
Low rank matrix approximation

L. Grigori

Inria Paris, Sorbonne Université

January 2022

Plan

Low rank matrix approximation

Rank revealing QR factorization

Randomized algorithms for low rank approximation

2 of 49

Plan

Low rank matrix approximation

Rank revealing QR factorization

Randomized algorithms for low rank approximation

3 of 49

Low rank matrix approximation

� Problem: given A ∈ Rm×n, compute rank-k approximation ZW T , where
Z is m × k and W T is k × n.

� Problem with diverse applications
� from scientific computing: fast solvers for integral equations, H-matrices
� to data analytics: principal component analysis, image processing, ...

Ax → ZW T x

Flops 2mn → 2(m + n)k

4 of 49

Singular value decomposition

Given A ∈ Rm×n, m ≥ n its singular value decomposition is

A = UΣV T =
(
U1 U2 U3

)
·

Σ1 0
0 Σ2

0 0

 · (V1 V2

)T
where

� U is m ×m orthogonal matrix, the left singular vectors of A ,
U1 is m × k, U2 is m × n − k , U3 is m ×m − n

� Σ is m × n, its diagonal is formed by σ1(A) ≥ . . . ≥ σn(A) ≥ 0
Σ1 is k × k, Σ2 is n − k × n − k

� V is n × n orthogonal matrix, the right singular vectors of A,
V1 is n × k , V2 is n × n − k

5 of 49

Norms

||A||p = max
||x||p=1

||Ax ||p

||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
√
σ2

1(A) + . . . σ2
n(A)

||A||2 = σmax(A) = σ1(A)

Some properties:

||A||2 ≤ ||A||F ≤
√
min(m, n)||A||2

Orthogonal Invariance: If Q ∈ Rm×m and Z ∈ Rn×n are orthogonal, then

||QAZ ||F = ||A||F
||QAZ ||2 = ||A||2

6 of 49

Low rank matrix approximation

� Best rank-k approximation Ak = UkΣkVk is rank-k truncated SVD of A
[Eckart and Young, 1936]

min
rank(Ãk)≤k

||A− Ãk ||2 = ||A− Ak ||2 = σk+1(A) (1)

min
rank(Ãk)≤k

||A− Ãk ||F = ||A− Ak ||F =

√√√√ n∑
j=k+1

σ2
j (A) (2)

Image, size 1190× 1920 Rank-10 approximation, SVD Rank-50 approximation, SVD

� Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/

7 of 49

https://pixabay.com/photos/billiards-ball-play-number-half-4345870/

Large data sets

Matrix A might not exist entirely at a given time, rows or columns are added
progressively.

� Streaming algorithm: can solve an arbitrarily large problem with one pass
over the data (a row or a column at a time).

� Weakly streaming algorithm: can solve a problem with O(1) passes over
the data.

Matrix A might exist only implicitly, and it is never formed explicitly.

8 of 49

Low rank matrix approximation: trade-offs

Communication optimal if computing a rank-k approximation on P processors requires

messages = Ω (log2 P) .

9 of 49

Low rank matrix approximation: trade-offs

Communication optimal if computing a rank-k approximation on P processors requires

messages = Ω (log2 P) .

9 of 49

Idea underlying many algorithms

Compute Ãk = PA, where P = Po or P = Pso is obtained as:

1. Construct a low dimensional subspace X = range(AΩ1), Ω1 ∈ Rn×l that
approximates well the range of A, e.g.

‖A− PoA‖2 ≤ γσk+1(A), for some γ ≥ 1,

where Q1 is orth. basis of (AΩ1)

Po = AΩ1(AΩ1)+ = Q1Q
T
1 , or equiv Poaj := arg min

x∈X
‖x − aj‖2

2. Select a semi-inner product 〈Θ1·,Θ1·〉2, Θ1 ∈ Rl′×m l ′ ≥ l , define

Pso = AΩ1(Θ1AΩ1)+Θ1, or equiv Psoaj := arg min
x∈X
‖Θ1(x − aj)‖2

10 of 49

Idea underlying many algorithms

Compute Ãk = PA, where P = Po or P = Pso is obtained as:

1. Construct a low dimensional subspace X = range(AΩ1), Ω1 ∈ Rn×l that
approximates well the range of A, e.g.

‖A− PoA‖2 ≤ γσk+1(A), for some γ ≥ 1,

where Q1 is orth. basis of (AΩ1)

Po = AΩ1(AΩ1)+ = Q1Q
T
1 , or equiv Poaj := arg min

x∈X
‖x − aj‖2

2. Select a semi-inner product 〈Θ1·,Θ1·〉2, Θ1 ∈ Rl′×m l ′ ≥ l , define

Pso = AΩ1(Θ1AΩ1)+Θ1, or equiv Psoaj := arg min
x∈X
‖Θ1(x − aj)‖2

10 of 49

Properties of the approximations

Definitions and some of the results taken from [Demmel et al., 2019].

Definition
[low-rank approximation] A matrix Ak satisfying ‖A− Ak‖2 ≤ γσk+1(A) for
some γ ≥ 1 will be said to be a (k , γ) low-rank approximation of A.

Definition
[spectrum preserving] If Ak satisfies

σj(A) ≥ σj(Ak) ≥ γ−1σj(A)

for j ≤ k and some γ ≥ 1, it is a (k , γ) spectrum preserving.

Definition
[kernel approximation] If Ak satisfies

σk+j(A) ≤ σj(A− Ak) ≤ γσk+j(A)

for 1 ≤ j ≤ n − k and some γ ≥ 1, it is a (k , γ) kernel approximation of A.

11 of 49

Plan

Low rank matrix approximation

Rank revealing QR factorization

Randomized algorithms for low rank approximation

12 of 49

Rank revealing QR factorization

Given A of size m × n, consider the decomposition

APc = QR = Q

[
R11 R12

R22

]
, (3)

where R11 is k × k , Pc and k are chosen such that ||R22||2 is small and R11

is well-conditioned.

� By the interlacing property of singular values [Golub, Van Loan, 4th
edition, page 487],

σi (R11) ≤ σi (A) and σj(R22) ≥ σk+j(A)

for 1 ≤ i ≤ k and 1 ≤ j ≤ n − k .

� σk+1(A) ≤ σmax(R22) = ||R22||

13 of 49

Rank revealing QR factorization

Given A of size m × n, consider the decomposition

APc = QR = Q

[
R11 R12

R22

]
. (4)

If ||R22||2 is small,

� Q(:, 1 : k) forms an approximate orthogonal basis for the range of A,

A(:, j) =

min(j,k)∑
i=1

R(i , j)Q(:, i) ∈ span{Q(:, 1), . . .Q(:, k)}

Range(A) ∈ span{Q(:, 1), . . .Q(:, k)}

� Pc

[
−R−1

11 R12

I

]
is an approximate right null space of A.

14 of 49

Rank revealing QR factorization

The factorization from equation (5) is rank revealing if

1 ≤ σi (A)

σi (R11)
,
σj(R22)

σk+j(A)
≤ γ1(n, k),

for 1 ≤ i ≤ k and 1 ≤ j ≤ min(m, n)− k , where

σmax(A) = σ1(A) ≥ . . . ≥ σmin(A) = σn(A)

It is strong rank revealing [Gu and Eisenstat, 1996] if in addition

||R−1
11 R12||max ≤ γ2(n, k)

15 of 49

Low rank approximation with strong RRQR

Given A ∈ Rm×n and R11 ∈ Rk×k ,

APc = QR =
(
Q1 Q2

)(R11 R12

R22

)
,

Ãqr = Q1

(
R11 R12

)
PT
c = Q1Q

T
1 A = PoA

� It can be shown that

σj(R22) = σj(A− Ãqr)

� [Gu and Eisenstat, 1996] show that given k and f , there exists
permutation V ∈ Rn×n such that the factorization satisfies,

1 ≤ σi (A)

σi (R11)
,
σj(R22)

σk+j(A)
≤ γ(n, k), γ(n, k) =

√
1 + f 2k(n − k)

||R−1
11 R12||max ≤ f

for 1 ≤ i ≤ k and 1 ≤ j ≤ min(m, n)− k .
� Cost: 4mnk (QRCP) plus O(mnk) flops and O(k log2 P) messages.
→ Ãqr with strong RRQR is (k, γ(n, k)) spectrum preserving and kernel approximation of

A
16 of 49

QR with column pivoting [Businger and Golub, 1965]

Idea:

� At first iteration, trailing columns decomposed into parallel part to first
column (or e1) and orthogonal part (in rows 2 : m).

� The column of maximum norm is the column with largest component
orthogonal to the first column.

Implementation:

� Find at each step of the QR factorization the column of maximum norm.

� Permute it into leading position.

� If rank(A) = k, at step k + 1 the maximum norm is 0.

� No need to compute the column norms at each step, but just update
them since

QT v = w =

[
w1

w(2 : n)

]
, ||w(2 : n)||22 = ||v ||22 − w2

1

17 of 49

QR with column pivoting [Businger and Golub, 1965]

Sketch of the algorithm
column norm vector: colnrm(j) = ||A(:, j)||2, j = 1 : n.
for j = 1 : n do

Find column p of largest norm
if colnrm[p] > ε then

1. Pivot: swap columns j and p in A and modify colnrm.
2. Compute Householder matrix Hj s.t. HjA(j : m, j) = ±||A(j :

m, j)||2e1.
3. Update A(j : m, j + 1 : n) = HjA(j : m, j + 1 : n).
4. Norm downdate colnrm(j + 1 : n)2− = A(j , j + 1 : n)2.

else Break
end if

end for

If algorithm stops after k steps

σmax(R22) ≤
√
n − k max

1≤j≤n−k
||R22(:, j)||2 ≤

√
n − kε

18 of 49

Strong RRQR [Gu and Eisenstat, 1996]

Since

det(R11) =
k∏

i=1

σi (R11) =
√
det(ATA)/

n−k∏
i=1

σi (R22)

a stron RRQR is related to a large det(R11). The following algorithm
interchanges columns that increase det(R11), given f and k.

Compute a strong RRQR factorization, given k :

Compute AΠ = QR by using QRCP
while there exist i and j such that det(R̃11)/det(R11) > f , where

R11 = R(1 : k , 1 : k), Πi,j+k permutes columns i and j + k,

RΠi,j+k = Q̃R̃, R̃11 = R̃(1 : k , 1 : k) do
Find i and j
Compute RΠi,j+k = Q̃R̃ and Π = ΠΠi,j+k

end while

19 of 49

Strong RRQR (contd)

It can be shown that

det(R̃11)

det(R11)
=

√(
R−1

11 R12

)2

i,j
+ ω2

i (R11)χ2
j (R22) (5)

for any 1 ≤ i ≤ k and 1 ≤ j ≤ n − k (the 2-norm of the j-th column of A is
χj(A), and the 2-norm of the j-th row of A−1 is ωj(A)).

Compute a strong RRQR factorization, given k :

Compute AΠ = QR by using QRCP

while max1≤i≤k,1≤j≤n−k

√(
R−1

11 R12

)2

i,j
+ ω2

i (R11)χ2
j (R22) > f do

Find i and j such that
√(

R−1
11 R12

)2

i,j
+ ω2

i (R11)χ2
j (R22) > f

Compute RΠi,j+k = Q̃R̃ and Π = ΠΠi,j+k

end while

20 of 49

Strong RRQR (contd)

� det(R11) strictly increases with every permutation, no permutation
repeats, hence there is a finite number of permutations to be performed.

21 of 49

Strong RRQR (contd)

Theorem
[Gu and Eisenstat, 1996] If the QR factorization with column pivoting as in
equation (5) satisfies inequality√(

R−1
11 R12

)2

i,j
+ ω2

i (R11)χ2
j (R22) < f

for any 1 ≤ i ≤ k and 1 ≤ j ≤ n − k , then

1 ≤ σi (A)

σi (R11)
,
σj(R22)

σk+j(A)
≤
√

1 + f 2k(n − k),

for any 1 ≤ i ≤ k and 1 ≤ j ≤ min(m, n)− k .

22 of 49

Deterministic column selection: tournament pivoting

1D tournament pivoting (1Dc-TP)

� 1D column block partition of A, select k cols

from each block with strong RRQR
(A11 A12 A13 A14)

= = = =

(Q00R00Pc
T
00 Q10R10Pc

T
10 Q20R20Pc

T
20 Q30R30Pc

T
30)

↓ ↓ ↓ ↓
I00 I10 I20 I30

� Reduction tree to select k cols from sets of 2k
cols,

(A(:, I00 ∪ I10) A(:, I20 ∪ I30);)

= =

(Q01R01Pc
T
01 Q11R11Pc

T
11)

↓ ↓
I01 I11

A(:, I01 ∪ I11) = Q02R02Pc
T
02 → I02

� Return selected columns A(:, I02)

23 of 49

Deterministic column selection: tournament pivoting

1D tournament pivoting (1Dc-TP)

� 1D column block partition of A, select k cols

from each block with strong RRQR
(A11 A12 A13 A14)

= = = =

(Q00R00Pc
T
00 Q10R10Pc

T
10 Q20R20Pc

T
20 Q30R30Pc

T
30)

↓ ↓ ↓ ↓
I00 I10 I20 I30

� Reduction tree to select k cols from sets of 2k
cols,

(A(:, I00 ∪ I10) A(:, I20 ∪ I30);)

= =

(Q01R01Pc
T
01 Q11R11Pc

T
11)

↓ ↓
I01 I11

A(:, I01 ∪ I11) = Q02R02Pc
T
02 → I02

� Return selected columns A(:, I02)

23 of 49

Deterministic column selection: tournament pivoting

1D tournament pivoting (1Dc-TP)

� 1D column block partition of A, select k cols

from each block with strong RRQR
(A11 A12 A13 A14)

= = = =

(Q00R00Pc
T
00 Q10R10Pc

T
10 Q20R20Pc

T
20 Q30R30Pc

T
30)

↓ ↓ ↓ ↓
I00 I10 I20 I30

� Reduction tree to select k cols from sets of 2k
cols,

(A(:, I00 ∪ I10) A(:, I20 ∪ I30);)

= =

(Q01R01Pc
T
01 Q11R11Pc

T
11)

↓ ↓
I01 I11

A(:, I01 ∪ I11) = Q02R02Pc
T
02 → I02

� Return selected columns A(:, I02)

23 of 49

Deterministic column selection: tournament pivoting

1D tournament pivoting (1Dc-TP)

� 1D column block partition of A, select k cols

from each block with strong RRQR
(A11 A12 A13 A14)

= = = =

(Q00R00Pc
T
00 Q10R10Pc

T
10 Q20R20Pc

T
20 Q30R30Pc

T
30)

↓ ↓ ↓ ↓
I00 I10 I20 I30

� Reduction tree to select k cols from sets of 2k
cols,

(A(:, I00 ∪ I10) A(:, I20 ∪ I30);)

= =

(Q01R01Pc
T
01 Q11R11Pc

T
11)

↓ ↓
I01 I11

A(:, I01 ∪ I11) = Q02R02Pc
T
02 → I02

� Return selected columns A(:, I02)

23 of 49

Deterministic column selection: tournament pivoting

1D tournament pivoting (1Dc-TP)

� 1D column block partition of A, select k cols

from each block with strong RRQR
(A11 A12 A13 A14)

= = = =

(Q00R00Pc
T
00 Q10R10Pc

T
10 Q20R20Pc

T
20 Q30R30Pc

T
30)

↓ ↓ ↓ ↓
I00 I10 I20 I30

� Reduction tree to select k cols from sets of 2k
cols,

(A(:, I00 ∪ I10) A(:, I20 ∪ I30);)

= =

(Q01R01Pc
T
01 Q11R11Pc

T
11)

↓ ↓
I01 I11

A(:, I01 ∪ I11) = Q02R02Pc
T
02 → I02

� Return selected columns A(:, I02)

23 of 49

Deterministic column selection: tournament pivoting

1D tournament pivoting (1Dc-TP)

� 1D column block partition of A, select k cols

from each block with strong RRQR
(A11 A12 A13 A14)

= = = =

(Q00R00Pc
T
00 Q10R10Pc

T
10 Q20R20Pc

T
20 Q30R30Pc

T
30)

↓ ↓ ↓ ↓
I00 I10 I20 I30

� Reduction tree to select k cols from sets of 2k
cols,

(A(:, I00 ∪ I10) A(:, I20 ∪ I30);)

= =

(Q01R01Pc
T
01 Q11R11Pc

T
11)

↓ ↓
I01 I11

A(:, I01 ∪ I11) = Q02R02Pc
T
02 → I02

� Return selected columns A(:, I02)

23 of 49

Select k columns from a tall and skinny matrix

Given W of size m × 2k , m >> k , k columns are selected as:

W = QR02 using TSQR
R02Pc = Q2R2 using QRCP
Return WPc(:, 1 : k)

24 of 49

Rank revealing properties of CA-RRQR

It is shown in [Demmel et al., 2015] that the column permutation computed
by CA-RRQR satisfies

χ2
j

(
R−1

11 R12

)
+ (χj (R22) /σmin(R11))2 ≤ F 2

TP , for j = 1, . . . , n − k . (6)

where FTP depends on k , f , n, the shape of reduction tree used during
tournament pivoting, and the number of iterations of CARRQR.

25 of 49

CA-RRQR - bounds for one tournament

Selecting k columns by using tournament pivoting reveals the rank of A with
the following bounds:

1 ≤ σi (A)

σi (R11)
,
σj(R22)

σk+j(A)
≤
√

1 + F 2
TP(n − k),

||R−1
11 R12||max ≤ FTP

� Binary tree of depth log2(n/k),

FTP ≤
1√
2k

(n/k)log2(
√

2fk) . (7)

The upper bound is a decreasing function of k when k >
√

n/(
√

2f).

� Flat tree of depth n/k ,

FTP ≤
1√
2k

(√
2fk
)n/k

. (8)

26 of 49

CA-RRQR : 2D tournament pivoting

� A distributed on Pr × Pc procs as e.g.

A =

(
A11 A12 A13 A14

A21 A22 A23 A24

)

� Select k cols from each column block by 1Dr-TP,(
A11

A21

) (
A12

A22

) (
A13

A23

) (
A14

A24

)
↓ ↓ ↓ ↓
I00 I10 I20 I30

� Apply 1Dc-TP on sets of k selected cols,

A(:, I00) A(:, I10) A(:, I20) A(:, I30)

� Return columns selected by 1Dc-TP A(:, I02)

27 of 49

CA-RRQR : 2D tournament pivoting

� A distributed on Pr × Pc procs as e.g.

A =

(
A11 A12 A13 A14

A21 A22 A23 A24

)

� Select k cols from each column block by 1Dr-TP,(
A11

A21

) (
A12

A22

) (
A13

A23

) (
A14

A24

)
↓ ↓ ↓ ↓
I00 I10 I20 I30

� Apply 1Dc-TP on sets of k selected cols,

A(:, I00) A(:, I10) A(:, I20) A(:, I30)

� Return columns selected by 1Dc-TP A(:, I02)

27 of 49

CA-RRQR : 2D tournament pivoting

� A distributed on Pr × Pc procs as e.g.

A =

(
A11 A12 A13 A14

A21 A22 A23 A24

)

� Select k cols from each column block by 1Dr-TP,(
A11

A21

) (
A12

A22

) (
A13

A23

) (
A14

A24

)
↓ ↓ ↓ ↓
I00 I10 I20 I30

� Apply 1Dc-TP on sets of k selected cols,

A(:, I00) A(:, I10) A(:, I20) A(:, I30)

� Return columns selected by 1Dc-TP A(:, I02)

27 of 49

Numerical results

� Stability close to QRCP for many tested matrices.

� Absolute value of diagonals of R, L referred to as R-values, L-values.

� Methods compared

� RRQR: QR with column pivoting

� CA-RRQR-B with tournament pivoting based on binary tree

� CA-RRQR-F with tournament pivoting based on flat tree

� SVD

28 of 49

Numerical results (contd)

0 50 100 150 200 250
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Column No. i

R
−

v
a

lu
e

s
,

s
in

g
u

la
r

v
a

lu
e

s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e

c
k

QRCP

CARRQR−B

CARRQR−F

SVD

0 50 100 150 200 250

10
−20

10
−15

10
−10

10
−5

10
0

Column No. i

R
−

v
a

lu
e

s
,

s
in

g
u

la
r

v
a

lu
e

s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e

c
k

QRCP

CARRQR−B

CARRQR−F

SVD

� Left: exponent - exponential Distribution, σ1 = 1, σi = αi−1 (i = 2, . . . , n),
α = 10−1/11 [Bischof, 1991]

� Right: shaw - 1D image restoration model [Hansen, 2007]

εmin{||(AΠ0)(:, i)||2 , ||(AΠ1)(:, i)||2 , ||(AΠ2)(:, i)||2} (9)

εmax{||(AΠ0)(:, i)||2 , ||(AΠ1)(:, i)||2 , ||(AΠ2)(:, i)||2} (10)

where Πj (j = 0, 1, 2) are the permutation matrices obtained by QRCP, CARRQR-B, and

CARRQR-F, and ε is the machine precision.
29 of 49

CA-RRQR : 2D tournament pivoting

30 of 49

Numerical experiments

Original image, size 1190× 1920
Singular values and ratios

0 20 40 60 80 100
i

0

25000

50000

75000

100000

125000

150000

175000

matrix billiard

SVD

RRQR

Approximation rank

2D TP

0.6

0.7

0.8

0.9

1.0

E
rr

or

2D TP / SVD

Rank-10 approx, 2D TP 8× 8 procs Rank-50 approx, 2D TP 8× 8 procs

� Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/

31 of 49

https://pixabay.com/photos/billiards-ball-play-number-half-4345870/

Plan

Low rank matrix approximation

Rank revealing QR factorization

Randomized algorithms for low rank approximation

32 of 49

Randomized algorithms - main idea

� Construct a low dimensional subspace that captures the action of A.

� Restrict A to the subspace and compute a standard QR or SVD
factorization.

Obtained as follows:
1. Compute an approximate basis for the range of A (m × n)

find Q (m × k) with orthonormal columns and approximate A by the
projection of its columns onto the space spanned by Q:

A ≈ QQTA

2. Use Q to compute a standard factorization of A

Source: Halko et al, Finding structure with randomness: probabilistic algorithms for

constructing approximate matrix decomposition, SIREV 2011.

33 of 49

Johnson-Lindenstrauss transform

Definition 3 from [Woodruff, 2014].
A random matrix Ω1 ∈ Rk×m is a Johnson-Lindenstrauss transform with
parameters ε, δ, n, or JLT(n, ε, δ), if with probability at least 1− δ for any
n-element subset V ⊂ Rm, for all xi , xj ∈ V , we have

|〈Ω1xi ,Ω1xj〉 − 〈xi , xj〉| ≤ ε‖xi‖2‖xj‖2 (11)

� If xi = xj we obtain ‖Ω1xi‖2
2 = (1± ε)‖xi‖2

2.
� It can also be expressed as: given all vectors xi , xj ∈ V are rescaled to be

unit vectors, then for all xi , xj ∈ V we require to hold:

‖Ω1xi‖2
2 = (1± ε)‖xi‖2

2 (12)

‖Ω1(xi + xj)‖2
2 = (1± ε)‖xi + xj‖2

2 (13)

Proof that we obtain relation (14):

〈Ω1xi ,Ω1xj〉 =
(
‖Ω1(xi + xj)‖2

2 − ‖Ω1xi‖2
2 − ‖Ω1xj‖2

2

)
/2

=
(
(1± ε)‖xi + xj‖2

2 − (1± ε)‖xi‖2
2 − (1± ε)‖xj‖2

2

)
/2

= 〈xi , xj〉 ± O(ε)

34 of 49

Johnson-Lindenstrauss transform (contd)

Let Ω1 ∈ Rk×m be a matrix whose entries are independent standard normal
random variables, multiplied by 1/

√
k . If k = O(ε−2 log (n/δ)), then Ω1 is a

JLT(n, ε, δ).

Source: Theorem 4 in [Woodruff, 2014], see also Theorem 2.1 and proof in S. Dasgupta,

A. Gupta, 2003, An Elementary Proof of a Theorem of Johnson and Lindenstrauss

35 of 49

Oblivious subspace embedding

Let Ω1 ∈ Rk×m be a matrix whose entries are independent standard normal
random variables, multiplied by 1/

√
k . If k = O(ε−2(n + log (1/δ))), then

Ω1 is an oblivious subspace embedding (OSE) with parameters (n, ε, δ).
That is, with probability at least 1− δ for any n-dimensional subspace
V ⊂ Rm, for all xi , xj ∈ V, we have

|〈Ω1xi ,Ω1xj〉 − 〈xi , xj〉| ≤ ε‖xi‖2‖xj‖2 (14)

Source: Theorem 6 in [Woodruff, 2014]

36 of 49

Typical randomized truncated SVD

Algorithm
Input: m × n matrix A, desired rank k , l = p + k exponent q.
1. Sample an n×l test matrix Ω1 with independent mean-zero, unit-variance

Gaussian entries.
2. Compute Y = (AAT)qAΩ1 /* Y is expected to span the column space

of A */
3. Construct Q ∈ Rm×l with columns forming an orthonormal basis for the

range of Y .
4. Compute B = QTA
5. Compute the SVD of B = ÛΣV T

Return the approximation Ãk = QÛ · Σ · V T

37 of 49

Randomized truncated SVD (q = 0)

The best approximation is when Q equals the first k + p left singular vectors
of A. Given A = UΣV T ,

QQTA = U(1 : m, 1 : k + p)Σ(1 : k + p, 1 : k + p)(V (1 : n, 1 : k + p))T

||A− QQTA||2 = σk+p+1

Theorem 1.1 from Halko et al. If Ω1 is chosen to be i.i.d. N(0,1), k, p ≥ 2,
q = 1, then the expectation with respect to the random matrix Ω1 is

E(||A− QQTA||2) ≤
(

1 +
4
√
k + p

p − 1

√
min(m, n)

)
σk+1(A)

and the probability that the error satisfies

||A− QQTA||2 ≤
(

1 + 11
√
k + p ·

√
min(m, n)

)
σk+1(A)

is at least 1− 6/pp.
For p = 6, the probability becomes .99.

38 of 49

Randomized truncated SVD

Theorem 10.6, Halko et al. Average spectral norm. Under the same
hypotheses as Theorem 1.1 from Halko et al.,

E(||A− QQTA||2) ≤

(
1 +

√
k

p − 1

)
σk+1(A) +

e
√
k + p

p

 n∑
j=k+1

σ2
j (A)

1/2

� Fast decay of singular values:

If
(∑

j>k σ
2
j (A)

)1/2

≈ σk+1 then the approximation should be accurate.

� Slow decay of singular values:

If
(∑

j>k σ
2
j (A)

)1/2

≈
√
n − kσk+1 and n large, then the approximation

might not be accurate.

Source: G. Martinsson’s talk

39 of 49

Power iteration q ≥ 1

The matrix (AAT)qA has a faster decay in its singular values:

� has the same left singular vectors as A

� its singular values are:

σj((AAT)qA) = (σj(A))2q+1

40 of 49

Cost of randomized truncated SVD

� Randomized SVD requires 2q + 1 passes over the matrix.

� The last 3 steps of the algorithms cost:
(2) Compute Y = (AAT)qAΩ1: 2(2q + 1) · nnz(A) · (k + p)
(3) Compute QR of Y : 2m(k + p)2

(4) Compute B = QTA: 2nnz(A) · (k + p)
(5) Compute SVD of B: O(n(k + p)2)

� If nnz(A)/m ≥ k + p and q = 1, then (2) and (4) dominate (3).

� To be faster than deterministic approaches, the cost of (2) and (4) need
to be reduced.

41 of 49

Fast Johnson-Lindenstrauss transform

Find sparse or structured Ω1 such that computing AΩ1 is cheap, e.g. a
subsampled random Hadamard transform (SRHT).
Given n = 2p, l < n, the SRHT ensemble embedding Rn into Rl is defined as

Ω1 =

√
n

l
· P · H · D, where (15)

� D ∈ Rn×n is diagonal matrix of uniformly random signs, random variables
uniformly distributed on ±1

� H ∈ Rn×n is the normalized Walsh-Hadamard transform

� P ∈ Rl×n formed by subset of l rows of the identity, chosen uniformly at
random (draws l rows at random from HD).

References: Sarlos’06, Ailon and Chazelle’06, Liberty, Rokhlin, Tygert and

Woolfe’06.

42 of 49

Fast Johnson-Lindenstrauss transform (contd)

Definition of Normalized Walsh–Hadamard Matrix
For given n = 2p, Hn ∈ Rn×n is the non-normalized Walsh-Hadamard
transform defined recursively as,

H2 =

(
1 1
1 −1

)
, Hn =

(
Hn/2 Hn/2

Hn/2 −Hn/2

)
. (16)

The normalized Walsh-Hadamard transform is H = n−1/2Hn.

Cost of matrix vector multiplication (Theorem 2.1
in [Ailon and Liberty, 2008]):
For x ∈ Rn and Ω1 ∈ Rl×n, computing Ω1x costs 2n log2(l + 1) flops.

43 of 49

Results from image processing (from Halko et al)

� A matrix A of size 9025× 9025 arising from a diffusion geometry
approach.

� A is a graph Lapacian on the manifold of 3× 3 patches.
� 95× 95 pixel grayscale image, intensity of each pixel is an integer ≤ 4095.
� Vector x (i) ∈ R9 gives the intensities of the pixels in a 3× 3

neighborhood of pixel i .
� W reflects similarities between patches, σ = 50 reflects the level of

sensitivity,

wij = exp{−||x (i) − x (j)||2/σ2},
� Sparsify W , compute dominant eigenvectors of A = D−1/2WD−1/2.

44 of 49

Experimental results (from Halko et al)

� Approximation error : ||A− QQTA||2
� Estimated eigenvalues for k = 100

45 of 49

More details on CA deterministic algorithms

� [Demmel et al., 2015] Communication avoiding rank revealing QR
factorization with column pivoting Demmel, Grigori, Gu, Xiang, SIAM J.
Matrix Analysis and Applications, 2015.

� Low rank approximation of a sparse matrix based on LU factorization
with column and row tournament pivoting, with S. Cayrols and J.
Demmel, Inria TR 8910.

46 of 49

References (1)

Ailon, N. and Liberty, E. (2008).

Fast dimension reduction using rademacher series on dual bch codes.
In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08, pages 1–9, Philadelphia, PA,
USA. Society for Industrial and Applied Mathematics.

Bischof, C. H. (1991).

A parallel QR factorization algorithm with controlled local pivoting.
SIAM J. Sci. Stat. Comput., 12:36–57.

Businger, P. A. and Golub, G. H. (1965).

Linear least squares solutions by Householder transformations.
Numer. Math., 7:269–276.

Demmel, J., Grigori, L., Gu, M., and Xiang, H. (2015).

Communication-avoiding rank-revealing qr decomposition.
SIAM Journal on Matrix Analysis and its Applications, 36(1):55–89.

Demmel, J., Grigori, L., and Rusciano, A. (2019).

An improved analysis and unified perspective on deterministic and randomized low rank matrix approximations.
Technical report, Inria.
available at https://arxiv.org/abs/1910.00223.

Eckart, C. and Young, G. (1936).

The approximation of one matrix by another of lower rank.
Psychometrika, 1:211–218.

Eisenstat, S. C. and Ipsen, I. C. F. (1995).

Relative perturbation techniques for singular value problems.
SIAM J. Numer. Anal., 32(6):1972–1988.

47 of 49

References (2)

Gu, M. and Eisenstat, S. C. (1996).

Efficient algorithms for computing a strong rank-revealing QR factorization.
SIAM J. Sci. Comput., 17(4):848–869.

Hansen, P. C. (2007).

Regularization tools: A matlab package for analysis and solution of discrete ill-posed problems.
Numerical Algorithms, (46):189–194.

Woodruff, D. P. (2014).

Sketching as a tool for numerical linear algebra.
Found. Trends Theor. Comput. Sci., 10(1–2):1–157.

48 of 49

Results used in the proofs

� Interlacing property of singular values [Golub, Van Loan, 4th edition,
page 487]
Let A = [a1| . . . |an] be a column partitioning of an m × n matrix with
m ≥ n. If Ar = [a1| . . . |ar], then for r = 1 : n − 1

σ1(Ar+1) ≥ σ1(Ar) ≥ σ2(Ar+1) ≥ . . . ≥ σr (Ar+1) ≥ σr (Ar) ≥ σr+1(Ar+1).

� Given n × n matrix B and n × k matrix C , then
([Eisenstat and Ipsen, 1995], p. 1977)

σmin(B)σj(C) ≤ σj(BC) ≤ σmax(B)σj(C), j = 1, . . . , k .

49 of 49

	Low rank matrix approximation
	Rank revealing QR factorization
	Randomized algorithms for low rank approximation

