Communication avoiding algorithms in linear algebra

Laura Grigori
Alpines
INRIA Paris - LJLL, UPMC
https://who.rocq.inria.fr/Laura.Grigori/teaching.html

December 2021

Plan

- Motivation
- Selected past work on reducing communication
- Communication complexity of linear algebra operations
- Communication avoiding for dense linear algebra
- LU, QR, Rank Revealing QR factorizations
- Progressively implemented in ScaLAPACK, LAPACK
- Algorithms for multicore processors
- Conclusions

Data driven science

Numerical simulations require increasingly computing power as data sets grow exponentially

CO2 Underground storage

Source: T. Guignon, IFPEN

Climate modeling

http://www.epm.ornl.gov/chammp/chammp.html

Astrophysics: CMB data analysis
Figures from astrophysics:

- Produce and analyze multi-frequency 2D images of the universe when it was 5% of its current age.
- COBE (1989) collected 10 gigabytes of data, required 1 Teraflop per image analysis.
- PLANCK (2010) produced 1 terabyte of data, requires 100 Petaflops per image analysis.
- Future experiment (2020) estimated to collect . 5 petabytes, require 100 Exaflops per image analysis.
Source: J. Borrill, LBNL, R. Stompor, Paris 7

http://www.scidacreview.org/0704/html/cmb.html

CMB data analysis in an (algebraic) nutshell

- CMB DA is a juxtaposition of the same algebraic operations
- Map-making problem
- Find the best map x from observations d, scanning strategy A, and noise n_{t}

$$
d=A x+n_{t}
$$

- Assuming the noise properties are Gaussian and piece-wise stationary, the covariance matrix is $N=\left\langle n_{t} n_{t}^{T}\right\rangle$, and N^{-1} is a block diagonal symmetric Toeplitz matrix.
- The solution of the generalized least squares problem is found by solving

$$
A^{T} N^{-1} A x=A^{T} N^{-1} a
$$

- Spherical harmonic transform (SHT)
- Synthesize a sky image from its harmonic representation
- What is difficult about the CMB DA then ?

Well, the data is BIG !

The TOP5 of the Top500, June 2020 performance development

PERFORMANCE DEVELOPMENT

TOP10 of the Top500, June 2020

\#	Site	Manufacturer	Computer	Country	Cores	$\begin{aligned} & \text { Rmax } \\ & \text { Peflops } \end{aligned}$	Power [MW]
1	RIKEN Center for Computational Science	Fujitsu	Fugaku Supercomputer Fugaku, A64FX 48C 2.2 GHz , Tofu interconnect D	Japan	7,299,072	415.5	28.3
2	Oak Ridge National Laboratory	IBM	Summit IBM Power System, P9 22C 3.07GHz, Mellanox EDR, NVIDIA GV100	USA	2,414,592	148.6	10.1
3	Lawrence Livermore National Laboratory	IBM	Sierra IBM Power System, P9 22C 3.1GHz, Mellanox EDR, NVIDIA GV100	USA	1,572,480	94.6	7.4
4	National Supercomputing Center in Wuxi	NRCPC	Sunway TaihuLight NRCPC Sunway SW26010, 260 C 1.45 GHz	China	10,649,600	93.0	15.4
5	National University of Defense Technology	NUDT	Tianhe-2A ANUDT TH-IVB-FEP, Xeon 12C 2.2 GHz , Matrix-2000	China	4,981,760	61.4	18.5
6	Eni S.p.A	Dell EMC		Italy	669,760	35.5	2.25
7	NVIDIA Corporation	NVIDIA	Selene DGX A100 SuperPOD, AMD 64C 2.25 GHz , NVIDIA A100, Mellanox HDR	USA	277,760	27.6	1.34
8	Texas Advanced Computing Center / Univ. of Texas	Dell	Frontera Dell C6420, Xeon Platinum 828028 C 2.7 GHz , Mellanox HDR	USA	448,448	23.5	
9	CINECA	IBM	Marconi-100 IBM Power System AC922, P9 16C 3GHz, Nvidia Volta V100, Mellanox EDR	Italy	347,776	21.6	1.98
10	Swiss National Supercomputing Centre (CSCS)	Cray	Piz Daint Cray XC50, Xeon E5 12C 2.6 GHz , NVIDIA Tesla P100, Aries	Switzerland	387,872	21.2	2.38

Page 6

Countries, June 2020

Countries, June 2020

COUNTRIES / SYSTEM SHARE

Page 8

Countries, June 2020

CHIPS / SYSTEM SHARE

Research Commercial

Motivation - the communication wall

- Runtime of an algorithm is the sum of:
- \#flops x time_per_flop
- \#words_moved / bandwidth
- \#messages x latency
- Time to move data >> time per flop
- Gap steadily and exponentially growing over time

Motivation - the communication wall

- Runtime of an algorithm is the sum of:
- \#flops x time_per_flop
- \#words_moved / bandwidth
- \#messages x latency
- Time to move data >> time per flop
- Gap steadily and exponentially growing over time

Annual improvements			
Time/flop		Bandwidth	Latency
53%	Network	26%	15%
	DRAM	23%	5%

- Performance of an application is less than 10\% of the peak performance
"We are going to hit the memory wall, unless something basic changes"
[W. Wulf, S. McKee, 95]

Compelling numbers (1)

DRAM bandwidth:

- Mid 90's ~ 0.2 bytes/flop - 1 byte/flop
- Past few years ~ 0.02 to 0.05 bytes/flop

DRAM latency:

- DDR2 (2007) ~ 120 ns 1x
- DDR4 (2014)~45 ns
2.6x in 7 years
- Stacked memory ~ similar to DDR4

13\% / year

Time/flop

- 2006 Intel Yonah $\sim 2 G H z \times 2$ cores (32 GFlops/chip) $1 x$
- 2015 Intel Haswell $\sim 2.3 \mathrm{GHz} \times 16$ cores (588 GFlops/chip) 18 x in 9 years 34% / year

Compelling numbers (2)

Fetch from DRAM 1 byte of data

- 1988: compute 6 flops
- 2004: compute a few 100 flops
- 2015: compute 26460 flops/chip (see below)

Receive from another proc 1 byte of data:

- Compute 147000-1065000 flops

Example of one supercomputer:

- Intel Haswell: 8 flops per cycle per core
- Interconnect: $0.25 \mu \mathrm{~s}$ to $3.7 \mu \mathrm{~s} \mathrm{MPI}$ latency, $8 \mathrm{~GB} / \mathrm{sec} \mathrm{MPI}$ bandwidth

The role of numerical linear algebra

- Challenging applications often rely on solving linear algebra problems
- Linear systems of equations

Solve $A x=b$, where $A \in \boldsymbol{R}^{n \times n}, b \in \boldsymbol{R}^{n}, \mathrm{x} \in \boldsymbol{R}^{n}$

- Direct methods
$P A=L U$, then solve $P^{\top} L U x=b$
LU factorization is backward stable,
- Iterative methods
- Find a solution x_{k} from $x_{0}+K_{k}\left(A, r_{0}\right)$, where $K_{k}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{k-1} r_{0}\right\}$ such that the Petrov-Galerkin condition $b-A x_{k} \perp L_{k}$ is satisfied, where L_{k} is a subspace of dimension k and $r_{0}=A x_{0}-b$.
- Convergence depends on $\kappa(A)$ and the eigenvalue distribution (for SPD matrices).

Approaches for reducing communication

- Tuning
- Overlap communication and computation, at most a factor of 2 speedup
- Same numerical algorithm, different schedule of the computation
- Block algorithms for NLA
- Barron and Swinnerton-Dyer, 1960
- ScaLAPACK, Blackford et al 97
- Cache oblivious algorithms for NLA
- Gustavson 97, Toledo 97, Frens and Wise 03, Ahmed and Pingali 00

Log2(Computations to communications ratio) GEPP

- Same algebraic framework, different numerical algorithm
- The approach used in CA algorithms
- More opportunities for reducing communication, may affect stability

Selected past work on reducing communication

- Only few examples shown, many references available
A. Tuning
- Overlap communication and computation, at most a factor of 2 speedup
B. Ghosting
- Standard approach in explicit methods
- Store redundantly data from neighboring processors for future computations

Example of a parabolic PDE

$$
u_{t}=\alpha \Delta u
$$

with a finite difference, the solution at a grid point is:

$$
\begin{aligned}
u_{i, j+1} & =u\left(x_{i}, t_{j+1}\right) \\
& =f\left(u_{i-1, j}, u_{i j}, u_{i+1, j}\right)
\end{aligned}
$$

Page 16

Communication in CMB data analysis

- Map-making problem
- Find the best map x from observations d, scanning strategy A, and noise N^{-1}
- \quad Solve generalized least squares problem involving sparse matrices of size $10^{12}-b y-10^{7}$
- Spherical harmonic transform (SHT)
- Synthesize a sky image from its harmonic representation
- Computation over rows of a 2D object (summation of spherical harmonics)
- Communication to transpose the 2D object
- Computation over columns of the 2D object (FFTs)

SHT, with R. Stompor, M. Szydlarski Simulation on a petascale computer

Evolution of numerical libraries

LINPACK (70's)

- vector operations, uses BLAS1/2
- HPL benchmark based on Linpack LU factorization

ScaLAPACK (90's)

- Targets distributed memories
- 2D block cyclic distribution of data
- PBLAS based on message passing

LAPACK (80's)

- Block versions of the algorithms used in LINPACK
- Uses BLAS3

PLASMA (2008): new algorithms

- Targets many-core
- Block data layout
- Low granularity, high asynchronicity

Project developed by U Tennessee Knoxville, UC Berkeley, other collaborators.
Source: inspired from J. Dongarra, UTK, J. Langou, CU Denver

Evolution of numerical libraries

- Did we need new algorithms?
- Results on two-socket, quad-core Intel Xeon EMT64 machine, 2.4 GHz per core, peak performance 76.5 Gflops/s
- LU factorization of an m-by-n matrix, $m=10^{5}$ and n varies from 10 to 1000

Motivation

- The communication problem needs to be taken into account higher in the computing stack
- A paradigm shift in the way the numerical algorithms are devised is required
- Communication avoiding algorithms - a novel perspective for numerical linear algebra
- Minimize volume of communication
- Minimize number of messages
- Minimize over multiple levels of memory/parallelism
- Allow redundant computations (preferably as a low order term)

Communication Complexity of
 Dense Linear Algebra

- Matrix multiply, using $2 \mathrm{n}^{3}$ flops (sequential or parallel)
- Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
- Lower bound on Bandwidth $=\Omega$ (\#flops / $\mathrm{M}^{1 / 2}$)
- Lower bound on Latency $\quad=\Omega$ (\#flops / $\mathrm{M}^{3 / 2}$)
- Same lower bounds apply to LU using reduction
- Demmel, LG, Hoemmen, Langou 2008

$$
\left(\begin{array}{ccc}
1 & & -B \\
A & 1 & \\
& & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & & \\
A & 1 & \\
& & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & \\
\hline & -B \\
& 1
\end{array}\right)
$$

- And to almost all direct linear algebra [Ballard, Demmel, Holtz, Schwartz, 09]

Lower bounds for linear algebra

- Computation modelled as an n-by-n-by-n set of lattice points (i,j,k) represents the operation $\left.c(i, j)+=f_{i j}\left(g_{i j k}(a(i, k) * b(k, j))\right)\right)$
- The computation is divided in S phases
- Each phase contains exactly M (the fast memory size) load and store instructions
- Determine how many flops the algorithm can compute in each phase, by applying discrete Loomis-Whitney inequality:

$$
w^{2} \leq N_{A} N_{B} N_{C}
$$

C face- set of points in R^{3}, represent w arithmetics

- orthogonal projections of the points onto coordinate planes N_{A}, N_{B}, N_{G} represent values of A, B, C

Lower bounds for matrix multiplication (contd)

- Discrete Loomis-Whitney inequality:

$$
w^{2} \leq N_{A} N_{B} N_{C}
$$

- Since there are at most 2 M elements of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in a phase, the bound is:

$$
w \leq 2 \sqrt{2} M^{3 / 2}
$$

- The number of phases S is \#flops/w, and hence the lower bound on communication is:

$$
\begin{aligned}
\# \text { messages } \geq \frac{\# \text { flops }}{w} & =\Omega\left(\frac{\# \text { flops }}{M^{\frac{3}{2}}}\right) \\
& \# \text { loads } / \text { stores } \geq \Omega\left(\frac{\# \text { flops }}{M^{1 / 2}}\right)
\end{aligned}
$$

Matrix distributions

1) 1D Column Blocked Layout

2) 1D Column Block Cyclic Layout

0	1
2	3

5) 2D Row and Column Blocked Layout

6) 1D Column Cyclic Layout
7) Row versions of the previous layouts

Generalizes others

6) 2D Row and Column Block Cyclic Layout

MatMul with 2D Layout

- Consider processors in 2D grid (physical or logical)
- Processors can communicate with 4 nearest neighbors
- Broadcast along rows and columns

$p(0,0)$	$p(0,1)$	$p(0,2)$
$p(1,0)$	$p(1,1)$	$p(1,2)$
$p(2,0)$	$p(2,1)$	$p(2,2)$

- Assume p processors form square $s \times s$ grid, $s=p^{1 / 2}$

Cannon' s Algorithm

$\ldots C(i, j)=C(i, j)+\sum_{k} A(i, k) * B(k, j)$
... assume $s=\operatorname{sqrt}(p)$ is an integer forall $\mathrm{i}=0$ to $\mathbf{s - 1}$... "skew" A
left-circular-shift row i of A by i
... so that $A(i, j)$ overwritten by $A(i,(j+i) m o d s)$ forall $\mathrm{i}=0$ to $\mathrm{s}-1 \quad . . . " s k e w " B$
up-circular-shift column i of B by i
... so that $B(i, j)$ overwritten by $B((i+j) \bmod s), j)$
for $k=0$ to $\mathbf{s - 1} \quad . .$. sequential
forall $i=0$ to $s-1$ and $j=0$ to $s-1 \quad \ldots$ all processors in parallel $C(i, j)=C(i, j)+A(i, j) * B(i, j)$ left-circular-shift each row of A by 1 up-circular-shift each column of B by 1

Cannon's Matrix Multiplication

Cannon's Matrix Mul tiplication Algorithm

$A(0,0)$	$A(0,1)$	$A(0,2)$
$A(1,0)$	$A(1,1)$	$A(1,2)$
$A(2,0)$	$A(2,1)$	$A(2,2)$

$\mathbf{B}(0,0)$	$\mathbf{B}(0,1)$	$\mathbf{B}(0,2)$
$\mathbf{B}(1,0)$	$\mathbf{B}(1,1)$	$\mathcal{B}(1,2)$
$\mathbf{B (2 , 0)}$	$\mathbf{B}(2,1)$	$\mathbf{B}(2,2)$

Initial A, B

$\mathbf{A (0 , 0)}$	$\mathbf{A (0 , 1)}$	$\mathbf{A (0 , 2)}$
$\mathbf{A (1 , 1)}$	$\mathbf{A (1 , 2)}$	$\mathbf{A (1 , 0)}$
$\mathbf{A (2 , 2)}$	$\mathbf{A (2 , 0)}$	$\mathbf{A (2 , 1)}$

$\mathbf{B}(0,0)$	$\mathbf{B}(1,1)$	$\mathrm{B}(2,2)$
$\mathrm{B}(1,0)$	$\mathbf{B}(2,1)$	$\mathrm{B}(0,2)$
$\mathbf{B}(2,0)$	$\mathbf{B}(0,1)$	$\mathrm{B}(1,2)$

A, B after skewing

$A(0,1)$	$A(0,2)$	$A(0,0)$
$A(1,2)$	$A(1,0)$	$A(1,1)$
$A(2,0)$	$A(2,1)$	$A(2,2)$

$B(1,0)$	$B(2,1)$	$B(0,2)$
$B(2,0)$	$B(0,1)$	$B(1,2)$
$B(0,0)$	$B(1,1)$	$B(2,2)$

A, B after shift k=1

$A(0,2)$	$A(0,0)$	$A(0,1)$
$A(1,0)$	$A(1,1)$	$A(1,2)$
$A(2,1)$	$A(2,2)$	$A(2,0)$

$\mathbf{B}(2,0)$	$\mathbf{B}(0,1)$	$\mathrm{B}(1,2)$
$\mathrm{B}(0,0)$	$\mathrm{B}(1,1)$	$\mathrm{B}(2,2)$
$\mathrm{B}(1,0)$	$\mathrm{B}(2,1)$	$\mathrm{B}(0,2)$

A, B after shift $k=2$

$$
\mathrm{C}(1,2)=\mathrm{A}(1,0) \text { * } \mathrm{B}(0,2)+\mathrm{A}(1,1) \text { * } \mathrm{B}(1,2)+\mathrm{A}(1,2) \text { * } \mathrm{B}(2,2)
$$

Cost of Cannon' s Algorithm

```
forall i=0 to s-1 ... recall s = sqrt(p)
    left-circular-shift row i of A by i ...cost \leq s*(\alpha+\beta*n2/p)
    forall i=0 to s-1
        up-circular-shift column i of B by i ... cost }\leq\mp@subsup{s}{}{*}(\alpha+\mp@subsup{\beta}{}{*}\mp@subsup{n}{}{2}/p
    for k=0 to s-1
        forall i=0 to s-1 and j=0 to s-1
        C(i,j)=C(i,j) +A(i,j)*B(i,j) ...cocost = 2*(n/s)3 = 2*n3/p3/2
        left-circular-shift each row of A by 1 ... cost = \alpha + 陶2/p
        up-circular-shift each column of B by 1 ... cost = \alpha + \beta*n2/p
```

- Total Time $=2^{*} n^{3} / p+4^{*} s^{*} \alpha+4^{*} \beta^{*} n^{2} / s$ - Optimal!
- Parallel Efficiency $=2^{*} \mathbf{n}^{3} /\left(p^{*}\right.$ Total Time)

$$
\begin{aligned}
& =1 /\left(1+\alpha^{*} 2^{*}(s / n)^{3}+\beta^{*} 2^{*}(s / n)\right) \\
& =1 /(1+O(\operatorname{sqrt}(p) / n))
\end{aligned}
$$

- Grows to 1 as $n / s=n / s q r t(p)=s q r t(d a t a ~ p e r ~ p r o c e s s o r) ~ g r o w s ~$

Sequential algorithms and communication bounds

Algorithm	Minimizing \#words (not \#messages)	Minimizing \#words and \#messages
Cholesky	LAPACK	[Gustavson, 97] [Ahmed, Pingali, 00]
LU	LAPACK (few cases) [Toledo,97], [Gustavson, 97] both use partial pivoting	[LG, Demmel, Xiang, 08] [Khabou, Demmel, LG, Gu, 12] uses tournament pivoting
QR	LAPACK (few cases) [Elmroth,Gustavson,98]	[Frens, Wise, 03], 3x flops [Demmel, LG, Hoemmen, Langou, 08] [Ballard et al, 14]
RRQR	[Demmel, LG, Gu, Xiang 11]	
uses tournament pivoting, 3x flops		

- Only several references shown for block algorithms (LAPACK), cache-oblivious algorithms and communication avoiding algorithms
- CA algorithms exist also for SVD and eigenvalue computation

2D Parallel algorithms and communication bounds

- If memory per processor $=n^{2} / P$, the lower bounds become \#words_moved $\geq \Omega\left(\mathrm{n}^{2} / \mathrm{P}^{1 / 2}\right)$, \#messages $\geq \Omega\left(\mathrm{P}^{1 / 2}\right)$

Algorithm	Minimizing \#words (not \#messages)		Minimizing \#words and \#messages
Cholesky	ScaLAPACK		ScaLAPACK

- Only several references shown, block algorithms (ScaLAPACK) and communication avoiding algorithms
- CA algorithms exist also for SVD and eigenvalue computation

The algebra of LU factorization

- Compute the factorization PA = LU
- Given the matrix

$$
A=\left(\begin{array}{ccc}
3 & 1 & 3 \\
6 & 7 & 3 \\
9 & 12 & 3
\end{array}\right)
$$

Let

$$
M_{1}=\left(\begin{array}{ccc}
1 & & \\
-2 & 1 & \\
-3 & & 1
\end{array}\right), \quad M_{1} A=\left(\begin{array}{ccc}
3 & 1 & 3 \\
0 & 5 & -3 \\
0 & 9 & -6
\end{array}\right)
$$

The algebra of LU factorization (contd)

- In general

$$
\begin{aligned}
A^{(k+1)} & =M_{k} A^{(k)}:=\left(\begin{array}{ccccc}
I_{k-1} & & & \\
& 1 & & \\
& -m_{k+1, k} & 1 & & \\
\ldots & & \ddots & \\
& -m_{n, k} & & 1
\end{array}\right) A^{(k)}, \text { where } \\
M_{k} & =I-m_{k} e_{k}^{T}, \quad M_{k}^{-1}=I+m_{k} e_{k}^{T}
\end{aligned}
$$

where e_{k} is the k-th unit vector, $e_{i}^{T} m_{k}=0, \forall i \leq k$

- The factorization can be written as

$$
M_{n-1} \ldots M_{1} A=A^{(n)}=U
$$

The algebra of LU factorization (contd)

We obtain

$$
\begin{aligned}
A & =M_{1}^{-1} \ldots M_{n-1}^{-1} U \\
& =\left(I+m_{1} e_{1}^{T}\right) \ldots\left(I+m_{n-1} e_{n-1}^{T}\right) U \\
& =\left(I+\sum_{i=1}^{n-1} m_{i} e_{i}^{T}\right) U \\
& =\left(\begin{array}{cccc}
1 \\
m_{21} & 1 & \\
\vdots & \vdots & \ddots & \\
m_{n 1} & m_{n 2} & \ldots & 1
\end{array}\right) U=L U
\end{aligned}
$$

The need for pivoting

- For stability avoid division by small elements, otherwise \|A-LU\| can be large
- Because of roundoff error
- For example

$$
A=\left(\begin{array}{lll}
0 & 3 & 3 \\
3 & 1 & 3 \\
6 & 2 & 3
\end{array}\right)
$$

has an $L U$ factorization if we permute the rows of A

$$
P A=\left(\begin{array}{lll}
6 & 2 & 3 \\
0 & 3 & 3 \\
3 & 1 & 3
\end{array}\right)=\left(\begin{array}{ccc}
1 & & \\
& 1 & \\
0.5 & & 1
\end{array}\right)\left(\begin{array}{lll}
6 & 2 & 3 \\
& 3 & 3 \\
& & 1.5
\end{array}\right)
$$

- Partial pivoting allows to bound all elements of L by 1 .

LU with partial pivoting - BLAS 2 algorithm

- Algorithm for computing the in place LU factorization of a matrix of size $n \times n$.
- $\#$ flops $=2 n^{3} / 3$

1: for $k=1: n-1$ do
2: Let $a_{i k}$ be the element of maximum magnitude in $A(k: n, k)$
3: \quad Permute row i and row k
4: $\quad A(k+1: n, k)=A(k+1: n, k) / a_{k k}$
5: \quad for $i=k+1: n$ do
6: \quad for $j=k+1: n$ do
7: $\quad a_{i j}=a_{i j}-a_{i k} a_{k j}$ end for end for
10: end for

Block LU factorization - obtained by delaying updates

- Matrix A of size $n x n$ is partitioned as

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], \text { whereA } A_{11} \text { is } b \times b
$$

- The first step computes LU with partial pivoting of the first block:

$$
P_{1}\binom{A_{11}}{A_{21}}=\binom{L_{11}}{L_{21}} U_{11}
$$

- The factorization obtained is:

$$
P_{1} A=\left(\begin{array}{ll}
L_{11} & \\
L_{21} & I_{n-b}
\end{array}\right)\left(\begin{array}{ll}
U_{11} & U_{12} \\
& A_{22}^{1}
\end{array}\right) \text {, where } \begin{aligned}
& U_{12}=L_{11}^{-1} A_{12} \\
& A_{22}^{1}=A_{22}-L_{2} U_{12}
\end{aligned}
$$

- The algorithm continues recursively on the trailing matrix $\mathrm{A}_{22}{ }^{1}$

Block LU factorization - the algorithm

1. Compute LU with partial pivoting of the first panel

$$
P_{1}\binom{A_{11}}{A_{21}}=\binom{L_{11}}{L_{21}} U_{11}
$$

2. Pivot by applying the permutation matrix P_{1} on the entire matrix

$$
P_{1} A=\bar{A}
$$

3. Solve the triangular system to compute a block row of U

$$
U_{12}=L_{12}^{-1} \bar{A}_{12}
$$

4. Update the trailing matrix

$$
\bar{A}_{22}^{1}=\bar{A}_{22}-L_{2} U_{1 \bar{i}}
$$

1. The algorithm continues recursively on the trailing matrix \bar{A}_{22}^{1}

LU factorization (as in ScaLAPACK pdgetrf)

LU factorization on a $P=P_{r} \times P_{c}$ grid of processors
For ib $=1$ to $\mathrm{n}-1$ step b $A^{(i b)}=A(i b: n, i b: n)$
(1) Compute panel factorization
$O\left(n \log _{2} P_{r}\right)$

- find pivot in each column, swap rows
(2) Apply all row permutations
- broadcast pivot information along the rows

U

- swap rows at left and right
(3) Compute block row of U
- broadcast right diagonal block of L of current panel

(4) Update trailing matrix
- broadcast right block column of L

Page 38

General scheme for
 QR factorization by Householder transformations

The Householder matrix

$$
H_{i}=I-\tau_{i} h_{i} h_{i}^{T}
$$

has the following properties:

- is symmetric and orthogonal,

$$
H_{i}{ }^{2}=I,
$$

- is independent of the scaling of h_{i},
- it reflects x about the hyperplane $s p a r\left(h_{i}\right)^{2}$
- For QR, we choose a Householder matrix that allows to annihilate the elements of a vector x , except first element.

General scheme for

QR factorization by Householder transformations

- Apply Householder transformations to annihilate subdiagonal entries

$$
\begin{aligned}
A & =\left(\begin{array}{llll}
x & x & x & x \\
x & x & x & x \\
x & x & x & x \\
x & x & x & x
\end{array}\right)=H_{1}\left(\begin{array}{llll}
x & x & x & x \\
0 & x & x & x \\
0 & x & x & x \\
0 & x & x & x
\end{array}\right)=H_{1}\left(\begin{array}{ll}
1 & \tilde{H}_{2}
\end{array}\left(\begin{array}{llll}
x & x & x & x \\
0 & x & x & x \\
0 & 0 & x & x \\
0 & 0 & x & x
\end{array}\right)\right. \\
& =H_{1} H_{2}\left(\begin{array}{lll}
1 & 1 & \\
& & \tilde{H}_{3}
\end{array}\right)\left(\begin{array}{llll}
x & x & x & x \\
0 & x & x & x \\
0 & 0 & x & x \\
0 & 0 & 0 & x
\end{array}\right)=H_{1} H_{2} H_{3} R=Q R
\end{aligned}
$$

- For A of size $m x n$, the factorization can be written as:

$$
\begin{aligned}
& H_{n} H_{n-1} \ldots H_{2} H_{1} A=R \rightarrow A=\left(H_{n} H_{n-1} \ldots H_{2} H_{1}\right)^{T} R \\
& Q=H_{1} H_{2} \ldots H_{n}
\end{aligned}
$$

Compact representation for Q

- Orthogonal factor Q can be represented implicitly as

- Example for $b=2$:
$Y=\left(h_{1} \mid h_{2}\right), \quad \mathrm{T}=\left(\begin{array}{cc}\tau_{1} & -\tau_{1} h_{1}^{\top} h_{2} \tau_{2} \\ \tau_{2}\end{array}\right)$

Algebra of block QR factorization

Matrix A of size $n x n$ is partitioned as

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \text {, whereA } A_{1} \text { is } b \times b
$$

Block QR algebra

The first step of the block QR factorization algorithm computes:

$$
Q_{1}^{\top} A=\left[\begin{array}{ll}
R_{11} & R_{12} \\
& A_{22}^{\top}
\end{array}\right]
$$

The algorithm continues recursively on the trailing matrix $\mathrm{A}_{22}{ }^{1}$

Block QR factorization

$$
A=\left(\begin{array}{ll}
A_{1} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)=Q_{1}\left(\begin{array}{ll}
R_{11} & R_{12} \\
& A_{22}
\end{array}\right)
$$

Block QR algebra:

1. Compute panel factorization:

$$
\binom{\mathrm{A}_{11}}{\mathrm{~A}_{12}}=\mathrm{Q}_{1}\left(\begin{array}{l}
R_{11}
\end{array}\right), \quad Q_{1}=H_{1} H_{2} . . H_{b}
$$

2. Compute the compact representation:

$$
\mathrm{Q}_{1}=I-Y_{1} T_{1} Y_{1}^{\top}
$$

3. Update the trailing matrix:

$$
\left(I-Y_{1} T_{1}^{T} Y_{1}^{T}\right)\binom{A_{12}}{A_{22}}=\binom{A_{12}}{A_{22}}-Y_{1}\left(T_{1}^{T}\left(Y_{1}^{T}\binom{A_{12}}{A_{22}}\right)\right)=\binom{R_{12}}{A_{22}^{1}}
$$

4. The algorithm continues recursively on the trailing matrix.

TSQR: QR factorization of a tall skinny matrix using Householder transformations

- QR decomposition of $m \times b$ matrix $W, m \gg b$
- P processors, block row layout
- Classic Parallel Algorithm
- Compute Householder vector for each column
- Number of messages $\propto b \log P$
- Communication Avoiding Algorithm
- Reduction operation, with QR as operator
- Number of messages $\propto \log P$

$$
W=\left[\begin{array}{l}
W_{0} \\
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right] \rightarrow\left[\begin{array}{l}
R_{00} \\
R_{10} \\
R_{20} \\
R_{30}
\end{array}\right] \rightarrow R_{01} \longrightarrow R_{11} \longrightarrow R_{02}
$$

Parallel TSQR

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha, Becker, Patterson, 02

Algebra of TSQR

Parallel: $\left.w=\left[\begin{array}{l}W_{0} \\ W_{1} \\ W_{2} \\ W_{3}\end{array}\right] \rightarrow \begin{array}{l}R_{00} \\ \end{array}\right] \begin{aligned} & R_{20} \\ & R_{30} \\ & R_{30}\end{aligned} \longrightarrow R_{01} \longrightarrow R_{02}$

$$
\begin{aligned}
& W=\left(\begin{array}{l}
W_{0} \\
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right)=\binom{\frac{Q_{00} R_{00}}{Q_{10} R_{10}}}{\frac{Q_{20} R_{20}}{Q_{30} R_{30}}}=\binom{\frac{Q_{00}}{Q_{10}}}{\frac{Q_{20}}{Q_{30}}} \cdot\left(\frac{\frac{R_{00}}{R_{10}}}{\frac{R_{00}}{R_{30}}}\right) \\
& \left(\begin{array}{l}
R_{10} \\
R_{20} \\
R_{30}
\end{array}\right)=\binom{Q_{01} R_{01}}{Q_{11} R_{11}}=\left(\frac{Q_{01}}{Q_{11}}\right) \cdot\left(\frac{R_{01}}{R_{11}}\right) \quad\left(\frac{R_{01}}{R_{11}}\right)=Q_{02} R_{02}
\end{aligned}
$$

Q is represented implicitly as a product Output: $\left\{Q_{00}, Q_{10}, Q_{00}, Q_{20}, Q_{30}, Q_{01}, Q_{11}, Q_{02}, R_{02}\right\}$

Flexibility of TSQR and CAQR algorithms

Parallel: $w=\left[\begin{array}{l}W_{0} \\ W_{1} \\ W_{2} \\ W_{3}\end{array}\right] \rightarrow \begin{array}{llll}R_{00} & \longrightarrow & R_{10} & R_{30} \\ R_{30}\end{array} \longrightarrow R_{11} \longrightarrow R_{02}$

Sequential: $w=\left[\begin{array}{l}W_{0} \\ W_{1} \\ W_{2} \\ W_{3}\end{array}\right] \xrightarrow{\longrightarrow} R_{00} \longrightarrow R_{01} \longrightarrow R_{02} \longrightarrow R_{03}$
Dual Core: $w=\left[\begin{array}{l}W_{0} \\ W_{1} \\ W_{2} \\ W_{3}\end{array}\right] \xrightarrow{R_{00} \longrightarrow R_{01} \longrightarrow R_{01} \longrightarrow R_{02} \longrightarrow R_{03}}$
Reduction tree will depend on the underlying architecture, could be chosen dynamically

Algebra of TSQR

Parallel: $w=\left[\begin{array}{l}W_{0} \\ W_{1} \\ W_{2} \\ W_{3}\end{array}\right] \xrightarrow{\rightarrow} \begin{array}{ll}R_{00} \\ \rightarrow & R_{20} \\ R_{20} \\ R_{30}\end{array} \longrightarrow R_{01} \longrightarrow R_{02}$

CAQR

QR for General Matrices

- Cost of CAQR vs ScaLAPACK's PDGEQRF
- $\mathrm{n} \times \mathrm{n}$ matrix on $\mathrm{P}^{1 / 2} \times \mathrm{P}^{1 / 2}$ processor grid, block size b
- Flops: $(4 / 3) n^{3} / P+(3 / 4) n^{2} b \log P / P^{1 / 2}$ vs $(4 / 3) n^{3} / P$
- Bandwidth: $(3 / 4) n^{2} \log P / P^{1 / 2}$
vs same
- Latency:
$2.5 \mathrm{n} \log \mathrm{P} / \mathrm{b}$
vs $1.5 \mathrm{n} \log \mathrm{P}$
- Close to optimal (modulo log P factors)
- Assume: $O\left(n^{2} / P\right)$ memory/processor, $O\left(n^{3}\right)$ algorithm,
- Choose b near n/ $\mathrm{P}^{1 / 2}$ (its upper bound)
- Bandwidth lower bound:

$$
\Omega\left(\mathrm{n}^{2} / \mathrm{P}^{1 / 2}\right) \text { - just } \log (\mathrm{P}) \text { smaller }
$$

- Latency lower bound:

$$
\Omega\left(\mathrm{P}^{1 / 2}\right) \text { - just polylog(P) smaller }
$$

Performance of TSQR vs Sca/LAPACK

- Parallel
- Intel Xeon (two socket, quad core machine), 2010
- Up to $5.3 x$ speedup (8 cores, $10^{5} \times 200$)
- Pentium III cluster, Dolphin Interconnect, MPICH, 2008
- Up to $6.7 \times$ speedup (16 procs, $100 \mathrm{~K} \times 200$)
- BlueGene/L, 2008
- Up to 4 x speedup (32 procs, $1 \mathrm{M} \times 50$)
- Tesla C 2050 / Fermi (Anderson et al)
- Up to 13x (110,592 x 100)
- Grid $-4 x$ on 4 cities vs 1 city (Dongarra, Langou et al)
- QR computed locally using recursive algorithm (Elmroth-Gustavson) enabled by TSQR
- Results from many papers, for some see [Demmel, LG, Hoemmen, Langou, SISC 12], [Donfack, LG, IPDPS 10].

Modeled Speedups of CAQR vs ScaLAPACK

Peta:Time PDGEQRF/Time CAQR max $=22.9444, \mathrm{n}=10000, \mathrm{P}=8192$

Petascale up to $22.9 x$

IBM Power 5 up to $9.7 x$
"Grid" up to $11 x$

Petascale machine with 8192 procs, each at $500 \mathrm{GFlops} / \mathrm{s}$, a bandwidth of $4 \mathrm{~GB} / \mathrm{s}$.

$$
\gamma=2 \cdot 10^{12} s, \alpha=10^{5} s, \beta=2 \cdot 10^{9} s / \text { word }
$$

Impact

- TSQR/CAQR implemented in
- Intel MKL library
- GNU Scientific Library
- ScaLAPACK
- Spark for data mining
- CALU implemented in
- Cray’s libsci
- To be implemented in lapack/scapalack

Algebra of TSQR

Parallel: $w=\left[\begin{array}{l}W_{0} \\ W_{1} \\ W_{2} \\ W_{3}\end{array}\right] \rightarrow \begin{aligned} & R_{00} \\ & R_{20} \\ & R_{20} \\ & R_{30}\end{aligned} \longrightarrow R_{01} \longrightarrow R_{11} \longrightarrow R_{02}$

Page 53

Reconstruct Householder vectors from TSQR

The QR factorization using Householder vectors

$$
W=Q R=\left(I-Y T Y_{1}^{T}\right) R
$$

can be re-written as an LU factorization

$$
\begin{aligned}
& W-R=Y\left(-T Y_{1}^{\top}\right) R \\
& Q-I=Y\left(-T Y_{1}^{\top}\right) \\
& \text { a } \quad \begin{array}{l}
Y=-T \\
V_{1}^{\top}
\end{array}
\end{aligned}
$$

Reconstruct Householder vectors TSQR-HR

1. Perform TSQR

2. Form Q explicitly (tall-skinny orthonormal factor)
3. Perform LU decomposition: $Q-I=L U$
4. Set $Y=L$
5. Set $T=-U Y_{1}^{-T}$

$$
I-Y T Y^{\top}=I-\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right] T\left[\begin{array}{ll}
Y_{1}^{\top} & Y_{2}^{\top}
\end{array}\right]
$$

Strong scaling

Strong Scaling, Edison (MKL)
294912-by-32 problem

- Hopper: Cray XE6 (NERSC) - 2×12-core AMD Magny-Cours (2.1 GHz)
- Edison: Cray CX30 (NERSC) - 2×12-core Intel Ivy Bridge (2.4 GHz)
- Effective flop rate, computed by dividing $2 m n^{2}-2 n^{3} / 3$ by measured runtime

Ballard, Demmel, LG, Jacquelin, Knight, Nguyen, and Solomonik, 2015.

Weak scaling QR on Hopper

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)

- Matrix of size $15 \mathrm{~K}-$ by-15K to $131 \mathrm{~K}-$ by-131K
- Hopper: Cray XE6 supercomputer (NERSC) - dual socket 12core Magny-Cours Opteron (2.1 GHz)

The LU factorization of a tall skinny matrix

First try the obvious generalization of TSQR.

$$
W=\left(\begin{array}{l}
W_{0} \\
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right)=\left(\begin{array}{llll}
\Pi_{00} & & & \\
& \Pi_{10} & & \\
& & \Pi_{20} & \\
& & & \Pi_{30}
\end{array}\right) \cdot\left(\begin{array}{llll}
L_{00} & & & \\
& L_{10} & & \\
& & L_{20} & \\
& & & L_{30}
\end{array}\right) \cdot\left(\begin{array}{l}
U_{00} \\
U_{10} \\
U_{20} \\
U_{30}
\end{array}\right)
$$

$$
\left(\begin{array}{l}
U_{00} \\
U_{10} \\
U_{20} \\
U_{30}
\end{array}\right)=\left(\begin{array}{cc}
\prod_{01} & \\
& \Pi_{11}
\end{array}\right) \cdot\left(\begin{array}{ll}
L_{01} & \\
& L_{11}
\end{array}\right) \cdot\binom{U_{01}}{U_{11}}
$$

Obvious generalization of TSQR to LU

- Block parallel pivoting:
- uses a binary tree and is optimal in the parallel case

$$
W=\left[\begin{array}{l}
W_{0} \\
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right] \rightarrow U_{00} \rightarrow U_{10} \rightarrow U_{30} \rightarrow U_{11} \rightarrow U_{02}
$$

- Block pairwise pivoting:
- uses a flat tree and is optimal in the sequential case
- introduced by Barron and Swinnerton-Dyer, 1960: block LU factorization used to solve a system with 100 equations on EDSAC 2 computer using an auxiliary magnetic-tape
- used in PLASMA for multicore architectures and FLAME for out-of-core algorithms and for multicore architectures

$$
W=\left[\begin{array}{l}
W_{0} \\
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right] \xrightarrow{\longrightarrow U_{00} \longrightarrow U_{01} \longrightarrow} U_{02} U_{03}
$$

Stability of the LU factorization

- The backward stability of the LU factorization of a matrix A of size n-by-n

$$
\|\hat{L} \cdot \mid \hat{U}\|_{\infty} \leq\left(1+2\left(n^{2}-n\right) g_{w}\right)\|A\|_{\infty}
$$

depends on the growth factor

$$
g_{w}=\frac{\max _{i, j, k}\left|a_{i j}^{k}\right|}{\max _{i, j}\left|a_{i j}\right|} \quad \text { where } a_{i j}^{k} \text { are the values at the k-th step. }
$$

- $g_{w} \leq 2^{n-1}$, attained for Wilkinson matrix
but in practice it is on the order of $n^{2 / 3}-n^{1 / 2}$
- Two reasons considered to be important for the average case stability [Trefethen and Schreiber, 90] :
- the multipliers in L are small,
- the correction introduced at each elimination step is of rank 1.

Block parallel pivoting

- Unstable for large number of processors P
- When $\mathrm{P}=$ number rows, it corresponds to parallel pivoting, known to be unstable (Trefethen and Schreiber, 90)

Block pairwise pivoting

- Results shown for random matrices
- Will become unstable for large matrices $W=$

Page 62

Tournament pivoting - the overall idea

- At each iteration of a block algorithm

$$
\left.A=\left(\begin{array}{ll}
A_{11} & A_{21} \\
A_{21} & A_{22}
\end{array}\right)\right\} \begin{aligned}
& b \\
& \} n-b
\end{aligned} \text {, where } \quad W=\binom{A_{11}}{A_{21}}
$$

- Preprocess W to find at low communication cost good pivots for the LU factorization of W , return a permutation matrix P .
- Permute the pivots to top, ie compute PA.
- Compute LU with no pivoting of W, update trailing matrix.

$$
P A=\left(\begin{array}{ll}
L_{11} & \\
L_{21} & I_{n-b}
\end{array}\right)\left(\begin{array}{cc}
U_{11} & U_{12} \\
& A_{22}-L_{2} U_{12}
\end{array}\right)
$$

Tournament pivoting for a tall skinny matrix

1) Compute GEPP factorization of each W_{i}, find permutation Π_{0}

$$
W=\left(\frac{\frac{W_{0}}{W_{1}}}{\frac{W_{2}}{W_{3}}}\right)=\binom{\frac{\Pi_{00} L_{00} ل_{00}}{\Pi_{10} L_{10} ل_{10}}}{\frac{\Pi_{20} L_{20} ل_{20}}{\Pi_{30} L_{30} U_{30}}}, \begin{aligned}
& \text { Pick b pivot rows, form } A_{00} \\
& \text { Same for } A_{10} \\
& \text { Same for for } A_{20} \\
& \text { Same }
\end{aligned}
$$

2) Perform $\log _{2}(P)$ times GEPP factorizations of 2b-by-b rows, find permutations Π_{1}, Π_{2}

$$
\left(\begin{array}{l}
A_{00} \\
\frac{A_{10}}{A_{20}} \\
A_{30}
\end{array}\right)=\left(\frac{\prod_{01} L_{0} U_{01}}{\prod_{11} L_{1} U_{11}}\right) \begin{aligned}
& \text { Pick b pivot rows, form } \mathrm{A}_{01} \\
& \text { Same for A11 }
\end{aligned}
$$

3) Compute LU factorization with no pivoting of the permuted matrix:

$$
\Pi_{2}^{T} \Pi_{1}^{T} \Pi_{0}^{T} W=L U
$$

Tournament pivoting

Growth factor for binary tree based CALU

- Random matrices from a normal distribution
- Same behaviour for all matrices in our test, and \mid 니 <= 4.2

Stability of CALU (experimental results)

- Results show ||PA-LU\|||/||A\|, normwise and componentwise backward errors, for random matrices and special ones
- See [LG, Demmel, Xiang, SIMAX 2011] for details
- BCALU denotes binary tree based CALU and FCALU denotes flat tree based CALU

Our "proof of stability" for CALU

- CALU as stable as GEPP in following sense:

In exact arithmetic, CALU process on a matrix A is equivalent to GEPP process on a larger matrix G whose entries are blocks of A and zeros.

- Example of one step of tournament pivoting:

$$
\left.\begin{array}{ll}
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
A_{31} & A_{32}
\end{array}\right) & {\left[\begin{array}{l}
\text { tournament pivoting: } \\
A_{11} \\
A_{21} \\
A_{31}
\end{array}\right] \rightarrow A_{11} \rightarrow A_{21}}
\end{array}\right) \bar{A}_{11}
$$

- Proof possible by using original rows of A during tournament pivoting (not the computed rows of U).

Growth factor in exact arithmetic

- Matrix of size m-by-n, reduction tree of height $\mathrm{H}=\log (\mathrm{P})$.
- (CA)LU_PRRP select pivots using strong rank revealing QR (A. Khabou, J. Demmel, LG, M. Gu, SIMAX 2013)
- "In practice" means observed/expected/conjectured values.

	CALU	GEPP
Upper bound	$2^{\mathrm{n}(\log (\mathrm{P})+1)-1}$	$2^{\mathrm{n}-1}$
In practice	$\mathrm{n}^{2 / 3}--\mathrm{n}^{1 / 2}$	$\mathrm{n}^{2 / 3}--\mathrm{n}^{1 / 2}$

Better bounds

CALU - a communication avoiding LU factorization

- Consider a 2D grid of P processors $\mathrm{P}_{\mathrm{r}}-$ by- P_{c}, using a 2D block cyclic layout with square blocks of size b .

For $\mathrm{ib}=1$ to $\mathrm{n}-1$ step b

$$
A^{(i b)}=A(i b: n, i b: n)
$$

(1) Find permutation for current panel using TSLU $O\left(n / b \log _{2} P_{r}\right)$
(2) Apply all row permutations (pdlaswp)

- broadcast pivot information along the rows of the grid
(3) Compute panel factorization (dtrsm)
(4) Compute block row of U (pdtrsm)

$O\left(n / b \log _{2} P_{c}\right)$

- broadcast right diagonal part of L of current panel
(5) Update trailing matrix (pdgemm)
- broadcast right block column of L
- broadcast down block row of U

LU for General Matrices

- Cost of CALU vs ScaLAPACK's PDGETRF
- $\mathrm{n} \times \mathrm{n}$ matrix on $\mathrm{P}^{1 / 2} \times \mathrm{P}^{1 / 2}$ processor grid, block size b
- Flops: $(2 / 3) n^{3} / P+(3 / 2) n^{2} b / P^{1 / 2}$ vs $(2 / 3) n^{3} / P+n^{2} b / P^{1 / 2}$
- Bandwidth: $n^{2} \log P / P^{1 / 2}$
vs same
- Latency: $3 n \log P / b \quad$ vs $1.5 n \log P+3.5 n \log P / b$
- Close to optimal (modulo log P factors)
- Assume: $\mathrm{O}\left(\mathrm{n}^{2} / \mathrm{P}\right)$ memory/processor, $\mathrm{O}\left(\mathrm{n}^{3}\right)$ algorithm,
- Choose b near n/ $\mathrm{P}^{1 / 2}$ (its upper bound)
- Bandwidth lower bound:

$$
\Omega\left(n^{2} / P^{1 / 2}\right) \text { - just } \log (P) \text { smaller }
$$

- Latency lower bound:

$$
\Omega\left(\mathrm{P}^{1 / 2}\right) \text { - just polylog }(\mathrm{P}) \text { smaller }
$$

Page 71

Performance vs ScaLAPACK

- Parallel TSLU (LU on tall-skinny matrix)
- IBM Power 5
- Up to 4.37x faster (16 procs, 1M x 150)
- Cray XT4
- Up to 5.52x faster (8 procs, 1M x 150)
- Parallel CALU (LU on general matrices)
- Intel Xeon (two socket, quad core)
- Up to 2.3x faster (8 cores, 10^6 x 500)
- IBM Power 5
- Up to 2.29x faster (64 procs, 1000 x 1000)
- Cray XT4
- Up to 1.81x faster (64 procs, 1000×1000)
- Details in SC08 (LG, Demmel, Xiang), IPDPS'10 (S. Donfack, LG).

CALU and its task dependency graph

- The matrix is partitioned into blocks of size $T \times b$.
- The computation of each block is associated with a task.

Scheduling CALU's Task Dependency Graph

- Static scheduling
+ Good locality of data

- Dynamic scheduling

Lightweight scheduling

- Emerging complexities of multi- and mani-core processors suggest a need for self-adaptive strategies
- One example is work stealing
- Goal:
- Design a tunable strategy that is able to provide a good trade-off between load balance, data locality, and dequeue overhead.
- Provide performance consistency
- Approach: combine static and dynamic scheduling
- Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

	Design space			
Data layout/scheduling	Static	Dynamic	Static/(\%dynamic)	
Column Major Layout (CM)		\checkmark		
Block Cyclic Layout (BCL)	\checkmark	\checkmark	\checkmark	
2-level Block Layout (2l-BL)	\checkmark	\checkmark	\checkmark	

S. Donfack, LG, B. Gropp, V. Kale,IPDPS 2012

Lightweight scheduling

- A self-adaptive strategy to provide
- A good trade-off between load balance, data locality, and dequeue overhead.
- Performance consistency
- Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

Combined static/dynamic scheduling:

- A thread executes in priority its statically assigned tasks
- When no task ready, it picks a ready task from the dynamic part
- The size of the dynamic part is guided by a performance model

Data layout and other optimizations

- Three data distributions investigated
- CM : Column major order for the entire matrix
- BCL : Each thread stores contiguously (CM) the data on which it operates
- 2l-BL : Each thread stores in blocks the data on which it operates

0	$\hat{0}$	$4 \hat{0}$	$5 a$	20	30	60	70
1	11	41	51	21	31	61	71
4	14	44	54	24	34	64	74
k	15	45	55	25	35	65	75
2	12	42	52	22	32	62	72
3	13	43	53	23	33	63	73
6	16	46	56	26	36	66	76
7	17	47	57	27	37	67	77

Block cyclic layout (BCL)

0	10	40	50	20	30	60	70
1	11	41	51	21	31	61	71
4	14	44	54	24	34	64	74
$5 \downarrow$	15	45	55	25	35	65	75
2	12	42	52	22	32	62	72
3	13	43	53	23	33	63	73
6	16	46	56	26	36	66	76
7	17	47	57	27	37	67	77

Two level block layout (2l-BL)

- And other optimizations
- Updates (dgemm) performed on several blocks of columns (for BCL and CM layouts)

Impact of data layout

Eight socket, six core machine based on AMD Opteron processor (U. of Tennessee). BCL : Each thread stores contiguously (CM) its data
2l-BL: Each thread stores in blocks its data

Best performance of CALU on multicore architectures

Static scheduling

Static + 10\% dynamic scheduling

100% dynamic scheduling

- Reported performance for PLASMA uses LU with block pairwise pivoting.
- GPU data courtesy of S. Donfack

