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January 2022



Plan

Low rank matrix approximation

Rank revealing QR factorization

Randomized algorithms for low rank approximation

2 of 49



Plan

Low rank matrix approximation

Rank revealing QR factorization

Randomized algorithms for low rank approximation

3 of 49



Low rank matrix approximation

� Problem: given A ∈ Rm×n, compute rank-k approximation ZW T , where
Z is m × k and W T is k × n.

� Problem with diverse applications
� from scientific computing: fast solvers for integral equations, H-matrices
� to data analytics: principal component analysis, image processing, ...

Ax → ZW T x

Flops 2mn → 2(m + n)k
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Singular value decomposition

Given A ∈ Rm×n, m ≥ n its singular value decomposition is

A = UΣV T =
(
U1 U2 U3

)
·

Σ1 0
0 Σ2

0 0

 · (V1 V2

)T
where

� U is m ×m orthogonal matrix, the left singular vectors of A ,
U1 is m × k, U2 is m × n − k , U3 is m ×m − n

� Σ is m × n, its diagonal is formed by σ1(A) ≥ . . . ≥ σn(A) ≥ 0
Σ1 is k × k, Σ2 is n − k × n − k

� V is n × n orthogonal matrix, the right singular vectors of A,
V1 is n × k , V2 is n × n − k

5 of 49



Norms

||A||p = max
||x||p=1

||Ax ||p

||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
√
σ2

1(A) + . . . σ2
n(A)

||A||2 = σmax(A) = σ1(A)

Some properties:

||A||2 ≤ ||A||F ≤
√
min(m, n)||A||2

Orthogonal Invariance: If Q ∈ Rm×m and Z ∈ Rn×n are orthogonal, then

||QAZ ||F = ||A||F
||QAZ ||2 = ||A||2
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Low rank matrix approximation

� Best rank-k approximation Ak = UkΣkVk is rank-k truncated SVD of A
[Eckart and Young, 1936]

min
rank(Ãk )≤k

||A− Ãk ||2 = ||A− Ak ||2 = σk+1(A) (1)

min
rank(Ãk )≤k

||A− Ãk ||F = ||A− Ak ||F =

√√√√ n∑
j=k+1

σ2
j (A) (2)

Image, size 1190× 1920 Rank-10 approximation, SVD Rank-50 approximation, SVD

� Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/
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Large data sets

Matrix A might not exist entirely at a given time, rows or columns are added
progressively.

� Streaming algorithm: can solve an arbitrarily large problem with one pass
over the data (a row or a column at a time).

� Weakly streaming algorithm: can solve a problem with O(1) passes over
the data.

Matrix A might exist only implicitly, and it is never formed explicitly.
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Low rank matrix approximation: trade-offs

Communication optimal if computing a rank-k approximation on P processors requires

# messages = Ω (log2 P) .
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Idea underlying many algorithms

Compute Ãk = PA, where P = Po or P = Pso is obtained as:

1. Construct a low dimensional subspace X = range(AΩ1), Ω1 ∈ Rn×l that
approximates well the range of A, e.g.

‖A− PoA‖2 ≤ γσk+1(A), for some γ ≥ 1,

where Q1 is orth. basis of (AΩ1)

Po = AΩ1(AΩ1)+ = Q1Q
T
1 , or equiv Poaj := arg min

x∈X
‖x − aj‖2

2. Select a semi-inner product 〈Θ1·,Θ1·〉2, Θ1 ∈ Rl′×m l ′ ≥ l , define

Pso = AΩ1(Θ1AΩ1)+Θ1, or equiv Psoaj := arg min
x∈X
‖Θ1(x − aj)‖2
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Properties of the approximations

Definitions and some of the results taken from [Demmel et al., 2019].

Definition
[low-rank approximation] A matrix Ak satisfying ‖A− Ak‖2 ≤ γσk+1(A) for
some γ ≥ 1 will be said to be a (k , γ) low-rank approximation of A.

Definition
[spectrum preserving] If Ak satisfies

σj(A) ≥ σj(Ak) ≥ γ−1σj(A)

for j ≤ k and some γ ≥ 1, it is a (k , γ) spectrum preserving.

Definition
[kernel approximation] If Ak satisfies

σk+j(A) ≤ σj(A− Ak) ≤ γσk+j(A)

for 1 ≤ j ≤ n − k and some γ ≥ 1, it is a (k , γ) kernel approximation of A.
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Rank revealing QR factorization

Given A of size m × n, consider the decomposition

APc = QR = Q

[
R11 R12

R22

]
, (3)

where R11 is k × k , Pc and k are chosen such that ||R22||2 is small and R11

is well-conditioned.

� By the interlacing property of singular values [Golub, Van Loan, 4th
edition, page 487],

σi (R11) ≤ σi (A) and σj(R22) ≥ σk+j(A)

for 1 ≤ i ≤ k and 1 ≤ j ≤ n − k .

� σk+1(A) ≤ σmax(R22) = ||R22||

13 of 49



Rank revealing QR factorization

Given A of size m × n, consider the decomposition

APc = QR = Q

[
R11 R12

R22

]
. (4)

If ||R22||2 is small,

� Q(:, 1 : k) forms an approximate orthogonal basis for the range of A,

A(:, j) =

min(j,k)∑
i=1

R(i , j)Q(:, i) ∈ span{Q(:, 1), . . .Q(:, k)}

Range(A) ∈ span{Q(:, 1), . . .Q(:, k)}

� Pc

[
−R−1

11 R12

I

]
is an approximate right null space of A.
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Rank revealing QR factorization

The factorization from equation (5) is rank revealing if

1 ≤ σi (A)

σi (R11)
,
σj(R22)

σk+j(A)
≤ γ1(n, k),

for 1 ≤ i ≤ k and 1 ≤ j ≤ min(m, n)− k , where

σmax(A) = σ1(A) ≥ . . . ≥ σmin(A) = σn(A)

It is strong rank revealing [Gu and Eisenstat, 1996] if in addition

||R−1
11 R12||max ≤ γ2(n, k)
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Low rank approximation with strong RRQR

Given A ∈ Rm×n and R11 ∈ Rk×k ,

APc = QR =
(
Q1 Q2

)(R11 R12

R22

)
,

Ãqr = Q1

(
R11 R12

)
PT
c = Q1Q

T
1 A = PoA

� It can be shown that

σj(R22) = σj(A− Ãqr )

� [Gu and Eisenstat, 1996] show that given k and f , there exists
permutation V ∈ Rn×n such that the factorization satisfies,

1 ≤ σi (A)

σi (R11)
,
σj(R22)

σk+j(A)
≤ γ(n, k), γ(n, k) =

√
1 + f 2k(n − k)

||R−1
11 R12||max ≤ f

for 1 ≤ i ≤ k and 1 ≤ j ≤ min(m, n)− k .
� Cost: 4mnk (QRCP) plus O(mnk) flops and O(k log2 P) messages.
→ Ãqr with strong RRQR is (k, γ(n, k)) spectrum preserving and kernel approximation of

A
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QR with column pivoting [Businger and Golub, 1965]

Idea:

� At first iteration, trailing columns decomposed into parallel part to first
column (or e1) and orthogonal part (in rows 2 : m).

� The column of maximum norm is the column with largest component
orthogonal to the first column.

Implementation:

� Find at each step of the QR factorization the column of maximum norm.

� Permute it into leading position.

� If rank(A) = k, at step k + 1 the maximum norm is 0.

� No need to compute the column norms at each step, but just update
them since

QT v = w =

[
w1

w(2 : n)

]
, ||w(2 : n)||22 = ||v ||22 − w2

1
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QR with column pivoting [Businger and Golub, 1965]

Sketch of the algorithm
column norm vector: colnrm(j) = ||A(:, j)||2, j = 1 : n.
for j = 1 : n do

Find column p of largest norm
if colnrm[p] > ε then

1. Pivot: swap columns j and p in A and modify colnrm.
2. Compute Householder matrix Hj s.t. HjA(j : m, j) = ±||A(j :

m, j)||2e1.
3. Update A(j : m, j + 1 : n) = HjA(j : m, j + 1 : n).
4. Norm downdate colnrm(j + 1 : n)2− = A(j , j + 1 : n)2.

else Break
end if

end for

If algorithm stops after k steps

σmax(R22) ≤
√
n − k max

1≤j≤n−k
||R22(:, j)||2 ≤

√
n − kε
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Strong RRQR [Gu and Eisenstat, 1996]

Since

det(R11) =
k∏

i=1

σi (R11) =
√
det(ATA)/

n−k∏
i=1

σi (R22)

a stron RRQR is related to a large det(R11). The following algorithm
interchanges columns that increase det(R11), given f and k.

Compute a strong RRQR factorization, given k :

Compute AΠ = QR by using QRCP
while there exist i and j such that det(R̃11)/det(R11) > f , where

R11 = R(1 : k , 1 : k), Πi,j+k permutes columns i and j + k,

RΠi,j+k = Q̃R̃, R̃11 = R̃(1 : k , 1 : k) do
Find i and j
Compute RΠi,j+k = Q̃R̃ and Π = ΠΠi,j+k

end while
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Strong RRQR (contd)

It can be shown that

det(R̃11)

det(R11)
=

√(
R−1

11 R12

)2

i,j
+ ω2

i (R11)χ2
j (R22) (5)

for any 1 ≤ i ≤ k and 1 ≤ j ≤ n − k (the 2-norm of the j-th column of A is
χj(A), and the 2-norm of the j-th row of A−1 is ωj(A) ).

Compute a strong RRQR factorization, given k :

Compute AΠ = QR by using QRCP

while max1≤i≤k,1≤j≤n−k

√(
R−1

11 R12

)2

i,j
+ ω2

i (R11)χ2
j (R22) > f do

Find i and j such that
√(

R−1
11 R12

)2

i,j
+ ω2

i (R11)χ2
j (R22) > f

Compute RΠi,j+k = Q̃R̃ and Π = ΠΠi,j+k

end while
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Strong RRQR (contd)

� det(R11) strictly increases with every permutation, no permutation
repeats, hence there is a finite number of permutations to be performed.
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Strong RRQR (contd)

Theorem
[Gu and Eisenstat, 1996] If the QR factorization with column pivoting as in
equation (5) satisfies inequality√(

R−1
11 R12

)2

i,j
+ ω2

i (R11)χ2
j (R22) < f

for any 1 ≤ i ≤ k and 1 ≤ j ≤ n − k , then

1 ≤ σi (A)

σi (R11)
,
σj(R22)

σk+j(A)
≤
√

1 + f 2k(n − k),

for any 1 ≤ i ≤ k and 1 ≤ j ≤ min(m, n)− k .
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Deterministic column selection: tournament pivoting

1D tournament pivoting (1Dc-TP)

� 1D column block partition of A, select k cols

from each block with strong RRQR
( A11 A12 A13 A14 )

= = = =

( Q00R00Pc
T
00 Q10R10Pc

T
10 Q20R20Pc

T
20 Q30R30Pc

T
30 )

↓ ↓ ↓ ↓
I00 I10 I20 I30

� Reduction tree to select k cols from sets of 2k
cols,

( A(:, I00 ∪ I10) A(:, I20 ∪ I30); )

= =

( Q01R01Pc
T
01 Q11R11Pc

T
11 )

↓ ↓
I01 I11

A(:, I01 ∪ I11) = Q02R02Pc
T
02 → I02

� Return selected columns A(:, I02)
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Select k columns from a tall and skinny matrix

Given W of size m × 2k , m >> k , k columns are selected as:

W = QR02 using TSQR
R02Pc = Q2R2 using QRCP
Return WPc(:, 1 : k)
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Rank revealing properties of CA-RRQR

It is shown in [Demmel et al., 2015] that the column permutation computed
by CA-RRQR satisfies

χ2
j

(
R−1

11 R12

)
+ (χj (R22) /σmin(R11))2 ≤ F 2

TP , for j = 1, . . . , n − k . (6)

where FTP depends on k , f , n, the shape of reduction tree used during
tournament pivoting, and the number of iterations of CARRQR.
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CA-RRQR - bounds for one tournament

Selecting k columns by using tournament pivoting reveals the rank of A with
the following bounds:

1 ≤ σi (A)

σi (R11)
,
σj(R22)

σk+j(A)
≤
√

1 + F 2
TP(n − k),

||R−1
11 R12||max ≤ FTP

� Binary tree of depth log2(n/k),

FTP ≤
1√
2k

(n/k)log2(
√

2fk) . (7)

The upper bound is a decreasing function of k when k >
√

n/(
√

2f ).

� Flat tree of depth n/k ,

FTP ≤
1√
2k

(√
2fk
)n/k

. (8)
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CA-RRQR : 2D tournament pivoting

� A distributed on Pr × Pc procs as e.g.

A =

(
A11 A12 A13 A14

A21 A22 A23 A24

)

� Select k cols from each column block by 1Dr-TP,(
A11

A21

) (
A12

A22

) (
A13

A23

) (
A14

A24

)
↓ ↓ ↓ ↓
I00 I10 I20 I30

� Apply 1Dc-TP on sets of k selected cols,

A(:, I00) A(:, I10) A(:, I20) A(:, I30)

� Return columns selected by 1Dc-TP A(:, I02)
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Numerical results

� Stability close to QRCP for many tested matrices.

� Absolute value of diagonals of R, L referred to as R-values, L-values.

� Methods compared

� RRQR: QR with column pivoting

� CA-RRQR-B with tournament pivoting based on binary tree

� CA-RRQR-F with tournament pivoting based on flat tree

� SVD
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Numerical results (contd)
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� Left: exponent - exponential Distribution, σ1 = 1, σi = αi−1 (i = 2, . . . , n),
α = 10−1/11 [Bischof, 1991]

� Right: shaw - 1D image restoration model [Hansen, 2007]

εmin{||(AΠ0)(:, i)||2 , ||(AΠ1)(:, i)||2 , ||(AΠ2)(:, i)||2} (9)

εmax{||(AΠ0)(:, i)||2 , ||(AΠ1)(:, i)||2 , ||(AΠ2)(:, i)||2} (10)

where Πj (j = 0, 1, 2) are the permutation matrices obtained by QRCP, CARRQR-B, and

CARRQR-F, and ε is the machine precision.
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CA-RRQR : 2D tournament pivoting
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Numerical experiments

Original image, size 1190× 1920
Singular values and ratios
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Rank-10 approx, 2D TP 8× 8 procs Rank-50 approx, 2D TP 8× 8 procs

� Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/
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Randomized algorithms - main idea

� Construct a low dimensional subspace that captures the action of A.

� Restrict A to the subspace and compute a standard QR or SVD
factorization.

Obtained as follows:
1. Compute an approximate basis for the range of A (m × n)

find Q (m × k) with orthonormal columns and approximate A by the
projection of its columns onto the space spanned by Q:

A ≈ QQTA

2. Use Q to compute a standard factorization of A

Source: Halko et al, Finding structure with randomness: probabilistic algorithms for

constructing approximate matrix decomposition, SIREV 2011.
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Johnson-Lindenstrauss transform

Definition 3 from [Woodruff, 2014].
A random matrix Ω1 ∈ Rk×m is a Johnson-Lindenstrauss transform with
parameters ε, δ, n, or JLT(n, ε, δ), if with probability at least 1− δ for any
n-element subset V ⊂ Rm, for all xi , xj ∈ V , we have

|〈Ω1xi ,Ω1xj〉 − 〈xi , xj〉| ≤ ε‖xi‖2‖xj‖2 (11)

� If xi = xj we obtain ‖Ω1xi‖2
2 = (1± ε)‖xi‖2

2.
� It can also be expressed as: given all vectors xi , xj ∈ V are rescaled to be

unit vectors, then for all xi , xj ∈ V we require to hold:

‖Ω1xi‖2
2 = (1± ε)‖xi‖2

2 (12)

‖Ω1(xi + xj)‖2
2 = (1± ε)‖xi + xj‖2

2 (13)

Proof that we obtain relation (14):

〈Ω1xi ,Ω1xj〉 =
(
‖Ω1(xi + xj)‖2

2 − ‖Ω1xi‖2
2 − ‖Ω1xj‖2

2

)
/2

=
(
(1± ε)‖xi + xj‖2

2 − (1± ε)‖xi‖2
2 − (1± ε)‖xj‖2

2

)
/2

= 〈xi , xj〉 ± O(ε)
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Johnson-Lindenstrauss transform (contd)

Let Ω1 ∈ Rk×m be a matrix whose entries are independent standard normal
random variables, multiplied by 1/

√
k . If k = O(ε−2 log (n/δ)), then Ω1 is a

JLT(n, ε, δ).

Source: Theorem 4 in [Woodruff, 2014], see also Theorem 2.1 and proof in S. Dasgupta,

A. Gupta, 2003, An Elementary Proof of a Theorem of Johnson and Lindenstrauss
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Oblivious subspace embedding

Let Ω1 ∈ Rk×m be a matrix whose entries are independent standard normal
random variables, multiplied by 1/

√
k . If k = O(ε−2(n + log (1/δ))), then

Ω1 is an oblivious subspace embedding (OSE) with parameters (n, ε, δ).
That is, with probability at least 1− δ for any n-dimensional subspace
V ⊂ Rm, for all xi , xj ∈ V, we have

|〈Ω1xi ,Ω1xj〉 − 〈xi , xj〉| ≤ ε‖xi‖2‖xj‖2 (14)

Source: Theorem 6 in [Woodruff, 2014]
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Typical randomized truncated SVD

Algorithm
Input: m × n matrix A, desired rank k , l = p + k exponent q.
1. Sample an n×l test matrix Ω1 with independent mean-zero, unit-variance

Gaussian entries.
2. Compute Y = (AAT )qAΩ1 /* Y is expected to span the column space

of A */
3. Construct Q ∈ Rm×l with columns forming an orthonormal basis for the

range of Y .
4. Compute B = QTA
5. Compute the SVD of B = ÛΣV T

Return the approximation Ãk = QÛ · Σ · V T
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Randomized truncated SVD (q = 0)

The best approximation is when Q equals the first k + p left singular vectors
of A. Given A = UΣV T ,

QQTA = U(1 : m, 1 : k + p)Σ(1 : k + p, 1 : k + p)(V (1 : n, 1 : k + p))T

||A− QQTA||2 = σk+p+1

Theorem 1.1 from Halko et al. If Ω1 is chosen to be i.i.d. N(0,1), k, p ≥ 2,
q = 1, then the expectation with respect to the random matrix Ω1 is

E(||A− QQTA||2) ≤
(

1 +
4
√
k + p

p − 1

√
min(m, n)

)
σk+1(A)

and the probability that the error satisfies

||A− QQTA||2 ≤
(

1 + 11
√
k + p ·

√
min(m, n)

)
σk+1(A)

is at least 1− 6/pp.
For p = 6, the probability becomes .99.
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Randomized truncated SVD

Theorem 10.6, Halko et al. Average spectral norm. Under the same
hypotheses as Theorem 1.1 from Halko et al.,

E(||A− QQTA||2) ≤

(
1 +

√
k

p − 1

)
σk+1(A) +

e
√
k + p

p

 n∑
j=k+1

σ2
j (A)

1/2

� Fast decay of singular values:

If
(∑

j>k σ
2
j (A)

)1/2

≈ σk+1 then the approximation should be accurate.

� Slow decay of singular values:

If
(∑

j>k σ
2
j (A)

)1/2

≈
√
n − kσk+1 and n large, then the approximation

might not be accurate.

Source: G. Martinsson’s talk
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Power iteration q ≥ 1

The matrix (AAT )qA has a faster decay in its singular values:

� has the same left singular vectors as A

� its singular values are:

σj((AAT )qA) = (σj(A))2q+1
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Cost of randomized truncated SVD

� Randomized SVD requires 2q + 1 passes over the matrix.

� The last 3 steps of the algorithms cost:
(2) Compute Y = (AAT )qAΩ1: 2(2q + 1) · nnz(A) · (k + p)
(3) Compute QR of Y : 2m(k + p)2

(4) Compute B = QTA: 2nnz(A) · (k + p)
(5) Compute SVD of B: O(n(k + p)2)

� If nnz(A)/m ≥ k + p and q = 1, then (2) and (4) dominate (3).

� To be faster than deterministic approaches, the cost of (2) and (4) need
to be reduced.
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Fast Johnson-Lindenstrauss transform

Find sparse or structured Ω1 such that computing AΩ1 is cheap, e.g. a
subsampled random Hadamard transform (SRHT).
Given n = 2p, l < n, the SRHT ensemble embedding Rn into Rl is defined as

Ω1 =

√
n

l
· P · H · D, where (15)

� D ∈ Rn×n is diagonal matrix of uniformly random signs, random variables
uniformly distributed on ±1

� H ∈ Rn×n is the normalized Walsh-Hadamard transform

� P ∈ Rl×n formed by subset of l rows of the identity, chosen uniformly at
random (draws l rows at random from HD).

References: Sarlos’06, Ailon and Chazelle’06, Liberty, Rokhlin, Tygert and

Woolfe’06.
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Fast Johnson-Lindenstrauss transform (contd)

Definition of Normalized Walsh–Hadamard Matrix
For given n = 2p, Hn ∈ Rn×n is the non-normalized Walsh-Hadamard
transform defined recursively as,

H2 =

(
1 1
1 −1

)
, Hn =

(
Hn/2 Hn/2

Hn/2 −Hn/2

)
. (16)

The normalized Walsh-Hadamard transform is H = n−1/2Hn.

Cost of matrix vector multiplication (Theorem 2.1
in [Ailon and Liberty, 2008]):
For x ∈ Rn and Ω1 ∈ Rl×n, computing Ω1x costs 2n log2(l + 1) flops.
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Results from image processing (from Halko et al)

� A matrix A of size 9025× 9025 arising from a diffusion geometry
approach.

� A is a graph Lapacian on the manifold of 3× 3 patches.
� 95× 95 pixel grayscale image, intensity of each pixel is an integer ≤ 4095.
� Vector x (i) ∈ R9 gives the intensities of the pixels in a 3× 3

neighborhood of pixel i .
� W reflects similarities between patches, σ = 50 reflects the level of

sensitivity,

wij = exp{−||x (i) − x (j)||2/σ2},
� Sparsify W , compute dominant eigenvectors of A = D−1/2WD−1/2.
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Experimental results (from Halko et al)

� Approximation error : ||A− QQTA||2
� Estimated eigenvalues for k = 100
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More details on CA deterministic algorithms

� [Demmel et al., 2015] Communication avoiding rank revealing QR
factorization with column pivoting Demmel, Grigori, Gu, Xiang, SIAM J.
Matrix Analysis and Applications, 2015.

� Low rank approximation of a sparse matrix based on LU factorization
with column and row tournament pivoting, with S. Cayrols and J.
Demmel, Inria TR 8910.
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Results used in the proofs

� Interlacing property of singular values [Golub, Van Loan, 4th edition,
page 487]
Let A = [a1| . . . |an] be a column partitioning of an m × n matrix with
m ≥ n. If Ar = [a1| . . . |ar ], then for r = 1 : n − 1

σ1(Ar+1) ≥ σ1(Ar ) ≥ σ2(Ar+1) ≥ . . . ≥ σr (Ar+1) ≥ σr (Ar ) ≥ σr+1(Ar+1).

� Given n × n matrix B and n × k matrix C , then
([Eisenstat and Ipsen, 1995], p. 1977)

σmin(B)σj(C ) ≤ σj(BC ) ≤ σmax(B)σj(C ), j = 1, . . . , k .
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