
STARK-friendly
crypto primitives
wish-list

Eli Ben-Sasson

April 2023

1

Wishlist for crypto primitives

AIR Parameters: t, w, F, d, s, e

● Execution trace size: t rows, w columns
○ Fib(n): t=n, w=2
○ Rescue: t= #rounds, w = |state|

AIR Parameters: t, w, F, d, s, e

● Execution trace size: t rows, w columns
○ Fib(n): t=n, w=2
○ Rescue: t= #rounds, w = |state|

● Trace entries in field F. Which field?
○ Any field! [BCKL22] (FFT-friendly better)

● Constraints
○ Maximal degree: d
○ # constraints: s
○ Enforcement domain complexity: e

AIR Parameters: t, w, F, d, s, e

● Execution trace size: t rows, w columns
○ Fib(n): t=n, w=2
○ Rescue: t= #rounds, w = |state|

● Trace entries in field F. Which field?
○ Any field! [BCKL22] (FFT-friendly better)

● Constraints
○ Maximal degree: d
○ # constraints: s
○ Enforcement domain complexity: e

AIR Parameters: t, w, F, d, s, e

● Execution trace size: t rows, w columns
○ Fib(n): t=n, w=2
○ Rescue: t= #rounds, w = |state|

● Trace entries in field F. Which field?
○ Any field! [BCKL22] (FFT-friendly better)

● Constraints
○ Maximal degree: d
○ # constraints: s
○ Enforcement domain complexity: e

Wish-list for Primitive P:
1. Minimize t x w, |F|, d (also s, e)
2. Minimize CPU time of computing P
3. Make it field agnostic, and safe!

AIR Parameters: t, w, F, d, s, e

● Execution trace size: t rows, w columns
○ Fib(n): t=n, w=2
○ Rescue: t= #rounds, w = |state|

● Trace entries in field F. Which field?
○ Any field! [BCKL22] (FFT-friendly better)

● Constraints
○ Maximal degree: d
○ # constraints: s
○ Enforcement domain complexity: e

Wish-list for Primitive P:
1. Minimize t x w, |F|, d (also s, e)
2. Minimize CPU time of computing P
3. Make it field agnostic, and safe!

ethSTARK (Rescue):
1. t x w = 120, log |F| ~ 62, d=3
2. CPU time large, esp in large F (cube root!)
3. Relatively safe, AES-like (say the experts)

Poseidon in Starknet/Ex:
1. t x w = 226, log |F|~252, d=2
2. CPU time better than Rescue (100 microsec)
3. Relatively safe (though less than Rescue)

AIR Parameters: t, w, F, d, s, e

Wish-list for Primitive P:
1. Minimize t x w, |F|, d (also s, e)
2. Minimize CPU time of computing P
3. Make it field agnostic, and safe!

ethSTARK (Rescue):
1. t x w = 120, log |F| ~ 62, d=3
2. CPU time large, esp in large F (cube root!)
3. Relatively safe, AES-like (say the experts)

Poseidon in Starknet/Ex:
1. t x w = 226, log |F|~252, d=2
2. CPU time better than Rescue (100 microsec)
3. Relatively safe (though less than Rescue)

Keccak:
1. t x w = 70,000-90,000, log |F| ~ 252, d=2
2. CPU time amazing (1 microsecond)
3. Very safe

Overview

● STARKs - Integrity Through Math
● Arithmetization
● Wish list for crypto primitives

Integrity Through Math

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

STARK
Integrity* via Math

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

STARK
Integrity* via Math

Claim
total=$89.50

VERIFIER
Party checking proof
(Customer)

PROVER
Party producing proof
(Grocer)

Integrity Through Math

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

STARK
Integrity* via Math

Privacy (Zero Knowledge, ZK)
Prover’s private inputs are shielded

*With respect to size of computation

Scalability
Exponentially small verifier running time*
Nearly linear prover running time*

Universality
Applicability to general computation

Transparency
No toxic waste (i.e. no trusted setup)

Lean & Battle-Hardened Cryptography
e.g. post-quantum secure

Integrity Through Math

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

STARK
Integrity* via Math

1992Integrity Through Math

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

STARK
Integrity* via Math

1992

“...a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware …”

Integrity Through Math

“...a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware …”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

Claim: Starting @ state hash x, after 1,000,000
txs processed by program P, reached state hash y

Integrity Through Math

PCP

“...a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware …”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

A sudoku-like set of constraints is implied by the
statement proved, by x, y, P, and #tx (=1,000,000)

Claim: Starting @ state hash x, after 1,000,000
txs processed by program P, reached state hash y

Integrity Through Math

Prover submits solution

8

9

2

2 8

8

7
7

7
1
1

5

5

6

6

6

4

5

3

3
3

PCP

“...a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware …”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

A sudoku-like set of constraints is implied by the
statement proved, by x, y, P, and #tx (=1,000,000)

Claim: Starting @ state hash x, after 1,000,000
txs processed by program P, reached state hash y

Integrity Through Math

Verifier samples and checks a single constraint

PCP

A sudoku-like set of constraints is implied by the
statement proved, by x, y, P, and #tx (=1,000,000)

8

9

2

2 8

8

7
7

7
1
1

5

5

6

6

6

4

5

3

3
3

Prover submits solution“...a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware …”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

Claim: Starting @ state hash x, after 1,000,000
txs processed by program P, reached state hash y

Integrity Through Math

Verifier samples and checks a single constraint

PCP8

9

2

2 8

8

7
7

7
1
1

5

5

6

6

6

4

5

3

3
3

Prover submits solution

Magic (aka Math)
- Sampling constraints takes exponentially small time!
- Good proofs satisfy ALL constraints!
- A “proof” of a false claim satisfies < 1% of constraints!

“...a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware …”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

A sudoku-like set of constraints is implied by the
statement proved, by x, y, P, and #tx (=1,000,000)

Claim: Starting @ state hash x, after 1,000,000
txs processed by program P, reached state hash y

Integrity Through Math

8

9

2

2 8

8

7
7

7
1
1

5

5

6

6

6

4

5

3

3
3

Prover submits solution

STARK

Magic (aka Math)
- Sampling constraints takes exponentially small time!
- Good proofs satisfy ALL constraints!
- A “proof” of a false claim satisfies < 1% of constraints!

“...a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware …”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

A sudoku-like set of constraints is implied by the
statement proved, by x, y, P, and #tx (=1,000,000)

Claim: Starting @ state hash x, after 1,000,000
txs processed by program P, reached state hash y

Integrity Through Math

8

9

2

2 8

8

7
7

7
1
1

5

5

6

6

6

4

5

3

3
3

Prover submits solution

STARK

Verifier posts another (random) sudoku puzzle

Magic (aka Math)
- Sampling constraints takes exponentially small time!
- Good proofs satisfy ALL constraints!
- A “proof” of a false claim satisfies < 1% of constraints!

“...a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware …”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

A sudoku-like set of constraints is implied by the
statement proved, by x, y, P, and #tx (=1,000,000)

Claim: Starting @ state hash x, after 1,000,000
txs processed by program P, reached state hash y

Integrity Through Math

8

9

2

2 8

8

7
7

7
1
1

5

5

6

6

6

4

5

3

3
3

Prover submits solution

STARK
8

9

2

2 8

8

7
7

7
1
1

5

5

6

6

6

4

5

3

3
3

Verifier posts another (random) sudoku puzzle

Magic (aka Math)
- Sampling constraints takes exponentially small time!
- Good proofs satisfy ALL constraints!
- A “proof” of a false claim satisfies < 1% of constraints!

“...a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware …”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

A sudoku-like set of constraints is implied by the
statement proved, by x, y, P, and #tx (=1,000,000)

Claim: Starting @ state hash x, after 1,000,000
txs processed by program P, reached state hash y

Integrity Through Math

8

9

2

2 8

8

7
7

7
1
1

5

5

6

6

6

4

5

3

3
3 STARK

8

9

2

2 8

8

7
7

7
1
1

5

5

6

6

6

4

5

3

3
3

8

9

2

2 8

8

7
7

7
1
1

5

5

6

6

6

4

5

3

3
3

8

9

2

2 8

8

7
7

7
1
1

5

5

6

6

6

4

5

3

3
3

Prover submits solution

Verifier posts another (random) sudoku puzzle

Magic (aka Math)
- Sampling constraints takes exponentially small time!
- Good proofs satisfy ALL constraints!
- A “proof” of a false claim satisfies < 1% of constraints!

“...a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware …”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

A sudoku-like set of constraints is implied by the
statement proved, by x, y, P, and #tx (=1,000,000)

Claim: Starting @ state hash x, after 1,000,000
txs processed by program P, reached state hash y

Integrity Through Math

8

9

2

2 8

8

7
7

7
1
1

5

5

6

6

6

4

5

3

3
3 STARK

8

9

2

2 8

8

7
7

7
1
1

5

5

6

6

6

4

5

3

3
3

8

9

2

2 8

8

7
7

7
1
1

5

5

6

6

6

4

5

3

3
3

8

9

2

2 8

8

7
7

7
1
1

5

5

6

6

6

4

5

3

3
3

Prover submits solution

Verifier posts another (random) sudoku puzzle

Verifier samples and checks a single constraint

Magic (aka Math)
- Sampling constraints takes exponentially small time!
- Good proofs satisfy ALL constraints!
- A “proof” of a false claim satisfies < 1% of constraints!

“...a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware …”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

A sudoku-like set of constraints is implied by the
statement proved, by x, y, P, and #tx (=1,000,000)

Claim: Starting @ state hash x, after 1,000,000
txs processed by program P, reached state hash y

Integrity Through Math

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

PCP

1992

Integrity* via Math
(impractical)

“...a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware …”

PCPIntegrity Through Math

STARK
Integrity* via Math

(impractical)

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

1992

2004

2015

2018

“...a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware …”

Integrity Through Math

STARK
Integrity* via Math

(impractical)

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

1992

2004

2015

2018

“...a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware …”

Integrity Through Math

Arithmetization

Arithmetization

Arithmetization Converts (“reduces”) Computational Integrity problems to
problems about local relations between a bunch of polynomials

Claim: Starting @ state hash x, after 1,000,000
txs processed by program P, reached state hash y

Arithmetization Converts (“reduces”) Computational Integrity problems to
problems about local relations between a bunch of polynomials

Pre-arithmetization
claim

“I know y such that
SHA2(y)=z”
Starting @ state hash x,

after 1,000,000 txs
processed by program
P, reached state hash y

Arithmetization

Arithmetization Converts (“reduces”) Computational Integrity problems to
problems about local relations between a bunch of polynomials

Pre-arithmetization
claim

“I know y such that
SHA2(y)=z”

Reduction

produces 2
polynomials:
Q(X,Y,T,W), R(X) and
degree bound d

Starting @ state hash x,
after 1,000,000 txs

processed by program
P, reached state hash y

Arithmetization

Pre-arithmetization
claim

“I know y such that
SHA2(y)=z”

Reduction Post-arithmetization
claim

produces 2
polynomials:
Q(X,Y,T,W), R(X) and
degree bound d

I know 4 polynomials
of degree d - A(x), B(x),
C(x), D(X) - such that:

Q(X, A(X), B(X+1),
C(2*X))=D(X) * R(X)

Starting @ state hash x,
after 1,000,000 txs

processed by program
P, reached state hash y

Arithmetization Converts (“reduces”) Computational Integrity problems to
problems about local relations between a bunch of polynomials

Arithmetization

Pre-arithmetization
claim

“I know y such that
SHA2(y)=z”

Reduction Post-arithmetization
claim

Theorem

produces 2
polynomials:
Q(X,Y,T,W), R(X) and
degree bound d

I know 4 polynomials
of degree d - A(x), B(x),
C(x), D(X) - such that:

Q(X, A(X), B(X+1),
C(2*X))=D(X) * R(X)

If A, B, C, D do not
satisfy THIS,

then nearly all x
expose Bob’s lie

Starting @ state hash x,
after 1,000,000 txs

processed by program
P, reached state hash y

Arithmetization Converts (“reduces”) Computational Integrity problems to
problems about local relations between a bunch of polynomials

Arithmetization

Assuming Theorem, we get a scalable proof system for Bob’s original claim:

1. Apply reduction, ask Bob to provide access to A,B,C,D of degree-d
2. Sample random x and accept Bob’s claim iff equality holds for this x

Post-arithmetization
claim

Theorem

I know 4 polynomials
of degree d - A(x), B(x),
C(x), D(X) - such that:

Q(X, A(X), B(X+1),
C(2*X))=D(X) * R(X)

If A, B, C, D do not
satisfy THIS,

then nearly all x
expose Bob’s lie

New problem: Force Bob to
(1) commit to degree d polynomials, then
(2) answer queries to the precommitted polys

Arithmetization

Assuming Theorem, we get a scalable proof system for Bob’s original claim:

1. Apply reduction, ask Bob to provide access to A,B,C,D of degree-d
2. Sample random x and accept Bob’s claim iff equality holds for this x

Post-arithmetization
claim

Theorem

I know 4 polynomials
of degree d - A(x), B(x),
C(x), D(X) - such that:

Q(X, A(X), B(X+1),
C(2*X))=D(X) * R(X)

If A, B, C, D do not
satisfy THIS,

then nearly all x
expose Bob’s lie

New problem: Force Bob to
(1) commit to degree d polynomials, then
(2) answer queries to the precommitted polys

Arithmetization

AIR (Algebraic Intermediate Representation)

Computation:

A set of rules for how to sequentially evolve a state, starting with an input and
ending up with an output.

a = 1

b = 0

for i in range(n):

 a, b = a + b, a

return a

python:

AIR (Algebraic Intermediate Representation)

a = 1

b = 0

for i in range(n):

 a, b = a + b, a

return a

a0=1 b0=0

a1=1 b1=1

a2=2 b2=1

⋮ ⋮

an bn

trace:python:

AIR (Algebraic Intermediate Representation)

a = 1

b = 0

for i in range(n):

 a, b = a + b, a

return a

constraints:trace:python:

a0=1 b0=0

a1=1 b1=1

a2=2 b2=1

⋮ ⋮

an bn

AIR (Algebraic Intermediate Representation)

AIR

a = 1

b = 0

for i in range(n):

 a, b = a + b, a

return a

constraints:trace:python: domain:

First row

First row

0 ≤ i < n

0 ≤ i < n

Row n

a0=1 b0=0

a1=1 b1=1

a2=2 b2=1

⋮ ⋮

an bn

Rescue hash function

w0

w1

0

Perm
out

Rescue hash function

w0

w1

0

Round0

out

Round1 Round9Round8

...

...

...

∛X ∙M +K2r+1 X3 ∙M +K2r+2

Stater Interr Stater+1

Step 1 Step 2

Round r

s0,0

s0,1

s0,2

⋮

s0,11

s1,0

s1,1

s1,2

⋮

s1,11

s2,0

s2,1

s2,2

⋮

s2,11

s3,0

s3,1

s3,2

⋮

s3,11

s4,0

s4,1

s4,2

⋮

s4,11

s5,0

s5,1

s5,2

⋮

s5,11

s6,0

s6,1

s6,2

⋮

s6,11

Rescue AIR

∛X M K2r+1 X3 M K2r+2

Stater Interr Stater+1

Step 1 Step 2

Round r

s0 s1 s2 s3 s4 s5 s6

Rescue AIR

∛X M K2r+1 X3 M K2r+2

Stater Interr Stater+1

Step 1 Step 2

Round r

s0 s1 s2 s3 s4 s5 s6

Rescue AIR

∛X M K2r+1 X3 M K2r+2

Stater Interr Stater+1

Step 1 Step 2

Round r

s0 s1 s2 s3 s4 s5 s6

Rescue AIR

∛X M K2r+1 X3 M K2r+2

Stater Interr Stater+1

Step 1 Step 2

Round r

s0 s1 s2 s3 s4 s5 s6

Rescue AIR

∛X M K2r+1 X3 M K2r+2

Stater Interr Stater+1

Step 1 Step 2

Round r

s0 s1 s2 s3 s4 s5 s6

Rescue AIR

∛X M K2r+1 X3 M K2r+2

Stater Interr Stater+1

Step 1 Step 2

Round r

s0 s1 s2 s3 s4 s5 s6

Rescue AIR

∛X M K2r+1 X3 M K2r+2

Stater
Interr Stater+1

Step 1 Step 2

Round r

s0 s1 s2 s3 s4 s5 s6

∛X M K2r+3 X3 M K2r+4

Interr+1 Stater+2

Step 1 Step 2

Round r+1

s7 s8 s9 s10 s11 s12

Wishlist for crypto primitives

AIR Parameters: t, w, F, d, s, e

● Execution trace size: t rows, w columns
○ Fib(n): t=n, w=2
○ Rescue: t= #rounds, w = |state|

AIR Parameters: t, w, F, d, s, e

● Execution trace size: t rows, w columns
○ Fib(n): t=n, w=2
○ Rescue: t= #rounds, w = |state|

● Trace entries in field F. Which field?
○ Any field! [BCKL22] (FFT-friendly better)

● Constraints
○ Maximal degree: d
○ # constraints: s
○ Enforcement domain complexity: e

AIR Parameters: t, w, F, d, s, e

● Execution trace size: t rows, w columns
○ Fib(n): t=n, w=2
○ Rescue: t= #rounds, w = |state|

● Trace entries in field F. Which field?
○ Any field! [BCKL22] (FFT-friendly better)

● Constraints
○ Maximal degree: d
○ # constraints: s
○ Enforcement domain complexity: e

AIR Parameters: t, w, F, d, s, e

● Execution trace size: t rows, w columns
○ Fib(n): t=n, w=2
○ Rescue: t= #rounds, w = |state|

● Trace entries in field F. Which field?
○ Any field! [BCKL22] (FFT-friendly better)

● Constraints
○ Maximal degree: d
○ # constraints: s
○ Enforcement domain complexity: e

Wish-list for Primitive P:
1. Minimize t x w, |F|, d (also s, e)
2. Minimize CPU time of computing P
3. Make it field agnostic, and safe!

AIR Parameters: t, w, F, d, s, e

● Execution trace size: t rows, w columns
○ Fib(n): t=n, w=2
○ Rescue: t= #rounds, w = |state|

● Trace entries in field F. Which field?
○ Any field! [BCKL22] (FFT-friendly better)

● Constraints
○ Maximal degree: d
○ # constraints: s
○ Enforcement domain complexity: e

Wish-list for Primitive P:
1. Minimize t x w, |F|, d (also s, e)
2. Minimize CPU time of computing P
3. Make it field agnostic, and safe!

ethSTARK (Rescue):
1. t x w = 120, log |F| ~ 62, d=3
2. CPU time large, esp in large F (cube root!)
3. Relatively safe, AES-like (say the experts)

Poseidon in Starknet/Ex:
1. t x w = 226, log |F|~252, d=2
2. CPU time better than Rescue (100 microsec)
3. Relatively safe (though less than Rescue)

AIR Parameters: t, w, F, d, s, e

Wish-list for Primitive P:
1. Minimize t x w, |F|, d (also s, e)
2. Minimize CPU time of computing P
3. Make it field agnostic, and safe!

ethSTARK (Rescue):
1. t x w = 120, log |F| ~ 62, d=3
2. CPU time large, esp in large F (cube root!)
3. Relatively safe, AES-like (say the experts)

Poseidon in Starknet/Ex:
1. t x w = 226, log |F|~252, d=2
2. CPU time better than Rescue (100 microsec)
3. Relatively safe (though less than Rescue)

Keccak:
1. t x w = 70,000-90,000, log |F| ~ 252, d=2
2. CPU time amazing (1 microsecond)
3. Very safe

STARK-friendly
crypto primitives
wish-list

Eli Ben-Sasson

April 2023

58

