Training parsers for low-resourced languages: improving cross-lingual transfer with monolingual knowledge

Lauriane Aufrant - PhD Defense

April 6, 2018
Supervisor: François Yvon
Co-supervisor: Guillaume Wisniewski
Limsi

They ate pizza with anchovies

They ate pizza with anchovies

Dependency parsing: downstream tasks

= ${ }^{11}$

Vous avez fait de notre fête une expérience formidable

Transition-based dependency parsing [ArcEager system]

They ate pizza with anchovies

Transition-based dependency parsing [ArcEager system]

```
'They,'| ate pizza with anchovies
    stack buffer
```

They ate pizza with anchovies

SHIFT

Transition-based dependency parsing [ArcEager system]

$\underset{\text { stack }}{\substack{-\perp-1 \\ \perp}} \underset{\text { buffer }}{ }$ ate pizza with anchovies

LEFT

Transition-based dependency parsing [ArcEager system]

stack bite, buffer

SHIFT

Transition-based dependency parsing [ArcEager system]

Transition-based dependency parsing [ArcEager system]

Transition-based dependency parsing [ArcEager system]

RIgHT

Transition-based dependency parsing [ArcEager system]

SHIFT

Transition-based dependency parsing [ArcEager system]

LEFT

Transition-based dependency parsing [ArcEager system]

Right

Transition-based dependency parsing [ArcEager system]

Reduce

Transition-based dependency parsing [ArcEager system]

$$
\underset{\text { stack }}{\left\lvert\, \begin{array}{ll}
-- \\
\text { ate: } & \perp \\
\text { buffer }
\end{array}\right.}
$$

Reduce

Transition-based dependency parsing [ArcEager system]

$$
\underset{\text { stack }}{\left\lvert\, \begin{array}{ll}
-- \\
\text { ate: } & \perp \\
\text { buffer }
\end{array}\right.}
$$

Data requirements of modern NLP

Machine learning \Longleftrightarrow annotated data
\Longleftrightarrow time and money

Data requirements of modern NLP

Machine learning \Longleftrightarrow annotated data
\Longleftrightarrow time and money
Dependency parsing

- Penn Treebank (English): 43k sentences, 10 years, 1 M\$
- Prague Dependency Treebank (Czech): 87k sentences
- 500 M tweets per day \Rightarrow only a few thousands annotated

Machine Translation

- 52,000,000 Czech-English translated sentences
- 3,000,000,000 English sentences

Time and money: where are they?

Time and money: where are they?

Time and money: where are they?

The Buryat language

The Buryat language

Cross-lingual transfer

- Transfer of knowledge \rightsquigarrow model parameters
- Transfer of data
\rightsquigarrow annotations
Worst-case scenario:
$\left\{\begin{array}{l}\text { No annotated data } \\ \text { No bilingual data } \\ \text { No raw data }\end{array} \Longrightarrow\right.$ zero-resource scenario

Cross-lingual transfer

- PoS tagging and morphology
- [Yarowsky et al., 2001]
- [Das \& Petrov, 2011; Täckström et al., 2013; Agić et al., 2015; Yu et al., 2016]
- Dependency parsing
- [Hwa et al., 2002; Zeman \& Resnik, 2008; McDonald et al., 2011; Naseem et al., 2012]
- [McDonald et al., 2013; Ma \& Xia, 2014; Tiedemann et al., 2014; Rosa \& Zabokrtsky, 2015; Duong et al., 2015; Rasooli \& Collins, 2015; Agić et al., 2016]
- Opinion and subjectivity
- [Banea et al., 2008; Wan, 2009; Wei \& Pal, 2010; Lu et al., 2011; Klinger \& Cimiano, 2015]
- Named Entity Recognition
- [Täckström et al., 2012; Wang \& Manning, 2014]
- Coreferences [Martins, 2015]
- Semantic parsing [Kozhevnikov \& Titov, 2014]
- Speech recognition [Ghoshal et al., 2013]
- Document classification [Rigutini et al., 2005; Klementiev et al., 2012]

Problem statement

\checkmark Low-resourced NLP \Rightarrow cross-lingual transfer
X Not always applicable: specific requirements of cross-lingual resources
\hookrightarrow Give up on other languages?

Purpose:

- Make more resources usable
- Make transfer methods more flexible regarding resources
\Longrightarrow How to combine those sources/resources at fine grain?

Contributions [11 publications, 2 shared tasks, 1 award]

- A new transfer framework: multi-(re)source combination based on a cascading architecture
- PanParser: a modular and open source parser
- unified formalism for several parsing algorithms
- global dynamic oracle, sampling bias, non-projective training data, non-arc-decomposable cases of ArcEager...
- Assessment of transfer usefulness
- Avoid systematic errors, using typological knowledge
- Evaluation of cross-linguistic divergences
- In-depth analysis of the inner workings of parsers
- feature-level interactions, complexity of a dependency, quantification of available knowledge...
- Improved cross-lingual generalization of taggers/parsers
- Transfer of bilingual knowledge: word alignments

Contributions [11 publications, 2 shared tasks, 1 award]

- A new transfer framework: multi-(re)source combination based on a cascading architecture
- PanParser: a modular and open source parser
- unified formalism for several parsing algorithms
- global dynamic oracle, sampling bias, non-projective training data, non-arc-decomposable cases of ArcEager...
- Assessment of transfer usefulness
- Avoid systematic errors, using typological knowledge
- Evaluation of cross-linguistic divergences
- In-depth analysis of the inner workings of parsers
- feature-level interactions, complexity of a dependency, quantification of available knowledge...
- Improved cross-lingual generalization of taggers/parsers
- Transfer of bilingual knowledge: word alignments

Outline

Cross-lingual transfer

Leveraging typological knowledge

Extensions to the parsing framework

A new transfer framework: multi-(re)source combination

Conclusions

Outline

Cross-lingual transfer
Delexicalized transfer
Annotation projection
Cross-lingual resources

Leveraging typological knowledge

Extensions to the parsing framework

A new transfer framework: multi-(re)source combination

Delexicalized transfer [Zeman \& Resnik, 2008]

\hookrightarrow Identical PoS tags behave similarly in both languages

Reuse of source model

Delexicalized transfer [Zeman \& Resnik, 2008]

\hookrightarrow Identical PoS tags behave similarly in both languages

Reuse of source model

Delexicalized transfer [Zeman \& Resnik, 2008]

\hookrightarrow Identical PoS tags behave similarly in both languages

Reuse of source model

Delexicalized transfer [Zeman \& Resnik, 2008]

\hookrightarrow Identical PoS tags behave similarly in both languages

Reuse of source model

Delexicalized transfer [Zeman \& Resnik, 2008]

\hookrightarrow Identical PoS tags behave similarly in both languages

Reuse of source model

Delexicalized transfer [Zeman \& Resnik, 2008]

\hookrightarrow Identical PoS tags behave similarly in both languages

Reuse of source model

Delexicalized transfer [Zeman \& Resnik, 2008]

\hookrightarrow Identical PoS tags behave similarly in both languages

Reuse of source model

Delexicalized transfer [Zeman \& Resnik, 2008]

\hookrightarrow Identical PoS tags behave similarly in both languages

Reuse of source model

Annotation projection [Yarowsky et al., 2001]

\hookrightarrow Aligned words behave similarly in both languages

Pron Verb	Noun	Adp Det Noun	Noun
They took	part	in the vaccination campaign	

Annotation projection [Yarowsky et al., 2001]

\hookrightarrow Aligned words behave similarly in both languages

Pron Verb		Noun	Adp	Det	Noun	Noun
They took		part			vaccinatio	campaign
S	ont	particip	à	la	campagne	vaccination
Pron		Verb/No	Adp	Det	Noun	Noun

Annotation projection [Yarowsky et al., 2001]

\hookrightarrow Aligned words behave similarly in both languages

Creation of annotated data

Annotation projection [Yarowsky et al., 2001]

\hookrightarrow Aligned words behave similarly in both languages

Creation of annotated data
\checkmark Also works with distant languages High accuracy
X Completion heuristics
X Parallel data: availability? domain? quality?

Annotation projection [Yarowsky et al., 2001]

\hookrightarrow Aligned words behave similarly in both languages

Creation of annotated data
\checkmark Also works with distant languages

High accuracy
X Completion heuristics
X Parallel data: availability? domain? quality?

Cross-lingual resources

- Consistent annotation schemes
- UPOS [Petrov et al., 2012]
- UDT [MCDonald et al., 2013]
- UD [Nivre et al., 2016]
- Cross-lingual datasets
- UD v1.0 (January 2015): 10 treebanks, 10 languages
- UD v2.1 (November 2017): 102 treebanks, 60 languages
\hookrightarrow mostly UD v2.0 here (73 treebanks, 54 languages)

Summary: cross-lingual transfer

- Extending NLP methods to more than the 100 usual languages (out of 7,000)
- Leverage bilingual data or linguistic similarities with better-resourced languages
- Main methods: delexicalized transfer and annotation projection
- but also: feature mapping, training guidance, joint learning, multilingual models...
- Growing datasets with consistent annotation schemes

Outline

Cross-lingual transfer

Leveraging typological knowledge
Impact of word order
WALS-based rewriting [COLING'16]

Extensions to the parsing framework

A new transfer framework: multi-(re)source combination

An adjective close to a noun depends on this noun.

An adjective close to a noun depends on this noun.

An adjective close to a noun depends on this noun.

True in...
\checkmark English
\checkmark French
\checkmark Hebrew
\checkmark Bulgarian

An adjective close to a noun depends on this noun.

True in...

Hebrew (monolingual)

$\stackrel{\text { Noun }}{\downarrow}$
\checkmark French
\checkmark Bulgarian

$$
\text { Hebrew } \rightarrow \text { Bulgarian }
$$

NOUN
\downarrow
ADJ

An adjective close to a noun depends on this noun.

True in...
\checkmark English
Hebrew

Hebrew (monolingual)

French
Bulgarian

Hebrew \rightarrow Bulgarian

Impact of word order

At data level:

At model level:

$\left(s_{0}=\right.$ ADJ $\wedge n_{0}=$ NOUN $) \Rightarrow$ LEFT $\left(s_{0}=\right.$ NOUN $\left.\wedge n_{0}=A D J\right) \Rightarrow$ RIGHT

On accuracy (UAS):

English (monolingual)

The World Atlas of Language Structures

WALS: a database of typological features for 2,679 languages
[http://wals.info]
\hookrightarrow Over 1,000 languages with word order features

Adjective-Noun

French
Noun-Adjective
Harris 1988: 227
(2)
\square

Using WALS to preprocess training data

Heuristic rule extraction for switching and deleting words
87A $\left\{\begin{array}{l}\text { [English] Adjective-Noun } \\ \text { [French] Noun-Adjective }\end{array}\right.$
\Longrightarrow [English \rightarrow French] switch ADJ-Noun into Noun-ADJ

Using WALS to preprocess training data

Heuristic rule extraction for switching and deleting words
87A $\left\{\begin{array}{l}\text { [English] Adjective-Noun } \\ \text { [French] Noun-Adjective }\end{array}\right.$
\Longrightarrow [English \rightarrow French] switch ADJ-Noun into Noun-AdJ
just a preprocessing step: easy to perform \& to extend most work already done by linguists readily available for 1,000 languages

Reshaping training instances: examples

English - training data

Experimental results

English \rightarrow French

Overall score: $+2.7 \%$

Hebrew \rightarrow Bulgarian

$$
A D J^{\curvearrowleft} \text { Noun }
$$

Overall score: +17.4\%

Systematic experiments

Fine-grained analysis across various language pairs
$\hookrightarrow 6,000+$ experiments on 40 languages \& 4 methods

Many transfer errors are easy to avoid
\hookrightarrow regular divergences between both languages
\hookrightarrow word order issues, non-existing PoS

Proposal: leveraging previous works in linguistics (WALS)
$\hookrightarrow+3 \%$ accuracy on average
\hookrightarrow very efficient on some error types: up to $+90 \%$ accuracy

Summary: leveraging typological knowledge

- Extension of linguistic coverage: zero-resource transfer targeting 1,000 languages
- Identification of typological differences as the main cause of many failures: consistent annotations do not suffice
- Preprocessing using linguistic knowledge boosts the systems
- A way to exploit additional resources during the transfer process

Outline

Cross-lingual transfer

Leveraging typological knowledge

Extensions to the parsing framework
Dynamic oracle and beam search
Global dynamic oracle with restart [EACL'17]
PanParser

A new transfer framework: multi-(re)source combination

Conclusions

Greedy inference

Greedy training...

Greedy training with non-determinism?

Greedy training with non-determinism?

Greedy training with non-determinism?

Greedy training in the suboptimal space?

Greedy training with a dynamic oracle

Cost(action) [Goldberg \& Nivre, 2012]:
Δ expected UAS over the sentence

Greedy training with a dynamic oracle

Cost(action) [Goldberg \& Nivre, 2012]:
Δ expected UAS over the sentence

Greedy training with a dynamic oracle

Cost(action) [Goldberg \& Nivre, 2012]:
Δ expected UAS over the sentence

Greedy training with a dynamic oracle

Cost(action) [Goldberg \& Nivre, 2012]:
Δ expected UAS over the sentence

Greedy training with a dynamic oracle

Cost(action) [Goldberg \& Nivre, 2012]:
Δ expected UAS over the sentence

Greedy training with a dynamic oracle

Cost(action) [Goldberg \& Nivre, 2012]:
Δ expected UAS over the sentence

Greedy training with a dynamic oracle

Cost(action) [Goldberg \& Nivre, 2012]:
Δ expected UAS over the sentence

Greedy dynamic oracle [Goldberg \& Nivre, 2012]

References = zero-cost actions (COST function)

 Abstract from past errors: enable exploration

No deterministic precomputation of the reference

Experimental
 gain: +1 to +2 UAS

Beam search: why?

Beam search: why?

Beam search

Beam search

$\Phi_{\text {global }}=\sum \phi_{\text {local }}$

Global training

Global training

Global training

Global training: update strategies

Global dynamic oracle: why?

References always gold

Global dynamic oracle: why?

Combine both lines of research

Global dynamic oracle

Old criterion: the reference falls out of the beam

Global dynamic oracle

Old criterion: the reference falls out of the beam

Global dynamic oracle

Old criterion: the reference falls out of the beam

Global dynamic oracle

Old criterion: the reference falls out of the beam

New criterion: no beam hypothesis can produce the reference tree y
For $c^{\prime}=c \circ t_{1} \circ \ldots \circ t_{n}$:

$$
\operatorname{CoRRECT}_{y}\left(c^{\prime} \mid c\right) \Longleftrightarrow \operatorname{Cost}_{y}\left(t_{1}\right)=\cdots=\operatorname{Cost}_{y}\left(t_{n}\right)=0
$$

Global dynamic oracle

Old criterion: the reference falls out of the beam

New criterion: no beam hypothesis can produce the reference tree y
For $c^{\prime}=c \circ t_{1} \circ \ldots \circ t_{n}$:

$$
\operatorname{CoRRECT}_{y}\left(c^{\prime} \mid c\right) \Longleftrightarrow \operatorname{CosT}_{y}\left(t_{1}\right)=\cdots=\operatorname{Cost}_{y}\left(t_{n}\right)=0
$$

Global dynamic oracle

Old criterion: the reference falls out of the beam

New criterion: no beam hypothesis can produce the reference tree y
For $c^{\prime}=c \circ t_{1} \circ \ldots \circ t_{n}$:

$$
\operatorname{Correct}_{y}\left(c^{\prime} \mid c\right) \Longleftrightarrow \operatorname{CosT}_{y}\left(t_{1}\right)=\cdots=\operatorname{CosT}_{y}\left(t_{n}\right)=0
$$

Global dynamic oracle

Old criterion: the reference falls out of the beam

New criterion: no beam hypothesis can produce the reference tree y
For $c^{\prime}=c \circ t_{1} \circ \ldots \circ t_{n}$:

$$
\operatorname{Correct}_{y}\left(c^{\prime} \mid c\right) \Longleftrightarrow \operatorname{CosT}_{y}\left(t_{1}\right)=\cdots=\operatorname{CosT}_{y}\left(t_{n}\right)=0
$$

Global dynamic oracle

Old criterion: the reference falls out of the beam

New criterion: no beam hypothesis can produce the reference tree y
For $c^{\prime}=c \circ t_{1} \circ \ldots \circ t_{n}$:

$$
\operatorname{CoRRECT}_{y}\left(c^{\prime} \mid c\right) \Longleftrightarrow \operatorname{Cost}_{y}\left(t_{1}\right)=\cdots=\operatorname{Cost}_{y}\left(t_{n}\right)=0
$$

Global dynamic oracle

Old criterion: the reference falls out of the beam

New criterion: no beam hypothesis can produce the reference tree y
For $c^{\prime}=c \circ t_{1} \circ \ldots \circ t_{n}$:

$$
\operatorname{CoRRECT}_{y}\left(c^{\prime} \mid c\right) \Longleftrightarrow \operatorname{Cost}_{y}\left(t_{1}\right)=\cdots=\operatorname{Cost}_{y}\left(t_{n}\right)=0
$$

Global dynamic oracle

Old criterion: the reference falls out of the beam

New criterion: no beam hypothesis can produce the reference tree y
For $c^{\prime}=c \circ t_{1} \circ \ldots \circ t_{n}$:

$$
\operatorname{CoRRECT}_{y}\left(c^{\prime} \mid c\right) \Longleftrightarrow \operatorname{Cost}_{y}\left(t_{1}\right)=\cdots=\operatorname{Cost}_{y}\left(t_{n}\right)=0
$$

Global dynamic oracle

Old criterion: the reference falls out of the beam

New criterion: no beam hypothesis can produce the reference tree y
For $c^{\prime}=c \circ t_{1} \circ \ldots \circ t_{n}$:

$$
\operatorname{CoRRECT}_{y}\left(c^{\prime} \mid c\right) \Longleftrightarrow \operatorname{Cost}_{y}\left(t_{1}\right)=\cdots=\operatorname{Cost}_{y}\left(t_{n}\right)=0
$$

Global dynamic oracle

Old criterion: the reference falls out of the beam

New criterion: no beam hypothesis can produce the reference tree y
For $c^{\prime}=c \circ t_{1} \circ \ldots \circ t_{n}$:
$\operatorname{Correct}_{y}\left(c^{\prime} \mid c\right) \Longleftrightarrow \operatorname{Cost}_{y}\left(t_{1}\right)=\cdots=\operatorname{CosT}_{y}\left(t_{n}\right)=0$

Global dynamic oracle

Old criterion: the reference falls out of the beam

New criterion: no beam hypothesis can produce the reference tree y
For $c^{\prime}=c \circ t_{1} \circ \ldots \circ t_{n}$:
$\operatorname{Correct}_{y}\left(c^{\prime} \mid c\right) \Longleftrightarrow \operatorname{Cost}_{y}\left(t_{1}\right)=\cdots=\operatorname{CosT}_{y}\left(t_{n}\right)=0$

Global dynamic oracle

Old criterion: the reference falls out of the beam

New criterion: no beam hypothesis can produce the reference tree y
For $c^{\prime}=c \circ t_{1} \circ \ldots \circ t_{n}$:
$\operatorname{Correct}_{y}\left(c^{\prime} \mid c\right) \Longleftrightarrow \operatorname{Cost}_{y}\left(t_{1}\right)=\cdots=\operatorname{CosT}_{y}\left(t_{n}\right)=0$

Global dynamic oracle

Old criterion: the reference falls out of the beam

New criterion: no beam hypothesis can produce the reference tree y
For $c^{\prime}=c \circ t_{1} \circ \ldots \circ t_{n}$:
$\operatorname{Correct}_{y}\left(c^{\prime} \mid c\right) \Longleftrightarrow \operatorname{Cost}_{y}\left(t_{1}\right)=\cdots=\operatorname{CosT}_{y}\left(t_{n}\right)=0$

Global dynamic oracle

Old criterion: the reference falls out of the beam

New criterion: no beam hypothesis can produce the reference tree y
For $c^{\prime}=c \circ t_{1} \circ \ldots \circ t_{n}$:
$\operatorname{Correct}_{y}\left(c^{\prime} \mid c\right) \Longleftrightarrow \operatorname{Cost}_{y}\left(t_{1}\right)=\cdots=\operatorname{CosT}_{y}\left(t_{n}\right)=0$

Global dynamic oracle

Old criterion: the reference falls out of the beam

New criterion: no beam hypothesis can produce the reference tree y
For $c^{\prime}=c \circ t_{1} \circ \ldots \circ t_{n}$:
$\operatorname{Correct}_{y}\left(c^{\prime} \mid c\right) \Longleftrightarrow \operatorname{CosT}_{y}\left(t_{1}\right)=\cdots=\operatorname{CosT}_{y}\left(t_{n}\right)=0$

Global dynamic oracle

Old criterion: the reference falls out of the beam

New criterion: no beam hypothesis can produce the reference tree y
For $c^{\prime}=c \circ t_{1} \circ \ldots \circ t_{n}$:

$$
\operatorname{Correct}_{y}\left(c^{\prime} \mid c\right) \Longleftrightarrow \operatorname{CosT}_{y}\left(t_{1}\right)=\cdots=\operatorname{CosT}_{y}\left(t_{n}\right)=0
$$

Global dynamic oracle

Old criterion: the reference falls out of the beam

New criterion: no beam hypothesis can produce the reference tree y
For $c^{\prime}=c \circ t_{1} \circ \ldots \circ t_{n}$:

$$
\operatorname{CorRECT}_{y}\left(c^{\prime} \mid c\right) \Longleftrightarrow \operatorname{CosT}_{y}\left(t_{1}\right)=\cdots=\operatorname{CosT}_{y}\left(t_{n}\right)=0
$$

Global dynamic oracle

Old criterion: the reference falls out of the beam

New criterion: no beam hypothesis can produce the reference tree y
For $c^{\prime}=c \circ t_{1} \circ \ldots \circ t_{n}$:

$$
\operatorname{CorRECT}_{y}\left(c^{\prime} \mid c\right) \Longleftrightarrow \operatorname{CosT}_{y}\left(t_{1}\right)=\cdots=\operatorname{CosT}_{y}\left(t_{n}\right)=0
$$

Global dynamic oracle: completeness

New criterion: no beam hypothesis can produce the reference tree y For $c^{\prime}=c \circ t_{1} \circ \ldots \circ t_{n}$:

$$
\operatorname{CorRECT}_{y}\left(c^{\prime} \mid c\right) \Longleftrightarrow \operatorname{Cost}_{y}\left(t_{1}\right)=\cdots=\operatorname{Cost}_{y}\left(t_{n}\right)=0
$$

Global dynamic oracle: completeness

New criterion: no beam hypothesis can produce the reference tree y For $c^{\prime}=c \circ t_{1} \circ \ldots \circ t_{n}$:

$$
\operatorname{CorRECT}_{y}\left(c^{\prime} \mid c\right) \Longleftrightarrow \operatorname{Cost}_{y}\left(t_{1}\right)=\cdots=\operatorname{Cost}_{y}\left(t_{n}\right)=0
$$

Restart: in suboptimal space

Improved accuracy

Improved accuracy

Better convergence

\checkmark Better convergence
Better sampling of training configurations

Better convergence
Better sampling of training configurations

Unified formalism:

$$
\text { Greedy training }=\left\{\begin{array}{l}
\text { Beam of size } 1 \\
\text { Global dynamic oracle } \\
\text { Restart }
\end{array}\right.
$$

Additional benefits of dynamic oracles: partial parses

Train

Det Noun Adj Noun Verb Pron Verb Det Noun Adj Pron Verb Det Noun Adj

Additional benefits of dynamic oracles: partial parses

Train
 Input
 Output

\checkmark Partial training [NAACL'16]

Additional benefits of dynamic oracles: partial parses

Train
 Input
 Output

\checkmark Partial training [NAACL'16]
\checkmark Partial prediction

Additional benefits of dynamic oracles: partial parses

Train
 Input
 Output

\checkmark Partial training [NAACL'16]
\checkmark Partial prediction
\checkmark Constrained prediction

Additional benefits of dynamic oracles: partial parses

Train

Det Noun Adj Noun Verb Pron Verb Det Noun Adj Pron Verb Det Noun Adj

Input
Output

Partial training [NAACL'16]
Partial prediction
Constrained prediction
Constrained training

Additional benefits of dynamic oracles: partial parses

Train

\checkmark Partial training [NAACL'16]
Partial prediction
Constrained prediction
Constrained training
... and many other benefits!
\hookrightarrow training with non-projectivity [NAACL'18]

PanParser

- Extensive use of global dynamic oracles
- Modular architecture
\hookrightarrow Classifier \times transition system \times search strategy \times update strategy \times feature representation $\times \ldots$
- Fair benchmarking: single out each hyperparameter
- State-of-the-art: several strategies already built-in
- Generic framework for structured prediction
\hookrightarrow PoS tagging, semantic parsing, joint predictions...
- https://perso.limsi.fr/aufrant $\boldsymbol{\square}$

Summary: extensions to the parsing framework

- Dynamic oracles make structured training exact
- Identification of new benefits of dynamic oracles
- Extension to global dynamic oracles with restart
- PanParser: a new modular implementation based on a unified framework

Outline

Cross-lingual transfer

Leveraging typological knowledge

Extensions to the parsing framework

A new transfer framework: multi-(re)source combination Is transfer useful? [LREC'16]

Simple to learn, complex to learn
Cascading transfer
Shared task evaluation [CoNLL'17]

Case study [LREC'16]

Multi-source transfer [McDonald et al., 2011]
\hookrightarrow delexicalized transfer + raw data + parallel data

Romance languages \rightarrow Romanian				
Source	fr	it	es	fr $+\mathrm{it}+\mathrm{es}$
Delexicalized	60.8	61.5	61.2	61.7
Full transfer	67.0	66.9	67.1	67.1
Supervised	82.7			

Is transfer really useful?

Is transfer really useful?

- Better to annotate 11 sentences than using complex transfer methods
- Similar findings in PoS tagging
\Rightarrow Have we underestimated the benefits of monolingual data?

Simple to learn, complex to learn

Transfer is useful... for complex classes!

- Systematic experiments
- 56 languages
- multi-source transfer
- Transfer efficiency can depend:
- on the language
- on the type of dependency
\hookrightarrow Cross-lingual transfer conveys non-trivial information on complex classes

Typology of syntactic information

- 1 language \rightsquigarrow multiple aspects, various influences
- Example: Romanian syntax
- Word order \Rightarrow as in Romance languages
- Clitic doubling \Rightarrow as in Spanish
- Prepositional phrases, subjunctive \Rightarrow as in Bulgarian
- Double marking of possession \Rightarrow unique property

Typology of syntactic information

- 1 language \rightsquigarrow multiple aspects, various influences
- Example: Romanian syntax
- Word order \Rightarrow as in Romance languages
- Clitic doubling \Rightarrow as in Spanish
- Prepositional phrases, subjunctive \Rightarrow as in Bulgarian
- Double marking of possession \Rightarrow unique property

Typology of syntactic information

- 1 language \rightsquigarrow multiple aspects, various influences
- Example: Romanian syntax
- Word order \Rightarrow as in Romance languages
- Clitic doubling \Rightarrow as in Spanish
- Prepositional phrases, subjunctive \Rightarrow as in Bulgarian
- Double marking of possession \Rightarrow unique property

Cascading: an example

```
Her boyfriend broke up on February 14
DET NOUN VERB ADP ADP NOUN NUM
```

Submodels:

Cascading: an example

Submodels:
target bootstrap: simple dependencies (determiner, preposition)

Cascading: an example

Submodels:
target bootstrap: simple dependencies (determiner, preposition)
transfer from French: main structure (subject, verb modifier)

Cascading: an example

Submodels:
target bootstrap: simple dependencies (determiner, preposition)
transfer from French: main structure (subject, verb modifier)
transfer from German: influences (verbal postposition)

Cascading: an example

Submodels:
target bootstrap: simple dependencies (determiner, preposition)
transfer from French: main structure (subject, verb modifier)
transfer from German: influences (verbal postposition) target-side tuning

Adapting an ensembling method: the cascading architecture

- 1 parser \rightsquigarrow a sequence of partial parsers $\left(P_{1}, P_{2}, P_{3}\right)$
- Estimating regions of competence (R_{1}, R_{2}, R_{3})
\hookrightarrow by annotating a target sample
\hookrightarrow using similarity metrics
- Optimized training thanks to dynamic oracles
\hookrightarrow specialized models
\hookrightarrow no redundancy

Adapting an ensembling method: the cascading architecture

adpositions

- 1 parser \rightsquigarrow a sequence of partial parsers $\left(P_{1}, P_{2}, P_{3}\right)$
- Estimating regions of competence $\left(R_{1}, R_{2}, R_{3}\right)$
\hookrightarrow by annotating a target sample
\hookrightarrow using similarity metrics
- Optimized training thanks to dynamic oracles
\hookrightarrow specialized models
\hookrightarrow no redundancy

Adapting an ensembling method: the cascading architecture

- 1 parser \rightsquigarrow a sequence of partial parsers $\left(P_{1}, P_{2}, P_{3}\right)$
- Estimating regions of competence $\left(R_{1}, R_{2}, R_{3}\right)$
\hookrightarrow by annotating a target sample
\hookrightarrow using similarity metrics
- Optimized training thanks to dynamic oracles
\hookrightarrow specialized models
\hookrightarrow no redundancy

Adapting an ensembling method: the cascading architecture

- 1 parser \rightsquigarrow a sequence of partial parsers $\left(P_{1}, P_{2}, P_{3}\right)$
- Estimating regions of competence $\left(R_{1}, R_{2}, R_{3}\right)$
\hookrightarrow by annotating a target sample
\hookrightarrow using similarity metrics
- Optimized training thanks to dynamic oracles
\hookrightarrow specialized models
\hookrightarrow no redundancy

Adapting an ensembling method: the cascading architecture

- 1 parser \rightsquigarrow a sequence of partial parsers $\left(P_{1}, P_{2}, P_{3}\right)$
- Estimating regions of competence $\left(R_{1}, R_{2}, R_{3}\right)$
\hookrightarrow by annotating a target sample
\hookrightarrow using similarity metrics
- Optimized training thanks to dynamic oracles
\hookrightarrow specialized models
\hookrightarrow no redundancy

Adapting an ensembling method: the cascading architecture

- 1 parser \rightsquigarrow a sequence of partial parsers $\left(P_{1}, P_{2}, P_{3}\right)$
- Estimating regions of competence (R_{1}, R_{2}, R_{3})
\hookrightarrow by annotating a target sample
\hookrightarrow using similarity metrics
- Optimized training thanks to dynamic oracles
\hookrightarrow specialized models
\hookrightarrow no redundancy

Adapting an ensembling method: the cascading architecture

- 1 parser \rightsquigarrow a sequence of partial parsers (P_{1}, P_{2}, P_{3})
- Estimating regions of competence $\left(R_{1}, R_{2}, R_{3}\right)$
\hookrightarrow by annotating a target sample
\hookrightarrow using similarity metrics
- Optimized training thanks to dynamic oracles
\hookrightarrow specialized models
\hookrightarrow no redundancy

Adapting an ensembling method: the cascading architecture

- 1 parser \rightsquigarrow a sequence of partial parsers (P_{1}, P_{2}, P_{3})
- Estimating regions of competence (R_{1}, R_{2}, R_{3})
\hookrightarrow by annotating a target sample
\hookrightarrow using similarity metrics
- Optimized training thanks to dynamic oracles
\hookrightarrow specialized models
\hookrightarrow no redundancy

Adapting an ensembling method: the cascading architecture

- 1 parser \rightsquigarrow a sequence of partial parsers (P_{1}, P_{2}, P_{3})
- Estimating regions of competence (R_{1}, R_{2}, R_{3})
\hookrightarrow by annotating a target sample
\hookrightarrow using similarity metrics
- Optimized training thanks to dynamic oracles
\hookrightarrow specialized models
\hookrightarrow no redundancy

Shared task evaluation [CoNLL'17]

- End-to-end parsing: from raw text to dependencies
- Multilingual dataset (UD)
\hookrightarrow diverse language families, domains, treebank sizes
- Evaluation in realistic conditions
\hookrightarrow blind test, surprise languages
- 33 teams: highly competitive
- Our focus: small treebanks

All-in-one system

Shared task results

Positive impact of...
\checkmark PanParser
WALS-based transfer
Transfer cascades
Monolingual cascades

Error analysis: perspectives for improvements

- Tiny target samples: poor estimation of regions
- Unreliable PoS: can delexicalized models still contribute?
- Unveiled remaining annotation inconsistencies

Summary: a new transfer framework

- The benefits of target samples have been underestimated
- Characterize the information conveyed by target samples and by each source
- Cascading architecture: sequential combination of partial parsers
- Shared task evaluation: validates all contributions (PanParser, WALS, cascades)

Outline

Cross-lingual transfer
 Leveraging typological knowledge
 Extensions to the parsing framework
 A new transfer framework: multi-(re)source combination

Conclusions

Conclusions

- Main purpose: improve the coverage of cross-lingual transfer
\hookrightarrow by adding more flexibility regarding leveraged resources

Make new resources usable (\rightsquigarrow typological knowledge)
\hookrightarrow avoid systematic errors
\hookrightarrow extend candidate sources
Make any resource combination possible (\rightsquigarrow cascading)
\hookrightarrow including target samples, distant sources...
\hookrightarrow fine-grained targeting

- Additional improvements in transition-based parsing
\hookrightarrow to reach the required degree of flexibility

Perspectives

Cross-lingual transfer

- Cascading experiments with other metrics
- Application to other tasks
- Better use of lexical similarities

Transition-based parsing

- Deriving new dynamic oracles
- Better control on information extracted at training time
- Divide-and-conquer cascades

Take-home messages

- Modern NLP: many successful systems... for a handful of languages
- Cross-lingual transfer: a promising approach, yet not always the best one
- The key to low-resourced NLP: exploit all resources together (typology, samples...)
- Dynamic oracles have taken transition-based parsing to the next level

Additional tables and figures

Chapters 2-3-4
Chapters 5-6
Chapters 7-8
Appendices A - B

Chapter 2

Annotation projection

Data translation

Direct delexicalized transfer

Indices	1	2	3	4	5	6	7
Words	What	do	1	need	to	do	$?$
Heads	6	4	4	0	6	4	4
Labels	dobj	aux	nsubj	root	mark	xcomp	punct

Chapter 3

ARCSTANDARD

SHIFT	$(\sigma$,	$b \mid \beta$,	$P)$	$\Rightarrow(\sigma \mid b$,	β,	$P)$	
LEFT	$\left(\sigma\left\|s^{\prime}\right\| s\right.$,	β,	$P)$	$\Rightarrow(\sigma \mid s$,	β,	$\left.P+\left(s \rightarrow s^{\prime}\right)\right) \quad$ if s^{\prime} is a word	
RIGHT	$\left(\sigma\left\|s^{\prime}\right\| s\right.$,	β,	$P)$	$\Rightarrow\left(\sigma \mid s^{\prime}\right.$,	β,	$\left.P+\left(s^{\prime} \rightarrow s\right)\right)$	

ARCEAGER

SHIFT	$(\sigma$,	$b \mid \beta$,	$P)$	$\Rightarrow(\sigma \mid b$,	β,	$P)$	if b is a word
LEFT	$(\sigma \mid s$,	$b \mid \beta$,	$P)$	$\Rightarrow(\sigma$,	$b \mid \beta$,	$P+(b \rightarrow s))$	if s is a word and s is unattached
RIGHT	$(\sigma \mid s$,	$b \mid \beta$,	$P)$	$\Rightarrow(\sigma\|s\| b$,	β,	$P+(s \rightarrow b))$	
REDUCE	$(\sigma \mid s$,	β,	$P)$	$\Rightarrow(\sigma$,	β,	$P)$	if s is attached

ARCHYBRID

SHIFT	$(\sigma$,	$b \mid \beta$,	$P)$	\Rightarrow	$(\sigma \mid b$,	β,	$P)$
LEFT	$(\sigma \mid s$,	$b \mid \beta$,	$P)$	\Rightarrow	$(\sigma$,	$b \mid \beta$,	$P+(b \rightarrow s))$
RIGHT	$\left(\sigma\left\|s^{\prime}\right\| s\right.$,	β,	$P)$	\Rightarrow	$\left(\sigma \mid s^{\prime}\right.$,	β,	P is a word
RIS a word							

SWAPSTANDARD

SHIFT	$(\sigma$,	$b \mid \beta$,	$P)$	\Rightarrow	$(\sigma \mid b$,	β,	$P)$
LEFT	$\left(\sigma\left\|s^{\prime}\right\| s\right.$,	β,	$P)$	\Rightarrow	$(\sigma \mid s$,	β,	$\left.P+\left(s \rightarrow s^{\prime}\right)\right)$
RIGHT	$\left(\sigma\left\|s^{\prime}\right\| s\right.$,	β,	$P)$	\Rightarrow	$\left(\sigma \mid s^{\prime}\right.$,	β,	$P+\left(s^{\prime} \rightarrow s\right)$ is a word
SWAP	$\left(\sigma\left\|s^{\prime}\right\| s\right.$,	β,	$P)$	\Rightarrow	$(\sigma \mid s$,	$s^{\prime} \mid \beta$,	$P)$

UAS	ARCEAGER	ARCSTANDARD
No Root	84.35	84.41
Root in first position	83.67	84.44
Root in last position	84.35	84.38

Derivation

Resulting parse

Shift $_{1}$ Shift $_{2} \quad$ Shift $_{3} \quad$ Left $_{3 \leftarrow 4}$ Left $_{2 \leftarrow 4}$ Left $_{1 \leftarrow 4}$

Shift $_{1}$ Left $_{1 \leftarrow 2} \quad$ Shift $_{2} \quad$ Shift $_{3} \quad$ Left $_{3 \leftarrow 4}$ Left $_{2 \leftarrow 4}$

Shift $_{1} \underline{\text { Right }}_{1 \rightarrow 2}$ Reduce $_{2}$ Shift $_{3}$ Left $_{3 \leftarrow 4}$ Left $_{1 \leftarrow 4}$

Classifier	UAS	Speed (sent/s)
Averaged perceptron (MaltParser)	89.9	560
Feed-forward neural network	92.0	1,013

Standard templates

1 word $\quad w, p$ and $w p$ for $S_{0}, N_{0}, N_{1}, N_{2}$
2 words $w p \cdot w p, w p \cdot w, w \cdot w p, w p \cdot p, p \cdot w p, w \cdot w$ and $p \cdot p$ for $S_{0} \cdot N_{0} ; N_{0} p \cdot N_{1} p$
3 words p.p•p for $N_{0} \cdot N_{1} \cdot N_{2}, S_{0} \cdot N_{0} \cdot N_{1}, S_{0 h} \cdot S_{0} \cdot N_{0}, S_{0} \cdot S_{01} \cdot N_{0}, S_{0} \cdot S_{0 r} \cdot N_{0}, S_{0} \cdot N_{0} \cdot N_{01}$
New templates with rich non-local features
Distance $\quad S_{0} w \cdot d, S_{0} p \cdot d, N_{0} w \cdot d, N_{0} p \cdot d ; S_{0} w \cdot N_{0} w \cdot d, S_{0} p \cdot N_{0} p \cdot d$
Valency $S_{0} w v_{l}, S_{0} p v_{l}, S_{0} w v_{r}, S_{0} p v_{r}, N_{0} w v_{l}, N_{0} p v_{l}$
Unigrams w and p for $S_{0 h}, S_{0 l}, S_{0 r}, N_{0 l} ; 1$ for $S_{0}, S_{01}, S_{0 r}, N_{0 l}$
Third-order w and p for $S_{0 h 2}, S_{012}, S_{012}, N_{012}$ i l for $S_{0 h}, S_{012}, S_{012}, N_{012}$;
p.p.p for $S_{0} \cdot S_{0 h} \cdot S_{0 h 2}, S_{0} \cdot S_{01} \cdot S_{012}, S_{0} \cdot S_{0 r} \cdot S_{012}, N_{0} \cdot N_{01} \cdot N_{012}$

Label set $\quad S_{0} w s_{l}, S_{0} p s_{l}, S_{0} w s_{r}, S_{0} p s_{r}, N_{0} w s_{l}, N_{0} p s_{l}$

Greedy static

Greedy dynamic

Beam static

Beam non-deterministic

UAS	Local [train]	Global [train]
Local [test]	89.04	87.07
Global [test]	79.34	92.27

Update criterion	Convergence time		
Full update	1 it.	0.4 h	79.14
Early update	38 it.	15.4 h	92.09
Max-violation	12 it.	5.5 h	92.18

UAS Locally normalized Globally normalized

Beam size $=1$	92.95	-
Beam size $=32$	93.59	94.61

UAS	Static oracle	Dynamic oracle
Gold space training	89.88	90.18
Suboptimal space training	-	90.96

SHIFT	$(\sigma$,	$b \mid \beta)$	$\sigma^{\curvearrowright} b$	\rightsquigarrow	b if h_{b}^{*} is in stack
	$(\sigma$,	$b \mid \beta)$	$\sigma^{\curvearrowleft} b$	\rightsquigarrow	children of b that are in stack and unattached
LEFT	$(\sigma\|s, b\| \beta)$	$s^{\curvearrowleft} \beta$	\rightsquigarrow	s if h_{s}^{*} is in buffer but not on top	
	$(\sigma \mid s$,	$\beta)$	$s^{\curvearrowright} \beta$	\rightsquigarrow	children of s that are in buffer
RIGHT	$(\sigma$,	$b \mid \beta)$	$b^{\curvearrowleft} \beta$	\rightsquigarrow	b if h_{b}^{*} is in buffer but not on top
	$(\sigma\|s, b\| \beta)$	$\sigma^{\curvearrowright} b$	\rightsquigarrow	b if h_{b}^{*} is in stack but not on top	
	$(\sigma$,	$b \mid \beta)$	$\sigma^{\curvearrowleft} b$	\rightsquigarrow	children of b that are in stack and unattached
REDUCE	$(\sigma \mid s$,	$\beta)$	$s^{\curvearrowright} \beta$	\rightsquigarrow	children of s that are in buffer

UAS	ArcStandard	ArcHybrid
SLSTM - Static	93.04	92.78
SLSTM - Dynamic	-	93.56

Chapter 4

Many-to-one alignment

One-to-many alignment

Unaligned word

Data space transfer

	Target	de	en	es	$f r$	SV
Supervised	standard	80.34	92.11	83.65	82.17	85.97
	coarse PoS	78.38	91.46	82.30	82.30	84.52
Direct delexicalized transfer (coarse PoS)	de	70.84	45.28	48.90	49.09	52.24
	en	48.60	82.44	56.25	58.47	59.42
	es	47.16	47.31	71.45	62.39	54.63
	$f r$	46.77	47.94	62.66	73.71	54.89
	sv	52.53	48.24	52.95	55.02	74.55
Annotation projection	de	-	53.80	61.34	62.32	68.20
	en	63.52	-	63.18	67.04	67.74
	es	60.65	50.10	-	68.81	65.79
	fr	62.49	53.88	68.15	-	64.83
	sv	63.83	52.36	63.29	66.12	-
Treebank translation	de	-	58.60	61.00	63.45	67.88
	en	62.67	-	64.58	68.45	68.16
	es	57.13	52.65	-	69.37	63.55
	$f r$	61.41	56.83	68.97	-	62.56
	sv	61.73	52.13	62.34	64.50	-

Parameter space transfer (with a target treebank and a bilingual lexicon)

Target	cs	de	es	fi	fr	ga	hu	it	sv	μ
Target only	43.1	47.3	60.3	46.4	56.2	59.4	48.4	65.4	52.6	53.2
Guidance	49.6	59.2	66.4	49.5	63.2	59.5	50.5	69.9	61.4	58.8
Joint learning	55.2	61.2	69.1	51.4	65.3	60.6	51.2	71.2	61.4	60.7
Joint + guidance	55.7	61.8	70.5	51.5	67.2	61.1	51.0	71.3	62.5	61.4

Parameter space transfer (with parallel and raw data)

	Target	de	es	fr	it	ko	pt	sv
Supervised	81.65	83.92	83.51	85.47	90.42	85.67	85.59	85.18
Direct transfer	58.56	68.72	71.13	70.74	38.55	69.82	70.59	64.02
Guidance	73.92	75.21	76.14	77.55	59.71	76.30	78.91	73.96
Guidance + unlabeled	74.30	75.53	76.53	77.74	59.89	76.65	79.27	74.27

Chapter 5

Source	fr	it	es	$\mathrm{fr}+\mathrm{it}+\mathrm{es}$	
Delexicalized	60.8	61.5	61.2	61.7	
Full transfer	67.0	66.9	67.1	67.1	
Supervised	82.7				

Trainset	10 sentences	500 sentences	Full UD
UDPIPE	$22.4\|\|55.5\|\| 66.6\|\mid 42.5$	$53.0\|\|84.8\|\| 90.2\|\mid 74.7$	$66.4\|\|89.0\|\| 92.7\|\mid 83.2$
PANPARSER	$41.4\|\|69.3\|\| 75.6\|\mid 57.7$	$53.8\|\|83.4\|\| 91.6\|\mid 75.0$	$58.0\|\|87.5\|\| 93.4\|\mid 81.2$
DELEX	$41.3\|\|70.6\|\| 75.1\|\mid 57.2$	$50.9\|\|81.7\|\| 85.7\|\mid 71.3$	$51.0\|\|83.8\|\| 87.7\|\mid 74.3$
MSTPARSER	$38.1\|\|62.7\|\| 68.2\|\mid 52.8$	$57.6\|\|81.2\|\| 86.9\|\mid 75.1$	$65.8\|\|86.7\|\| 90.6\|\mid 83.4$
BEAM	$42.4\|\|69.8\|\| 76.8\|\mid 59.0$	$56.0\|\|84.2\|\| 91.1\|\mid 76.1$	$61.5\|\|88.2\|\| 93.7\|\mid 82.6$
BEAM-DELEX	$41.5\|\|70.6\|\| 77.3\|\mid 59.5$	$53.8\|\|83.5\|\| 87.1\|\mid 73.2$	$55.9\|\|85.6\|\| 88.6\|\mid 76.8$

UAS	30	40	50	60	70	75
Parsing capacity (sentences)	1	2	4	12	77	401
Annotation cost (euros)	10	20	40	120	770	4,010
Romanian trainset size	1	2	3	9	53	410

	All	ADJ	ADP	ADV	AUX	CCONJ	DET	NOUN	NUM	PART	PRON	PROPN	SCONJ	VERB
KL-BEAM $^{66.1}$	72.1	73.4	66.3	72.7	63.7	84.9	59.4	68.3	65.6	72.8	65.0	70.6	55.9	
BEAM $_{10}$	59.0	64.5	74.6_{+}	50.6	64.5	55.7	75.2	52.5	52.8	63.5	61.4	47.3	48.6	44.4
BEAM $_{50}$	68.1_{+}	72.9_{+}	$82.9+60.9$	75.4_{+}	65.1_{+}	84.2	61.9_{+}	61.9	73.4_{+}	71.6	59.2	65.3	55.6	
BEAM $_{100}$	71.2_{+}	75.7_{+}	85.1_{+}	64.9	78.9_{+}	68.6_{+}	86.3_{+}	65.1_{+}	65.5	76.1_{+}	75.4_{+}	62.9	71.2_{+}	59.6_{+}

All CORE NON-CORE FUN MWE

KL-BEAM	66.1	70.2	60.1	74.2	45.9
BEAM $_{10}$	59.0	58.3	51.2	71.2	36.9
BEAM $_{50}$	68.1_{+}	68.8	60.6_{+}	79.4_{+}	47.2_{+}
BEAM $_{100}$	71.2_{+}	72.3_{+}	63.9_{+}	81.9_{+}	51.2_{+}

Double marking of possession uses both genitive and ' a '

Preposition 'de' occurs together with the infinitive marker 'a'

Postnominal demonstrative 'asta' is placed mandatorily just after the noun 'clipa'

A syntactically inconsistent example of semantics-driven alignment

Word sequences are semantically similar, but PoS tags and dependencies differ

Semantic, PoS and edge correspondence, but diverging relation labels

Chapter 6

	ρ (root UAS, leaves UAS)			ρ (overall UAS, root UAS)	
	10 snt.	500 snt.	Full UD		10 snt.
UDPIPE	.134	.519	.709		.249
PANPARSER	.146	.382	.595		.293
MSTPARSER	.017	.159	.475		.152
BEAM	.360	.577	.716		.477

	UAS	Norm		Dist. to Lex		$\frac{\text { Dist. to Delex }}{\text { delex. }}$	Significant features	
		delex.	lex.	delex.	lex.		delex.	lex.
Lex	88.31	1,054	3,193	0	0	1,118	5,034	34,148
Delex	85.44	1,517	0	1,118	3,193	0	8,122	0
Delex(Lex)	83.73	1,054	0	0	3,193	1,118	5,034	0
X-Delex	69.68	1,403	0	1,460	3,193	1,729	7,558	0
Delex(X-Lex)	70.10	1,094	0	1,206	3,193	1,557	5,537	0
Delex + Lex	88.50	1,131	3,572	502	1,863	1,129	5,824	50,804
Delex(Lex) + Lex	88.73	1,354	2,490	491	1,824	1,126	8,202	14,640
X-Delex + Lex	88.82	1,545	3,006	1,160	1,753	1,444	9,099	27,511
Delex(X-Lex) + Lex	88.84	1,315	2,898	884	1,752	1,289	7,329	24,178

	Child PoS						
	ADV	NOUN	PROPN	VERB	SCONJ	Others	
Delex	84.0	73.8	81.1	69.9	86.4	92.8	
Delex(Lex)	79.6	70.2	76.2	66.7	82.6	92.6	
\triangle UAS	-5.5	-3.6	-4.9	-3.2	-3.8	-0.2	
	CORE		NON-CORE		MWE	FUN	
	nsubj	acl	advmod	nmod	fixed	mark	Others
Delex	89.0	60.0	85.2	81.9	38.2	92.2	87.7
Delex(Lex)	83.3	51.8	80.6	70.9	31.5	87.4	88.5
\triangle UAS	-5.7	-8.2	-4.6	-11.0	-6.7	-4.8	+0.8

	Head PoS			Child PoS							
	NOUN	VERB	Others	DET	ADV	ADP	SCONJ	PRON	NOUN	PROPN	Others
X-Delex	74.5	74.0	55.7	93.5	68.1	81.9	51.5	79.6	60.8	43.4	60.0
Delex(X-Lex)	70.1	79.4	56.2	94.7	71.8	84.2	56.1	86.5	54.1	36.6	60.3
\triangle UAS	-4.4	+5.4	+0.5	+1.2	+3.7	+2.3	+4.6	+6.9	-6.7	-6.8	+0.3
		CORE			NON-COR	ORE		MWE	FUN		
	xcomp	nsubj	obj	advmod	advcl	obl	nmod	flat	mark	Others	
X-Delex	82.2	69.7	88.4	70.7	45.7	62.5	67.7	28.6	57.6	71.7	
Delex(X-Lex)	93.3	76.4	89.9	75.1	51.1	69.8	44.7	16.0	68.8	72.4	
\triangle UAS	+11.1	+6.7	+5.5	+4.4	+5.4	+7.3	-23.0	-12.6	+11.2	+0.7	

LEARNABILITY	$\begin{aligned} & \text { DE }{ }^{\curvearrowleft} \\ & 91.3 \end{aligned}$	$\begin{gathered} \hline \text { AD } \mathrm{P} \\ 89.0 \end{gathered}$	$\begin{aligned} & \text { AUX } \\ & 83.9 \end{aligned}$	PRON 82.4	SCON \curvearrowleft 80.2	$\begin{aligned} & \hline A D \mathfrak{j} \\ & 80.0 \end{aligned}$	$\begin{gathered} \text { CCON } \tilde{j} \\ 77.1 \end{gathered}$	$\begin{gathered} \text { ADV } \\ 76.1 \end{gathered}$	
Complexity	$\begin{aligned} & \text { AD } \tilde{P}^{\prime} \\ & -18.8 \end{aligned}$	$\begin{aligned} & \text { DE }{ }^{\cap} \\ & -18.7 \end{aligned}$	PRON゙ －0．6	AUX 0.2	$\begin{gathered} \text { AD\} } \\ 1.9 \end{gathered}$	CCON \mathfrak{n} 6.3	$\begin{array}{r} \stackrel{\rightharpoonup}{\mathrm{N}} \\ 7.6 \end{array}$	$\begin{array}{r} \text { ADV } \\ 9.6 \end{array}$	
Hardness	$\begin{aligned} & \text { DE }{ }^{\curvearrowleft} \\ & -79.6 \end{aligned}$	$\begin{aligned} & \text { AD® } \\ & -72.4 \end{aligned}$	$\begin{aligned} & \text { AUX } \\ & -33.2 \end{aligned}$	PRON -27.2	$\begin{aligned} & \text { ADJ } \\ & -20.1 \end{aligned}$	CCON 3 －0．4	ADV 7.5	SCON \mathfrak{j} 11.0	
LEARNABILITY	$\begin{gathered} \curvearrowleft \\ 75.1 \end{gathered}$	$\begin{aligned} & \hline \mathrm{PN} \\ & 69.0 \end{aligned}$	$\begin{array}{r} \text { 尺िN } \\ 68.4 \end{array}$	$\begin{gathered} \curvearrowleft \curvearrowleft \\ 68.2 \end{gathered}$	$\begin{gathered} \stackrel{\wedge}{\mathrm{N}} \\ 67.9 \end{gathered}$	$\begin{aligned} & \text { AिDJ } \\ & 60.6 \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{V} \\ 56.4 \end{gathered}$	$\begin{aligned} & \text { ÂUX } \\ & 52.8 \end{aligned}$	ÁDP
Complexity	$\begin{gathered} \mathfrak{V} \\ 12.6 \end{gathered}$	$\begin{aligned} & \hline \mathrm{PN} \\ & 23.4 \end{aligned}$	$\begin{gathered} \hline \text { SCON } \\ 35.0 \end{gathered}$	$\begin{gathered} \curvearrowleft \curvearrowleft \\ 42.0 \end{gathered}$	$\begin{aligned} & \text { РिN } \\ & 49.5 \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{V} \\ 52.5 \end{gathered}$	$\begin{aligned} & \text { スिDJ } \\ & 57.7 \end{aligned}$	$\begin{aligned} & \text { AAUX } \\ & 68.0 \end{aligned}$	ÁDP 131.2
Hardness	$\begin{gathered} \curvearrowleft \\ 13.3 \end{gathered}$	$\begin{gathered} \text { ₹ } \\ 35.8 \end{gathered}$	$\begin{aligned} & \mathrm{PN} \\ & 45.4 \end{aligned}$	$\begin{gathered} \curvearrowleft \\ \\ 59.9 \end{gathered}$	$\begin{aligned} & \text { PिN } \\ & 62.6 \end{aligned}$	$\begin{gathered} \text { AिDJ } \\ 90.8 \end{gathered}$	$\begin{gathered} \stackrel{\rightharpoonup}{V} \\ 108.7 \end{gathered}$	$\begin{array}{r} \text { ÂUX } \\ 110.0 \end{array}$	$\begin{array}{r} \text { ÁDP } \\ 159.6 \end{array}$

	UAS_{10}		UAS 500		UAS ${ }_{\text {full }}$ UD	
	simple	complex	simple	complex	simple	complex
UDPIPE	56.4	28.0	82.1	66.8	88.0	78.1
PanParser	70.6	40.1	82.2	65.2	86.3	74.3
Delex	69.1	41.8	78.5	62.0	80.8	66.2
MSTPARSER	68.0	36.9	83.5	66.1	89.1	77.4
Beam	71.1	42.7	82.9	67.1	87.3	76.4
Beam-Delex	70.5	44.2	79.9	64.1	82.6	68.9

Standard computation

Tiny approximation

Standard computation
Tiny approximation

\qquad UAS over all classes \qquad UAS on DET \qquad UAS On DET \qquad whole dataset - 14,553 sentences $\cdots \cdots$ with preinitialization $-14,553$ sentences --- without DE؟ -533 sentences

	all	ADJ		ADP		ADV		$\frac{\mathrm{AUX}}{\curvearrowleft}$	$\frac{\mathrm{CCONJ}}{\curvearrowleft}$	DET		NOUN		NUM		PRON		PROPN		SCONJ		VERB	
		\curvearrowleft	\curvearrowright	\curvearrowleft	\curvearrowright	\curvearrowleft	\curvearrowright			\curvearrowleft	\curvearrowright	\curvearrowleft	\curvearrowright	\curvearrowleft	\sim	\curvearrowleft	\curvearrowright	\curvearrowleft	\curvearrowright	\curvearrowleft	\curvearrowright	\curvearrowleft	\curvearrowright
Size ($\times 1,000$)	317.1	5.8	14.4	55.2	2.0	9.1	3.6	12.2	9.0	54.4	0.3	13.9	52.5	4.8	4.6	14.5	1.5	3.9	23.3	1.9	0.8	11.7	16.1
Baseline UAS	88.3	91.1	93.0	96.6	40.3	89.0	81.3	96.7	88.1	99.3	21.7	72.2	80.0	93.5	74.7	96.5	77.0	80.8	86.3	88.9	75.8	86.8	71.4
Freq.-based	88.3	91.7	93.0	96.2	48.1	87.8	80.7	97.0	89.3	98.4	30.4	76.9	78.4	95.7	75.8	96.3	80.3	86.3	85.8	91.9	72.7	87.7	71.0
Acc.-based	87.5	91.7	90.1	94.1	61.0	88.1	82.0	97.5	86.9	95.5	65.2	73.8	79.3	92.8	75.8	95.5	75.4	87.7	85.4	88.9	75.8	84.5	75.4
Dyn. acc.-based	88.5	91.7	92.5	96.4	49.4	89.6	83.3	97.0	88.9	98.7	34.8	74.0	79.9	94.2	73.7	96.3	77.0	89.0	85.6	88.9	72.7	86.0	72.7

Chapter 7

SHIFT

		$\%$ non-projective sentences					\# training sentences	
		μ	$>50 \%$	$25-50 \%$	$10-25 \%$	$<10 \%$	>500	<500
PANPARSER - greedy ARCEAGER	78.28	56.23	76.22	75.48	82.47	81.34	67.36	
+ dynamic oracle (only projective snt.)	78.94	57.74	76.98	76.25	82.96	81.92	68.34	
+ dynamic oracle + pseudo-proj. snt.	+0.26	+2.01	+1.49	+0.20	-0.07	+0.46	-0.46	
+ dynamic oracle + non-projective snt.	+0.48	+2.45	+1.83	+0.45	+0.08	+0.51	+0.36	
PANPARSER - greedy ARCHYBRID	75.70	53.08	73.66	73.19	79.63	78.29	66.50	
+ dynamic oracle (only projective snt.)	76.50	54.22	74.61	73.95	80.40	79.22	66.81	
+ dynamic oracle + non-projective snt.	+0.55	+3.08	+2.16	+0.34	+0.22	+0.53	+0.61	
MALTPARSER (only projective snt.)	72.88	57.87	71.74	69.99	76.68	76.81	58.87	
+ pseudo-projectivized sentences	+0.37	+5.84	+1.40	+0.19	+0.07	+0.48	-0.02	
+ pseudo-proj. + deprojectivized output	+0.45	+6.84	+1.69	+0.25	+0.09	+0.59	-0.05	

predictions
gold space decoding

System	Root position	Greedy	Greedy dynamic	Early update	Max-violation
ArcEager	First	77.89	78.97	80.29	80.36
	Last	78.63	79.43	80.35	80.40
ArcHybrid	First	75.72	76.54	79.39	79.78
	Last	76.02	77.05	79.70	79.86
MaltParser				72.88	
MSTParser				79.52	
UDPipe					
				79.47	

	M11	MX14	RC15			ours		sup.
Target			partial	100%		partial	100%	
de	69.77	74.30	74.32	70.56		73.40	69.36	84.43
es	73.22	75.53	78.17	75.69		77.05	73.98	85.51
fr	74.75	76.53	79.91	77.03		77.44	75.89	85.81
it	76.08	77.74	79.46	77.35		77.74	75.50	86.97
SV	75.87	79.27	82.11	78.68		82.13	77.26	87.89

Criterion	Measure	Std training	Ill-typed	Partial training	Partial parser
Easy on average	\%tokens (ref: 27.4\%)	28.9%	33.9%	35.6%	27.1%
	precision	86.88	69.99	68.89	85.98
	std precision	86.88	86.43	86.22	88.31
	common (26.7\%)	88.61	85.14	87.28	86.81
Length 1	\%tokens (ref: 42.9\%)	44.4%	61.8%	80.1%	43.5%
	precision	87.42	62.78	50.61	87.06
	std precision	87.42	83.37	80.77	87.68
	common (41.7\%)	88.76	87.44	88.03	88.34
Length \leq 2	\%tokens (ref: 63.4\%)	65.0%	78.7%	80.9%	64.0%
	precision	85.31	69.89	69.93	85.30
	std precision	85.31	82.01	80.90	85.49
	common (61.6\%)	86.54	85.04	85.93	86.46

Constraints Training	Gold			Standard parser			Partial parser		
	Constrained	Const.-pred	Std	Constrained	Const.-pred	Std	Constrained	Const.-pred	Std
Easy on average	76.73	75.82	76.00	74.50	75.04	75.40	72.46	73.52	73.99
Length 1	77.39	74.28	70.46	71.14	70.76	69.99	69.60	69.79	70.09
Length ≤ 2	74.80	71.25	64.87	64.30	64.60	62.94	62.99	63.83	62.76

124/58

Chapter 8

	$\begin{aligned} & \text { 'delicious: \| dishes } \\ & \text { butfer } \end{aligned}$	dishes ! 1 typical of Spain
Conceptual level	Adjectives depend on nouns	
Data level	ADJ ${ }^{\curvearrowleft}$ Noun	Noun ${ }^{\curvearrowright}$ Adj
Classifier level	Feature ($s_{0}=A D J \wedge n_{0}=$ Noun $)$ has a high weight for Left	Feature ($s_{0}=$ Noun $\left.\wedge n_{0}=A D J\right)$ has a high weight for RIGHT

Source feature	Target feature	Transformation rule
any	no DEF-DET	remove all definite DETS
any	no IND-DET	remove all indefinite DETS
$P R=0 \%$	$P R \geq 50 \%$	switch subtrees to reach $P R=50 \%$ (with 5% error margin)
$P R=100 \%$	$P R \leq 50 \%$	switch subtrees to reach $P R=50 \%$ (with 5% error margin)
$P R=50 \%$	$P R=100 \%$	switch subtrees to reach $P R=75 \%$ (with 5% error margin)
$P R=50 \%$	$P R=0 \%$	switch subtrees to reach $P R=25 \%$ (with 5% error margin)

	min	med	\max	avg
Delexicalized	23.7	52.0	68.2	49.2
PoSLM selection	23.3	52.0	68.1	-0.1
PoSLM reordering	31.8	53.5	65.6	+2.3
WALS rewrite rules	27.9	55.2	68.3	+2.9
Multi-delex		66.9		
Multi-WALS		67.4		

		Target language																	
		Romance	Germanic	Slavic	Finno-Ugric	Semitic	Ancient												
$\begin{aligned} & \text { on } \\ & \text { 0 } \\ & \underset{\sim}{0} \\ & \stackrel{\Gamma}{0} \end{aligned}$	Romance	67.1\|	65.6		67.2	$60.4\|\|60.4\|\| 61.7$	63.1\|	63.5		63.0	$46.4\|\|50.8\|\| 52.5$	54.1\|	52.1		52.9	56.7\|	56.5		54.9
	Germanic	$61.2\|\|63.5\|\| 65.8$	65.9\|	63.1		65.8	61.3\|	62.2		63.2	$57.2\|\|58.6\|\| 58.5$	$41.2\|\|48.2\|\| 49.8$	$54.5\|\|57.1\|\| 56.7$						
	Slavic	$63.5\|\|61.7\|\| 66.0$	$63.8\|\|60.5\|\| 64.3$	72.6\|	68.4		71.8	$53.2\|\|57.0\|\| 58.4$	54.7\|	53.6		56.8	$59.0\|\|59.2\|\| 60.1$						
$\stackrel{\square}{8}$	Finno-Ugric	$46.3\|\|51.9\|\| 52.3$	$57.1\|\|56.2\|\| 57.6$	53.8\|	58.6		56.9	$64.1\|\|63.0\|\| 64.2$	$30.0\|\|43.6\|\| 41.5$	$50.8\|\|55.7\|\| 56.1$									
)	Semitic	$54.1\|\|54.2\|\| 54.1$	$40.6\|\|48.2\|\| 51.1$	$42.5\|\|54.6\|\| 56.1$	$30.8\|\|41.2\|\| 44.1$	$55.4\|\|55.6\|\| 54.8$	53.7\|	55.9		54.4									
\backsim	Ancient	$56.1\|49.2\| \mid 55.9$	$56.7\|\|51.5\|\| 56.1$	60.9\|	57.5		60.6	$52.2\|\|54.9\|\| 56.0$	$51.1\|47.0\| \mid 50.6$	62.7\|	60.0		62.6						

to Romance

to Germanic

to Semitic

Appendix A

Function StructuredTraining (x, y)
$\left[\begin{array}{l}c \leftarrow \operatorname{Initial}(x) \\ c^{+}, c^{-} \leftarrow \operatorname{OrACLE}(c, y, \theta) \\ \theta \leftarrow \operatorname{Update}\left(\theta, c^{+}, c^{-}\right)\end{array}\right.$
Function StructuredTrainingRestart (x, y)
$c \leftarrow \operatorname{INITIAL}(x)$ while $\neg \operatorname{FINAL}(c)$ do

$$
c^{+}, c^{-} \leftarrow \operatorname{ORACLE}(c, y, \theta)
$$

$$
\theta \leftarrow \operatorname{UPDATE}\left(\theta, c^{+}, c^{-}\right)
$$

$$
c \leftarrow c^{-}
$$

Function FindViolation $\left(c_{0}, y, \theta\right)$

```
Beam}\leftarrow{\mp@subsup{c}{0}{}
while \existsc Beam, ᄀFINAL(c) do
```

 Succ \(\leftarrow \cup_{c \in \operatorname{Beam}} \operatorname{NEXT}(c)\)
 Beam \(\leftarrow k\)-best(Succ, \(\theta\))
 if \(\forall c \in \operatorname{Beam}, \neg \operatorname{CORRECT}_{y}\left(c \mid c_{0}\right)\) then
 gold \(\leftarrow\left\{c \in \operatorname{Succ} \mid \operatorname{CorRECT}_{y}\left(c \mid c_{0}\right)\right\}\)
 return gold, Beam
 gold $\leftarrow\left\{c \in \operatorname{Beam} \mid \operatorname{CorRECT}_{y}\left(c \mid c_{0}\right)\right\}$
return gold, Beam

Function EarlyUpdateOracle $\left(c_{0}, y, \theta\right)$ gold, Beam \leftarrow FindVIoLATION $\left(c_{0}, y, \theta\right)$; return top $_{\theta}$ (gold), top ${ }_{\theta}$ (Beam);

Function MaxViolationOracle $\left(c_{0}, y, \theta\right)$
gold, Beam $\leftarrow \operatorname{FindViolAtion}\left(c_{0}, y, \theta\right)$;
candidates $\leftarrow\left\{\left(\right.\right.$ top $_{\theta}($ gold $)$, top $_{\theta}($ Beam $\left.\left.)\right)\right\}$;
while $\exists c \in B e a m, \neg \operatorname{FINAL}(c)$ do
Succ $\leftarrow \cup_{c \in \text { Beam }} \operatorname{NEXT}(c)$;
Beam $\leftarrow k$-best(Succ, θ);
$\operatorname{Succ}^{+} \leftarrow \cup_{c \in \text { gold }}\left\{c^{\prime} \in \operatorname{Next}(c) \mid \operatorname{CORRECT}{ }_{y}\left(c^{\prime} \mid c_{0}\right)\right\}$;
gold $\leftarrow k$-best(Succ ${ }^{+}, \theta$);
candidates \leftarrow candidates $+\left(\right.$ top $_{\theta}$ (gold), top $_{\theta}($ Beam $\left.)\right)$;
return $\operatorname{argmax}_{C^{+}, c^{-} \in \operatorname{candidates}}\left(\operatorname{score}_{\theta}\left(c^{-}\right)-\operatorname{score}_{\theta}\left(C^{+}\right)\right)$;

	ar	de	eu	fr	he	hu	ko	pl	sv	μ
GREEDY DYN	83.98	90.73	84.00	84.23	83.78	84.33	82.79	87.66	86.35	85.32
EARLY	85.03	92.74	84.42	86.02	85.39	85.63	82.73	89.60	87.00	86.51
IMP-EARLY	85.27	92.89	84.59	86.26	85.84	85.74	82.98	89.55	87.37	86.72
MAXV	85.06	92.77	84.59	86.10	85.53	85.57	82.68	89.42	87.16	86.54
IMP-MAXV	85.04	92.90	84.68	86.26	85.83	85.55	82.94	90.12	87.31	86.74

KL div	Baseline	Improved
EARLY	0.350	0.280
MAXV	0.357	0.277

$$
\begin{array}{|lc|}
\hline \rightarrow & \text { EARLY } \\
\rightarrow & \text { IMP-EARLY } \\
\rightarrow & \text { MAXV } \\
\hline
\end{array}
$$

Appendix B

DATA SPACE	
CAT-B	concatenate S-B and test data; train
TR-B	word-for-word translate S-B data; concatenate with test data; train
B-TR	word-for-word translate test data in B; concatenate with S-B data; train
PARAMETER SPACE	
B	train an S-B model; apply on test data
GLOSS-B	train an S-B model; apply on test data word-for-word translated in B
PARAM-B	train an S-B model; translate the parameters; apply on test data

		Swedish only		Danish data			Greek data			Danish parameters		
		baseline	CAT-sv	CAT-da	TR-da	da-TR	CAT-el	TR-el	el-TR	da	GLOSS-da	PARAM-da
A	IBM 1	53.9	26.5	57.0	31.1	29.6	74.3	35.9	37.4	66.0	28.3	33.3
E	HMM	35.3	15.3	41.9	20.5	16.8	58.3	26.9	26.4	46.7	16.4	25.8
R	IBM 4	33.9	12.3	35.8	16.4	14.0	50.0	20.6	21.7	49.1	14.8	24.3
P	IBM 1	68.7	73.3	58.7	73.8	74.0	47.4	71.9	71.5	67.0	72.2	71.1
\bigcirc	HMM	69.9	73.8	71.9	73.5	73.6	66.6	73.4	71.9	69.5	73.4	72.4
S	IBM 4	73.0	74.7	74.0	73.9	74.9	72.0	73.4	73.5	66.7	73.6	72.0

References i

AGIĆ V., Hovy D. \& SøGAARD A. (2015). If all you have is a bit of the bible: Learning pos taggers for truly low-resource languages. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), p. 268-272, Beijing, China: Association for Computational Linguistics.
Agić v., Johannsen A., Plank B., Martínez Alonso H., Schluter N. \& SøgaArd A. (2016). Multilingual projection for parsing truly low-resource languages. Transactions of the Association for Computational Linguistics, 4, 301-312.
BANEA C., MIHALCEA R., WIEbE J. \& HASSAN S. (2008). Multilingual subjectivity analysis using machine translation. In Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, p. 127-135, Honolulu, Hawaii: Association for Computational Linguistics.
COllins M. \& Roark B. (2004). Incremental parsing with the perceptron algorithm. In Proceedings of the 42 nd Meeting of the Association for Computational Linguistics (ACL'04), Main Volume, p. 111-118, Barcelona, Spain.
DAS D. \& PETROV S. (2011). Unsupervised part-of-speech tagging with bilingual graph-based projections. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, p. 600-609, Portland, Oregon, USA: Association for Computational Linguistics.

Duong L., COHn T., BIRd S. \& Cook P. (2015). Low resource dependency parsing: Cross-lingual parameter sharing in a neural network parser. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), p. 845-850, Beijing, China: Association for Computational Linguistics.
Ghoshal A., Swietojanski P. \& Renals S. (2013). Multilingual training of deep neural networks. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, p. 7319-7323: IEEE.

References ii

Goldberg Y. \& NivRe J. (2012). A dynamic oracle for arc-eager dependency parsing. In Proceedings of COLING 2012, p. 959-976, Mumbai, India: The COLING 2012 Organizing Committee.

Huang L., Fayong S. \& Guo Y. (2012). Structured perceptron with inexact search. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, p. 142-151, Montréal, Canada: Association for Computational Linguistics.

HWA R., Resnik P., Weinberg A. \& Kolak O. (2002). Evaluating translational correspondence using annotation projection. In Proceedings of 40th Annual Meeting of the Association for Computational Linguistics, p. 392-399, Philadelphia, Pennsylvania, USA: Association for Computational Linguistics.
Klementiev A., Titov I. \& Bhattarai B. (2012). Inducing crosslingual distributed representations of words. In Proceedings of COLING 2012, p. 1459-1474, Mumbai, India: The COLING 2012 Organizing Committee.

Klinger R. \& Cimiano P. (2015). Instance selection improves cross-lingual model training for fine-grained sentiment analysis. In Proceedings of the Nineteenth Conference on Computational Natural Language Learning, p. 153-163, Beijing, China: Association for Computational Linguistics.

Kozhevnikov M. \& Titov I. (2014). Cross-lingual model transfer using feature representation projection. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), p. 579-585, Baltimore, Maryland: Association for Computational Linguistics.
Lu B., TAN C., CARDIE C. \& K. Tsou B. (2011). Joint bilingual sentiment classification with unlabeled parallel corpora. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, p. 320-330, Portland, Oregon, USA: Association for Computational Linguistics.

References iii

MA X. \& XIA F. (2014). Unsupervised dependency parsing with transferring distribution via parallel guidance and entropy regularization. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), p. 1337-1348, Baltimore, Maryland: Association for Computational Linguistics.

MARTINS A. F. T. (2015). Transferring coreference resolvers with posterior regularization. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), p. 1427-1437, Beijing, China: Association for Computational Linguistics.
McDonald R., Nivre J., Quirmbach-Brundage Y., Goldberg Y., Das D., Ganchev K., Hall K., Petrov S., Zhang H., TÄckström O., Bedini C., Bertomeu Castelló N. \& Lee J. (2013). Universal dependency annotation for multilingual parsing. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), p. 92-97, Sofia, Bulgaria: Association for Computational Linguistics.

McDonald R., Petrov S. \& Hall K. (2011). Multi-source transfer of delexicalized dependency parsers. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, p. 62-72, Edinburgh, Scotland, UK.: Association for Computational Linguistics.
Naseem T., Barzilay R. \& Globerson A. (2012). Selective sharing for multilingual dependency parsing. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), p. 629-637, Jeju Island, Korea: Association for Computational Linguistics.

Nivre J., de Marneffe M.-C., Ginter F., Goldberg Y., Hajic J., Manning C. D., McDonald R., Petrov S., Pyysalo S., Silveira N., Tsarfaty R. \& Zeman D. (2016). Universal dependencies v1: A multilingual treebank collection. In N. C. C. Chair), K. Choukri, T. Declerck, S. Goggi, M. Grobelnik, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. ODIJK \& S. PIPERIDIS, Eds., Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), Paris, France: European Language Resources Association (ELRA).

References iv

Petrov S., DAS D. \& MCDonald R. (2012). A universal part-of-speech tagset. In N. C. C. Chair), K. Choukri, T. Declerck, M. U. Doğan, B. Maegaard, J. Mariani, A. Moreno, J. Odijk \& S. Piperidis, Eds., Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12), Istanbul, Turkey: European Language Resources Association (ELRA).
Rasooli M. S. \& Collins M. (2015). Density-driven cross-lingual transfer of dependency parsers. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, p. 328-338, Lisbon, Portugal: Association for Computational Linguistics.

Rigutini L., MAGgini M. \& Liu B. (2005). An em based training algorithm for cross-language text categorization. In Web Intelligence, 2005. Proceedings. The 2005 IEEE/WIC/ACM International Conference on, p. 529-535: IEEE.

Rosa R. \& ZAbokRTSky Z. (2015). Klcpos3 - a language similarity measure for delexicalized parser transfer. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), p. 243-249, Beijing, China: Association for Computational Linguistics.

TÄckström O., Das D., Petrov S., McDonald R. \& Nivre J. (2013). Token and type constraints for cross-lingual part-of-speech tagging. Transactions of the Association for Computational Linguistics, 1, 1-12.

TÄckström O., McDonald R. \& Uszkoreit J. (2012). Cross-lingual word clusters for direct transfer of linguistic structure. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, p. 477-487, Montréal, Canada: Association for Computational Linguistics.
Tiedemann J., Agić V. \& Nivre J. (2014). Treebank translation for cross-lingual parser induction. In Proceedings of the Eighteenth Conference on Computational Natural Language Learning, p. 130-140, Ann Arbor, Michigan: Association for Computational Linguistics.

References v

WAN X. (2009). Co-training for cross-lingual sentiment classification. In Proceedings of the Joint Conference of the 47 th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, p. 235-243, Suntec, Singapore: Association for Computational Linguistics.

Wang M. \& Manning C. D. (2014). Cross-lingual projected expectation regularization for weakly supervised learning. Transactions of the Association of Computational Linguistics, 2(1), 55-66.

WEI B. \& PAL C. (2010). Cross lingual adaptation: An experiment on sentiment classifications. In Proceedings of the ACL 2010 Conference Short Papers, p. 258-262, Uppsala, Sweden: Association for Computational Linguistics.

YAROWSKY D., NGAI G. \& WICENTOWSKI R. (2001). Inducing multilingual text analysis tools via robust projection across aligned corpora. In Proceedings of the first international conference on Human language technology research, p. 1-8: Association for Computational Linguistics.

YU Z., MAREČEK D., ŽABOKRTSKÝ Z. \& Zeman D. (2016). If you even don't have a bit of bible: Learning delexicalized pos taggers. In N. C. C. Chair), K. Choukri, T. Declerck, S. Goggi, M. Grobelnik, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. OdIJK \& S. PIPERIDIS, Eds., Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), Paris, France: European Language Resources Association (ELRA).

ZEMAN D. \& RESNIK P. (2008). Cross-language parser adaptation between related languages. In Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, p. 35-42.

