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Wish-list for Primitive P:
1. Minimize t x w, |F|, d (also s, e)
2. Minimize CPU time of computing P
3. Make it field agnostic, and safe!

ethSTARK (Rescue):
1. t x w = 120, log |F| ~ 62, d=3
2. CPU time large, esp in large F (cube root!)
3. Relatively safe, AES-like (say the experts)

Poseidon in Starknet/Ex:
1. t x w = 226, log |F|~252, d=2
2. CPU time better than Rescue (100 microsec)
3. Relatively safe (though less than Rescue)

Keccak: 
1. t x w = 70,000-90,000, log |F| ~ 252, d=2
2. CPU time amazing (1 microsecond)
3. Very safe



Overview

● STARKs - Integrity Through Math
● Arithmetization
● Wish list for crypto primitives



Integrity Through Math

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]
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Claim
total=$89.50

VERIFIER 
Party checking proof 
(Customer)

PROVER 
Party producing proof 
(Grocer)
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* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

STARK
Integrity* via Math

Privacy (Zero Knowledge, ZK)
Prover’s private inputs are shielded

*With respect to size of computation

Scalability
Exponentially small verifier running time*
Nearly linear prover running time*

Universality
Applicability to general computation

Transparency 
No toxic waste (i.e. no trusted setup) 

Lean & Battle-Hardened Cryptography
e.g. post-quantum secure
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Assuming Theorem, we get a scalable proof system for Bob’s original claim:

1. Apply reduction, ask Bob to provide access to A,B,C,D of degree-d
2. Sample random x and accept Bob’s claim iff equality holds for this x
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New problem: Force Bob to 
(1) commit to degree d polynomials, then 
(2) answer queries to the precommitted polys
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AIR (Algebraic Intermediate Representation)

Computation:

A set of rules for how to sequentially evolve a state, starting with an input and 
ending up with an output.



a = 1

b = 0

for i in range(n):

    a, b = a + b, a

return a

python:
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b = 0

for i in range(n):

    a, b = a + b, a

return a

a0=1 b0=0

a1=1 b1=1

a2=2 b2=1

⋮ ⋮

an bn

trace:python:
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AIR

a = 1

b = 0

for i in range(n):

    a, b = a + b, a

return a

constraints:trace:python: domain:

First row

First row

0 ≤ i < n

0 ≤ i < n

Row n

a0=1 b0=0

a1=1 b1=1

a2=2 b2=1

⋮ ⋮

an bn



Rescue hash function

w0

w1

0

Perm
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Rescue hash function

w0

w1

0

Round0

out

Round1 Round9Round8

...

...

...



∛X ∙M +K2r+1 X3 ∙M +K2r+2

Stater Interr Stater+1

Step 1 Step 2

Round r

s0,0

s0,1

s0,2

⋮

s0,11

s1,0

s1,1

s1,2

⋮

s1,11

s2,0

s2,1

s2,2

⋮

s2,11

s3,0

s3,1

s3,2

⋮

s3,11

s4,0

s4,1

s4,2

⋮

s4,11

s5,0

s5,1

s5,2

⋮

s5,11

s6,0

s6,1

s6,2

⋮

s6,11
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Rescue AIR

∛X M K2r+1 X3 M K2r+2

Stater
Interr Stater+1

Step 1 Step 2

Round r

s0 s1 s2 s3 s4 s5 s6

∛X M K2r+3 X3 M K2r+4

Interr+1 Stater+2

Step 1 Step 2

Round r+1

s7 s8 s9 s10 s11 s12
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