STARK-friendly crypto primitives wish-list

Eli Ben-Sasson

April 2023

Wishlist for crypto primitives

AIR Parameters: $\boldsymbol{t}, \boldsymbol{w}, \boldsymbol{F}, \boldsymbol{d}, \boldsymbol{s}, \boldsymbol{e}$

- Execution trace size: \boldsymbol{t} rows, \boldsymbol{w} columns
- Fib(n): t=n, w=2
- Rescue: t= \#rounds, w = |state|

AIR Parameters: $\boldsymbol{t}, \boldsymbol{w}, \boldsymbol{F}, \boldsymbol{d}, \boldsymbol{s}, \boldsymbol{e}$

- Execution trace size: \boldsymbol{t} rows, \boldsymbol{w} columns
- Fib(n): $\mathrm{t}=\mathrm{n}, \mathrm{w}=2$
- Rescue: t= \#rounds, w = |state|
- Trace entries in field \boldsymbol{F}. Which field?
- Any field! [BCKL22] (FFT-friendly better)
- Constraints
- Maximal degree: \boldsymbol{d}
- \# constraints: s
- Enforcement domain complexity: \boldsymbol{e}

AIR Parameters: $\boldsymbol{t}, \boldsymbol{w}, \boldsymbol{F}, \boldsymbol{d}, \boldsymbol{s}, \boldsymbol{e}$

- Execution trace size: \boldsymbol{t} rows, \boldsymbol{w} columns
- Fib(n): $\mathrm{t}=\mathrm{n}, \mathrm{w}=2$
- Rescue: t= \#rounds, w = |state|
- Trace entries in field \boldsymbol{F}. Which field?
- Any field! [BCKL22] (FFT-friendly better)
- Constraints
- Maximal degree: \boldsymbol{d}
- \# constraints: s
- Enforcement domain complexity: \boldsymbol{e}

AIR Parameters: $\boldsymbol{t}, \boldsymbol{w}, \boldsymbol{F}, \boldsymbol{d}, \boldsymbol{s}, \boldsymbol{e}$

- Execution trace size: \boldsymbol{t} rows, \boldsymbol{w} columns
- $\operatorname{Fib}(n): t=n, w=2$
- Rescue: $t=$ \#rounds, $w=\mid$ state \mid
- Trace entries in field \boldsymbol{F}. Which field?
- Any field! [BCKL22] (FFT-friendly better)
- Constraints
- Maximal degree: \boldsymbol{d}
- \# constraints: s
- Enforcement domain complexity: \boldsymbol{e}

Wish-list for Primitive P:

1. Minimize $t \times w,|F|, d$ (also s, e)
2. Minimize CPU time of computing P
3. Make it field agnostic, and safe!

AIR Parameters: t, w, F, d, s, e

- Execution trace size: \boldsymbol{t} rows, \boldsymbol{w} columns
- $\operatorname{Fib}(n): t=n, w=2$
- Rescue: t= \#rounds, w = |state|
- Trace entries in field \boldsymbol{F}. Which field?
- Any field! [BCKL22] (FFT-friendly better)
- Constraints
- Maximal degree: \boldsymbol{d}
- \# constraints: s
- Enforcement domain complexity: \boldsymbol{e}

Wish-list for Primitive P:

1. Minimize $t \times w,|F|, d$ (also $s, e)$
2. Minimize CPU time of computing P
3. Make it field agnostic, and safe!

ethSTARK (Rescue):

1. $\mathrm{t} \times \mathrm{w}=120, \log |\mathrm{~F}| \sim 62, \mathrm{~d}=3$
2. CPU time large, esp in large F (cube root!)
3. Relatively safe, AES-like (say the experts)

Poseidon in Starknet/Ex:

1. $t \times w=226, \log |F| \sim 252, d=2$
2. CPU time better than Rescue (100 microsec)
3. Relatively safe (though less than Rescue)

AIR Parameters: t, w, F, d, s, e

Keccak:

1. $t \times w=70,000-90,000, \log |F| \sim 252, d=2$
2. CPU time amazing (1 microsecond)
3. Very safe

Wish-list for Primitive P:

1. Minimize $t \times w,|F|, d(a l s o s, e)$
2. Minimize CPU time of computing P
3. Make it field agnostic, and safe!
ethSTARK (Rescue):
4. $\mathrm{t} \times \mathrm{w}=120, \log |\mathrm{~F}| \sim 62, \mathrm{~d}=3$
5. CPU time large, esp in large F (cube root!)
6. Relatively safe, AES-like (say the experts)

Poseidon in Starknet/Ex:

1. $t \times w=226, \log |F| \sim 252, d=2$
2. CPU time better than Rescue (100 microsec)
3. Relatively safe (though less than Rescue)

Overview

- STARKs - Integrity Through Math
- Arithmetization
- Wish list for crypto primitives

Integrity Through Math

Integrity* via Math

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

Integrity Through Math

STARK

Integrity* via Math

Claim

total $=\$ 89.50$

PROVER
Party producing proof (Grocer)

VERIFIER
Party checking proof
(Customer)

Sales receipt

Sale Made with :
$1 \times$ Cash
1 Credit Card
[] Check, No
[] Other \qquad
\qquad

Integrity Through Math

STARK

Integrity* via Math

Privacy (Zero Knowledge, ZK)
Prover's private inputs are shielded

Scalability

Exponentially small verifier running time* Nearly linear prover running time*

Universality

Applicability to general computation

Transparency

No toxic waste (i.e. no trusted setup)

Lean \& Battle-Hardened Cryptography

e.g. post-quantum secure

Integrity Through Math

STARK

Integrity* via Math

Integrity Through Math

Checking Computations in Polylogarithmic Time

Mario Szegedy ${ }^{5}$
Dept. Comp. Sci
Univ. of Chicago

Abstract. Motivated by Manuel Blum s concept of instance cheching, we consider new, very fast and generic mechan9], (Sha92], and especially the MIP $=$ NEXP protocol from [BFL91].
[LF KN92], We show that every nondeterministic computational task $S(x, y)$, defined a a polynomial time
between the instance x, representing the input and output combined, and the witness y can be modified to a
 rom a witness sat isfying S. Here the instance and the description of S have to be provided in error-correcting code (since the checker
 This result becomes significant if software and hardw mart ware reliability are regarded as a considerable cost wired. (We use just one Checker for all problems!) The checker is tiny and so presumably can che se hard In this setup, a single reliable PC can monitor the operation of a herd of supercomputers working with
possibly extremely powerful but unreliable software and untested hardware. possibly extremely powerful but unreliable soft ware and untested hard ware. ransformed into a transparent proof, i.e. a proof verifable in polylogarithmic Monte Carlo time, assuming
"theorm-candidate" is

 As a by-product, we obtain a binary error correcting code with very efficient error-correction. The
ode transforms messages of length N into codewords of length $\leq N^{1+5}$ and for strings within 10% of a
valid condeword. it illows to recover any hit of

Integrity* via Math
"...a single reliable PC can monitor the operation of a herd of supercomputers with powerful but unreliable software and untested hardware ..."

Integrity Through Math

Claim: Starting @ state hash x, after 1,000,000 txs processed by program P, reached state hash y

> "... a single reliable PC can monitor the operation of a herd of supercomputers with powerful but unreliable software and untested hardware ..."

[^0]
Integrity Through Math

A sudoku-like set of constraints is implied by the statement proved, by x, y, P, and \#tx $(=1,000,000)$

"...a single reliable PC can monitor the operation of a herd of supercomputers with powerful but unreliable software and untested hardware ..."

[^1]
Integrity Through Math

A sudoku-like set of constraints is implied by the statement proved, by x, y, P, and $\# t x(=1,000,000)$

Claim: Starting @ state hash x, after 1,000,000 txs processed by program P, reached state hash y

"... a single reliable PC can monitor the operation of a herd of supercomputers with powerful but unreliable software and untested hardware ..."

Prover submits solution

[^2]
Integrity Through Math

A sudoku-like set of constraints is implied by the statement proved, by x, y, P, and $\# t x(=1,000,000)$

Claim: Starting @ state hash x, after 1,000,000 txs processed by program P, reached state hash y

PCP

"... a single reliable PC can monitor the operation of a herd of supercomputers with powerful but unreliable software and untested hardware ..."

Prover submits solution

Verifier samples and checks a single constraint

Integrity Through Math

A sudoku-like set of constraints is implied by the statement proved, by x, y, P, and \#tx $(=1,000,000)$

Claim: Starting @ state hash x, after 1,000,000 txs processed by program P, reached state hash y

Magic (aka Math)

- Sampling constraints takes exponentially small time!
- Good proofs satisfy ALL constraints!
- A "proof" of a false claim satisfies < 1% of constraints!

PCP

"...a single reliable PC can monitor the operation of a herd of supercomputers with powerful but unreliable software and untested hardware ..."

Prover submits solution

Verifier samples and checks a single constraint

Integrity Through Math

A sudoku-like set of constraints is implied by the statement proved, by x, y, P, and $\# t x(=1,000,000)$

"... a single reliable PC can monitor the operation of a herd of supercomputers with powerful but unreliable software and untested hardware ..."

Prover submits solution

Integrity Through Math

A sudoku-like set of constraints is implied by the statement proved, by x, y, P, and $\# t x(=1,000,000)$

Claim: Starting @ state hash x, after 1,000,000 txs processed by program P, reached state hash y

Magic (aka Math)

- Sampling constraints takes exponentially small time!
- Good proofs satisfy ALL constraints!
- A "proof" of a false claim satisfies < 1\% of constraints!

Prover submits solution

Verifier posts another (random) sudoku puzzle

[^3]
Integrity Through Math

A sudoku-like set of constraints is implied by the statement proved, by x, y, P, and $\# t x(=1,000,000)$

Claim: Starting @ state hash x, after 1,000,000 txs processed by program P, reached state hash y

Magic (aka Math)

- Sampling constraints takes exponentially small time!
- Good proofs satisfy ALL constraints!
- A "proof" of a false claim satisfies < 1\% of constraints!
"... a single reliable PC can monitor the operation of a herd of supercomputers with powerful but unreliable software and untested hardware ..."

Prover submits solution

Verifier posts another (random) sudoku puzzle

[^4]
Integrity Through Math

A sudoku-like set of constraints is implied by the statement proved, by x, y, P, and $\# t x(=1,000,000)$

Claim: Starting @ state hash x, after 1,000,000 txs processed by program P, reached state hash y

Magic (aka Math)

- Sampling constraints takes exponentially small time!
- Good proofs satisfy ALL constraints!
- A "proof" of a false claim satisfies < 1\% of constraints!

STARK

"... a single reliable PC can monitor the operation of a herd of supercomputers with powerful but unreliable software and untested hardware ..."

Prover submits solution
Verifier posts another (random) sudoku puzzle

[^5]
Integrity Through Math

A sudoku-like set of constraints is implied by the statement proved, by x, y, P, and $\# t x(=1,000,000)$

Claim: Starting @ state hash x, after 1,000,000 txs processed by program P, reached state hash y

Magic (aka Math)

- Sampling constraints takes exponentially small time!
- Good proofs satisfy ALL constraints!
- A "proof" of a false claim satisfies < 1\% of constraints!

STARK

"... a single reliable PC can monitor the operation of a herd of supercomputers with powerful but unreliable software and untested hardware ..."

Prover submits solution

Verifier posts another (random) sudoku puzzle

Integrity Through Math

Checking Computations in Polylogarithmic Time

PCP

Integrity* via Math (impractical)
"...a single reliable PC can monitor the operation of a herd of supercomputers with powerful but unreliable software and untested hardware ..." ask S^{\prime} such that: (i) the same instances remain necepted; (il) each instance/ witness pair becomes coiklte n pom a wit ness sat isfying S.
from
. Here the instance and the description of S have to be provided in error-correcting code (since the checter
will not notice slight changes). A modification of the MIP proof was required to achieve polynomial time in (iii); the earlier technique yields $N^{0(\log \log N)}$ time only.
This result becomes significant if software and hard ware reliability are regarded as a considerable cost
ind factor. The polylogarithmic checker is the only part of the system that needs to be trusted; it can be hard wired. (We use just one Checker for all problems!) The checker is tiny and so presumably can be opt In this setup, a single reliable PC can monitor the operation of a herd of supercomputers working with
possibly extremely powerful but unreliable software and untested hardware.

 proof P in time $\|P\| \|^{1+\varepsilon}$ into a transparent t rooff verifiable in Monte Carlo time (log $\left.\|P\|\right)^{(1 / / s)}$
As a by-product, we obtain a binary error correcting code with very efficient error-correction. The As a by-product, we obtain a binary error correcting code with very efficient error-correction.
ode transorms messages of length N into codewords of length $\leq N^{1+5}$ and for strings within 10% of a
valid condeword, it allows to recover any bit of the unique codeword within that distance in polylogarithmic vald codeword, it allows to recover any bit of the unique codeword within that distance in polylogarithmic
val
$\left.(\log N)^{\circ(1 / e}\right)$ time.

Integrity Through Math

STARK

Integrity* via Math (inipractical)

"... a single reliable PC can monitor the operation of a herd of supercomputers with powerful but unreliable software and untested hardware ..."

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

Fast Reed-Solomon Interactive Oracle Proofs of Proximity

Integrity Through Math

STARK

Integrity* via Math (inpractical)

Fast Reed-Solomon Interactive Oracle Proofs of Proximity

Arithmetization

Arithmetization

Arithmetization Converts ("reduces") Computational Integrity problems to problems about local relations between a bunch of polynomials

Claim: Starting @ state hash x, after 1,000,000 txs processed by program P, reached state hash y

Arithmetization

Arithmetization Converts ("reduces") Computational Integrity problems to problems about local relations between a bunch of polynomials

Pre-arithmetization
claim
Starting @ state hash x,
after 1,000,000 txs
processed by program
P, reached state hash y

Arithmetization

Arithmetization Converts ("reduces") Computational Integrity problems to problems about local relations between a bunch of polynomials
Pre-arithmetization
claim
Starting @ state hash x,
after 1,000,000 txs
processed by program
P, reached state hash y

Reduction
produces 2
polynomials:
$\mathbf{Q}(\mathbf{X}, \boldsymbol{Y}, T, W), R(X)$ and
degree bound \boldsymbol{d}

Arithmetization

Arithmetization Converts ("reduces") Computational Integrity problems to problems about local relations between a bunch of polynomials

Pre-arithmetization	Reduction
claim	
Starting @ state hash \mathbf{x}, after 1,000,000 txs processed by program P, reached state hash \mathbf{y}	produces 2 polynomials: $\boldsymbol{Q (X , Y , T , W) , ~ R (X) ~ a n d ~}$ degree bound \mathbf{d}

Post-arithmetization claim
I know 4 polynomials
of degree $\boldsymbol{d}-A(x), B(x)$,
$C(x), D(X)$ - such that:
$Q(X, A(X), B(X+1)$,
$\left.C\left(2^{*} X\right)\right)=D(X)$ * $R(X)$

Arithmetization

Arithmetization Converts ("reduces") Computational Integrity problems to problems about local relations between a bunch of polynomials

| Pre-arithmetization |
| :---: | :---: |
| claim |\quad| Reduction |
| :---: |
| Starting @ state hash \mathbf{x},
 after 1,000,000 txs
 processed by program
 P, reached state hash \mathbf{y} |
| produces 2
 polynomials:
 degree bound \boldsymbol{d} |

Post-arithmetization claim	Theorem
I know 4 polynomials of degree $\boldsymbol{d}-A(x), B(x)$, $C(x), D(X)-$ such that:	If A, B, C, D do not $\sqrt{~}$
$Q(X, A(X), B(X+1)$, $C(2 * X))=D(X) * R(X)$	then nearly all x expose Bob's lie

Arithmetization

Assuming Theorem, we get a scalable proof system for Bob's original claim:

1. Apply reduction, ask Bob to provide access to A, B, C, D of degree-d
2. Sample random x and accept Bob's claim iff equality holds for this x

New problem: Force Bob to
(1) commit to degree d polynomials, then
(2) answer queries to the precommitted polys

Post-arithmetization claim	Theorem
I know 4 polynomials of degree d-A(x), $B(x)$, $C(X), D(X)$ - such that:	If A, B, C, D do not satisfy THIS,
$\begin{aligned} & Q(X, A(X), B(X+1) \\ & \left.C\left(2^{*} X\right)\right)=D(X) * R(X) \end{aligned}$	then nearly all x expose Bob's lie

Arithmetization

Assuming Theorem, we get a scalable proof system for Bob's original claim:

1. Apply reduction, ask Bob to provide access to A, B, C, D of degree-d
2. Sample random x and accept Bob's claim iff equality holds for this x

New problem: Force Bob to
(1) commit to degree d polynomials, then
(2) answer queries to the precommitted polys

Post-arithmetization claim	Theorem
I know 4 polynomials of degree d-A(x), $B(x)$, $C(x), D(X)$ - such that:	If A, B, C, D do not satisfy THIS,
$\begin{aligned} & Q(X, A(X), B(X+1) \\ & C(2 * X))=D(X) * R(X) \end{aligned}$	then nearly all x expose Bob's lie

AIR (Algebraic Intermediate Representation)

Computation:

A set of rules for how to sequentially evolve a state, starting with an input and ending up with an output.

AIR (Algebraic Intermediate Representation)

python:

AIR (Algebraic Intermediate Representation)

python:

$a_{0}=1$	$b_{0}=0$
$a_{1}=1$	$b_{1}=1$
$a_{2}=2$	$b_{2}=1$
\vdots	\vdots
a_{n}	b_{n}

AIR (Algebraic Intermediate Representation)

python:

trace:

$a_{0}=1$	$b_{0}=0$
$a_{1}=1$	$b_{1}=1$
$a_{2}=2$	$b_{2}=1$
\vdots	\vdots
a_{n}	b_{n}

$$
\begin{aligned}
& a_{0}=1 \\
& b_{0}=0 \\
& a_{i+1}=a_{i}+b_{i} \\
& b_{i+1}=a_{i} \\
& a_{n}=f i b(n)
\end{aligned}
$$

python:

trace: constraints:

$a_{0}=1$	$b_{0}=0$
$a_{1}=1$	$b_{1}=1$
$a_{2}=2$	$b_{2}=1$
\vdots	\vdots
a_{n}	b_{n}

$$
\begin{aligned}
& a_{0}=1 \\
& b_{0}=0 \\
& a_{i+1}=a_{i}+b_{i} \\
& b_{i+1}=a_{i} \\
& a_{n}=\text { fib(n) }
\end{aligned}
$$

domain:

First row
First row
$0 \leq i<n$
$0 \leq i<n$
Rown

Rescue hash function

Rescue hash function

Round r

Rescue AIR

Rescue AIR

Rescue AIR

Rescue AIR

$$
\begin{aligned}
& \text { Round } \mathbf{r} \\
& \begin{array}{l}
s_{1, i}^{3}=s_{0, i} \\
s_{2, i}=\sum_{j} M_{i j} s_{1, j} \quad\left(s_{2}=M \cdot s_{1}\right)
\end{array} \\
& s_{3}=s_{2}+K_{2 r+1} \\
& s_{4, i}=s_{3, i}^{3}
\end{aligned}
$$

Rescue AIR

$$
\begin{aligned}
& \text { Round } \mathbf{r} \\
& \begin{array}{l}
s_{1, i}^{3}=s_{0, i} \\
s_{2, i}=\sum_{j} M_{i j} s_{1, j} \quad\left(s_{2}=M \cdot s_{1}\right)
\end{array} \\
& s_{3}=s_{2}+K_{2 r+1} \\
& s_{4, i}=s_{3, i}^{3} \\
& s_{5}=M \cdot s_{4}
\end{aligned}
$$

Rescue AIR

$$
\begin{aligned}
& \text { Round } \mathbf{r} \\
& \begin{array}{l}
s_{1, i}^{3}=s_{0, i} \\
s_{2, i}=\sum_{j} M_{i j} s_{1, j} \quad\left(s_{2}=M \cdot s_{1}\right)
\end{array} \\
& s_{3}=s_{2}+K_{2 r+1} \\
& s_{4, i}=s_{3, i}^{3} \\
& s_{5}=M \cdot s_{4} \\
& s_{6}=s_{5}+K_{2 r+2}
\end{aligned}
$$

Round $\mathrm{r}+1$
Round \mathbf{r}

Step 1

Step 2
Step 1
Step 2
$\left(\sum_{j} M_{i j} s_{3, j}^{3}\right)+K_{2 r+2, i}=s_{6, i}=\left(\sum_{j}\left(M^{-1}\right)_{i j}\left(s_{9, j}-K_{2 r+3, j}\right)\right)^{3}$

Wishlist for crypto primitives

AIR Parameters: $\boldsymbol{t}, \boldsymbol{w}, \boldsymbol{F}, \boldsymbol{d}, \boldsymbol{s}, \boldsymbol{e}$

- Execution trace size: \boldsymbol{t} rows, \boldsymbol{w} columns
- Fib(n): t=n, w=2
- Rescue: t= \#rounds, w = |state|

AIR Parameters: $\boldsymbol{t}, \boldsymbol{w}, \boldsymbol{F}, \boldsymbol{d}, \boldsymbol{s}, \boldsymbol{e}$

- Execution trace size: \boldsymbol{t} rows, \boldsymbol{w} columns
- Fib(n): $\mathrm{t}=\mathrm{n}, \mathrm{w}=2$
- Rescue: t= \#rounds, w = |state|
- Trace entries in field \boldsymbol{F}. Which field?
- Any field! [BCKL22] (FFT-friendly better)
- Constraints
- Maximal degree: \boldsymbol{d}
- \# constraints: s
- Enforcement domain complexity: \boldsymbol{e}

AIR Parameters: $\boldsymbol{t}, \boldsymbol{w}, \boldsymbol{F}, \boldsymbol{d}, \boldsymbol{s}, \boldsymbol{e}$

- Execution trace size: \boldsymbol{t} rows, \boldsymbol{w} columns
- Fib(n): $\mathrm{t}=\mathrm{n}, \mathrm{w}=2$
- Rescue: t= \#rounds, w = |state|
- Trace entries in field \boldsymbol{F}. Which field?
- Any field! [BCKL22] (FFT-friendly better)
- Constraints
- Maximal degree: \boldsymbol{d}
- \# constraints: s
- Enforcement domain complexity: \boldsymbol{e}

AIR Parameters: $\boldsymbol{t}, \boldsymbol{w}, \boldsymbol{F}, \boldsymbol{d}, \boldsymbol{s}, \boldsymbol{e}$

- Execution trace size: \boldsymbol{t} rows, \boldsymbol{w} columns
- $\operatorname{Fib}(n): t=n, w=2$
- Rescue: $t=$ \#rounds, $w=\mid$ state \mid
- Trace entries in field \boldsymbol{F}. Which field?
- Any field! [BCKL22] (FFT-friendly better)
- Constraints
- Maximal degree: \boldsymbol{d}
- \# constraints: s
- Enforcement domain complexity: \boldsymbol{e}

Wish-list for Primitive P:

1. Minimize $t \times w,|F|, d$ (also s, e)
2. Minimize CPU time of computing P
3. Make it field agnostic, and safe!

AIR Parameters: t, w, F, d, s, e

- Execution trace size: \boldsymbol{t} rows, \boldsymbol{w} columns
- $\operatorname{Fib}(n): t=n, w=2$
- Rescue: t= \#rounds, w = |state|
- Trace entries in field \boldsymbol{F}. Which field?
- Any field! [BCKL22] (FFT-friendly better)
- Constraints
- Maximal degree: \boldsymbol{d}
- \# constraints: s
- Enforcement domain complexity: \boldsymbol{e}

Wish-list for Primitive P:

1. Minimize $t \times w,|F|, d$ (also $s, e)$
2. Minimize CPU time of computing P
3. Make it field agnostic, and safe!

ethSTARK (Rescue):

1. $\mathrm{t} \times \mathrm{w}=120, \log |\mathrm{~F}| \sim 62, \mathrm{~d}=3$
2. CPU time large, esp in large F (cube root!)
3. Relatively safe, AES-like (say the experts)

Poseidon in Starknet/Ex:

1. $t \times w=226, \log |F| \sim 252, d=2$
2. CPU time better than Rescue (100 microsec)
3. Relatively safe (though less than Rescue)

AIR Parameters: t, w, F, d, s, e

Keccak:

1. $t \times w=70,000-90,000, \log |F| \sim 252, d=2$
2. CPU time amazing (1 microsecond)
3. Very safe

Wish-list for Primitive P:

1. Minimize $t \times w,|F|, d(a l s o s, e)$
2. Minimize CPU time of computing P
3. Make it field agnostic, and safe!
ethSTARK (Rescue):
4. $\mathrm{t} \times \mathrm{w}=120, \log |\mathrm{~F}| \sim 62, \mathrm{~d}=3$
5. CPU time large, esp in large F (cube root!)
6. Relatively safe, AES-like (say the experts)

Poseidon in Starknet/Ex:

1. $t \times w=226, \log |F| \sim 252, d=2$
2. CPU time better than Rescue (100 microsec)
3. Relatively safe (though less than Rescue)

STARK-friendly crypto primitives wish-list

Eli Ben-Sasson

April 2023

[^0]: * Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

[^1]: * Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

[^2]: * Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

[^3]: * Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

[^4]: * Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

[^5]: * Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

