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A Zoo of FHEMPCZK-friendly concretely-efficient symmetric

crypto: How many designs?

2013: -

2014: -

2015: 1

2016: 4

2017: -

2018: 3

2019: 5

2020: 5

2021: 8

2022: 10

2023: 4 until April
source: mostly IACR eprint, plus selection from IEEE Access, ToSC, arxiv
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How did we get here?
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Implementation environments for symmetric cryptography

Efficiently provide confidentiality, authenticity, integrity

• until 1980s: dedicated machines, hardware implementing

DES, LFSR-based approaches

• since 1990s: software implementations become more relevant

in addition to hardware, see e.g. AES

• since 2010s: another boost for software-environments due to

virtualization
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Role of symmetric-key crypto and hashing in systems

User

System

KEM/DEM, PKI

Symmetric Crypto, Cryptographic hashing

AES, SHA-3, ...
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New cryptographic functionalities are new applications of sym-

metric cryptography

• FHE: Reducing ciphertext expansion, OPRFs, ...

• MPC: Distributed databases, private set intersection, data

analytics, but also new public-key signature schemes

• ZKP: Use-cases of zero-knowledge proofs:

• Set Membership Proofs (“I know a private key of one of the

public keys of this Merkle tree”)

• Data Commitments (“Here is the Merkle tree of the execution

trace of my program, I can open it at any point”).
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Role of symmetric-key crypto and hashing in systems

User

System

MPC, HE, ZKP

Symmetric Crypto, Cryptographic hashing

???, ???
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Transitions of use-cases in (symmetric) cryptography

• in the 1980s and 90s, there was a transition from hardware to
software.

• Hardware grew, but software grew much more.

• since the mid 2010s: we seem to be in a transition phase from
direct implementations to indirect implementations within
protocols aiming for ”high functionality cryptography”

• direct hardware and software implementations of course remain

relevant, but the area of indirect implementations is growing

fast.

• new ”virtual machines”, new ”metrics”, co-developments of

symmetric crypto with ”higher/more functional” crypto layers
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A Zoo of Ciphers for Hybrid Homomorphic Encryption, a.k.a.

Transciphering
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The ZK-friendly Hash Function Zoo

Type 1

”low degree only”

• Low-degree

y = xd

• Fast in Plain

• Many rounds

• Often more

constraints

• MiMC(16),

GMiMC(19),

Poseidon(19),

Neptune (21),

Poseidon2 (23)

Type 2

”non-procedural”, “fluid”

• Low-degree

equivalence

y = x1/d ⇒ x = yd

• Slow in Plain

• Fewer rounds

• Fewer constraints

• Friday(18), Vision

(19), Rescue(19),

Grendel(21),

Griffin (22),

Anemoi (22)

Type 3

”lookups”

• Lookup tables

y = T [x ]

• Very fast in Plain

• Even fewer rounds

• Constraints depend

on proof system

• Reinforced

Concrete (21),

Tip5 (23), Tip4

(23), RCp(23)
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The MPC/Sharing-friendly Symmetric Crypto Zoo

2015: LowMC

2016: MiMC, LegendrePRF

2018: CryptoDarkMatter

2019: GMiMC

2020: HadesMiMC

2021: Ciminion, ”CryptoDarkMatter++”

2022: Rain, AIM

2023: Hydra
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Open-sourcing implementations: zoos.iaik.tugraz.at

• Hybrid HE Use-Case:

• Extensive benchmarks in different HE libraries including

use-cases

• 16 implementations (various ciphers for various HE libraries),

before the count was 1.

• MPC Use-Cases:

• Implementations of MiMC, GMiMC, HadesMiMC, Rescue,

Ciminion, Hydra

• More elaborate framework allowing for various libraries, access

structures, still to come

• Zero-Knowledge Use-Cases:

• Zoo of plain implementations (8)

• Proof knowledge of preimages of hash functions (6)

• Proof membership witness in Merkle tree accumulators (6)
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No, how did we get here?
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An email from 2012... (1/3)

From: Christian Rechberger [mailto:c.rechberger@mat.dtu.dk]

Sent: Thursday, August 02, 2012 12:17 PM

To: Julia Borghoff; Anne Canteaut; Lars Ramkilde Knudsen; Gregor

Leander

Subject: The cipher LowMC2

Hi all, for some time already I’m looking into ways of building

ciphers with a small number of multiplications. A new design

"LowMC2" is briefly outlined as follows:

An idea for a simple key-alternating cipher is to use the map

x->x3 with x being elements in GF(2n) as a round function, and

iterate it n times.
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An email from 2012... (2/3)

This construction should have very good properties against various

linear or differential attacks, but an obvious attack vector

are interpolation/algebraic attacks. However, with n rounds

I’d think that as the degree is close to maximal, and almost

all coefficients are present in a polynomial description of

the output of the cipher. On the implementation side, even 2n

rounds would be very competitive in the settings I have in mind,

but of course it would be interesting to see with how little

rounds one can get away with.
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An email from 2012... (3/3)

A multiplication with always different random nxn matrices in

GF(2), for use as a linear layer in the round transformation,

but also for use as a way to derive round keys from the master

key is another part of the design.

So, my question is: Any thoughts on such a construction? Would

you be interested to work on this?

Best, Christian
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2017: https://lowmc.github.io/fewmul ”LeoCrypt v0”
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2017: https://lowmc.github.io/fewmul ”LeoCrypt v0”
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No really, how did we get here?
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My sources for inspiration at that time:

• 2009: ”Secure Two-Party Computation is Practical” by Benny

Pinkas, Thomas Schneider, Nigel P. Smart, and S. Williams

• 2011: ”Can Homomorphic Encryption be Practical?” by

Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan

• 2012: ”On The Distribution of Linear Biases: Three

Instructive Examples” by Mohamed Ahmed Abdelraheem,

Martin Agren, Peter Beelen, and Gregor Leander

• 2014: ”Zerocash: Decentralized Anonymous Payments from

Bitcoin” by Eli Ben Sasson, Alessandro Chiesa, Christina

Garman, Matthew Green, Ian Miers, Eran Tromer, Madars

Virza

19



Prior art for (Feistel) MiMC

• PURE cipher [JK97] based on the KN Feistel cipher [NK95]

(xR + ki )
3

xL xRki

yL yR

20



More prior art, for F(p) ciphers (1/2)
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More prior art, for F(p) ciphers (2/2)

Richard Schroeppel: ”The Hasty Pudding Cipher”, submission to

the NIST AES Competition, 1998.

First(?) F(p) cipher.

First tweakable block cipher

Flexible parameterization (blocksize, keysize), maybe a first too?
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Ok. Where do we go from here?
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On the ”stability” of symmetric crypto and hashing

• MPC-friendly: Seems the most stable. Focus cryptanalysis

efforts in standardization process/competition?

• HE-friendly: 4-5 underlying HE schemes are under

standardization at ISO. Most, but not all schemes have a

matching transciphering proposal.

• ZK-friendly: Most dynamic development at the moment.

In general, more cryptanalysis is definitely usefull and needed.

24



Underexplored directions?

• MPC-friendly hashing? Brought up by Luis Brandao in recent

NIST call.

• On Hardware-friendly Sharing-friendly F(p) ciphers. Also
relevant for cheap side-channel countermeasures.

• Mathias Oberhuber: MiMC+ECC synergies in HW

implementations. Both use multipliers same-size multiplier in

in GF(2n) or GF(p).

• FX Standaert et al. AES-like F(p) ciphers!
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Classes of open problems

• How far can we go with signature schemes based symmetric

crypto only? Signature size, computation effort?

• How far can we go with reducing computational overhead of

hybrid homomorphic encryption?

• Holy grail in ZK-friendly hash function design: Simultaneously

good performance in both plain and ZK

• Cryptanalysis of various new schemes in this domain
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Thoughts on ”Theory” vs. ”Practice”

• Provable Security?

• Modes of operation: do proofs carry over from F2 to Fp?

• SPN vs. Partial-SPN: First positive results by Guo, Standaert,

Wang, Wang, Yu (FSE 22)

• Stronger model, like indifferentiability?

• ”Asymptotic analysis” / ”asymptotic designs”.

• Input: blocksize, security level

• Output: concrete design with security claim

• Some designs allow for it, e.g. HPC, LowMC, MiMC,

Poseidon, ...

• Pros: Flexibility

• Cons: Less focused cryptanalysis.
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Thoughts on ”Theory” vs. ”Practice”: A vision
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Conclusions

• Lots of exciting new developments in ”high functionality

cryptography” - some are likely here to stay

• ... leading to lots of exciting research for design and analysis

of symmetric crypto and hashing

• Industry interest is growing, demand for standards to support

interoperability and increase trust
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S-Box sizes, over time. A selection

• mid 1970s, 6to4-bit: DES S-box just fits on a Chip

• mid 1990s, 8to8-bit: e.g. Rijndael/AES, attractive for good

performance in both HW and SW
• since 2000, smaller, more ”lightweight” S-boxes

• 3to3-bit (e.g. Printcipher, LowMC)

• 4to4-bit (e.g. Noekeon, Present, Klein, Prince)

• 5to5-bit (e.g. Keccak, Ascon)

• since 2015, big and huge S-boxes
• n to n-bit, elements in GF(2n)

• for n from 100 to 1000 (e.g. MiMC, Rain)

• n to n-bit, elements in GF(p)

• for n from 128 to ≥1000 (e.g. MiMC)

• for n from 17 to 63 (e.g. Pasta)

• for n from 8 to 128 (e.g. HadesMiMC, Poseidon, Marvellous)

• for n from 8 to 128 (e.g. HadesMiMC, Poseidon, Marvellous)

• set of size around 29 to 210 to set of same size: (elements in

Zn) ReinforcedConcrete (RChash) 31
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Example: Hybrid Homomorphic encryption

Based on: ”Pasta – A Case for Hybrid Homomorphic Encryption” by

Christoph Dobraunig, Lorenzo Grassi, Lukas Helminger, Christian

Rechberger, Markus Schofnegger, Roman Walch

33



Cloud Computing

• Era of cloud computing:

• Outsource computation to more powerful server

• Server calculates statistics

• Machine learning as a service

• Use pre-trained, server-side ML models for classification

• . . . Linear regression

• . . . Deep neural networks

𝛾 = 𝛽·𝜒 + 𝜖 5
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Outsourcing Computation

• Simple outsourcing

Data: 0101000111 Function: f ()

0101000111

3

f (0101000111)

� Reveals Data
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Homomorphic Encryption

• Operate on

encrypted, unknown

Data

• Without knowing

secret decryption key

• Schemes and Libraries:
• BGV [BGV12]: Integers, implemented in HElib [HS20]

• BFV [Bra12; FV12]: Integers, implemented in

SEAL [sealcrypto]

• Problem: Noise in ciphertexts!

• Metric: multiplicative depth
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Outsourcing Computation - Homomorphic Encryption

• Simple outsourcing reveals data

⇒ Homomorphic encryption

HE Key: ¤

Data: 0101000111 Function: f ()

[0101000111] µ

[3] µ

[f (0101000111)] µ

� Huge Ciphertext Expansion
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Hybrid Homomorphic Encryption

• Homomorphic ciphertext are several orders of magnitude
larger then plaintext

• e.g., 7.4 MB for ≤ 250 kB of data (often significantly less data)

⇒ Increased data transfer!

• Solution:

• Send data encrypted using symmetric ciphers

• Ciphertexts have same size as plaintexts

• e.g., 250 kB for 250 kB of data

• Homomorphically decrypt data before use case

⇒ No ciphertext expansion

38



Outsourcing Computation - Hybrid HE

• Hybrid homomorphic encryption

HE Key: ¤, Sym Key: ¤

Data: 0101000111 Function: f ()

[¤] µ

[0101000111] µ
[�] µ

[3] µ

[f (0101000111)] µ
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Hybrid Homomorphic Encryption (cont.)

• Requires Sending of homomorphically encrypted symmetric
key

• Ciphertext expansion!

• Amortized for large data

• Server evaluates symmetric decryption circuit before use case

• Contributes to multiplicative depth of homomorphic

computation

• Requires shallow decryption circuit

⇒ Tradeoff: data transmission vs. server runtime

• Usable for constrained clients in slow networks!
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Client Runtime Comparison

• Encryption + upload time depending on network speed:

101 103 105 107 109
101

103

105

107

Network Speed [kbps]

C
lie

n
t

R
u

n
ti

m
e

[s
]

Just HE

Hybrid HE
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Motivation

• Homomorphic encryption use case

• Different cost metric

• Depth of the circuit important

• Focus on low-round designs

• Avoid large classes of attacks in low-round construction

• “Randomize” affine layers

• Efficient nonlinear layers for low depth?

42



Evolution of encryption schemes used for HHE

baseline 2012: AES: Efficient implementation of existing designs

new approach: few ANDs and low depth

2015: LowMC: Partial Sboxes, few ANDs, in an classical block cipher

2016: Kreyvium: Different tradeoffs from an improved steam cipher

design

new: make relevant computations independent of the key

2016: FLIP: Offloading key register mixing

2018: Rasta: Offloading expensive affine layer generations

2020: Dasta: Make offloaded computation cheaper

2020: Masta: F(p) variant of Rasta, independent of this work

additional new idea: exploit structure of BFV and BGV schemes

2021: Pasta: focus on F(p), see later

2021: Fasta: F(2), speed-gains for concrete sizes

additional new idea: deal with noisy properties of CKKS

2021: Hera: 43



High-Level Take-Aways on HHE part

• Client Overhead:
• Bandwidth savings:

• Only send actual data size – Reduction by factor ≥ 20 ...

Often significantly more!

• Runtime savings:

• Symmetric encryption ≥ 100× faster as homomorphic

encryption

• Server overhead:
• Addition to multiplicative depth:

• Binary use case: Agrasta: 4 cipher-cipher and 5 plain-cipher

multiplications

• Integer use case: Pasta: 4 cipher-cipher and 6 plain-cipher

multiplications

• Runtime overhead:

• Depends on use case!

• Large depth use cases: small factors ≤ 10

• Small depth use cases: larger factors up to 1000
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Example: MPC-in-the-head PK Signatures

or: how to go from signature sizes above 1MB to less than 5kB in

case you only want to rely on symmetric crypto

Based on: ”Shorter Signatures Based on Tailor-Made Minimalist

Symmetric-Key Crypto” by

Christoph Dobraunig and Daniel Kales and Christian Rechberger and

Markus Schofnegger and Greg Zaverucha
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Recent Developments
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The AES-Sbox

Inversion the only non-linear operation in AES

• Affine operations “free” in many MPC protocols (linear secret

sharing)

s x−1 t



1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0
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·
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+



1

1

0

0

0

1

1

0


in out

AES Sbox
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Rain

Optimize one-way function for the specific use case:

• Large inverses over F2n for non-linearity

• Affine Transform without : Constant addition + multiplication

with invertible matrix over F2 for linear mixing

• That is it, no key schedule, very few rounds

x x−1 M1

k ⊕ c(1)

x−1 M2

k ⊕ c(2) k ⊕ c(3)

x−1

k

y
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Signature schemes in the PQC Competition

Scheme |pk| Sig. size Sign Verify

Picnic1-L1-FS 32 32 860 1.60 1.31

Picnic3-L1 32 12 468 5.27 3.99

sphincss128sha256simple 32 8 080 248.37 0.75

sphincsf128sha256simple 32 16 976 14.73 1.79

Dilithium2 1 312 2 420 0.07 0.03

Falcon-512 897 666 0.11 0.02

Rainbow Ia-Classic 161 600 66 0.02 0.01

GeMSS128v2 352 188 33 320.99 0.08

Banquet-AES-128 32 19 776 7.03 5.32

Banquet-AES-128 32 13 284 47.31 43.03

Rainier3-128 (N = 16, τ = 33) 32 8 544 0.87 0.81

Rainier3-128 (N = 107, τ = 20) 32 6 176 2.96 2.92

Rainier3-128 (N = 1624, τ = 14) 32 4 880 28.28 28.16

Rainier3-128 (N = 7121, τ = 11) 32 4 496 105.98 105.15

Table 1: Comparison of public-key and signature sizes at the 128-bit

security level for the third-round candidates of the NIST PQC

standardization project and the designs explored in this work. Size in

bytes, time in ms. 49



Security Level 128-bit pre-quantum, Timeline

Year MPCitH + Standard MPCitH + Custom

2016
ZKBoo, SHA-256: 1314.0 KB –

ZKBoo, AES: ??? KB –

2017 ZKB++, AES: 209.0 KB Picnic1 ZKB++, LowMC: 32.9 KB

2018 – Picnic2 KKW, LowMC: 12.3 KB

2019 BBQ, AES: 31.6 KB Picnic3 KKW, LowMC: 12.6 KB

2021
Banquet, AES: 14.8 KB –

RainS, AES: 10.8 KB RainS, Rain-3: 4.4 KB
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Security level 256-bit pre-quantum, timeline

Year Size

2017 Picnic1 ZKBoo++, LowMC: 128.2 KB

2018 Picnic2 KKW, LowMC: 46.1 KB

2019 Picnic3 KKW, LowMC: 48.7 KB

2021 RainS, Rain-3: 20.0 KB
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Performance
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Example: ZKP. Commitments schemes and set-membership proofs

Based on: ”Reinforced Concrete: Fast Hash Function for Zero

Knowledge Proofs and Verifiable Computation” by

Mario Barbara, Lorenzo Grassi, Dmitry Khovratovich, Reinhard

Lüftenegger, Christian Rechberger, Markus Schofnegger, Roman Walch
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Proof aggregation scheme

IOP system

Commitment scheme

Set membership proof protocol

KZG FRI

Verifiable Computation ZK Membership Proofs

Hash

Hash

Ex.: Halo

Ex.: Plookup

Merkle tree

as accumulator

Merkle tree

as commit-reveal

Hash functions in set membership and verifiable computation

protocols.
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Open Problem

ZK-friendly hash function can’t be nearly as fast as normal ones:

Hash ZK time x86 time Cryptanalysis

Blake-2 100 1 10

Poseidon 1 100 1

Rescue 1 1000 1

Pedersen 4 500 100

We want:

• Faster hash on x86;

• Still ZK friendly

• Relies on long-term analysis.
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Snapshot of Reinforced Concrete
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Comparison with other Hash Functions

Name Performance

Zero knowledge Plain

R1CS Plookup

(gates) (ms)

Poseidon-BLS/BN 243 438 19

Rescue-BLS/BN 288 364 415

Rescue-Prime-BLS/BN 252 321 362

Feistel-MiMC-BLS/BN 1326 1326 34

SHA-256 27534 ≈ 3000 0.37

Blake2s 21006 ≈ 2000 0.22

Sinsemilla 869∗ 670 131

Reinforced Concrete-BN/BLS - 267 3.3

Reinforced Concrete-FRI - 265 1.03

Table 2: Hashing 512 bits of data (two field elements) with different

functions.
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Cryptanalysis bounties/challenges/...

• Picnic/LowMC: Three rounds of challenges since 2020:

• winners: Subhadeep Banik, Khashayar Barooti, Serge

Vaudenay, Hailun Yan, F. Betül Durak, Itai Dinur

• https://lowmcchallenge.github.io/

• ZKProofs-friendly hashes, since 11/2021:

• winners: Augustin Bariant, Clémence Bouvier, Gaëtan Leurent,

Léo Perrin

• https://www.zkhashbounties.info/
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Algebraic Modelling of Bar

Our algebraic model of Bar is
x = x1b1 + x2b2 + · · ·+ xnbn

0 =
∏si−1

k=0 (xi − k), 1 ≤ i ≤ n

yi = Li (xi ), 1 ≤ i ≤ n

y = y1b1 + y2b2 + · · ·+ ynbn

with

bi =
∏
j>i

sj = si+1si+2 . . . sn,

and Li = interpolation polynomial of Si over Fp

59



Idea behind Bar

• Ordinary base-b expansion: fixed base b

x = x1 · bn−1 + x2 · bn−2 + . . .+ xn−1 · b + xn · 1

with 0 ≤ xi < b. E.g.

• Our expansion: variable base s1, . . . , sn

x = x1 · s2s3 · · · sn + x2 · s3s4 · · · sn + · · ·+ xn−1 · sn + xn · 1

with 0 ≤ xi < si .

• Variable base  well-balanced decomposition of p − 1 (later)

• s1, . . . , sn different for each prime
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Decomp: The Decomposition Function

The decomposition Decomp : Fp → Zs1 × . . .× Zsn expands x ∈ Fp

as

x = x1 · s2s3 · · · sn + x2 · s3s4 · · · sn + · · ·+ xn−1 · sn + xn

So we have: x ←→ (x1, . . . , xn)
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SBox: The Centerpiece

• Let (v1, v2, . . . , vn) := Decomp(p − 1) ∈ Zs1 × . . .× Zsn

• Take p′ := next smaller prime of min1≤i≤n vi

• Then SBox : (x1, . . . , xn) 7→ (y1, . . . , yn) is defined as

yi := Si (xi ) :=

f (xi ) if xi < p′,

xi if xi ≥ p′,
(1)

where f denotes a permutation of Fp′ = Zp′

• f with maximal degree over Fp′ (and dense representation)

62



Comp: The Composition Function

• Decomp : x 7→ (x1, . . . , xn)

• SBox : (x1, . . . , xn) 7→ (y1, . . . , yn)

• Comp : (y1, . . . , yn) 7→ y

• Composition given by

y = y1 · s2s3 · · · sn + y2 · s3s4 · · · sn + · · ·+ yn−1 · sn + yn

• Overall we have

Bar = Comp ◦ SBox ◦ Decomp
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The Pasta Design Strategy – Nonlinear Layer

XOFN , i

public

KL A0,L

K = KL||KR

KR A0,R

[
2I I

I 2I

] S ′

S ′

A1,L

A1,R

[
2I I

I 2I

] S ′

S ′

. . .

. . .

S

S
...

S

S

Ar ,L

Ar ,R

[
2I I

I 2I

] KN,i

key dependent

. . .

. . .

• S-Boxes over Fp with dlog2(p)e ≥ 16

• Two layers S ′ and S

• We want to have a low overall degree

• Depth directly impacts performance

• Lowest nonlinear degree is 2

→ Search for efficient degree-2 S-Box
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The Pasta Design Strategy – Option 1: χ-Like S-Box

• Defined by

[χ(~x)]i = xi + xi+2 + xi+1xi+2

• In general no permutation over Ft
p

• Used by e.g. Masta

• Efficient evaluation using rotations

χ(~x) = ~x + rot2(~x) ◦ (~1 + rot1(~x)).
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The Pasta Design Strategy – Option 2: Feistel-Like S-Box I

• Defined by

S ′(x0‖x1‖ · · · ‖xs−1)

= x0‖(x0)2 + x1‖(x1)2 + x2‖ · · · ‖(xs−2)2 + xt−1.

• Can also be efficiently implemented using rotations

S ′(~x) = ~x +
(
rot(−1) (~x) ◦ ~m

)2
,

• ~m = [0, 1, . . . , 1]T ∈ Ft
p is a masking vector
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The Pasta Design Strategy – Option 3: Feistel-Like S-Box II

• Defined by

S ′′(x0‖x1‖ · · · ‖xt−1)

= x0‖x1‖x0x1 + x2‖x1x2 + x3‖ · · · ‖xt−3xt−2 + xt−1.

• Can also be efficiently implemented using rotations

S ′′(~x) = rot(−1)(~x) ◦ rot(−2)(~x) ◦ ~m + ~x

• ~m = [0, 0, 1, . . . , 1]T ∈ Fs
p is a masking vector
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The Pasta Design Strategy – S-Box Comparison

• Compare homomorphic operations and multiplicative depth

S-box pt-ct Add ct-ct Add pt-ct Mul ct-ct Mul Rot pt-ct Depth ct-ct Depth

χ 1 2 1 1 3 1 1

S ′ - 1 1 1 1 1 1

S ′′ - 1 1 1 2 1 1

• We chose S ′ for efficiency
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The Pasta Design Strategy – Degree-2 S-Box (Layer S ′)

XOFN , i

public

KL A0,L

K = KL||KR

KR A0,R

[
2I I

I 2I

] S ′

S ′

A1,L

A1,R

[
2I I

I 2I

] S ′

S ′

. . .

. . .

S

S
...

S

S

Ar ,L

Ar ,R

[
2I I

I 2I

] KN,i

key dependent

. . .

. . .

• Feistel-like S-Box S ′ defined by [S ′(~x)]0 = x0 and

[S ′(~x)]i = xi + (xi−1)2 for i > 0

• Only one multiplication per word for i > 0

• Few issues for 3-round design (our goal)

• Overall degree 23 = 8 too weak against linearization (large

state size)

• Low-degree inverse (degree 2)
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The Pasta Design Strategy – Degree-3 S-Box (Layer S)

XOFN , i

public

KL A0,L

K = KL||KR

KR A0,R

[
2I I

I 2I

] S ′

S ′

A1,L

A1,R

[
2I I

I 2I

] S ′

S ′

. . .

. . .

S

S
...

S

S

Ar ,L

Ar ,R

[
2I I

I 2I

] KN,i

key dependent

. . .

. . .

• Simple degree-3 S-Box defined by [S ′(~x)]i = x3i

• Bonus: High-degree inverse even without truncation

• Overall degree of 22 · 3 = 12 sufficient
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Conclusion on Pasta HHE work

• Hybrid Homomorphic Encryption:

• Tradeoff: Client upload size vs server runtime

• Majority of ciphers for HHE over Z2

• Bad performance for integer use cases

• Design of Pasta

• Optimized HHE cipher over Fp

• Paper: https://eprint.iacr.org/2021/731.pdf

• Extensive benchmarks in different HE libraries including use
cases

• Framework:

https://github.com/IAIK/hybrid-HE-framework
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