

Quantifying training challenges of dependency parsers

Lauriane Aufrant^{1,2}, Guillaume Wisniewski¹, François Yvon¹

(1) LIMSI, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, (2) DGA {lauriane.aufrant, guillaume.wisniewski, francois.yvon}@limsi.fr

OVERVIEW

Is parsing an easy task?

 \rightarrow 10 training sentences often suffice for correctly predicting **70% of dependencies**

Yet, those are **learned in very different ways**:

DET, AUX : straightforward rules simple: require few examples

VERB: semantics-driven

• mwe: enumeration-based complex: require many examples

CLASS-LEVEL LEARNING RATE [PERCEPTRON-BASED BEAM PARSER, UD 2.0]

Custom visualization: the slope represents the **marginal utility** of **doubling** the treebank size

Contributions:

 \hookrightarrow Formalization of a new property for dependencies \hookrightarrow New tools for fine-grained analysis of parsers

Class complexity = area between the average and class-level curves (in log scale)

Large-margin grouping into 2 categories:

- \hookrightarrow simple curves quickly saturate
- complex classes better leverage additional data \hookrightarrow

Class frequencies explain **only partially** the ordering: $\hookrightarrow DET$ vs ADJ (but cf NOUN) $\rightarrow ADJ$ vs ADJ (but cf PROPNs)

COMPLEXITY MEASURES [PERCEPTRON-BASED BEAM PARSER, UD 2.0]

Language-independent trends:

COMPLEXITY	ADP	DET	PRON	AUX	ADJ	CCONJ	Ñ	ADV	v	PN	SCONJ	Ň	ŶN	¥	ÂDJ	ÂUX	ÂDP
	-18.8	-18.7	-0.6	0.2	1.9	6.3	7.6	9.6	12.6	23.4	35.0	42.0	49.5	52.5	57.7	68.0	131.2
UAS_{500}	DET	ADP	AUX	PRON	SCONJ	ADJ	CCONJ	ADÝ	v	PN	PN	Ň	Ñ	ÅDJ	¥	ÂUX	ÂDP
	91.3	89.0	83.9	82.4	80.2	80.0	77.1	76.1	75.1	69.0	68.4	68.2	67.9	60.6	56.4	52.8	48.0

Language-level variations:

- ADJ and ADJ are simple/complex in English, complex/simple in French
- \overrightarrow{ADP} is usually complex (50 treebanks out of 56), \overrightarrow{DET} is usually simple (49 treebanks out of 56)

APPLICATION 1: ENABLING DEEPER ANALYSES OF PARSING RESULTS

Identify shortcomings on specific classes: \hookrightarrow hints at **parser properties**

thanks to non-local features? • For Beam, $AU\dot{X}$ are simpler is their determinism under-exploited? • For MSTParser, VERB are simpler

• For UDPipe, CCONJs are simpler, DET^{\dagger} are less accurate while being less simple

Class-level score/complexity correlation:

Legible composite scores:

	_	UAS_{10}			UAS_{500}			UAS _{full UD}			
	simple	overall	complex	simple	overall	complex	simple	overall	complex		
UDPIPE	52.8	42.5	28.4	81.8	74.7	65.2	87.6	83.2	77.3		
MSTPARSER	64.4	52.8	36.9	82.7	75.1	64.9	88.2	83.4	77.1		
BEAM	71.1	59.0	42.7	82.9	76.1	67.1	87.3	82.6	76.4		

- Significant score gap maintained between both categories, even for large datasets \hookrightarrow confirms that they capture different properties
- Reveals the strengths of each parser, and how they leverage additional data

APPLICATION 2: WHAT DO CROSS-LINGUAL PARSERS LEARN?

Using multi-source weighted delexicalized transfer:

Case study: information conveyed by one source

- On average, as accurate as **training on 32 sentences** (using Beam) • But qualitatively more informative (better on complex classes)
- A wide array of possible applications:
 - assessing methods for annotation projection, unsupervised parsing, domain adaptation...

Sources		UAS (ro)	#9	#sentences (ro)				
	simple	simple overall complex		simple	simple overall				
fr + it + es + bg	81.4	74.4	60.3	167	213	231			
x it es bg	81.2	73.8	59.1	149	165	179			
fr 🗙 es bg	81.1	73.6	58.5	142	155	162			
fr it 🗙 bg	79.9	73.0	59.1	77	131	179			
fr it es 🗙	79.9	73.3	60.1	77	142	219			

 \hookrightarrow Added value of each source:

- Italian, French: information on complex classes
- Bulgarian: information on simple classes (not provided by Romance sources)
- Spanish: both
- \rightarrow Italian is a **qualitatively better** source than Spanish (despite similar scores)
- \hookrightarrow Complementarity of Spanish and Bulgarian: doubles the simple treebank size

COLING'18 – International Conference on Computational Linguistics