
Communication avoiding algorithms
in linear algebra

Laura Grigori

INRIA Paris - LJLL, UPMC
https://who.rocq.inria.fr/Laura.Grigori/teaching.html

December 2021

Page 2

Plan
• Motivation

• Selected past work on reducing communication

• Communication complexity of linear algebra operations

• Communication avoiding for dense linear algebra
• LU, QR, Rank Revealing QR factorizations

• Progressively implemented in ScaLAPACK, LAPACK

• Algorithms for multicore processors

• Conclusions

Page 3

Data driven science

CO2 Underground storage

Astrophysics: CMB data analysis

http://www.epm.ornl.gov/chammp/chammp.html

Climate modeling

Numerical simulations require
increasingly computing power as
data sets grow exponentially

Figures from astrophysics:
• Produce and analyze multi-frequency 2D images of

the universe when it was 5% of its current age.
• COBE (1989) collected 10 gigabytes of data, required

1 Teraflop per image analysis.
• PLANCK (2010) produced 1 terabyte of data, requires

100 Petaflops per image analysis.
• Future experiment (2020) estimated to collect .5

petabytes, require 100 Exaflops per image analysis.
Source: J. Borrill, LBNL, R. Stompor, Paris 7

Source: T. Guignon, IFPEN

http://www.scidacreview.org/0704/html/cmb.html

Page 4

CMB data analysis in an (algebraic) nutshell
• CMB DA is a juxtaposition of the same algebraic operations
• Map-making problem

• Find the best map x from observations d, scanning strategy A, and noise nt

• Assuming the noise properties are Gaussian and piece-wise stationary, the covariance
matrix is N = <nt nt

T>, and N-1 is a block diagonal symmetric Toeplitz matrix.
• The solution of the generalized least squares problem is found by solving

• Spherical harmonic transform (SHT)
• Synthesize a sky image from its harmonic representation

• What is difficult about the CMB DA then ?
Well, the data is BIG !

Page 5

The TOP5 of the Top500, June 2020
performance development

Page 6

TOP10 of the Top500, June 2020

Page 7

Countries, June 2020

Page 8

Countries, June 2020

Page 9

Countries, June 2020

Page 10

Motivation - the communication wall
• Runtime of an algorithm is the sum of:

• #flops x time_per_flop
• #words_moved / bandwidth
• #messages x latency

• Time to move data >> time per flop
• Gap steadily and exponentially growing over time

Page 11

Motivation - the communication wall
• Runtime of an algorithm is the sum of:

• #flops x time_per_flop
• #words_moved / bandwidth
• #messages x latency

• Time to move data >> time per flop
• Gap steadily and exponentially growing over time

• Performance of an application is less than 10% of the peak performance

“We are going to hit the memory wall, unless something basic changes”
[W. Wulf, S. McKee, 95]

Annual improvements
Time/flop Bandwidth Latency

59%
Network 26% 15%
DRAM 23% 5%

Page 12

Compelling numbers (1)

DRAM bandwidth:
• Mid 90’s ~ 0.2 bytes/flop – 1 byte/flop
• Past few years ~ 0.02 to 0.05 bytes/flop

DRAM latency:
• DDR2 (2007) ~ 120 ns 1x
• DDR4 (2014) ~ 45 ns 2.6x in 7 years
• Stacked memory ~ similar to DDR4 13% / year

Time/flop
• 2006 Intel Yonah ~ 2GHz x 2 cores (32 GFlops/chip) 1x
• 2015 Intel Haswell ~2.3GHz x 16 cores (588 GFlops/chip) 18x in 9 years

34% / year

Source: J. Shalf, LBNL

Page 13

Compelling numbers (2)

Fetch from DRAM 1 byte of data
• 1988: compute 6 flops
• 2004: compute a few 100 flops
• 2015: compute 26460 flops/chip (see below)

Receive from another proc 1 byte of data:
• Compute 147000 - 1065000 flops

Example of one supercomputer:
• Intel Haswell: 8 flops per cycle per core
• Interconnect: 0.25 μs to 3.7 μs MPI latency, 8GB/sec MPI

bandwidth

Page 14

The role of numerical linear algebra
• Challenging applications often rely on solving linear algebra problems
• Linear systems of equations

Solve Ax = b, where A Î Rnxn, b Î Rn , x Î Rn
• Direct methods

PA = LU, then solve PTLUx = b
LU factorization is backward stable,

• Iterative methods
• Find a solution xk from x0 + Kk (A, r0), where Kk (A, r0) = span {r0, A r0, …, Ak-1 r0}

such that the Petrov-Galerkin condition b - Axk ^ Lk is satisfied,
where Lk is a subspace of dimension k and r0=Ax0-b.

• Convergence depends on and the eigenvalue distribution (for SPD
matrices).

Page 15

Approaches for reducing communication

• Tuning
• Overlap communication and computation, at most a factor of 2 speedup

• Same numerical algorithm,
different schedule of the computation

• Block algorithms for NLA
• Barron and Swinnerton-Dyer, 1960
• ScaLAPACK, Blackford et al 97

• Cache oblivious algorithms for NLA
• Gustavson 97, Toledo 97, Frens and

Wise 03, Ahmed and Pingali 00

• Same algebraic framework, different numerical algorithm
• The approach used in CA algorithms
• More opportunities for reducing communication, may affect stability

Page 16
Ghost data on P0

Selected past work on reducing communication

• Only few examples shown, many references available

A. Tuning
• Overlap communication and computation, at most a factor of 2 speedup

B. Ghosting
• Standard approach in explicit methods
• Store redundantly data from neighboring processors for future computations

Example of a parabolic PDE
ut = a Du

with a finite difference,
the solution at a grid point is:

ui,j+1 = u(xi, tj+1)
= f(ui-1,j, uij, ui+1,j) t0

t1

t2

t3

t4

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

u13

Initial data on P0

Page 17

Communication in CMB data analysis
• Map-making problem

• Find the best map x from observations d, scanning strategy A, and noise N−1

• Solve generalized least squares problem involving sparse matrices of size 1012-by-107

• Spherical harmonic transform (SHT)
• Synthesize a sky image from its harmonic representation

• Computation over rows of a 2D object (summation of spherical harmonics)
• Communication to transpose the 2D object
• Computation over columns of the 2D object (FFTs)

Map making, with R. Stompor, M. Szydlarski
Results obtained on Hopper, Cray XE6, NERSC

SHT, with R. Stompor, M. Szydlarski
Simulation on a petascale computer

Computation

Communication

Overall runtime

Page 18

Evolution of numerical libraries
LINPACK (70’s)

• vector operations, uses BLAS1/2
• HPL benchmark based on Linpack LU

factorization

LAPACK (80’s)
• Block versions of the algorithms used in

LINPACK
• Uses BLAS3

ScaLAPACK (90’s)
• Targets distributed memories
• 2D block cyclic distribution of data
• PBLAS based on message passing

PLASMA (2008): new algorithms
• Targets many-core
• Block data layout
• Low granularity, high asynchronicity

L

U

A(ib)L

U

A(ib)

L A(ib)

U

Project developed by U Tennessee Knoxville, UC Berkeley, other collaborators.
Source: inspired from J. Dongarra, UTK, J. Langou, CU Denver

L

U

Page 19

• Did we need new algorithms?
• Results on two-socket, quad-core Intel Xeon EMT64 machine, 2.4 GHz per

core, peak performance 76.5 Gflops/s
• LU factorization of an m-by-n matrix, m=105 and n varies from 10 to 1000

Evolution of numerical libraries

LU using vector operations

LU from Intel MKL using lapack block operations
Lapack will not get even 1/2 of this performance

LU from PLASMA using operations on tiles

LU using communication avoiding approach

Page 20

Motivation

• The communication problem needs to be taken into account
higher in the computing stack

• A paradigm shift in the way the numerical algorithms are
devised is required

• Communication avoiding algorithms - a novel perspective for
numerical linear algebra
• Minimize volume of communication
• Minimize number of messages
• Minimize over multiple levels of memory/parallelism
• Allow redundant computations (preferably as a low order term)

Page 21

Communication Complexity of
Dense Linear Algebra

• Matrix multiply, using 2n3 flops (sequential or parallel)
• Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
• Lower bound on Bandwidth = W (#flops / M1/2)
• Lower bound on Latency = W (#flops / M3/2)

• Same lower bounds apply to LU using reduction
• Demmel, LG, Hoemmen, Langou 2008

• And to almost all direct linear algebra [Ballard, Demmel, Holtz,
Schwartz, 09]

Page 22

Lower bounds for linear algebra
• Computation modelled as an n-by-n-by-n set of lattice points

(i,j,k) represents the operation c(i,j) += fij(gijk (a(i,k)*b(k,j))))
• The computation is divided in S phases
• Each phase contains exactly M (the fast memory size) load and store instructions
• Determine how many flops the algorithm can compute in each phase, by applying

discrete Loomis-Whitney inequality:

- set of points in R3, represent w arithmetics

- orthogonal projections of the points onto coordinate
planes , represent values of A, B, C

C face

A face
B face

i

j

k

Page 23

Lower bounds for matrix multiplication (contd)

•

Page 24

Matrix distributions

0123012301230123

0 1 2 3 0 1 2 3

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

3) 1D Column Block Cyclic Layout

4) Row versions of the previous layouts

Generalizes others
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3 6) 2D Row and Column

Block Cyclic Layout

0 1 2 3

0 1

2 3

5) 2D Row and Column Blocked Layout

b

Source slide: J. Demmel

Page 25

MatMul with 2D Layout
• Consider processors in 2D grid (physical or logical)
• Processors can communicate with 4 nearest neighbors

• Broadcast along rows and columns

• Assume p processors form square s x s grid, s = p1/2

p(0,0) p(0,1) p(0,2)

p(1,0) p(1,1) p(1,2)

p(2,0) p(2,1) p(2,2)

p(0,0) p(0,1) p(0,2)

p(1,0) p(1,1) p(1,2)

p(2,0) p(2,1) p(2,2)

p(0,0) p(0,1) p(0,2)

p(1,0) p(1,1) p(1,2)

p(2,0) p(2,1) p(2,2)

= *

Source slide: J. Demmel

Page 26

Cannon’s Algorithm
… C(i,j) = C(i,j) + S A(i,k)*B(k,j)
… assume s = sqrt(p) is an integer

forall i=0 to s-1 … “skew” A
left-circular-shift row i of A by i
… so that A(i,j) overwritten by A(i,(j+i)mod s)

forall i=0 to s-1 … “skew” B
up-circular-shift column i of B by i
… so that B(i,j) overwritten by B((i+j)mod s), j)

for k=0 to s-1 … sequential
forall i=0 to s-1 and j=0 to s-1 … all processors in parallel

C(i,j) = C(i,j) + A(i,j)*B(i,j)
left-circular-shift each row of A by 1
up-circular-shift each column of B by 1

k

Source slide: J. Demmel

Page 27

C(1,2) = A(1,0) * B(0,2) + A(1,1) * B(1,2) + A(1,2) * B(2,2)

Cannon’s Matrix Multiplication

Source slide: J. Demmel

Cost of Cannon’s Algorithm
forall i=0 to s-1 … recall s = sqrt(p)

left-circular-shift row i of A by i … cost ≤ s*(a + b*n2/p)
forall i=0 to s-1

up-circular-shift column i of B by i … cost ≤ s*(a + b*n2/p)
for k=0 to s-1

forall i=0 to s-1 and j=0 to s-1
C(i,j) = C(i,j) + A(i,j)*B(i,j) … cost = 2*(n/s)3 = 2*n3/p3/2
left-circular-shift each row of A by 1 … cost = a + b*n2/p
up-circular-shift each column of B by 1 … cost = a + b*n2/p

° Total Time = 2*n3/p + 4*s*a + 4*b*n2/s - Optimal!
° Parallel Efficiency = 2*n3 / (p * Total Time)

= 1/(1 + a * 2*(s/n)3 + b * 2*(s/n))
= 1/(1 + O(sqrt(p)/n))

° Grows to 1 as n/s = n/sqrt(p) = sqrt(data per processor) grows

Source slide: J. Demmel

Page 29

Sequential algorithms and communication bounds

Algorithm Minimizing
#words (not #messages)

Minimizing
#words and #messages

Cholesky

LU

QR

RRQR

• Only several references shown for block algorithms (LAPACK),
cache-oblivious algorithms and communication avoiding algorithms

• CA algorithms exist also for SVD and eigenvalue computation

[Gustavson, 97]
[Ahmed, Pingali, 00]

[LG, Demmel, Xiang, 08]
[Khabou, Demmel, LG, Gu, 12]

uses tournament pivoting
[Frens, Wise, 03], 3x flops

[Demmel, LG, Hoemmen, Langou, 08]
[Ballard et al, 14]

[Demmel, LG, Gu, Xiang 11]
uses tournament pivoting, 3x flops

LAPACK

LAPACK (few cases)
[Toledo,97], [Gustavson, 97]

both use partial pivoting

LAPACK (few cases)
[Elmroth,Gustavson,98]

Page 30

2D Parallel algorithms and communication bounds

Algorithm Minimizing
#words (not #messages)

Minimizing
#words and #messages

Cholesky ScaLAPACK ScaLAPACK

LU ScaLAPACK
uses partial pivoting

[LG, Demmel, Xiang, 08]
[Khabou, Demmel, LG, Gu, 12]

uses tournament pivoting

QR ScaLAPACK [Demmel, LG, Hoemmen, Langou, 08]
[Ballard et al, 14]

RRQR ScaLAPACK [Demmel, LG, Gu, Xiang 13]
uses tournament pivoting, 3x flops

• Only several references shown, block algorithms (ScaLAPACK) and
communication avoiding algorithms

• CA algorithms exist also for SVD and eigenvalue computation

• If memory per processor = n2 / P, the lower bounds become
#words_moved ≥ W (n2 / P1/2), #messages ≥ W (P1/2)

L

U

A(ib)

Q

R

A(ib)

Page 31

The algebra of LU factorization

• Compute the factorization PA = LU

• Given the matrix

Let

Page 32

The algebra of LU factorization (contd)

Page 33

The algebra of LU factorization (contd)

Page 34

The need for pivoting
• For stability avoid division by small elements, otherwise ||A-LU||

can be large
• Because of roundoff error

• For example

has an LU factorization if we permute the rows of A

• Partial pivoting allows to bound all elements of L by 1.

Page 35

LU with partial pivoting – BLAS 2 algorithm

Page 36

Block LU factorization – obtained by delaying updates

• Matrix A of size nxn is partitioned as

• The first step computes LU with partial pivoting of the first block:

• The factorization obtained is:

• The algorithm continues recursively on the trailing matrix A22
1

Page 37

Block LU factorization – the algorithm

1. Compute LU with partial pivoting of the first panel

2. Pivot by applying the permutation matrix P1 on the entire matrix

3. Solve the triangular system to compute a block row of U

4. Update the trailing matrix

1. The algorithm continues recursively on the trailing matrix

Page 38

LU factorization (as in ScaLAPACK pdgetrf)
LU factorization on a P = Pr x Pc grid of processors
For ib = 1 to n-1 step b

A(ib) = A(ib:n, ib:n)

(1) Compute panel factorization
- find pivot in each column, swap rows

(2) Apply all row permutations
- broadcast pivot information along the rows
- swap rows at left and right

(3) Compute block row of U
- broadcast right diagonal block of L of current panel

(4) Update trailing matrix
- broadcast right block column of L
- broadcast down block row of U

L

U

A(ib)

L

U

A(ib+b)

L

U

A(ib)

L

U

A(ib)

#messages

Page 39

General scheme for
QR factorization by Householder transformations

The Householder matrix

has the following properties:
• is symmetric and orthogonal,

Hi
2 = I,

• is independent of the scaling of hi,
• it reflects x about the hyperplane

• For QR, we choose a Householder matrix that allows to annihilate
the elements of a vector x, except first element.

Page 40

General scheme for
QR factorization by Householder transformations

• Apply Householder transformations to annihilate subdiagonal entries

• For A of size mxn, the factorization can be written as:

()
n

T
nnnn

HHHQ
RHHHHARAHHHH

...
......

21

121121

=
=®= --

Page 41

Compact representation for Q

• Orthogonal factor Q can be represented implicitly as

• Example for b=2:

TY YTI

Page 42

Algebra of block QR factorization

Matrix A of size nxn is partitioned as

Block QR algebra

The first step of the block QR factorization algorithm computes:

The algorithm continues recursively on the trailing matrix A22
1

Page 43

Block QR factorization

Block QR algebra:
1. Compute panel factorization:

2. Compute the compact representation:

3. Update the trailing matrix:

4. The algorithm continues recursively on the trailing matrix.

T1Y1 Y1TI

Page 44

TSQR: QR factorization of a tall skinny matrix
using Householder transformations

W =
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02

• QR decomposition of m x b matrix W, m >> b
• P processors, block row layout

• Classic Parallel Algorithm
• Compute Householder vector for each column
• Number of messages µ b log P

• Communication Avoiding Algorithm
• Reduction operation, with QR as operator
• Number of messages µ log P

J. Demmel, LG, M. Hoemmen, J. Langou, 08

Page 45

Parallel TSQR

QR

R00V00`W0

R10V10W1

R20V20W2

R30V30W3

R00
R10

V01 R01

R20
R30

V11 R11

P0

P1

P2

P3

V02 R02R01
R11

QR

QR

QR

QR

QR

QR

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha,
Becker, Patterson, 02

Page 46

Q is represented implicitly as a product
Output: {Q00, Q10, Q00, Q20, Q30, Q01, Q11, Q02, R02}

Algebra of TSQR

W =
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02Parallel:

Page 47
Q is represented implicitly as a product

Flexibility of TSQR and CAQR algorithms

W =
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02Parallel:

W =
W0
W1
W2
W3

R01
R02

R00

R03
Sequential:

W =
W0
W1
W2
W3

R00
R01

R01

R11
R02

R11

R03

Dual Core:

Reduction tree will depend on the underlying architecture,
could be chosen dynamically

Page 48

Algebra of TSQR

W =
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02Parallel:

CAQR

Page 49

QR for General Matrices
• Cost of CAQR vs ScaLAPACK’s PDGEQRF

• n x n matrix on P1/2 x P1/2 processor grid, block size b
• Flops: (4/3)n3/P + (3/4)n2b log P/P1/2 vs (4/3)n3/P
• Bandwidth: (3/4)n2 log P/P1/2 vs same
• Latency: 2.5 n log P / b vs 1.5 n log P

• Close to optimal (modulo log P factors)
• Assume: O(n2/P) memory/processor, O(n3) algorithm,
• Choose b near n / P1/2 (its upper bound)
• Bandwidth lower bound:

W(n2 /P1/2) – just log(P) smaller
• Latency lower bound:

W(P1/2) – just polylog(P) smaller

Page 50

Performance of TSQR vs Sca/LAPACK

• Parallel
• Intel Xeon (two socket, quad core machine), 2010

• Up to 5.3x speedup (8 cores, 105 x 200)
• Pentium III cluster, Dolphin Interconnect, MPICH, 2008

• Up to 6.7x speedup (16 procs, 100K x 200)
• BlueGene/L, 2008

• Up to 4x speedup (32 procs, 1M x 50)
• Tesla C 2050 / Fermi (Anderson et al)

• Up to 13x (110,592 x 100)
• Grid – 4x on 4 cities vs 1 city (Dongarra, Langou et al)
• QR computed locally using recursive algorithm (Elmroth-Gustavson) –

enabled by TSQR

• Results from many papers, for some see [Demmel, LG, Hoemmen,
Langou, SISC 12], [Donfack, LG, IPDPS 10].

Page 51

Modeled Speedups of CAQR vs ScaLAPACK

Petascale
up to 22.9x

IBM Power 5
up to 9.7x

“Grid”
up to 11x

Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.

Page 52

Impact

• TSQR/CAQR implemented in
• Intel MKL library
• GNU Scientific Library
• ScaLAPACK
• Spark for data mining

• CALU implemented in
• Cray’s libsci
• To be implemented in lapack/scapalack

Page 53

Algebra of TSQR

W =
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02Parallel:

P0

P1

P2

P3

TSQR-HR CAQR

Page 54

Reconstruct Householder vectors from TSQR

The QR factorization using Householder vectors

can be re-written as an LU factorization

IQ - TY Y1T

Page 55

Reconstruct Householder vectors TSQR-HR

1. Perform TSQR
2. Form Q explicitly (tall-skinny orthonormal factor)
3. Perform LU decomposition: Q - I = LU

4. Set Y = L
5. Set T = -U Y1-T

TY YTI

IQ - TY Y1T

Page 56

Strong scaling

• Hopper: Cray XE6 (NERSC) – 2 x 12-core AMD Magny-Cours (2.1 GHz)
• Edison: Cray CX30 (NERSC) – 2 x 12-core Intel Ivy Bridge (2.4 GHz)
• Effective flop rate, computed by dividing 2mn2 − 2n3/3 by measured runtime
Ballard, Demmel, LG, Jacquelin, Knight, Nguyen, and Solomonik, 2015.

1x

7
x

6
x

1
x

3.7x
2.7x

Page 57

Weak scaling QR on Hopper

• Matrix of size 15K-by-15K to 131K-by-131K
• Hopper: Cray XE6 supercomputer (NERSC) – dual socket 12-

core Magny-Cours Opteron (2.1 GHz)

Page 58

The LU factorization of a tall skinny matrix
First try the obvious generalization of TSQR.

Page 59

Obvious generalization of TSQR to LU

• Block parallel pivoting:
• uses a binary tree and is optimal in the parallel case

• Block pairwise pivoting:
• uses a flat tree and is optimal in the sequential case
• introduced by Barron and Swinnerton-Dyer, 1960: block LU factorization used to solve a

system with 100 equations on EDSAC 2 computer using an auxiliary magnetic-tape
• used in PLASMA for multicore architectures and FLAME for out-of-core algorithms and

for multicore architectures

W =
W0
W1
W2
W3

U00
U10
U20
U30

U01

U11

U02

W=
W0
W1
W2
W3

U01
U02

U00

U03

Page 60

Stability of the LU factorization
• The backward stability of the LU factorization of a matrix A of size n-by-n

depends on the growth factor

where aij
k are the values at the k-th step.

• gW ≤ 2n-1 , attained for Wilkinson matrix

but in practice it is on the order of n2/3 -- n1/2

• Two reasons considered to be important for the average case stability [Trefethen and
Schreiber, 90] :

- the multipliers in L are small,

- the correction introduced at each elimination step is of rank 1.

Page 61

Block parallel pivoting

• Unstable for large number of processors P

• When P=number rows, it corresponds to parallel pivoting, known to be unstable
(Trefethen and Schreiber, 90)

Page 62

Block pairwise pivoting

• Results shown for random matrices
• Will become unstable for large matrices W=

W0
W1
W2
W3

U01
U02

U00

U03

Page 63

Tournament pivoting - the overall idea

• At each iteration of a block algorithm

, where

• Preprocess W to find at low communication cost good pivots for the LU
factorization of W, return a permutation matrix P.

• Permute the pivots to top, ie compute PA.
• Compute LU with no pivoting of W, update trailing matrix.

Page 64

Tournament pivoting for a tall skinny matrix
1) Compute GEPP factorization of each Wi., find permutation

2) Perform log2(P) times GEPP factorizations of 2b-by-b rows, find permutations

3) Compute LU factorization with no pivoting of the permuted matrix:

Pick b pivot rows, form A00

Same for A10

Same for A20

Same for A30

Pick b pivot rows, form A01

Same for A11

Page 65

Tournament pivoting

time

P0

P1

P2

P3

Good pivots for
factorizing W

Page 66

Growth factor for binary tree based CALU

• Random matrices from a normal distribution
• Same behaviour for all matrices in our test, and |L| <= 4.2

Page 67

Stability of CALU (experimental results)

Summer School Lecture 4 67

• Results show ||PA-LU||/||A||, normwise and componentwise backward
errors, for random matrices and special ones

• See [LG, Demmel, Xiang, SIMAX 2011] for details
• BCALU denotes binary tree based CALU and FCALU denotes flat tree based CALU

Page 68

Our “proof of stability” for CALU
• CALU as stable as GEPP in following sense:

In exact arithmetic, CALU process on a matrix A is equivalent to GEPP
process on a larger matrix G whose entries are blocks of A and zeros.

• Example of one step of tournament pivoting:

• Proof possible by using original rows of A during tournament pivoting (not the
computed rows of U).

A11
A21
A31

A11

A21

A11

tournament pivoting:

Page 69

Growth factor in exact arithmetic
• Matrix of size m-by-n, reduction tree of height H=log(P).
• (CA)LU_PRRP select pivots using strong rank revealing QR (A. Khabou, J.

Demmel, LG, M. Gu, SIMAX 2013)
• “In practice” means observed/expected/conjectured values.

Better bounds

CALU GEPP

Upper bound 2n(log(P)+1)-1 2n-1

In practice n2/3 -- n1/2 n2/3 -- n1/2

Page 70

CALU – a communication avoiding LU factorization
• Consider a 2D grid of P processors Pr-by-Pc , using a 2D block cyclic layout with square

blocks of size b.

For ib = 1 to n-1 step b
A(ib) = A(ib:n, ib:n)

(1) Find permutation for current panel using TSLU

(2) Apply all row permutations (pdlaswp)
- broadcast pivot information along the rows of the grid

(3) Compute panel factorization (dtrsm)

(4) Compute block row of U (pdtrsm)
- broadcast right diagonal part of L of current panel

(5) Update trailing matrix (pdgemm)
- broadcast right block column of L
- broadcast down block row of U

L

U

A(ib)

L

U

A(ib+b)

L

U

A(ib)

L

U

A(ib)

Page 71

LU for General Matrices

• Cost of CALU vs ScaLAPACK’s PDGETRF
• n x n matrix on P1/2 x P1/2 processor grid, block size b
• Flops: (2/3)n3/P + (3/2)n2b / P1/2 vs (2/3)n3/P + n2b/P1/2

• Bandwidth: n2 log P/P1/2 vs same
• Latency: 3 n log P / b vs 1.5 n log P+ 3.5n logP / b

• Close to optimal (modulo log P factors)
• Assume: O(n2/P) memory/processor, O(n3) algorithm,
• Choose b near n / P1/2 (its upper bound)
• Bandwidth lower bound:

W(n2 /P1/2) – just log(P) smaller
• Latency lower bound:

W(P1/2) – just polylog(P) smaller

Page 72

Performance vs ScaLAPACK

• Parallel TSLU (LU on tall-skinny matrix)
• IBM Power 5

• Up to 4.37x faster (16 procs, 1M x 150)
• Cray XT4

• Up to 5.52x faster (8 procs, 1M x 150)

• Parallel CALU (LU on general matrices)
• Intel Xeon (two socket, quad core)

• Up to 2.3x faster (8 cores, 10^6 x 500)
• IBM Power 5

• Up to 2.29x faster (64 procs, 1000 x 1000)
• Cray XT4

• Up to 1.81x faster (64 procs, 1000 x 1000)

• Details in SC08 (LG, Demmel, Xiang), IPDPS’10 (S. Donfack, LG).

Page 73

CALU and its task dependency graph

• The matrix is partitioned into blocks of size T x b.
• The computation of each block is associated with a task.

Page 74

Scheduling CALU’s Task Dependency Graph
• Static scheduling

+ Good locality of data - Ignores noise

• Dynamic scheduling
+ Keeps cores busy - Poor usage of data locality

- Can have large dequeue overhead

Page 75

Lightweight scheduling

• Emerging complexities of multi- and mani-core processors suggest a
need for self-adaptive strategies
• One example is work stealing

• Goal:
• Design a tunable strategy that is able to provide a good trade-off between load

balance, data locality, and dequeue overhead.
• Provide performance consistency

• Approach: combine static and dynamic scheduling
• Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

Data layout/scheduling Static Dynamic Static/(%dynamic)

Column Major Layout (CM) Ö

Block Cyclic Layout (BCL) Ö Ö Ö

2-level Block Layout (2l-BL) Ö Ö Ö

Design space

S. Donfack, LG, B. Gropp, V. Kale,IPDPS 2012

Page 76

Lightweight scheduling

• A self-adaptive strategy to provide
• A good trade-off between load balance, data locality, and dequeue overhead.
• Performance consistency
• Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

S. Donfack, LG, B. Gropp, V. Kale, 2012

Combined static/dynamic scheduling:
• A thread executes in priority its

statically assigned tasks
• When no task ready, it picks a

ready task from the dynamic
part

• The size of the dynamic part is
guided by a performance model

Page 77

Data layout and other optimizations
• Three data distributions investigated

• CM : Column major order for the entire matrix
• BCL : Each thread stores contiguously (CM) the data on which it operates
• 2l-BL : Each thread stores in blocks the data on which it operates

• And other optimizations
• Updates (dgemm) performed on several blocks of columns (for BCL and CM
layouts)

Page 78

Impact of data layout

BCL : Each thread stores contiguously (CM) its data
2l-BL : Each thread stores in blocks its data

Eight socket, six core machine based on AMD Opteron processor (U. of Tennessee).

Page 79

Best performance of CALU on multicore architectures

• Reported performance for PLASMA uses LU
with block pairwise pivoting.

• GPU data courtesy of S. Donfack

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

