the remaining path, the constructor κ(n,a) for the se-
quential colimit A∞ gives us equality of the first compo-
nents, and hence a map apB∞

(κ(n,a)) : C∞(n + 1, a(n,a)) →
C∞(n,a). This function is equal to c∞(n,a), as witnessed by
βB∞

(n,a), and the latter map carries ι
(
0, b((n,a),b)) precisely

to ι
(
1, b((n,a),b)

)
. We can generalize this situation as follows:

given
• x1,x2 : A∞ and α : x1 = x2
• F : B∞(x1) → B∞(x2)

• F⋆ : apB∞
(α) = F

• y : B∞(x1)

we have a path ∆(α , F⋆,y) : (x1,y) = (x2, F (y)) defined by
induction on α and F⋆. This completes the definition of a
function from left to right, and allows us to concisely state
our main result:
Theorem 5.1 (Interaction between colim and Σ). We have:

colim
(
Σ(A,a)(B, b)

)
= Σx :A∞

B∞(x)

as witnessed by the equivalence F below:

ι(n, (a,b)) 7→
(
ι(n,a), ι(0,b)

)
κ(n, (a,b)) 7→ ∆

(
κ(n,a), βB∞

(n,a), ι
(
0, b((n,a),b)

) ) �
ap(ι(n,a),−)(κ(0,b))

that commutes with the canonical projections:

colim
(
Σ(A,a)(B, b)

)
Σx :A∞

B∞(x)

colim(A, a) ≡ A∞

π1

F

with the one on the left as given in Definition 4.3.

Proof of commutativity. We use the uniqueness property
of the colimit. On points ι(n, (a,b)) the maps agree defini-
tionally. To show that κ(n,a) = apπ1

(
apF

(
κ(n, (a,b))

) )
, we

use the following easy generalization: given

• x1,x2 : A∞ and α : x1 = x2
• y1 : B∞(x1) and y2 : B∞(x2)
• F : B∞(x1) → B∞(x2)

• F⋆ : apB∞
(α) = F

• β : F (y1) = y2

we have α = apπ1

(
∆(α , F⋆,y1) � ap(x2,−)(β)

)
. �

Now it “only” remains to show that F is indeed an equiva-
lence, by exhibiting an inverse. However, induction on the
sum of sequential colimits is significantly harder than in-
duction on the sequential colimit of the sum: the former
requires two nested colimit inductions and results not in a
point case and a path case, as before, but rather in point-point,
point-path, path-point, path-path cases.

Worse yet, it appears we may have to carry out this form
of induction twice: once when constructing the inverse to
F and again when proving that the two maps compose to
the identity on Σx :A∞

B∞(x). Or do we? If the sum of colimits
is to be equal to the colimit of the sum, then the two types
better have the same induction principle! In other words, we
should be able to construct a map out of Σx :A∞

B∞(x) as if
we were constructing a map out of colim

(
Σ(A,a)(B, b)

)
, using

F to appropriately mediate between the two types:

Lemma 5.2 (Induction on the sum of sequential colimits).
Given

• E :
(
Σx :A∞

B∞(x)
)
→ U

• e : Πn:NΠa:A(n)Πb :B(n,a)E
(
F
(
ι(n, (a,b))

) )
• p : Πn:NΠa:A(n)Πb :B(n,a)apF

(
κ(n, (a,b))

)
#E

e
(
n + 1, a(n,a), b((n,a),b)

)
= e(n,a,b)

there is a function G : Πy :(Σx :A∞B∞(x ))E(y) such that for any
n : N,a : A(n),b : B(n,a),

• G
(
F
(
ι(n, (a,b))

) )
≡ e(n,a,b)

• apdG
(
apF

(
κ(n, (a,b))

) )
= p(n,a,b)

Of course, to establish this lemma we still need to carry
out the more difficult nested induction – but only once, and
then our work is essentially done. Lemma 5.2 easily implies
the corresponding recursion principle:

Lemma 5.3 (Recursion on the sum of sequential colimits).
Given

• E : U
• e : Πn:NΠa:A(n)B(n,a) → E
• p : Πn:NΠa:A(n)Πb :B(n,a)

e
(
n + 1, a(n,a), b((n,a),b)

)
= e(n,a,b)
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there is a function G :
(
Σx :A∞

B∞(x)
)
→ E such that for any

n : N,a : A(n),b : B(n,a),
• G

(
F
(
ι(n, (a,b))

) )
≡ e(n,a,b)

• apG
(
apF

(
κ(n, (a,b))

) )
= p(n,a,b)

Lemma 5.2 now easily implies the following:

Lemma 5.4 (Uniqueness property of the sum of sequential
colimits). Two maps G1,G2 :

(
Σx :A∞

B∞(x)
)
→ E out of the

sum of colimits are equal if the mapsG1 ◦ F andG2 ◦ F are, i.e.
F is epic.

The proof of our main result, Theorem 5.1, is now easy:

Proof of equivalence. We construct the inverse F−1 by re-
cursion on Σx :A∞

B∞(x) as in Lemma 5.3:
F
(
ι(n, (a,b))

)
7→ ι(n, (a,b))

apF
(
κ(n, (a,b))

)
7→ κ(n, (a,b))

The equality F−1 ◦ F = id is now immediate from the
uniqueness property of the sequential colimit and the equal-
ity F ◦ F−1 = id from the uniqueness property of the sum of
sequential colimits. �

In the next section we give the proof of Lemma 5.2.

6 Induction on the Sum of Sequential
Colimits

To prove Lemma 5.2, we want to construct the curried ver-
sion of G, the map x ,y 7→ G(x ,y) : Πx :A∞

Πy :B∞(x )E(x ,y), by
nested sequential colimit induction. For the outer induction
on A∞, we need to map ι(n,a) to a function

• g(n,a) : Πy :C∞(n,a)E(ι(n,a),y)

and κ(n,a) to an equality
κ(n,a) #(x 7→Πy :B∞(x )E(x,y)) g(n + 1, a(n,a)) = g(n,a) (1)

We want to define g(n,a) by induction on the sequential
colimit C∞(n,a). We thus need h and H such that for any
k : N and b : C(n,a,k),

• h(n,a,k,b) : E
(
ι(n,a), ι(k,b)

)
• H(n,a,k,b) : κ(k,b) #E(ι(n,a),−)
h
(
n,a,k + 1, c(n,a,k,b)

)
= h(n,a,k,b)

The obvious way to proceed now would be to begin defin-
ing h and H right away and establish Equality (1) post-hoc.
This may result in more work than necessary though: per-
haps if we examine this equality first we can get some insight
into how to best define h and H so that only a (relatively)
small amount of effort is needed for the path-point and path-
path cases.

We start by reformulating Equality (1) in a way that makes
it easier to understand. The maps g(n + 1, a(n,a)) and g(n,a)
have different domains: the former takes arguments from
the sequential colimit C∞(n + 1, a(n,a)) and the latter from
C∞(n,a). But these colimits are equivalent via c∞(n,a), so

relating the maps g(n + 1, a(n,a)) and g(n,a) comes down
to relating g(n + 1, a(n,a),y) and g(n,a, c∞(n,a,y)) for any
argument y : C∞(n + 1, a(n,a)). The respective values lie in
different fibers of E, namely over

(
ι(n + 1, a(n,a)),y

)
versus

over
(
ι(n,a), c∞(n,a,y)

)
, but the path ∆

(
κ(n,a), βB∞

(n,a),y
)

equates the pairs.
Thus, we have the following more verbose but easier to

use reformulation:

Πy :C∞(n+1,a(n,a))g(n,a, c∞(n,a,y)) =

∆
(
κ(n,a), βB∞

(n,a),y
)
#E g(n + 1, a(n,a),y) (2)

Of course, we must show this is equivalent to the original
formulation. We do so via a generalization: given

• x1,x2 : A∞ and α : x1 = x2
• F : B∞(x1) → B∞(x2)

• F⋆ : apB∞
(α) = F

• f1 : Πy :B∞(x1)E(x1,y)
• f2 : Πy :B∞(x2)E(x2,y)

we have an equivalence I(α , F⋆, f1, f2) :

α #(x 7→Πy :B∞(x )E(x,y)) f1 = f2

≃

Πy :B∞(x1) f2(F (y)) = ∆(α , F⋆,y) #E f1(y)

We define I by induction on α and F⋆. This reduces the
above equivalence to (f1 = f2) ≃ (f2 ∼ f1), witnessed by the
symmetry (f1 = f2) ≃ (f2 = f1) and the map hap(f2, f1).

It thus suffices to produce a witness ω(n,a) for (2), which
will give us the desired witness for (1), explicitly described
below:

I
(
κ(n,a), βB∞

(n,a), g(n + 1, a(n,a)), g(n,a)
)−1

ω(n,a)

We construct ω(n,a) by induction on the sequential colimit
C∞(n + 1, a(n,a)). So for any k : N and b : C(n,a,k + 1) we
need

• µ(n,a,k,b) : g
(
n,a, c∞(n,a, ι(k,b))

)
=

∆
(
κ(n,a), βB∞

(n,a), ι(k,b)
)
#E g(n + 1, a(n,a), ι(k,b))

and an equality:

κ(k,b) #y 7→g(n,a,c∞(n,a,y))=∆(κ(n,a),βB∞ (n,a),y) #E g(n+1,a(n,a),y)

µ
(
n,a,k + 1, c(n,a,k + 1,b)

)
= µ(n,a,k,b) (3)

We can now divide the proof into the following steps:
• The point-point case: defining h.
• The path-point case: defining µ.
• The point-path case: defining H.
• The path-path case: showing that (3) holds.
• Establishing the computation rules.
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6.1 The point-point and path-point cases
We first simplify the type of µ. By definition of g we have

g(n + 1, a(n,a), ι(k,b)) ≡ h(n + 1, a(n,a),k,b)

and similarly

g
(
n,a, c∞(n,a, ι(k,b))

)
≡ g(n,a, ι(k + 1,b))
≡ h(n,a,k + 1,b)

hence we need

• µ(n,a,k,b) : h(n,a,k + 1,b) =
∆
(
κ(n,a), βB∞

(n,a), ι(k,b)
)
#E h(n + 1, a(n,a),k,b)

The type of µ thus shows how to express h(·, ·,k + 1, ·) in
terms of h(·, ·,k, ·), giving us an inductive definition of h:

h(n,a,k + 1,b) B
∆
(
κ(n,a), βB∞

(n,a), ι(k,b)
)
#E h(n + 1, a(n,a),k,b)

In the zero case, we need a point in the fiber E
(
ι(n,a), ι(0,b)

)
and this is just the assumption e(n,a,b) : E

(
F
(
ι(n, (a,b))

) )
,

so
h(n,a, 0,b) B e(n,a,b)

We let µ(n,a,k,b) be reflexivity.

6.2 The point-path and path-path cases
As in the previous subsection, we try to show that (3) holds
before defining H, gaining an insight into what H should
look like. We again start by replacing (3) with something
equivalent but easier to understand. To figure out what the
transport does, we would like to appeal to path induction. So
the first step is to replace the path κ(k,b) together with its
endpoints ι

(
k + 1, c(n,a,k + 1,b)

)
and ι(k,b) by something

more general:

• y1,y2 : C∞(n + 1, a(n,a)) and β : y1 = y2

We replace µ
(
n,a,k+1, c(n,a,k+1,b)

)
and µ(n,a,k,b) (which

are just reflexivities) by arbitrary paths

• u1 : g(n,a, c∞(n,a,y1)) =
∆
(
κ(n,a), βB∞

(n,a),y1
)
#E g(n + 1, a(n,a),y1)

• u2 : g(n,a, c∞(n,a,y2)) =
∆
(
κ(n,a), βB∞

(n,a),y2
)
#E g(n + 1, a(n,a),y2)

But the path κ(k,b) was not arbitrary at all: we had the
further piece of information that

apc∞(n,a)(κ(k,b)) = κ(k + 1,b)

This is just the second computation rule of c∞(n,a), the wit-
ness for which we call βc∞ (n,a,k,b). We capture this ab-
stractly as having:

• γ : c∞(n,a,y1) = c∞(n,a,y2)
• θ : apc∞(n,a)(β) = γ

In this abstract scenario, we want to relate u1 and u2 over
the path β . Since u1 is a path in E

(
ι(n,a), c(n,a,y1)

)
and u2 is

a path in E
(
ι(n,a), c(n,a,y2)

)
, to relate them we first need to

have them in the same fiber of E. The two fibers of E can be
related by the transport of the type family E(ι(n,a),−) over
apc∞(n,a)(β), which we could use to carry u1 over. But since
we know apc∞(n,a)(β) = γ , we can use the transport over γ
directly. So we want to fill the diagram in Figure 1. Using
dependent application of g, we can fill edges as shown in
Figure 2. The remaining edge can be seen as witnessing the
naturality of ∆

(
κ(n,a), βB∞

(n,a)
)
. To construct it, we define

a homotopy
• ε(β ,γ ,θ ) : γ #E(ι(n,a),−) ∆

(
κ(n,a), βB∞

(n,a),y1
)
#E ∼

∆
(
κ(n,a), βB∞

(n,a),y2
)
#E β #E(ι(n+1,a(n,a)),−)

by induction on β and θ . We can thus complete the diagram
as in Figure 3.
Putting all this together, we have the following general-

ization: given:
• y1,y2 : C∞(n + 1, a(n,a)) and β : y1 = y2
• γ : c∞(n,a,y1) = c∞(n,a,y2)
• θ : apc∞(n,a)(β) = γ
• u1 : g(n,a, c∞(n,a,y1)) =
∆
(
κ(n,a), βB∞

(n,a),y1
)
#E g(n + 1, a(n,a),y1)

• u2 : g(n,a, c∞(n,a,y2)) =
∆
(
κ(n,a), βB∞

(n,a),y2
)
#E g(n + 1, a(n,a),y2)

we have the equivalence in Figure 4, asserting that the com-
mutativity of the diagram in Figure 3 is equivalent to u1 and
u2 being suitably related over β . To show this, we perform
induction on β and θ . This reduces the goal to showing that
u1 = u2 is equivalent to refl �u2 = apid(u1) � refl � refl and this
is clearly the case.

Our intended instantiation is thus:
• y1 B ι

(
k + 1, c(n,a,k + 1,b)

)
• y2 B ι(k,b)
• β B κ(k,b)
• γ B κ(k + 1,b)
• θ B βc∞ (n,a,k,b)
• u1 B µ

(
n,a,k + 1, c(n,a,k + 1,b)

)
≡ refl

• u2 B µ(n,a,k,b) ≡ refl

So to prove (3) it suffices to establish the equality in Fig-
ure 5. On the left hand side, the path apdg(n,a)(κ(k + 1,b)) is
supposed to be equal to H(n,a,k + 1,b); on the right hand
side, the path apdg(n+1,a(n,a))(κ(k,b)) is supposed to be equal
to H

(
n + 1, a(n,a),k,b

)
. On the right hand side, the point

g
(
n + 1, a(n,a), ι

(
k + 1, c(n,a,k + 1,b)

) )
is supposed to be

definitionally equal to h
(
n + 1, a(n,a),k + 1, c(n,a,k + 1,b)

)
.

Thus, we have expressed H(·, ·,k +1, ·) in terms of H(·, ·,k, ·),
which gives us the successor step of the definition of H by
induction on k (see Figure 6).
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γ #E(ι(n,a),−) ∆
(
κ(n,a), βB∞

(n,a),y1
)
#E g(n + 1, a(n,a),y1)

γ #E(ι(n,a),−) g(n,a, c∞(n,a,y1))

∆
(
κ(n,a), βB∞

(n,a),y2
)
#E g(n + 1, a(n,a),y2)

g(n,a, c∞(n,a,y2))

apγ #E(ι(n,a),−) (u1) u2

??

??

Figure 1. Filling the diagram

γ #E(ι(n,a),−) ∆
(
κ(n,a), βB∞

(n,a),y1
)
#E g(n + 1, a(n,a),y1)

γ #E(ι(n,a),−) g(n,a, c∞(n,a,y1))

∆
(
κ(n,a), βB∞

(n,a),y2
)
#E g(n + 1, a(n,a),y2)

g(n,a, c∞(n,a,y2))

∆
(
κ(n,a), βB∞

(n,a),y2
)
#E β #E(ι(n+1,a(n,a)),−) g(n + 1, a(n,a),y1)

apγ #E(ι(n,a),−) (u1)

apdg(n,a)(γ )

u2

ap∆(κ(n,a),βB∞ (n,a),y2) #E (apdg(n+1,a(n,a))(β))??

Figure 2. Filling the diagram, continued

γ #E(ι(n,a),−) ∆
(
κ(n,a), βB∞

(n,a),y1
)
#E g(n + 1, a(n,a),y1)

γ #E(ι(n,a),−) g(n,a, c∞(n,a,y1))

∆
(
κ(n,a), βB∞

(n,a),y2
)
#E g(n + 1, a(n,a),y2)

g(n,a, c∞(n,a,y2))

∆
(
κ(n,a), βB∞

(n,a),y2
)
#E β #E(ι(n+1,a(n,a)),−) g(n + 1, a(n,a),y1)

apγ #E(ι(n,a),−) (u1)

apdg(n,a)(γ )

u2

ap∆(κ(n,a),βB∞ (n,a),y2) #E (apdg(n+1,a(n,a))(β))ε
(
β,γ ,θ , g(n + 1, a(n,a),y1)

)

Figure 3. Filling the diagram, continued

β #y 7→g(n,a,c∞(n,a,y))=∆(κ(n,a),βB∞ (n,a),y) #E g(n+1,a(n,a),y) u1 = u2

≃

apdg(n,a)(γ ) � u2 = apγ #E(ι(n,a),−) (u1)
� ε
(
β ,γ ,θ , g(n + 1, a(n,a),y1)

) �
ap∆(κ(n,a),βB∞ (n,a),y2) #E

(
apdg(n+1,a(n,a))(β)

)
Figure 4. Equality of u1 and u2 over β is the same as the commutativity of the diagram in Figure 3

apdg(n,a)(κ(k + 1,b)) =

ε
(
κ(k,b),κ(k + 1,b), βc∞ (n,a,k,b), g

(
n + 1, a(n,a), ι

(
k + 1, c(n,a,k + 1,b)

) )) �
ap∆(κ(n,a),βB∞ (n,a), ι(k,b)) #E

(
apdg(n+1,a(n,a))(κ(k,b))

)
Figure 5. Our new goal
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H(n,a,k + 1,b) B

ε
(
κ(k,b),κ(k + 1,b), βc∞ (n,a,k,b), h

(
n + 1, a(n,a),k + 1, c(n,a,k + 1,b)

))
�

ap∆(κ(n,a),βB∞ (n,a), ι(k,b)) #E

(
H(n + 1, a(n,a),k,b)

)
Figure 6. Definition of H(n,a,k + 1,b)

To define H(n,a, 0,b), we need a path
κ(0,b) #E(ι(n,a),−) h

(
n,a, 1, b((n,a),b)

)
h(n,a, 0,b)

??

The obvious path to include is the assumption p(n,a,b),
which has the correct right endpoint:

κ(0,b) #E(ι(n,a),−) h
(
n,a, 1, b((n,a),b)

)

apF
(
κ(n, (a,b))

)
#E h

(
n + 1, a(n,a), 0, b((n,a),b)

)

h(n,a, 0,b)

??

p(n,a,b)

To fill the remaining edge, we define a a homotopy
• η(α , β,θ ) : β #E(ι(n,a),−) γ #E ∼ α #E

by induction on α , β , θ , where
• y1,y2 : C∞(n,a) and α : y1 = y2
• z : Σx :A∞

B∞(x)
• β : z = (ι(n,a),y1)
• γ : z = (ι(n,a),y2)
• θ : γ = β � ap(ι(n,a),−)(α)

This leads us to the path in Figure 7, where βF(n, (a,b)) is the
witness for the second computation rule for F, expressing
apF

(
κ(n, (a,b))

)
as the composition

∆
(
κ(n,a), βB∞

(n,a), ι
(
0, b((n,a),b)

) ) � ap(ι(n,a),−)(κ(0,b))
This finishes the construction of H and the definition of

g. The equality in Figure 5 is now immediate by the compu-
tation rules for g and Figure 6, and the construction of G is
thus complete.

6.3 The computation rules
The computation rule on points is obvious. Nowwe just need
to show

apdG
(
apF

(
κ(n, (a,b))

) )
= p(n,a,b)

As we observed above, the witness βF(n,a,b) expresses the
path apF

(
κ(n, (a,b))

)
as the composition

∆
(
κ(n,a), βB∞

(n,a), ι
(
0, b((n,a),b)

) ) � ap(ι(n,a),−)(κ(0,b))

We would analogously like to express the dependent action
of G on this composite path in terms of dependent actions
on the individual paths. So we utilize the generalization we
used earlier when defining η: given

• y1,y2 : C∞(n,a) and α : y1 = y2
• z : Σx :A∞

B∞(x)
• β : z = (ι(n,a),y1)
• γ : z = (ι(n,a),y2)
• θ : γ = β � ap(ι(n,a),−)(α)

the path apdg(n,a)(α) is equal to

α #E(ι(n,a),−) g(n,a,y1)

α #E(ι(n,a),−) β #E G(z)

γ #E G(z)

g(n,a,y2)

apα #E(ι(n,a),−)
(
apdG(β)

−1)

η(α , β ,θ ,G(z))

apdG(γ )

This is again immediate by path induction on α , β,θ . Instan-
tiating this generalization thus expresses apdg(n,a)(κ(0,b)) as
the path in Figure 8. But by the second computation rule for
g(n,a), we have apdg(n,a)(κ(0,b)) = H(n,a, 0,b). Comparing
Figures 7 and 8, it only remains to show that the path

apdG
(
∆
(
κ(n,a), c⋆(n,a), ι

(
0, b((n,a),b)

) ))−1
is equal to µ(n,a, 0,b), which is reflexivity. We use one last
generalization: given

• x1,x2 : A∞ and α : x1 = x2
• F : B∞(x1) → B∞(x2)

• F⋆ : apB∞
(α) = F

• y : B∞(x1)
• w : Πy :B∞(x1)G(x2, F (y)) = ∆(α , F⋆,y) #E G(x1,y)
• w⋆ : I

(
α , F⋆,G(x1,−),G(x2,−)

)
apdx,y 7→G(x,y)(α) = w

then apdG
(
∆(α , F⋆,y)

)−1
= w(y). We use the instantiation

w B ω(n,a), for which w⋆ follows by the second compu-
tation rule of the curried version of G. This completes the
proof.
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κ(0,b) #E(ι(n,a),−) ∆
(
κ(n,a), βB∞

(n,a), ι
(
0, b((n,a),b)

) )
h
(
n + 1, a(n,a), 0, b((n,a),b)

)

apF
(
κ(n, (a,b))

)
#E h

(
n + 1, a(n,a), 0, b((n,a),b)

)

h(n,a, 0,b)

η
(
κ(0,b),∆

(
κ(n,a), βB∞

(n,a), ι
(
0, b((n,a),b)

) )
, βF(n, (a,b)), h

(
n + 1, a(n,a), 0, b((n,a),b)

))

p(n,a,b)

Figure 7. Definition of H(n,a, 0,b)

κ(0,b) #E(ι(n,a),−) h
(
n,a, 1, b((n,a),b)

)

κ(0,b) #E(ι(n,a),−) ∆
(
κ(n,a), βB∞

(n,a), ι
(
0, b((n,a),b)

) )
h
(
n + 1, a(n,a), 0, b((n,a),b)

)

apF
(
κ(n, (a,b))

)
#E h

(
n + 1, a(n,a), 0, b((n,a),b)

)

h(n,a, 0,b)

apκ(0,b) #E(ι(n,a),−)

(
apdG

(
∆
(
κ(n,a), βB∞

(n,a), ι
(
0, b((n,a),b)

) ))−1)

η
(
κ(0,b),∆

(
κ(n,a), βB∞

(n,a), ι
(
0, b((n,a),b)

) )
, βF(n, (a,b)), h

(
n + 1, a(n,a), 0, b((n,a),b)

))

apdG
(
apF

(
κ(n, (a,b))

) )

Figure 8. Characterization of apdg(n,a)(κ(0,b))

7 Applications of the Main Theorem
We now establish some corollaries of our main result. Before
we proceed, we first show that we can describe the colimit
B∞(ι(n,a)) in a more explicit fashion that is often easier to
work with.

Lemma 7.1. Given a sequence (B, b) fibered over (A, a) and
a : A(n), we have

B∞(ι(n,a)) ≃ colim
(
k 7→ B

(
(n,a)+k

)
,k 7→ b

(
(n,a)+k

) )
Proof. This follows from the definition

B∞(ι(n,a)) ≡ colim
(
k 7→ C(n,a,k),k 7→ c(n,a,k)

)
and the functoriality of the colimit, using the fact that lifting
is associative up to typal equality. �

The first application of our theorem is the characterization
of the path types of sequential colimits. We will need the
following two lemmas, the proofs of which are straightfor-
ward:

Lemma 7.2. We have colimk (1) ≃ 1.

We will have a more general result in Corollary 7.7.5 but
in that proof we will use a special case of this lemma.

Lemma 7.3 (Encode-decode). Let a : A and let B : A → U be
a type family with b : B(a). Then the following are equivalent:

1. The canonical family of maps Πx :A(a = x) → B(x) is a
family of equivalences.

2. The total space of B is contractible.

We can now prove the following:

Theorem 7.4. Fix a sequence (A, a). For any a1,a2 : A(0), we
have an equivalence(

ι(0,a1) =A∞
ι(0,a2)

)
≃ colimk

(
a+k1 =A(k ) a

+k
2
)

and for any a1,a2 : A(n), we have an equivalence(
ι(n,a1) =A∞

ι(n,a2)
)
≃ colimk

(
a+k1 =A(n+k) a

+k
2
)

Proof. By Lemma 3.7 and the definition of the lifting (−)+k :
A(n) → A(n +k), the latter equivalence immediately follows
from the former. To prove the former, we define a fibered
sequence (B, b) over (A, a) by

• B(k,a) B
(
a+k1 =A(k ) a

)
• b(k,a,p) B apa(k )(p)

Now we use Theorem 5.1 to deduce that the total space of
B∞ is contractible.

Σx :A∞
B∞(x) ≃ colimk

(
Σa:A(k )

(
a+k1 =A(k ) a

) )
≃ colimk (1)

≃ 1.
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We have ι(0, refla1 ) : B∞(ι(0,a1)), so we can now conclude
by Lemma 7.3 that(

ι(0,a1) =A∞
ι(0,a2)

)
≃ B∞(ι(0,a2))
≡ colim

(
k 7→ C(0,a2,k),k 7→ c(0,a2,k)

)
≃ colim

(
k 7→ B

(
(0,a2)+k

)
,k 7→ b

(
(0,a2)+k

) )
≃ colim

(
k 7→ B

(
k,a+k2

)
,k 7→ b

(
k,a+k2

) )
where the second equivalence is Lemma 7.1 and the third is
functoriality of the colimit. �

Our next corollary shows that sequential colimits com-
mute with loop spaces of pointed types. This proves Con-
jecture 3.8 of [Cavallo 2015] and answers Question 4.2 of
[Graham 2017].

A pointed type A is a pair consisting of a type, usually also
denoted A, and a basepoint a : A. A pointed map f : A →∗ B
between types pointed with a : A and b : B, respectively, is a
pair consisting of a map f : A → B and a path β : f (a) = b.
The loop space ΩA of a pointed type A is a pointed type

with underlying type a = a and basepoint refla . A pointed
map f : A →∗ B induces a pointed map Ω f : ΩA →∗ ΩB
whose underlying map is defined by induction on β and the
mapping p : a = a to apf (p).

A pointed sequence is a sequence where all types and maps
are pointed. We will denote the basepoint of An by an and
now the sequential colimit is pointed with basepoint ι(0,a0).

Corollary 7.5. For a pointed sequence (A, a) we have the
following pointed equivalence

ΩA∞ ≃ colim(n 7→ ΩA(n),n 7→ Ωa(n)).

Proof. We compute

ΩA∞ ≃ colimn
(
a+n0 = a+n0

)
≃ colimn(an = an)

where the first equivalence is Theorem 7.4 and second is
functoriality of the colimit. The fact that this equivalence is
pointed is by reflexivity. �

Given a natural transformation τ : (A′, a′) → (A, a) we
can define the homotopy fiber of τ as a sequence fibered
over (A, a), by fibτ (n,a) B fibτ (n)(a). Then the following
corollary of the main theorem states that colimits commute
with homotopy fibers.

Corollary 7.6. For a natural transformation τ : (A′, a′) →
(A, a) and a point x : A∞, we have

fibτ∞ (x) ≃ (fibτ )∞(x).

Proof. Consider the following diagram, where the equiva-
lences on the top are given by Theorem 5.1 (left) and by
functoriality of the colimit together with the fact that the

total space of the fiber of a function is the domain of that
function (right).

Σx :A∞
(fibτ )∞(x) colimk

(
Σx :A(n)fibτ (n)(x)

)
A′
∞

A∞

τ∞

≃

π1

≃

In this diagram the map in the middle is as given in Defi-
nition 4.3. The left triangle commutes by Theorem 5.1 and
the right triangle commutes by functoriality of the colimit.
Therefore,

fibτ∞ (x) ≃ fibπ1 (x) ≃ (fibτ )∞(x) �

The following corollary specifies the interaction of col-
imits and truncations, truncatedness and connectedness. In
particular, we show that colimits of n-truncated types are
again n-truncated. In Theorem 3.3 of [Graham 2017], the def-
inition of a homology theory is given as the set-truncation
of a colimit of stable homotopy groups. Our result shows
that this set-truncation is superfluous: the colimit is already
a set.

Corollary 7.7. Consider a sequence (A, a) and some k ≥ −2.
1. If each A(n) is k-truncated, then A∞ is k-truncated.
2. We have an equivalence

∥A∞∥k ≃ colimn
(
∥A(n)∥k , ∥a(n)∥k

)
.

3. If each A(n) is k-connected, then A∞ is k-connected.
4. If (τ ,H ) : (A, a) → (A′, a′) is a natural transformation

such that each τ (n) is k-truncated (k-connected), then
τ∞ is k-truncated (k-connected).

5. If each a(n) is k-truncated (k-connected), then ι(0) is
k-truncated (k-connected).

Remark. By Lemma 3.7 we can generalize the quantifica-
tion “for all n : N” in this Corollary to the weaker “there is
anm : N such that for all n ≥ m”. In part 5 the conclusion
then becomes that ι(m) is k-truncated (k-connected).

Proof (of Corollary 7.7).
1. We prove this by induction on k .

The base case k B −2 follows from Lemma 7.2 and
the functoriality of the colimit.
For the successor case, take x1,x2 : A∞. We need to
show that the type x1 =A∞

x2 is k-truncated. We pro-
ceed by induction on x1. Since being truncated is a
mere proposition, we can assume that x1 arises as a
canonical point ι(n,a1). We thus want to prove that
for all x2 : A∞, the type ι(n,a1) =A∞

x2 is k-truncated.
Equivalences preserve truncatedness, so by Lemma 3.7
it suffices to prove that the type ι(0,a1) =A′

∞
x2 is k-

truncated for all x2 : A′
∞, where A′

∞ is the colimit of
the sequence (A′, a′) B

(
l 7→ A(n + l), l 7→ a(n + l)

)
.

We proceed by induction on x2, assuming it arises as
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a canonical point ι(m,a2). Now we perform induction
onm.
For the base casem B 0, we need to show that the type
ι(0,a1) =A′

∞
ι(0,a2) is k-truncated. By Theorem 7.4, it

suffices to show that the type colimk
(
a+k1 =A(k ) a

+k
2
)
is

k-truncated. This follows from the induction hypothe-
sis on k and the fact that A(k) is (k + 1)-truncated.
For the successor case, we need to show that the type
ι(0,a1) =A′

∞
ι(m + 1,a2) is k-truncated. Since we have

the path κ(0,a1) : ι(1, a(n,a1)) =A′
∞
ι(0,a1), it suffices

to show that the type ι(1, a(n,a1)) =A′
∞
ι(m + 1,a2) is

k-truncated. By Lemma 3.6, it suffices to show that the
type ι(0, a(n,a1)) =A′′

∞
ι(m,a2) is k-truncated, where

A′′
∞ is the colimit of the sequence (A′′, a′′) B

(
l 7→

A′(l + 1), l 7→ a′(l + 1)
)
. But this follows from the

induction hypothesis onm.
2. By the functoriality of the sequential colimit, we have

a map A∞ → colimn
(
∥A(n)∥k , ∥a(n)∥k

)
. Because the

right hand side is k-truncated, this induces a map
д : ∥A∞∥k → colimn

(
∥A(n)∥k , ∥a(n)∥k

)
For the other direction, we define a map

h : colimn
(
∥A(n)∥k , ∥a(n)∥k

)
→ ∥A∞∥k

by
ι(n, |a |k ) 7→ |ι(n,a)|k
κ(n, |a |k ) 7→ ap |− |k

(κ(n,a))

It is straightforward to show that both h ◦ д and д ◦ h
are homotopic to the identity.

3. Since A(n) is k-connected, ∥A(n)∥k is contractible, so
b∥A∞∥k is contractible by parts 1 and 2.

4. We need to show that for any x : A′
∞, the type fibτ∞ (x)

is k-truncated (k-connected). This is a mere proposi-
tion, so we may assume that x arises as a canonical
point ι(n,a). Now

fibτ∞ (ι(n,a)) ≃ (fibτ )∞(ι(n,a))

by Corollary 7.6. Since fibτ (n)(x) is k-truncated (k-
connected) for all n and x , we know that its colimit
(fibτ )∞(ι(n,a)) is k-truncated (k-connected), by part 1
(3).

5. Consider the natural transformation from the constant
sequence k 7→ A(0) to (A, a) below:

A(0) A(0) A(0) · · ·

A(0) A(1) A(2) · · ·

id

a0≤0

id

a0≤1

id

a0≤2

a′(0) a(1) a(2)

The maps a0≤n are defined by a0≤0 B id and a0≤n+1 B
a(n) ◦ a0≤n . Each a0≤n is k-truncated (k-connected).
Therefore, by part 4 the map a0≤∞ : colimn(A(0)) →

A∞ is k-truncated (k-connected). Composing a0≤∞ and
the canonical equivalence A(0) ≃ colimn(A(0)) yields
precisely ι(0), which is thus k-truncated (k-connected)
as well.
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