
On the history of FHEMPCZK-friendly

symmetric crypto

Christian Rechberger, TU Graz

LeoCrypt23

A Zoo of FHEMPCZK-friendly concretely-efficient symmetric

crypto: How many designs?

2013: -

2014: -

2015: 1

2016: 4

2017: -

2018: 3

2019: 5

2020: 5

2021: 8

2022: 10

2023: 4 until April
source: mostly IACR eprint, plus selection from IEEE Access, ToSC, arxiv

1

How did we get here?

2

Implementation environments for symmetric cryptography

Efficiently provide confidentiality, authenticity, integrity

• until 1980s: dedicated machines, hardware implementing

DES, LFSR-based approaches

• since 1990s: software implementations become more relevant

in addition to hardware, see e.g. AES

• since 2010s: another boost for software-environments due to

virtualization

3

Role of symmetric-key crypto and hashing in systems

User

System

KEM/DEM, PKI

Symmetric Crypto, Cryptographic hashing

AES, SHA-3, ...

4

New cryptographic functionalities are new applications of sym-

metric cryptography

• FHE: Reducing ciphertext expansion, OPRFs, ...

• MPC: Distributed databases, private set intersection, data

analytics, but also new public-key signature schemes

• ZKP: Use-cases of zero-knowledge proofs:

• Set Membership Proofs (“I know a private key of one of the

public keys of this Merkle tree”)

• Data Commitments (“Here is the Merkle tree of the execution

trace of my program, I can open it at any point”).

5

Role of symmetric-key crypto and hashing in systems

User

System

MPC, HE, ZKP

Symmetric Crypto, Cryptographic hashing

???, ???

6

Transitions of use-cases in (symmetric) cryptography

• in the 1980s and 90s, there was a transition from hardware to
software.

• Hardware grew, but software grew much more.

• since the mid 2010s: we seem to be in a transition phase from
direct implementations to indirect implementations within
protocols aiming for ”high functionality cryptography”

• direct hardware and software implementations of course remain

relevant, but the area of indirect implementations is growing

fast.

• new ”virtual machines”, new ”metrics”, co-developments of

symmetric crypto with ”higher/more functional” crypto layers

7

A Zoo of Ciphers for Hybrid Homomorphic Encryption, a.k.a.

Transciphering

8

The ZK-friendly Hash Function Zoo

Type 1

”low degree only”

• Low-degree

y = xd

• Fast in Plain

• Many rounds

• Often more

constraints

• MiMC(16),

GMiMC(19),

Poseidon(19),

Neptune (21),

Poseidon2 (23)

Type 2

”non-procedural”, “fluid”

• Low-degree

equivalence

y = x1/d ⇒ x = yd

• Slow in Plain

• Fewer rounds

• Fewer constraints

• Friday(18), Vision

(19), Rescue(19),

Grendel(21),

Griffin (22),

Anemoi (22)

Type 3

”lookups”

• Lookup tables

y = T [x]

• Very fast in Plain

• Even fewer rounds

• Constraints depend

on proof system

• Reinforced

Concrete (21),

Tip5 (23), Tip4

(23), RCp(23)

9

The ZK-friendly Hash Function Zoo

Type 1

”low degree only”

• Low-degree

y = xd

• Fast in Plain

• Many rounds

• Often more

constraints

• MiMC(16),

GMiMC(19),

Poseidon(19),

Neptune (21),

Poseidon2 (23)

Type 2

”non-procedural”, “fluid”

• Low-degree

equivalence

y = x1/d ⇒ x = yd

• Slow in Plain

• Fewer rounds

• Fewer constraints

• Friday(18), Vision

(19), Rescue(19),

Grendel(21),

Griffin (22),

Anemoi (22)

Type 3

”lookups”

• Lookup tables

y = T [x]

• Very fast in Plain

• Even fewer rounds

• Constraints depend

on proof system

• Reinforced

Concrete (21),

Tip5 (23), Tip4

(23), RCp(23)

9

The ZK-friendly Hash Function Zoo

Type 1

”low degree only”

• Low-degree

y = xd

• Fast in Plain

• Many rounds

• Often more

constraints

• MiMC(16),

GMiMC(19),

Poseidon(19),

Neptune (21),

Poseidon2 (23)

Type 2

”non-procedural”, “fluid”

• Low-degree

equivalence

y = x1/d ⇒ x = yd

• Slow in Plain

• Fewer rounds

• Fewer constraints

• Friday(18), Vision

(19), Rescue(19),

Grendel(21),

Griffin (22),

Anemoi (22)

Type 3

”lookups”

• Lookup tables

y = T [x]

• Very fast in Plain

• Even fewer rounds

• Constraints depend

on proof system

• Reinforced

Concrete (21),

Tip5 (23), Tip4

(23), RCp(23)

9

The MPC/Sharing-friendly Symmetric Crypto Zoo

2015: LowMC

2016: MiMC, LegendrePRF

2018: CryptoDarkMatter

2019: GMiMC

2020: HadesMiMC

2021: Ciminion, ”CryptoDarkMatter++”

2022: Rain, AIM

2023: Hydra

10

Open-sourcing implementations: zoos.iaik.tugraz.at

• Hybrid HE Use-Case:

• Extensive benchmarks in different HE libraries including

use-cases

• 16 implementations (various ciphers for various HE libraries),

before the count was 1.

• MPC Use-Cases:

• Implementations of MiMC, GMiMC, HadesMiMC, Rescue,

Ciminion, Hydra

• More elaborate framework allowing for various libraries, access

structures, still to come

• Zero-Knowledge Use-Cases:

• Zoo of plain implementations (8)

• Proof knowledge of preimages of hash functions (6)

• Proof membership witness in Merkle tree accumulators (6)

11

zoos.iaik.tugraz.at

No, how did we get here?

12

An email from 2012... (1/3)

From: Christian Rechberger [mailto:c.rechberger@mat.dtu.dk]

Sent: Thursday, August 02, 2012 12:17 PM

To: Julia Borghoff; Anne Canteaut; Lars Ramkilde Knudsen; Gregor

Leander

Subject: The cipher LowMC2

Hi all, for some time already I’m looking into ways of building

ciphers with a small number of multiplications. A new design

"LowMC2" is briefly outlined as follows:

An idea for a simple key-alternating cipher is to use the map

x->x3 with x being elements in GF(2n) as a round function, and

iterate it n times.

13

An email from 2012... (2/3)

This construction should have very good properties against various

linear or differential attacks, but an obvious attack vector

are interpolation/algebraic attacks. However, with n rounds

I’d think that as the degree is close to maximal, and almost

all coefficients are present in a polynomial description of

the output of the cipher. On the implementation side, even 2n

rounds would be very competitive in the settings I have in mind,

but of course it would be interesting to see with how little

rounds one can get away with.

14

An email from 2012... (3/3)

A multiplication with always different random nxn matrices in

GF(2), for use as a linear layer in the round transformation,

but also for use as a way to derive round keys from the master

key is another part of the design.

So, my question is: Any thoughts on such a construction? Would

you be interested to work on this?

Best, Christian

15

2017: https://lowmc.github.io/fewmul ”LeoCrypt v0”

16

2017: https://lowmc.github.io/fewmul ”LeoCrypt v0”

17

No really, how did we get here?

18

My sources for inspiration at that time:

• 2009: ”Secure Two-Party Computation is Practical” by Benny

Pinkas, Thomas Schneider, Nigel P. Smart, and S. Williams

• 2011: ”Can Homomorphic Encryption be Practical?” by

Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan

• 2012: ”On The Distribution of Linear Biases: Three

Instructive Examples” by Mohamed Ahmed Abdelraheem,

Martin Agren, Peter Beelen, and Gregor Leander

• 2014: ”Zerocash: Decentralized Anonymous Payments from

Bitcoin” by Eli Ben Sasson, Alessandro Chiesa, Christina

Garman, Matthew Green, Ian Miers, Eran Tromer, Madars

Virza

19

Prior art for (Feistel) MiMC

• PURE cipher [JK97] based on the KN Feistel cipher [NK95]

(xR + ki)
3

xL xRki

yL yR

20

More prior art, for F(p) ciphers (1/2)

21

More prior art, for F(p) ciphers (2/2)

Richard Schroeppel: ”The Hasty Pudding Cipher”, submission to

the NIST AES Competition, 1998.

First(?) F(p) cipher.

First tweakable block cipher

Flexible parameterization (blocksize, keysize), maybe a first too?

22

Ok. Where do we go from here?

23

On the ”stability” of symmetric crypto and hashing

• MPC-friendly: Seems the most stable. Focus cryptanalysis

efforts in standardization process/competition?

• HE-friendly: 4-5 underlying HE schemes are under

standardization at ISO. Most, but not all schemes have a

matching transciphering proposal.

• ZK-friendly: Most dynamic development at the moment.

In general, more cryptanalysis is definitely usefull and needed.

24

Underexplored directions?

• MPC-friendly hashing? Brought up by Luis Brandao in recent

NIST call.

• On Hardware-friendly Sharing-friendly F(p) ciphers. Also
relevant for cheap side-channel countermeasures.

• Mathias Oberhuber: MiMC+ECC synergies in HW

implementations. Both use multipliers same-size multiplier in

in GF(2n) or GF(p).

• FX Standaert et al. AES-like F(p) ciphers!

25

Classes of open problems

• How far can we go with signature schemes based symmetric

crypto only? Signature size, computation effort?

• How far can we go with reducing computational overhead of

hybrid homomorphic encryption?

• Holy grail in ZK-friendly hash function design: Simultaneously

good performance in both plain and ZK

• Cryptanalysis of various new schemes in this domain

26

Thoughts on ”Theory” vs. ”Practice”

• Provable Security?

• Modes of operation: do proofs carry over from F2 to Fp?

• SPN vs. Partial-SPN: First positive results by Guo, Standaert,

Wang, Wang, Yu (FSE 22)

• Stronger model, like indifferentiability?

• ”Asymptotic analysis” / ”asymptotic designs”.

• Input: blocksize, security level

• Output: concrete design with security claim

• Some designs allow for it, e.g. HPC, LowMC, MiMC,

Poseidon, ...

• Pros: Flexibility

• Cons: Less focused cryptanalysis.

27

Thoughts on ”Theory” vs. ”Practice”: A vision

28

Conclusions

• Lots of exciting new developments in ”high functionality

cryptography” - some are likely here to stay

• ... leading to lots of exciting research for design and analysis

of symmetric crypto and hashing

• Industry interest is growing, demand for standards to support

interoperability and increase trust

29

On the history of FHEMPCZK-friendly

symmetric crypto

Christian Rechberger, TU Graz

LeoCrypt23

30

S-Box sizes, over time. A selection

• mid 1970s, 6to4-bit: DES S-box just fits on a Chip

• mid 1990s, 8to8-bit: e.g. Rijndael/AES, attractive for good

performance in both HW and SW
• since 2000, smaller, more ”lightweight” S-boxes

• 3to3-bit (e.g. Printcipher, LowMC)

• 4to4-bit (e.g. Noekeon, Present, Klein, Prince)

• 5to5-bit (e.g. Keccak, Ascon)

• since 2015, big and huge S-boxes
• n to n-bit, elements in GF(2n)

• for n from 100 to 1000 (e.g. MiMC, Rain)

• n to n-bit, elements in GF(p)

• for n from 128 to ≥1000 (e.g. MiMC)

• for n from 17 to 63 (e.g. Pasta)

• for n from 8 to 128 (e.g. HadesMiMC, Poseidon, Marvellous)

• for n from 8 to 128 (e.g. HadesMiMC, Poseidon, Marvellous)

• set of size around 29 to 210 to set of same size: (elements in

Zn) ReinforcedConcrete (RChash) 31

G SPNs with Partial Nonlinear Layers

S

S

S

S

S

S

S

S

S

S

S

S

. . .

. . .

S

S

SPN

(e.g., SHARK in

1996)

S

S

S

S

. . .

. . .

Identity

+

Affine Layers

P-SPN since 2010

(e.g., ARMADILLO,

Zorro, LowMC)

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

. . .

. . .

. . .

. . .

S

S

S

S

S

S

Identity

+

Affine Layers

Hades since 2019

(e.g., HadesMiMC,

Poseidon, Ciminion,

Hydra, Poseidon2)

32

G SPNs with Partial Nonlinear Layers

S

S

S

S

S

S

S

S

S

S

S

S

. . .

. . .

S

S

SPN

(e.g., SHARK in

1996)

S

S

S

S

. . .

. . .

Identity

+

Affine Layers

P-SPN since 2010

(e.g., ARMADILLO,

Zorro, LowMC)

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

. . .

. . .

. . .

. . .

S

S

S

S

S

S

Identity

+

Affine Layers

Hades since 2019

(e.g., HadesMiMC,

Poseidon, Ciminion,

Hydra, Poseidon2)

32

G SPNs with Partial Nonlinear Layers

S

S

S

S

S

S

S

S

S

S

S

S

. . .

. . .

S

S

SPN

(e.g., SHARK in

1996)

S

S

S

S

. . .

. . .

Identity

+

Affine Layers

P-SPN since 2010

(e.g., ARMADILLO,

Zorro, LowMC)

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

. . .

. . .

. . .

. . .

S

S

S

S

S

S

Identity

+

Affine Layers

Hades since 2019

(e.g., HadesMiMC,

Poseidon, Ciminion,

Hydra, Poseidon2)
32

Example: Hybrid Homomorphic encryption

Based on: ”Pasta – A Case for Hybrid Homomorphic Encryption” by

Christoph Dobraunig, Lorenzo Grassi, Lukas Helminger, Christian

Rechberger, Markus Schofnegger, Roman Walch

33

Cloud Computing

• Era of cloud computing:

• Outsource computation to more powerful server

• Server calculates statistics

• Machine learning as a service

• Use pre-trained, server-side ML models for classification

• . . . Linear regression

• . . . Deep neural networks

𝛾 = 𝛽·𝜒 + 𝜖 5

34

Outsourcing Computation

• Simple outsourcing

Data: 0101000111 Function: f ()

0101000111

3

f (0101000111)

� Reveals Data

35

Outsourcing Computation

• Simple outsourcing

Data: 0101000111 Function: f ()

0101000111

3

f (0101000111)

� Reveals Data

35

Homomorphic Encryption

• Operate on

encrypted, unknown

Data

• Without knowing

secret decryption key

• Schemes and Libraries:
• BGV [BGV12]: Integers, implemented in HElib [HS20]

• BFV [Bra12; FV12]: Integers, implemented in

SEAL [sealcrypto]

• Problem: Noise in ciphertexts!

• Metric: multiplicative depth

36

Homomorphic Encryption

• Operate on

encrypted, unknown

Data

• Without knowing

secret decryption key

• Schemes and Libraries:
• BGV [BGV12]: Integers, implemented in HElib [HS20]

• BFV [Bra12; FV12]: Integers, implemented in

SEAL [sealcrypto]

• Problem: Noise in ciphertexts!

• Metric: multiplicative depth

36

Outsourcing Computation - Homomorphic Encryption

• Simple outsourcing reveals data

⇒ Homomorphic encryption

HE Key: ¤

Data: 0101000111 Function: f ()

[0101000111] µ

[3] µ

[f (0101000111)] µ

� Huge Ciphertext Expansion

37

Outsourcing Computation - Homomorphic Encryption

• Simple outsourcing reveals data

⇒ Homomorphic encryption

HE Key: ¤

Data: 0101000111 Function: f ()

[0101000111] µ

[3] µ

[f (0101000111)] µ

� Huge Ciphertext Expansion

37

Hybrid Homomorphic Encryption

• Homomorphic ciphertext are several orders of magnitude
larger then plaintext

• e.g., 7.4 MB for ≤ 250 kB of data (often significantly less data)

⇒ Increased data transfer!

• Solution:

• Send data encrypted using symmetric ciphers

• Ciphertexts have same size as plaintexts

• e.g., 250 kB for 250 kB of data

• Homomorphically decrypt data before use case

⇒ No ciphertext expansion

38

Outsourcing Computation - Hybrid HE

• Hybrid homomorphic encryption

HE Key: ¤, Sym Key: ¤

Data: 0101000111 Function: f ()

[¤] µ

[0101000111] µ
[�] µ

[3] µ

[f (0101000111)] µ

39

Hybrid Homomorphic Encryption (cont.)

• Requires Sending of homomorphically encrypted symmetric
key

• Ciphertext expansion!

• Amortized for large data

• Server evaluates symmetric decryption circuit before use case

• Contributes to multiplicative depth of homomorphic

computation

• Requires shallow decryption circuit

⇒ Tradeoff: data transmission vs. server runtime

• Usable for constrained clients in slow networks!

40

Client Runtime Comparison

• Encryption + upload time depending on network speed:

101 103 105 107 109
101

103

105

107

Network Speed [kbps]

C
lie

n
t

R
u

n
ti

m
e

[s
]

Just HE

Hybrid HE

41

Motivation

• Homomorphic encryption use case

• Different cost metric

• Depth of the circuit important

• Focus on low-round designs

• Avoid large classes of attacks in low-round construction

• “Randomize” affine layers

• Efficient nonlinear layers for low depth?

42

Evolution of encryption schemes used for HHE

baseline 2012: AES: Efficient implementation of existing designs

new approach: few ANDs and low depth

2015: LowMC: Partial Sboxes, few ANDs, in an classical block cipher

2016: Kreyvium: Different tradeoffs from an improved steam cipher

design

new: make relevant computations independent of the key

2016: FLIP: Offloading key register mixing

2018: Rasta: Offloading expensive affine layer generations

2020: Dasta: Make offloaded computation cheaper

2020: Masta: F(p) variant of Rasta, independent of this work

additional new idea: exploit structure of BFV and BGV schemes

2021: Pasta: focus on F(p), see later

2021: Fasta: F(2), speed-gains for concrete sizes

additional new idea: deal with noisy properties of CKKS

2021: Hera: 43

High-Level Take-Aways on HHE part

• Client Overhead:
• Bandwidth savings:

• Only send actual data size – Reduction by factor ≥ 20 ...

Often significantly more!

• Runtime savings:

• Symmetric encryption ≥ 100× faster as homomorphic

encryption

• Server overhead:
• Addition to multiplicative depth:

• Binary use case: Agrasta: 4 cipher-cipher and 5 plain-cipher

multiplications

• Integer use case: Pasta: 4 cipher-cipher and 6 plain-cipher

multiplications

• Runtime overhead:

• Depends on use case!

• Large depth use cases: small factors ≤ 10

• Small depth use cases: larger factors up to 1000

44

Example: MPC-in-the-head PK Signatures

or: how to go from signature sizes above 1MB to less than 5kB in

case you only want to rely on symmetric crypto

Based on: ”Shorter Signatures Based on Tailor-Made Minimalist

Symmetric-Key Crypto” by

Christoph Dobraunig and Daniel Kales and Christian Rechberger and

Markus Schofnegger and Greg Zaverucha

45

Recent Developments

46

The AES-Sbox

Inversion the only non-linear operation in AES

• Affine operations “free” in many MPC protocols (linear secret

sharing)

s x−1 t

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

·

t0

t1

t2

t3

t4

t5

t6

t7

+

1

1

0

0

0

1

1

0

in out

AES Sbox

47

Rain

Optimize one-way function for the specific use case:

• Large inverses over F2n for non-linearity

• Affine Transform without : Constant addition + multiplication

with invertible matrix over F2 for linear mixing

• That is it, no key schedule, very few rounds

x x−1 M1

k ⊕ c(1)

x−1 M2

k ⊕ c(2) k ⊕ c(3)

x−1

k

y

48

Signature schemes in the PQC Competition

Scheme |pk| Sig. size Sign Verify

Picnic1-L1-FS 32 32 860 1.60 1.31

Picnic3-L1 32 12 468 5.27 3.99

sphincss128sha256simple 32 8 080 248.37 0.75

sphincsf128sha256simple 32 16 976 14.73 1.79

Dilithium2 1 312 2 420 0.07 0.03

Falcon-512 897 666 0.11 0.02

Rainbow Ia-Classic 161 600 66 0.02 0.01

GeMSS128v2 352 188 33 320.99 0.08

Banquet-AES-128 32 19 776 7.03 5.32

Banquet-AES-128 32 13 284 47.31 43.03

Rainier3-128 (N = 16, τ = 33) 32 8 544 0.87 0.81

Rainier3-128 (N = 107, τ = 20) 32 6 176 2.96 2.92

Rainier3-128 (N = 1624, τ = 14) 32 4 880 28.28 28.16

Rainier3-128 (N = 7121, τ = 11) 32 4 496 105.98 105.15

Table 1: Comparison of public-key and signature sizes at the 128-bit

security level for the third-round candidates of the NIST PQC

standardization project and the designs explored in this work. Size in

bytes, time in ms. 49

Security Level 128-bit pre-quantum, Timeline

Year MPCitH + Standard MPCitH + Custom

2016
ZKBoo, SHA-256: 1314.0 KB –

ZKBoo, AES: ??? KB –

2017 ZKB++, AES: 209.0 KB Picnic1 ZKB++, LowMC: 32.9 KB

2018 – Picnic2 KKW, LowMC: 12.3 KB

2019 BBQ, AES: 31.6 KB Picnic3 KKW, LowMC: 12.6 KB

2021
Banquet, AES: 14.8 KB –

RainS, AES: 10.8 KB RainS, Rain-3: 4.4 KB

50

Security level 256-bit pre-quantum, timeline

Year Size

2017 Picnic1 ZKBoo++, LowMC: 128.2 KB

2018 Picnic2 KKW, LowMC: 46.1 KB

2019 Picnic3 KKW, LowMC: 48.7 KB

2021 RainS, Rain-3: 20.0 KB

51

Performance

212 213 214 215 216

100

101

102

103

Signature Size (Bytes)

S
ig

n
in

g
T

im
e

(m
s)

Rainier

Rainier4
Banquet

EM-Banquet

LSAES-Banquet

EM-LSAES-Banquet

Picnic

SPHINCS+

52

Example: ZKP. Commitments schemes and set-membership proofs

Based on: ”Reinforced Concrete: Fast Hash Function for Zero

Knowledge Proofs and Verifiable Computation” by

Mario Barbara, Lorenzo Grassi, Dmitry Khovratovich, Reinhard

Lüftenegger, Christian Rechberger, Markus Schofnegger, Roman Walch

53

Proof aggregation scheme

IOP system

Commitment scheme

Set membership proof protocol

KZG FRI

Verifiable Computation ZK Membership Proofs

Hash

Hash

Ex.: Halo

Ex.: Plookup

Merkle tree

as accumulator

Merkle tree

as commit-reveal

Hash functions in set membership and verifiable computation

protocols.

54

Open Problem

ZK-friendly hash function can’t be nearly as fast as normal ones:

Hash ZK time x86 time Cryptanalysis

Blake-2 100 1 10

Poseidon 1 100 1

Rescue 1 1000 1

Pedersen 4 500 100

We want:

• Faster hash on x86;

• Still ZK friendly

• Relies on long-term analysis.

55

Snapshot of Reinforced Concrete

C O N C R E T E

C O N C R E T E

C O N C R E T E

C O N C R E T E

B A R S

C O N C R E T E

C O N C R E T E

C O N C R E T E

B R I C K S

C O N C R E T E

R
eb

ou
n
d
-secu

re

A
lgeb

raic-secu
re

B R I C K S

B R I C K S

B R I C K S

B R I C K S

B R I C K S

56

Comparison with other Hash Functions

Name Performance

Zero knowledge Plain

R1CS Plookup

(gates) (ms)

Poseidon-BLS/BN 243 438 19

Rescue-BLS/BN 288 364 415

Rescue-Prime-BLS/BN 252 321 362

Feistel-MiMC-BLS/BN 1326 1326 34

SHA-256 27534 ≈ 3000 0.37

Blake2s 21006 ≈ 2000 0.22

Sinsemilla 869∗ 670 131

Reinforced Concrete-BN/BLS - 267 3.3

Reinforced Concrete-FRI - 265 1.03

Table 2: Hashing 512 bits of data (two field elements) with different

functions.
57

Cryptanalysis bounties/challenges/...

• Picnic/LowMC: Three rounds of challenges since 2020:

• winners: Subhadeep Banik, Khashayar Barooti, Serge

Vaudenay, Hailun Yan, F. Betül Durak, Itai Dinur

• https://lowmcchallenge.github.io/

• ZKProofs-friendly hashes, since 11/2021:

• winners: Augustin Bariant, Clémence Bouvier, Gaëtan Leurent,

Léo Perrin

• https://www.zkhashbounties.info/

58

https://lowmcchallenge.github.io/
https://www.zkhashbounties.info/

Algebraic Modelling of Bar

Our algebraic model of Bar is
x = x1b1 + x2b2 + · · ·+ xnbn

0 =
∏si−1

k=0 (xi − k), 1 ≤ i ≤ n

yi = Li (xi), 1 ≤ i ≤ n

y = y1b1 + y2b2 + · · ·+ ynbn

with

bi =
∏
j>i

sj = si+1si+2 . . . sn,

and Li = interpolation polynomial of Si over Fp

59

Idea behind Bar

• Ordinary base-b expansion: fixed base b

x = x1 · bn−1 + x2 · bn−2 + . . .+ xn−1 · b + xn · 1

with 0 ≤ xi < b. E.g.

• Our expansion: variable base s1, . . . , sn

x = x1 · s2s3 · · · sn + x2 · s3s4 · · · sn + · · ·+ xn−1 · sn + xn · 1

with 0 ≤ xi < si .

• Variable base well-balanced decomposition of p − 1 (later)

• s1, . . . , sn different for each prime

60

Decomp: The Decomposition Function

The decomposition Decomp : Fp → Zs1 × . . .× Zsn expands x ∈ Fp

as

x = x1 · s2s3 · · · sn + x2 · s3s4 · · · sn + · · ·+ xn−1 · sn + xn

So we have: x ←→ (x1, . . . , xn)

61

SBox: The Centerpiece

• Let (v1, v2, . . . , vn) := Decomp(p − 1) ∈ Zs1 × . . .× Zsn

• Take p′ := next smaller prime of min1≤i≤n vi

• Then SBox : (x1, . . . , xn) 7→ (y1, . . . , yn) is defined as

yi := Si (xi) :=

f (xi) if xi < p′,

xi if xi ≥ p′,
(1)

where f denotes a permutation of Fp′ = Zp′

• f with maximal degree over Fp′ (and dense representation)

62

Comp: The Composition Function

• Decomp : x 7→ (x1, . . . , xn)

• SBox : (x1, . . . , xn) 7→ (y1, . . . , yn)

• Comp : (y1, . . . , yn) 7→ y

• Composition given by

y = y1 · s2s3 · · · sn + y2 · s3s4 · · · sn + · · ·+ yn−1 · sn + yn

• Overall we have

Bar = Comp ◦ SBox ◦ Decomp

63

The Pasta Design Strategy – Nonlinear Layer

XOFN , i

public

KL A0,L

K = KL||KR

KR A0,R

[
2I I

I 2I

] S ′

S ′

A1,L

A1,R

[
2I I

I 2I

] S ′

S ′

. . .

. . .

S

S
...

S

S

Ar ,L

Ar ,R

[
2I I

I 2I

] KN,i

key dependent

. . .

. . .

• S-Boxes over Fp with dlog2(p)e ≥ 16

• Two layers S ′ and S

• We want to have a low overall degree

• Depth directly impacts performance

• Lowest nonlinear degree is 2

→ Search for efficient degree-2 S-Box

64

The Pasta Design Strategy – Option 1: χ-Like S-Box

• Defined by

[χ(~x)]i = xi + xi+2 + xi+1xi+2

• In general no permutation over Ft
p

• Used by e.g. Masta

• Efficient evaluation using rotations

χ(~x) = ~x + rot2(~x) ◦ (~1 + rot1(~x)).

65

The Pasta Design Strategy – Option 2: Feistel-Like S-Box I

• Defined by

S ′(x0‖x1‖ · · · ‖xs−1)

= x0‖(x0)2 + x1‖(x1)2 + x2‖ · · · ‖(xs−2)2 + xt−1.

• Can also be efficiently implemented using rotations

S ′(~x) = ~x +
(
rot(−1) (~x) ◦ ~m

)2
,

• ~m = [0, 1, . . . , 1]T ∈ Ft
p is a masking vector

66

The Pasta Design Strategy – Option 3: Feistel-Like S-Box II

• Defined by

S ′′(x0‖x1‖ · · · ‖xt−1)

= x0‖x1‖x0x1 + x2‖x1x2 + x3‖ · · · ‖xt−3xt−2 + xt−1.

• Can also be efficiently implemented using rotations

S ′′(~x) = rot(−1)(~x) ◦ rot(−2)(~x) ◦ ~m + ~x

• ~m = [0, 0, 1, . . . , 1]T ∈ Fs
p is a masking vector

67

The Pasta Design Strategy – S-Box Comparison

• Compare homomorphic operations and multiplicative depth

S-box pt-ct Add ct-ct Add pt-ct Mul ct-ct Mul Rot pt-ct Depth ct-ct Depth

χ 1 2 1 1 3 1 1

S ′ - 1 1 1 1 1 1

S ′′ - 1 1 1 2 1 1

• We chose S ′ for efficiency

68

The Pasta Design Strategy – Degree-2 S-Box (Layer S ′)

XOFN , i

public

KL A0,L

K = KL||KR

KR A0,R

[
2I I

I 2I

] S ′

S ′

A1,L

A1,R

[
2I I

I 2I

] S ′

S ′

. . .

. . .

S

S
...

S

S

Ar ,L

Ar ,R

[
2I I

I 2I

] KN,i

key dependent

. . .

. . .

• Feistel-like S-Box S ′ defined by [S ′(~x)]0 = x0 and

[S ′(~x)]i = xi + (xi−1)2 for i > 0

• Only one multiplication per word for i > 0

• Few issues for 3-round design (our goal)

• Overall degree 23 = 8 too weak against linearization (large

state size)

• Low-degree inverse (degree 2)

69

The Pasta Design Strategy – Degree-3 S-Box (Layer S)

XOFN , i

public

KL A0,L

K = KL||KR

KR A0,R

[
2I I

I 2I

] S ′

S ′

A1,L

A1,R

[
2I I

I 2I

] S ′

S ′

. . .

. . .

S

S
...

S

S

Ar ,L

Ar ,R

[
2I I

I 2I

] KN,i

key dependent

. . .

. . .

• Simple degree-3 S-Box defined by [S ′(~x)]i = x3i

• Bonus: High-degree inverse even without truncation

• Overall degree of 22 · 3 = 12 sufficient

70

Conclusion on Pasta HHE work

• Hybrid Homomorphic Encryption:

• Tradeoff: Client upload size vs server runtime

• Majority of ciphers for HHE over Z2

• Bad performance for integer use cases

• Design of Pasta

• Optimized HHE cipher over Fp

• Paper: https://eprint.iacr.org/2021/731.pdf

• Extensive benchmarks in different HE libraries including use
cases

• Framework:

https://github.com/IAIK/hybrid-HE-framework

71

https://eprint.iacr.org/2021/731.pdf
https://github.com/IAIK/hybrid-HE-framework

Bibliography i

Zvika Brakerski, Craig Gentry, and

Vinod Vaikuntanathan. “(Leveled) fully homomorphic

encryption without bootstrapping”. In: ITCS. ACM,

2012, pp. 309–325.

Zvika Brakerski. “Fully Homomorphic Encryption

without Modulus Switching from Classical GapSVP”.

In: CRYPTO. Vol. 7417. Lecture Notes in Computer

Science. Springer, 2012, pp. 868–886.

Junfeng Fan and Frederik Vercauteren. “Somewhat

Practical Fully Homomorphic Encryption”. In: IACR

Cryptol. ePrint Arch. (2012), p. 144.

72

Bibliography ii

Shai Halevi and Victor Shoup. “Design and

implementation of HElib: a homomorphic encryption

library”. In: IACR Cryptol. ePrint Arch. (2020), p. 1481.

Thomas Jakobsen and Lars R. Knudsen. “The

Interpolation Attack on Block Ciphers”. In: FSE.

Vol. 1267. Lecture Notes in Computer Science.

Springer, 1997, pp. 28–40.

Kaisa Nyberg and Lars R. Knudsen. “Provable Security

Against a Differential Attack”. In: J. Cryptology 8.1

(1995), pp. 27–37.

73

