Algebraic cryptanalysis: how Gröbner bases techniques can be used in cryptanalysis

Magali Bardet

LITIS, University of Rouen Normandie, France magali.bardet@univ-rouen.fr

STAP 2023,
April 23rd, 2023

Introduction
Algebraic Modeling
Monomial Ordering

Gröbner basis complexity

Algebraic Cryptanalysis

Gröbner basis
complexity
Example 1
References

Algebraic Cryptanalysis

$\left.\begin{array}{|c|}\hline \text { Security of } \\ \text { primitives }\end{array}\right]\left[\begin{array}{c}\text { Algebraic } \\ \text { Modeling } \\ \text { Identify } \\ \text { algebraic } \\ \text { structure }\end{array}\right]$

Gröbner basis complexity

Algebraic Cryptanalysis

$\left.\begin{array}{|c|}\hline \text { Security of } \\ \text { primitives }\end{array} \longrightarrow \begin{array}{c}\text { Algebraic } \\ \text { Modeling } \\ \text { Identify } \\ \text { algebraic } \\ \text { structure }\end{array}\right]\left[\begin{array}{c}\text { Generic } \\ \text { Solving } \\ \text { tools } \\ \text { Gröbner basis } \\ \text { object/tool }\end{array}\right]$

Algebraic Cryptanalysis

Algebraic Cryptanalysis can be devastating

Famous practical cryptanalyses in $\simeq 2$ days:

- attacking first HFE Challenge (80 bits) (J.-C. Faugère and Joux 2003)
- attacking finalist Rainbow (128 bits) (Beullens 2022)

Many other examples in the literature.

Algebraic Modeling

Principle: write a Polynomial System

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array} \quad, \quad \operatorname{deg}\left(f_{i}\right)=d_{i}, f_{i} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] .\right.
$$

such that finding the set of solutions

$$
V\left(f_{1}, \ldots, f_{m}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \overline{\mathbb{K}}^{n}: f_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \forall i \in\{1 . . m\}\right\}
$$

gives (part of) the secret.
Ideally: any solution is related to the secret!

Algebraic Modeling

Principle: write a Polynomial System

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array} \quad, \quad \operatorname{deg}\left(f_{i}\right)=d_{i}, f_{i} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] .\right.
$$

Introduction
Algebraic Modeling

Gröbner basis complexity
such that finding the set of solutions

$$
V\left(f_{1}, \ldots, f_{m}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \overline{\mathbb{K}}^{n}: f_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \forall i \in\{1 . . m\}\right\}
$$

gives (part of) the secret.
Ideally: any solution is related to the secret!

- Otherwise, we have to deal with spurious solutions.

Algebraic Modeling

Principle: write a Polynomial System

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array} \quad, \quad \operatorname{deg}\left(f_{i}\right)=d_{i}, f_{i} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] .\right.
$$

Introduction
Algebraic Modeling
such that finding the set of solutions

$$
V\left(f_{1}, \ldots, f_{m}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \overline{\mathbb{K}}^{n}: f_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \forall i \in\{1 . . m\}\right\}
$$

gives (part of) the secret.
Ideally: any solution is related to the secret!

- Otherwise, we have to deal with spurious solutions.
- Solutions in \mathbb{F}_{q} : algebraic constraint! add the field equations $x_{i}^{q}-x_{i}$.

Algebraic Modeling

Solving the algebraic system using Gröbner bases (object)

- A particular basis of the ideal

$$
I\left(f_{1}, \ldots, f_{m}\right)=\left\langle f_{1}, \ldots, f_{m}\right\rangle
$$

that solves the ideal-membership problem.

- Depends on the choice of a monomial ordering.

Algebraic Modeling

Solving the algebraic system using Gröbner bases (object)

- A particular basis of the ideal

$$
I\left(f_{1}, \ldots, f_{m}\right)=\left\langle f_{1}, \ldots, f_{m}\right\rangle
$$

that solves the ideal-membership problem.

Introduction
Algebraic Modeling

- Depends on the choice of a monomial ordering.

A hard problem

- Ideal Membership testing is EXPSPACE-complete,
- Existence of solutions to a system of polynomial equations over a finite field is NP-complete (Fraenkel and Yesha 1979),

Gröbner basis algorithms

General algorithms, for any input system:

- Buchberger (Buchberger 1965),
- F4 (J.-C. Faugère 1999),
- F5 (J.-C. Faugère 2002).

Introduction
Algebraic Modeling

The algorithms will always terminate and give the Gröbner basis. But the time is hard to predict for any instance.

Gröbner basis algorithms

General algorithms, for any input system:

- Buchberger (Buchberger 1965),
- F4 (J.-C. Faugère 1999),
- F5 (J.-C. Faugère 2002).

Introduction

The algorithms will always terminate and give the Gröbner basis.
But the time is hard to predict for any instance.
Specific algorithms, for a particular class of systems:
The algorithms will terminate in a predictable time.
The result is not always a Gröbner basis of the system.
For random instances in the specific class, the result is a Gröbner basis.

Properties of monomial orderings

Different monomial orderings have different properties

- the lex order (Lexicographical): in Shape Position, for a zero-dimension
with $\operatorname{deg}\left(g_{n}\right)=D$ the number of solutions to the system.
- the grevlex order (Graded Reverse Lexicographical): usually the best one w.r.t. the complexity.
- the elim order (Elimination): two blocks of variables $\mathbf{x}>\mathbf{y}$.

Monomial ordering examples

Lexicographical ordering $x_{1}>\cdots>x_{n}$

$$
x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}>x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}} \text { iff }\left\{\begin{array}{l}
\alpha_{j}=\beta_{j} \quad \forall j<i \\
\alpha_{i}>\beta_{i}
\end{array}\right.
$$

Elimination Ordering $\mathbf{x}>\mathbf{y}$

$$
\mathbf{x}^{\alpha} \mathbf{y}^{\beta}>\mathbf{x}^{\alpha^{\prime}} \mathbf{y}^{\beta^{\prime}} \text { iff }\left\{\begin{array}{l}
\alpha>_{1} \alpha^{\prime} \\
\text { or } \alpha=\alpha^{\prime} \text { and } \beta>_{2} \beta^{\prime}
\end{array}\right.
$$

Family of random zero-dimensional systems

Hypotheses for cryptanalysis

- the variety is zero-dimensional (otherwise, change the modeling!).
- the instances are "random" (not the system).

Change of ordering FGLM for zero-dimensional systems

- The FGLM (J.-C. Faugère, Gianni, Lazard, and Mora 1993) Algorithm performs a change of ordering in complexity

$$
O\left(n D^{3}\right)
$$

n number of variables, $n \rightarrow \infty, D$ degree of the ideal (number of solutions).

Change of ordering FGLM for zero-dimensional systems

- The FGLM (J.-C. Faugère, Gianni, Lazard, and Mora 1993) Algorithm performs a change of ordering in complexity

$$
O\left(n D^{3}\right)
$$

n number of variables, $n \rightarrow \infty, D$ degree of the ideal (number of solutions).

- Complexity for grevlex to lex (Shape position) (J.-C. Faugère, Gaudry,

Monomial

Ordering Huot, and Renault 2014):

$$
O\left(\log _{2}(D)\left(D^{\omega}+n \log _{2}(D) D\right)\right)
$$

Change of ordering FGLM for zero-dimensional systems

- The FGLM (J.-C. Faugère, Gianni, Lazard, and Mora 1993) Algorithm performs a change of ordering in complexity

$$
O\left(n D^{3}\right)
$$

n number of variables, $n \rightarrow \infty, D$ degree of the ideal (number of solutions).

- Complexity for grevlex to lex (Shape position) (J.-C. Faugère, Gaudry, Huot, and Renault 2014):

$$
O\left(\log _{2}(D)\left(D^{\omega}+n \log _{2}(D) D\right)\right)
$$

- Sparse versions for generic systems grevlex to lex (J.-C. Faugère and Mou 2017) in

$$
O\left(\sqrt{\frac{6}{n \pi}} D^{2+\frac{n-1}{n}}\right)
$$

Systems with 0 or 1 solution

The grevlex and lex bases are the same:

- If the system has 1 solution:

$$
\left\{\begin{array}{c}
x_{1}-a_{1} \\
\vdots \\
x_{n}-a_{n}
\end{array}\right.
$$

where $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}_{q}^{n}$ is the solution.

- If the system has no solution:
$\langle 1\rangle$.

Adding the field equations

Should I add the field equations to the system?

- Does the ideal have solutions in the algebraic closure of \mathbb{F}_{q} ? How many?
- Is the maximal degree D reached during the computation smaller than q ?
- Are there solutions in $\overline{\mathbb{F}_{q}}$ that I'm not interested in?

Adding the field equations

Should I add the field equations to the system?

- Does the ideal have solutions in the algebraic closure of \mathbb{F}_{q} ? How many?
- Is the maximal degree D reached during the computation smaller than q ?
- Are there solutions in $\overline{\mathbb{F}_{q}}$ that I'm not interested in?

When should I add the field equations?

- from the beginning,
- to the lex basis (gcd).

Complexity of computing a Gröbner basis

- worst case: doubly exponential! polynomials of degree $d^{2^{n}}$ in the basis, any monomial ordering (Mayr and Meyer 1982).
- zero-dimensional, grevlex: simply exponential (Lazard 1983; Giusti 1984).
- relation to linear algebra for the computation: Macaulay matrices.

Tools from computer algebra toward complexity analysis

$$
\text { System }\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array} \quad, \quad \operatorname{deg}\left(f_{i}\right)=d_{i}, f_{i} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] .\right.
$$

- Macaulay Matrices (Macaulay 1902):

$$
\left.\begin{array}{rl}
& \vdots \\
\mathscr{M}_{d}\left(\left\{f_{1}, \ldots, f_{m}\right\}\right)= & (t, i) \\
\vdots
\end{array} \quad \operatorname{coeff}\left(t f_{i}, t^{\prime}\right)\right)
$$

Tools from computer algebra toward complexity analysis

$$
\text { System }\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array} \quad, \quad \operatorname{deg}\left(f_{i}\right)=d_{i}, f_{i} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] .\right.
$$

$$
\left.\begin{array}{c}
\vdots \\
\mathscr{M}_{d}\left(\left\{f_{1}, \ldots, f_{m}\right\}\right)= \\
\vdots \\
\vdots, i)
\end{array} \quad \operatorname{coeff}\left(t f_{i}, t^{\prime}\right)\right)
$$

- Describes the vector space $\left\langle t f_{i}: \operatorname{deg}\left(t f_{i}\right)=d\right\rangle_{\mathbb{K}}$.

Tools from computer algebra toward complexity analysis

$$
\text { System }\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array} \quad, \quad \operatorname{deg}\left(f_{i}\right)=d_{i}, f_{i} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] .\right.
$$

- Macaulay Matrices (Macaulay 1902):

$$
\left.\begin{array}{rl}
& \vdots \\
\mathscr{M}_{d}\left(\left\{f_{1}, \ldots, f_{m}\right\}\right)= & (t, i) \\
\vdots
\end{array} \quad \operatorname{coeff}\left(t f_{i}, t^{\prime}\right)\right)
$$

- Describes the vector space $\left\langle t f_{i}: \operatorname{deg}\left(t f_{i}\right)=d\right\rangle_{\mathbb{K}}$.
- Linear algebra on the Macaulay matrices up to degree D computes a Gröbner basis (Lazard 1983,Giusti 1984).

Complexity bounds

Linear algebra on the Macaulay matrix of degree D
A Gröbner basis of a system $\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ up to degree D for a graded monomial ordering can be computed in, at most,

$$
O\left(m D\binom{n+D-1}{D}^{\omega}\right) \quad n, m \rightarrow \infty .
$$

operations.

Complexity bounds

Linear algebra on the Macaulay matrix of degree D
A Gröbner basis of a system $\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ up to degree D for a graded monomial ordering can be computed in, at most,

$$
O\left(m D\binom{n+D-1}{D}^{\omega}\right) \quad n, m \rightarrow \infty .
$$

operations.

Main challenges

- Estimate D.
- Identify unnecessary computations to reduce the complexity, e.g. to $O\left(\binom{n+D}{D}^{\omega}\right)$.
- If there are fall degree at degree $<D$, construct a better strategy (algorithm) to take that into account, and estimate its complexity.

Generic Complexity analysis

Known classes of particular systems (not exhaustive)

- regular systems (Macaulay 1916), \# eq $\leqslant \#$ vars,
- determinantal systems (Conca and Herzog 1994),
- semi-regular systems (Bardet, J.-C. Faugère, and Salvy 2004), \# eq \# \# vars,
- solutions in \mathbb{F}_{2} : boolean semi-regular systems (Bardet, J.-C. Faugère, Salvy, and Yang 2005),
- bi-regular bilinear systems (J.-C. Faugère, Safey El Din, and P.-J. Spaenlehauer 2011).

Difference between classes

$$
O\left(m D\binom{n+D-1}{D}^{\omega}\right)
$$

$$
n, m \rightarrow \infty
$$

Examples of quadratic equations:

- $m=n$ regular system: : $D \leqslant n+1$,
- $m=n+1$ semi-regular system: $D \leqslant\left\lceil\frac{n+2}{2}\right\rceil$,
- $m=n$ regular bilinear system with $\left\lfloor\frac{n}{2}\right\rfloor$ variables x and $\left\lceil\frac{n}{2}\right\rceil$ variables y : $D \leqslant\left\lceil\frac{n}{2}\right\rceil$.
- $m=n$ regular over $\mathbb{F}_{2}: D \simeq \frac{n}{11}, O\left(\binom{n}{D}^{\omega}\right)$

Algebraic attack

For each class we know

- relations between rows in the Macaulay matrices,
- the rank of the Macaulay matrices for generic systems,

Introduction
Algebraic Modeling

Algebraic attack

For each class we know

- relations between rows in the Macaulay matrices,
- the rank of the Macaulay matrices for generic systems,

Introduction
Algebraic Modeling

- a specific Gb algorithm that is more efficient.

If the system is not in a known class

- Identify a generic behavior,
- Identify a specific algorithm to compute the Gb ,
- Create a new class!

Homogeneous vs Affine

- All bounds are given for homogeneous polynomials.

Homogeneous vs Affine

- All bounds are given for homogeneous polynomials.
- For affine systems: the same complexity if no fall degree before degree D, the complexity is then the cost of reducing several matrices at degree D (sometimes $D+1$, at most $2 D-1$).

Homogeneous vs Affine

- All bounds are given for homogeneous polynomials.
- For affine systems: the same complexity if no fall degree before degree D, the complexity is then the cost of reducing several matrices at degree D (sometimes $D+1$, at most $2 D-1$).
- In this case, D is the first fall degree, also the solving degree and the degree of regularity and is related to the complexity.

Homogeneous vs Affine

- All bounds are given for homogeneous polynomials.
- For affine systems: the same complexity if no fall degree before degree D, the complexity is then the cost of reducing several matrices at degree D (sometimes $D+1$, at most $2 D-1$).
- In this case, D is the first fall degree, also the solving degree and the degree of regularity and is related to the complexity.
- Otherwise, first fall degree is not related to complexity estimates!

The MinRank Problem

- Input: integers $r, m, n \in \mathbb{N}$, and K matrices $M_{1}, \ldots, M_{K} \in \mathbb{F}_{q}^{m \times n}$
- Output: $\left(x_{1}, \ldots, x_{K}\right) \in \mathbb{F}_{q}$, not all zero, such that

$$
\operatorname{Rank}\left(\sum_{i=1}^{K} x_{i} M_{i}\right) \leqslant r
$$

Introduction
Algebraic Modeling
Monomial
Ordering
Gröbner basis complexity

Example 1
References

The MinRank Problem

- Input: integers $r, m, n \in \mathbb{N}$, and K matrices $M_{1}, \ldots, M_{K} \in \mathbb{F}_{q}^{m \times n}$
- Output: $\left(x_{1}, \ldots, x_{K}\right) \in \mathbb{F}_{q}$, not all zero, such that

$$
\operatorname{Rank}\left(\sum_{i=1}^{K} x_{i} \mathcal{M}_{i}\right) \leqslant r
$$

- NP-complete problem (Buss, Frandsen, Shallit 1999),

The MinRank Problem

- Input: integers $r, m, n \in \mathbb{N}$, and K matrices $M_{1}, \ldots, M_{K} \in \mathbb{F}_{q}^{m \times n}$
- Output: $\left(x_{1}, \ldots, x_{K}\right) \in \mathbb{F}_{q}$, not all zero, such that

$$
\operatorname{Rank}\left(\sum_{i=1}^{K} x_{i} M_{i}\right) \leqslant r
$$

- NP-complete problem (Buss, Frandsen, Shallit 1999),
- used to cryptanalyse various multivariate and code-based cryptosystems.

The MinRank Problem

- Input: integers $r, m, n \in \mathbb{N}$, and K matrices $M_{1}, \ldots, M_{K} \in \mathbb{F}_{q}^{m \times n}$
- Output: $\left(x_{1}, \ldots, x_{K}\right) \in \mathbb{F}_{q}$, not all zero, such that

$$
\operatorname{Rank}\left(\sum_{i=1}^{K} x_{i} M_{i}\right) \leqslant r
$$

- NP-complete problem (Buss, Frandsen, Shallit 1999),
- used to cryptanalyse various multivariate and code-based cryptosystems.
- This is exactly the decoding problem for matrix codes,

The MinRank Problem

- Input: integers $r, m, n \in \mathbb{N}$, and K matrices $M_{1}, \ldots, M_{K} \in \mathbb{F}_{q}^{m \times n}$
- Output: $\left(x_{1}, \ldots, x_{K}\right) \in \mathbb{F}_{q}$, not all zero, such that

$$
\operatorname{Rank}\left(\sum_{i=1}^{K} x_{i} M_{i}\right) \leqslant r
$$

- NP-complete problem (Buss, Frandsen, Shallit 1999),
- used to cryptanalyse various multivariate and code-based cryptosystems.
- This is exactly the decoding problem for matrix codes,
- $K<(m-r)(n-r): 0$ or 1 solution in the algebraic closure of \mathbb{F}_{q}.

The MinRank Problem

- Input: integers $r, m, n \in \mathbb{N}$, and K matrices $M_{1}, \ldots, M_{K} \in \mathbb{F}_{q}^{m \times n}$
- Output: $\left(x_{1}, \ldots, x_{K}\right) \in \mathbb{F}_{q}$, not all zero, such that

$$
\operatorname{Rank}\left(\sum_{i=1}^{K} x_{i} M_{i}\right) \leqslant r
$$

- NP-complete problem (Buss, Frandsen, Shallit 1999),
- used to cryptanalyse various multivariate and code-based cryptosystems.
- This is exactly the decoding problem for matrix codes,
- $K<(m-r)(n-r): 0$ or 1 solution in the algebraic closure of \mathbb{F}_{q}.
- No need to add the field equations: already in the ideal!

The MinRank Problem

- Input: integers $r, m, n \in \mathbb{N}$, and K matrices $M_{1}, \ldots, M_{K} \in \mathbb{F}_{q}^{m \times n}$
- Output: $\left(x_{1}, \ldots, x_{K}\right) \in \mathbb{F}_{q}$, not all zero, such that

$$
\operatorname{Rank}\left(\sum_{i=1}^{K} x_{i} M_{i}\right) \leqslant r
$$

- NP-complete problem (Buss, Frandsen, Shallit 1999),
- used to cryptanalyse various multivariate and code-based cryptosystems.
- This is exactly the decoding problem for matrix codes,
- $K<(m-r)(n-r): 0$ or 1 solution in the algebraic closure of \mathbb{F}_{q}.
- No need to add the field equations: already in the ideal!
- For very small q (e.g. $q=2$): adding small degree equations can speed up the computation.

MinRank problem Rank $\left(\sum_{i=1}^{K} x_{i} M_{i}\right) \leqslant r$

- Kipnis-Shamir modeling (Kipnis and Shamir 1999)

$$
\begin{equation*}
\left(\sum_{i=1}^{K} x_{i} M_{i}\right)\binom{\boldsymbol{I}_{n-r}}{-\boldsymbol{R}}=0_{m \times(n-r)}, \quad \boldsymbol{R} \in \mathbb{F}_{q}^{r \times(n-r)}, x_{i} \in \mathbb{F}_{q} \tag{KS}
\end{equation*}
$$

Introduction
Algebraic Modeling
Monomial
Ordering
Gröbner basis

MinRank problem Rank $\left(\sum_{i=1}^{K} x_{i} M_{i}\right) \leqslant r$

- Kipnis-Shamir modeling (Kipnis and Shamir 1999)

$$
\begin{equation*}
\left(\sum_{i=1}^{K} x_{i} \boldsymbol{M}_{i}\right)\binom{\boldsymbol{I}_{n-r}}{-\boldsymbol{R}}=0_{m \times(n-r)}, \quad \boldsymbol{R} \in \mathbb{F}_{q}^{r \times(n-r)}, x_{i} \in \mathbb{F}_{q} \tag{KS}
\end{equation*}
$$

Introduction
Algebraic Modeling
Monomial
Ordering
Gröbner basis

$$
\begin{equation*}
\text { Minors }_{r+1}\left(\sum_{i=1}^{K} x_{i} M_{i}\right)=0 \tag{Minors}
\end{equation*}
$$

MinRank problem Rank $\left(\sum_{i=1}^{K} x_{i} M_{i}\right) \leqslant r$

- Kipnis-Shamir modeling (Kipnis and Shamir 1999)

$$
\begin{equation*}
\left(\sum_{i=1}^{K} x_{i} M_{i}\right)\binom{\boldsymbol{I}_{n-r}}{-R}=0_{m \times(n-r)}, \quad R \in \mathbb{F}_{q}^{r \times(n-r)}, x_{i} \in \mathbb{F}_{q} \tag{KS}
\end{equation*}
$$

- Support Minors modeling, (Bardet, Bros, Cabarcas, Gaborit, et al. 2020)

$$
\text { Minors }_{r+1}\left(\begin{array}{cc}
\left(\sum_{i=1}^{K} x_{i} M_{i}\right)_{j, *} \tag{SM}\\
\boldsymbol{R} & \boldsymbol{I}_{r}
\end{array}\right)=0 \quad \forall j \in\{1 . . m\}
$$

MinRank problem Rank $\left(\sum_{i=1}^{K} x_{i} M_{i}\right) \leqslant r$

- Kipnis-Shamir modeling (Kipnis and Shamir 1999)

$$
\begin{equation*}
\left(\sum_{i=1}^{K} x_{i} M_{i}\right)\binom{\boldsymbol{I}_{n-r}}{-R}=0_{m \times(n-r)}, \quad \boldsymbol{R} \in \mathbb{F}_{q}^{r \times(n-r)}, x_{i} \in \mathbb{F}_{q} \tag{KS}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Minors}_{r+1}\left(\sum_{i=1}^{K} x_{i} M_{i}\right)=0 \tag{Minors}
\end{equation*}
$$

- Support Minors modeling, (Bardet, Bros, Cabarcas, Gaborit, et al. 2020)

$$
\text { Minors }_{r+1}\left(\begin{array}{cc}
\left(\sum_{i=1}^{K} x_{i} M_{i}\right)_{j, *} \tag{SM}\\
\boldsymbol{R} & \boldsymbol{I}_{r}
\end{array}\right)=0 \quad \forall j \in\{1 . . m\}
$$

- Same ideal! (Bardet and Bertin 2022; Guo and Ding 2022)

Specific systems

 et al. 2019)- alternate candidate (3rd Round of the NIST process) that suffered a MinRank attack (Tao, Petzoldt, and Ding 2021),
- the system has m solutions in an extension $\mathbb{F}_{q^{m}}$ of \mathbb{F}_{q},
- specific analysis using the particular algebraic structure (Banea, Briaud, Cabarcas, Perlner, et al. 2022).
Complexity estimate goes e.g. for GeMSS256 from 2^{272} to 2^{166} to 2^{75} !

Specific systems

 et al. 2019)- alternate candidate (3rd Round of the NIST process) that suffered a MinRank attack (Tao, Petzoldt, and Ding 2021),
- the system has m solutions in an extension $\mathbb{F}_{q^{m}}$ of \mathbb{F}_{q},
- specific analysis using the particular algebraic structure (Banea, Briaud, Cabarcas, Perlner, et al. 2022).
Complexity estimate goes e.g. for GeMSS256 from 2^{272} to 2^{166} to 2^{75} ! $\mathbb{F}_{q^{m-l i n e a r ~ c o d e s ~}}$
- the equations are not linearly independent! + a lot of linear equations.
- Bardet, Briaud, Bros, Gaborit, and Tillich 2022: specific analysis of the system.

Gröbner bases in Magma

Computer algebra system magma

- default strategy: compute the grevlex basis, then change to the lex basis using FGLM.
- lex by default, you can specify "grevlex" in the polynomial ring.
- grevlex basis computed using F4, with several heuristics (SetVerbose("Faugere", 2))
- an input parameter for HFE-like systems, to save memory and time.

Conclusion

- A powerful tool to solve problems that have an algebraic modeling,
- A lot of parameters to choose,
- Design specific algorithms for specific class of systems to be efficient,
- Already a lot of applications on arithmetization-oriented symmetric-key primitives.

Conclusion

- A powerful tool to solve problems that have an algebraic modeling,
- A lot of parameters to choose,
- Design specific algorithms for specific class of systems to be efficient,
- Already a lot of applications on arithmetization-oriented symmetric-key primitives.

A PhD position is available in Rouen, starting in fall, algebraic cryptanalysis.

Banea, J., P. Briaud, D. Cabarcas, R. Perlner, et al. (Aug. 2022). "Improving Support-Minors Rank Attacks: Applications to GeMSS and Rainbow". In: Advances in Cryptology - CRYPTO 2022. Ed. by Y. Dodis and T. Shrimpton. Vol. Part III. LNCS. Cham: Springer Nature Switzerland, pp. 376-405.
Bardet, M. and M. Bertin (2022). "Improvement of Algebraic Attacks for Solving Superdetermined MinRank Instances". In: PQCrypto.
Bardet, M., J.-C. Faugère, and B. Salvy (2004). "On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations". In: ICPSS'04. International Conference on Polynomial System Solving, November 24-25-26, Paris, France, pp. 71-75.
Bardet, M., J.-C. Faugère, B. Salvy, and B.-Y. Yang (2005). "Asymptotic Behaviour of the Degree of Regularity of Semi-Regular Quadratic Polynomial Systems". In: MEGA'05. Eighth International Symposium on Effective Methods in Algebraic Geometry, Porto Conte, Alghero, Sardinia (Italy), May 27th - June 1st, 15 p.

Introduction
Algebraic Modeling
Monomial

目 Bardet，M．，P．Briaud，M．Bros，P．Gaborit，and J．－P．Tillich（2022）． Revisiting Algebraic Attacks on MinRank and on the Rank Decoding Problem．
Bardet，M．，M．Bros，D．Cabarcas，P．Gaborit，et al．（2020）．＂Improvements of Algebraic Attacks for Solving the Rank Decoding and MinRank Problems＂．In：Advances in Cryptology－ASIACRYPT 2020．Ed．by S．Moriai and H．Wang．Vol．12491．LNCS．Cham：Springer International Publishing，pp．507－536．
㽣 Beullens，W．（2022）．＂Breaking Rainbow Takes a Weekend on a Laptop＂．In： CRYPTO．
Buchberger，B．（1965）．＂Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal＂． PhD thesis．Universitat Innsbruck．
囦 Caminata，A．and E．Gorla（2023）．＂Solving degree，last fall degree，and related invariants＂．In：Journal of Symbolic Computation 114，pp．322－335．

Casanova，A．，J．Faugère，G．Macario－Rat，J．Patarin，et al．（Apr．2019）． GeMSS：A Great Multivariate Short Signature．Second round submission to the NIST post－quantum cryptography call．
Conca，A．and J．Herzog（1994）．＂On the Hilbert function of determinantal rings and their canonical module＂．In：Proc．Amer．Math．Soc 122， pp．677－681．
围 Faugère，J．－C．and A．Joux（2003）．＂Algebraic cryptanalysis of Hidden Field Equation（HFE）cryptosystems using Gröbner bases＂．In：CRYPTO．Bases（F4）＂．In：J．Pure Appl．Algebra 139．1－3，pp．61－88．
－（2002）．＂A New Efficient Algorithm for Computing Gröbner Bases without Reduction to Zero：F5＂．In：Proceedings ISSAC＇02．ACM press， pp．75－83．
囦 Faugère，J．－C．，P．Gaudry，L．Huot，and G．Renault（2014）．＂Sub－Cubic Change of Ordering for GröBner Basis：A Probabilistic Approach＂．In：ISSAC．

Faugère，J．－C．，P．M．Gianni，D．Lazard，and T．Mora（1993）．＂Efficient Computation of Zero－Dimensional Gröbner Bases by Change of Ordering＂． In：JSC．
庫 Faugère，J．－C．and C．Mou（2017）．＂Sparse FGLM algorithms＂．In：JSC．
图 Faugère，J．，M．Safey El Din，and P．Spaenlehauer（2010）．＂Computing loci of rank defects of linear matrices using Gröbner bases and applications to cryptology＂．In：International Symposium on Symbolic and Algebraic Computation，ISSAC 2010，Munich，Germany，July 25－28，2010，pp．257－264．
（in－（2011）．＂Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree（1，1）：Algorithms and complexity＂．In：J．Symbolic Comput．46．4，pp．406－437．
囦 Fraenkel，A．and Y．Yesha（1979）．＂Complexity of problems in games，graphs and algebraic equations＂．In：Discrete Applied Mathematics 1．1，pp．15－30．
囦 Giusti，M．（1984）．＂Some effectivity problems in polynomial ideal theory＂．In： Eurosam 84．Ed．by J．Fitch．Vol．174．Lecture Notes in Computer Science． Cambridge，1984．Berlin：Springer Berlin／Heidelberg，pp．159－171．

Guo，H．and J．Ding（2022）．＂Algebraic Relation of Three MinRank

Algebraic Modelings＂．In：Arithmetic of Finite Fields．LNCS．Springer． Kipnis，A．and A．Shamir（1999）．＂Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization＂．In：Advances in Cryptology－CRYPTO＇ 99．Ed．by M．Wiener．Berlin，Heidelberg：Springer Berlin Heidelberg， pp．19－30．
－Lazard，D．（1983）．＂Gröbner bases，Gaussian elimination and resolution of systems of algebraic equations＂．In：Computer algebra．
國 Macaulay，F．S．（1902）．＂Some Formulæ in Elimination＂．In：Proceedings of the London Mathematical Society．
囦－（1916）．The algebraic theory of modular systems．Cambridge
Mathematical Library．Revised reprint edition in 1994．Cambridge：Cambridge University Press，pp．xxxii +112 ．
囦 Mayr，E．W．and A．R．Meyer（1982）．＂The complexity of the word problems for commutative semigroups and polynomial ideals＂．In：Advances in Mathematics 46．3，pp．305－329．

Tao, C., A. Petzoldt, and J. Ding (2021). "Efficient Key Recovery for All HFE Signature Variants". In: Advances in Cryptology - CRYPTO 2021-41st

Introduction
Algebraic Modéling Vol. 12825. Lecture Notes in Computer Science. Springer, pp. 70-93.

