
Designing hash functions in GF(q) is (much) harder than it looks

Léo Perrin1

including joint works with
Tim Beyne, Clémence Bouvier, Anne Canteaut, Itai Dinur, Maria Eichlseder,

Gregor Leander, Gaëtan Leurent, María Naya-Plasencia,

Yu Sasaki, Yosuke Todo, and Friedrich Wiemer

Inria, Paris

22nd November 2021

Conclusion

Changing the underlying mathematical structure
in cryptographic primitives is a
significant change that requires

substantial care.

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Outline

1 What are Arithmetization-Oriented Hash Functions

2 How DoWe Test Their Security?

3 Some Cryptanalyses

4 Conclusion

2 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How DoWe Test Their Security?

3 Some Cryptanalyses

4 Conclusion

2 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions
Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

2 How DoWe Test Their Security?

3 Some Cryptanalyses

4 Conclusion

2 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Hash Functions

In what follows, Fq is the finite field with q elements.

Definition

Here, a hash function Hmaps tuples of elements of Fq to Fd
q, for some fixed d.

Collision resistance: it must be infeasible in practice to find tuples x and y such thatH(x) = H(y).
Oneway-ness: given y ∈ (Fq)

d, it must be infeasible in practice to find x such that H(x) = y.

Examples

“Binary World”

SHA-1 (broken)

SHA-2
SHA-3
Whirlpool

“Arithmetization-oriented”
Rescue
MiMC-hash
gMiMC-hash
Poseidon

3 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Hash Functions

In what follows, Fq is the finite field with q elements.

Definition

Here, a hash function Hmaps tuples of elements of Fq to Fd
q, for some fixed d.

Collision resistance: it must be infeasible in practice to find tuples x and y such thatH(x) = H(y).
Oneway-ness: given y ∈ (Fq)

d, it must be infeasible in practice to find x such that H(x) = y.

Examples

“Binary World”

SHA-1 (broken)

SHA-2
SHA-3
Whirlpool

“Arithmetization-oriented”
Rescue
MiMC-hash
gMiMC-hash
Poseidon

3 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Hash Functions

In what follows, Fq is the finite field with q elements.

Definition

Here, a hash function Hmaps tuples of elements of Fq to Fd
q, for some fixed d.

Collision resistance: it must be infeasible in practice to find tuples x and y such thatH(x) = H(y).
Oneway-ness: given y ∈ (Fq)

d, it must be infeasible in practice to find x such that H(x) = y.

Examples

“Binary World”

SHA-1 (broken)

SHA-2
SHA-3
Whirlpool

“Arithmetization-oriented”
Rescue
MiMC-hash
gMiMC-hash
Poseidon

3 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Hash Functions

In what follows, Fq is the finite field with q elements.

Definition

Here, a hash function Hmaps tuples of elements of Fq to Fd
q, for some fixed d.

Collision resistance: it must be infeasible in practice to find tuples x and y such thatH(x) = H(y).
Oneway-ness: given y ∈ (Fq)

d, it must be infeasible in practice to find x such that H(x) = y.

Examples

“Binary World”

SHA-1 (broken)

SHA-2
SHA-3
Whirlpool

“Arithmetization-oriented”
Rescue
MiMC-hash
gMiMC-hash
Poseidon

3 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

A Natural Question

What are the differences between the “binary world” and the
“arithmetization-oriented” world?

4 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

A Mismatch in Domain

For SHA-X, we have
q = 2

160 ≤ d ≤ 512

at least 10 years old

Based on logical gates/CPU instructions

For arithmetization-oriented functions:

q ∈ {2n, p}, where p ≥ 2n, n ≥ 64

2 ≤ d ≤ 4

at most 5 years old

Based on finite field arithmetic

5 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

A Mismatch in Domain

For SHA-X, we have
q = 2

160 ≤ d ≤ 512

at least 10 years old

Based on logical gates/CPU instructions

For arithmetization-oriented functions:

q ∈ {2n, p}, where p ≥ 2n, n ≥ 64

2 ≤ d ≤ 4

at most 5 years old

Based on finite field arithmetic

5 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

A Mismatch in Domain

For SHA-X, we have
q = 2

160 ≤ d ≤ 512

at least 10 years old

Based on logical gates/CPU instructions

For arithmetization-oriented functions:

q ∈ {2n, p}, where p ≥ 2n, n ≥ 64

2 ≤ d ≤ 4

at most 5 years old

Based on finite field arithmetic

5 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

A (Smaller) Mismatch in Properties

Binary Hash Functions

The sub-components must provide:

Security: well-known attacks should not
work

Operations: y← R(x)must be fast/time
constant

Efficiency: easy implementation in
soMware/hardware

Arithmetization-oriented Hash Functions

The sub-components must provide:

Security: well-known attacks should not
work

Operations: verifying that y = R(x)must be
efficient

Efficiency: easy integration without
advanced protocols

A key difference: indirect computation

y← R(x) vs. y == R(x)?

6 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

A (Smaller) Mismatch in Properties

Binary Hash Functions

The sub-components must provide:

Security: well-known attacks should not
work

Operations: y← R(x)must be fast/time
constant

Efficiency: easy implementation in
soMware/hardware

Arithmetization-oriented Hash Functions

The sub-components must provide:

Security: well-known attacks should not
work

Operations: verifying that y = R(x)must be
efficient

Efficiency: easy integration without
advanced protocols

A key difference: indirect computation

y← R(x) vs. y == R(x)?

6 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

A (Smaller) Mismatch in Properties

Binary Hash Functions

The sub-components must provide:

Security: well-known attacks should not
work

Operations: y← R(x)must be fast/time
constant

Efficiency: easy implementation in
soMware/hardware

Arithmetization-oriented Hash Functions

The sub-components must provide:

Security: well-known attacks should not
work

Operations: verifying that y = R(x)must be
efficient

Efficiency: easy integration without
advanced protocols

A key difference: indirect computation

y← R(x) vs. y == R(x)?

6 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Take Away

Arithmetization-oriented
functions differ substantially

from “classical ones”!

7 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions
Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

2 How DoWe Test Their Security?

3 Some Cryptanalyses

4 Conclusion

7 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

To Build a Hash Function (Sponge Structure)

Modern hash functions usually have a
sponge structure

image source: https://www.iacr.org/authors/tikz/

Parameters:

A rate r > 0 (≈ throughput)

A capacity c > 0 (≈ security level)

A public permutation f of Fr
q × Fc

q.

Algorithm:

1 Turn the message into (m0, ...,mℓ−1),
wheremi ∈ Fr

q

2 Initialize (x, y) ∈ Fr
q × Fc

q

3 For i ∈ {0, ..., ℓ− 1}:
x← x+mi

(x, y)← f(x, y)

4 Return x

8 / 29

https://www.iacr.org/authors/tikz/

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

To Build a Hash Function (Sponge Structure)

Modern hash functions usually have a
sponge structure

image source: https://www.iacr.org/authors/tikz/

Parameters:

A rate r > 0 (≈ throughput)

A capacity c > 0 (≈ security level)

A public permutation f of Fr
q × Fc

q.

Algorithm:

1 Turn the message into (m0, ...,mℓ−1),
wheremi ∈ Fr

q

2 Initialize (x, y) ∈ Fr
q × Fc

q

3 For i ∈ {0, ..., ℓ− 1}:
x← x+mi

(x, y)← f(x, y)

4 Return x

8 / 29

https://www.iacr.org/authors/tikz/

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

To Build a Hash Function (Round Function)

The main task is to build the permutation f : X 7→ Y. How do we do this?

A round function Fi is iterated multiple times.
It is parameterized by the round number i.

How to build Fi?

The description of Fi is what really differentiates
hash functions from one another.
(will be extensively discussed later)

How to choose the number r of rounds?

Howmany do we need to be safe from all known
attacks, with somemargin?
(a deep topic!)

x0 ← X

F0

x1

F1

...

Fr−1

Y← xℓ

9 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

To Build a Hash Function (Round Function)

The main task is to build the permutation f : X 7→ Y. How do we do this?

A round function Fi is iterated multiple times.
It is parameterized by the round number i.

How to build Fi?

The description of Fi is what really differentiates
hash functions from one another.
(will be extensively discussed later)

How to choose the number r of rounds?

Howmany do we need to be safe from all known
attacks, with somemargin?
(a deep topic!)

x0 ← X

F0

x1

F1

...

Fr−1

Y← xℓ
9 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

To Build a Hash Function (Round Function)

The main task is to build the permutation f : X 7→ Y. How do we do this?

A round function Fi is iterated multiple times.
It is parameterized by the round number i.

How to build Fi?

The description of Fi is what really differentiates
hash functions from one another.
(will be extensively discussed later)

How to choose the number r of rounds?

Howmany do we need to be safe from all known
attacks, with somemargin?
(a deep topic!)

x0 ← X

F0

x1

F1

...

Fr−1

Y← xℓ
9 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Next step

OK, I have designed a round function F, chosen a number ℓ of rounds...

Will people use my algorithm now?

... No.

10 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Next step

OK, I have designed a round function F, chosen a number ℓ of rounds...

Will people use my algorithm now?

... No.

10 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Next step

OK, I have designed a round function F, chosen a number ℓ of rounds...

Will people use my algorithm now?

... No.

10 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust

11 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust

11 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust

11 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust

11 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust

11 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust

11 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust

11 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust

11 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust

11 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust

11 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Take Away

1 The adoption of new hash functions will depend on howmuch we trust them, and
thus on their security arguments

2 These security arguments must be based on fundamental research

12 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions
Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

2 How DoWe Test Their Security?

3 Some Cryptanalyses

4 Conclusion

12 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

MiMC

Published at ASIACRYPT’16;

https://eprint.iacr.org/2016/492.pdf

Base field: Fq, where e.g. q = 2129

Round function:

Fi

{
Fq → Fq

x 7→ (x+ ci)3

where the round constants ci have been
generated randomly.

Number of rounds: ℓ ≈ 90

13 / 29

https://eprint.iacr.org/2016/492.pdf

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

gMiMC

Published at ESORICS’19;
Albrecht, Perrin, Ramacher, Rechberger, Rotaru, Roy, Schofnegger

https://eprint.iacr.org/2019/397.pdf

Base field: Fq, where q = 2n or
q = p ≥ 2n, n ≥ 64

Round function: see leM

Number of rounds: ℓ > 170

14 / 29

https://eprint.iacr.org/2019/397.pdf

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Rescue

Published at ToSC’20(3);
Aly, Ashur, Ben-Sasson, Dhooghe, Szepieniec

https://tosc.iacr.org/index.php/ToSC/article/view/8695/8287

Base field: Fq, where q = p ≥ 2n,
n ≥ 64

Round function: see leM;α = 3
andM is a linear permutation of
Ft
q.

Number of rounds: ℓ ≈ 10

Verification: Pi(xi) == Qi(xi+1), where Pi is a half round,
and Qi is the inverse of the other half!

15 / 29

https://tosc.iacr.org/index.php/ToSC/article/view/8695/8287

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Poseidon

Published at USENIX’21;
Grassi, Khovratovich, Rechberger, Roy, Schofnegger

https://eprint.iacr.org/2019/458.pdf

Base field: Fq, where q = p ≥ 2n, n ≥ 64

Round function: S(x) = x3, ARC add a
round constant, andM is a linear
permutation of Ft

q.

Number of rounds: ℓ = Rf + RP ≈ 50

16 / 29

https://eprint.iacr.org/2019/458.pdf

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How DoWe Test Their Security?

3 Some Cryptanalyses

4 Conclusion

16 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How DoWe Test Their Security?
Principles of the Cryptanalysis of Hash Functions
Attack Techniques

3 Some Cryptanalyses

4 Conclusion

16 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Generic Attacks

Let H be a hash function with an output in Fq
d.

No matter how good H is...

1 ... it can be inverted in time qd (on average); (brute-force)

2 ... we can find x and y such that H(x) = H(y) in time
√

qd (on average). (birthday search)

Generic attacks (such as these) serve as the benchmark
to assess security levels in symmetric cryptography.

17 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Generic Attacks

Let H be a hash function with an output in Fq
d.

No matter how good H is...

1 ... it can be inverted in time qd (on average); (brute-force)

2 ... we can find x and y such that H(x) = H(y) in time
√

qd (on average). (birthday search)

Generic attacks (such as these) serve as the benchmark
to assess security levels in symmetric cryptography.

17 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Goal

What does itmean to attack a hash function?

Practical Attack

Actually exhibit x and y such that
H(x) = H(y).

Practically broken hash functions:

MD4

SHA-1

Theoretical Result

Aim. Describe an algorithm capable of finding
(x, y) faster than the corresponding
generic attack.

Target. At first, we reduce the number of rounds in
the inner primitive.

1 practical attacks are found aMer theoretical results

2 theoretical results on hash functions are found aMer theoretical results on its inner
primitive (e.g. the permutation for sponge functions).

18 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Goal

What does itmean to attack a hash function?

Practical Attack

Actually exhibit x and y such that
H(x) = H(y).

Practically broken hash functions:

MD4

SHA-1

Theoretical Result

Aim. Describe an algorithm capable of finding
(x, y) faster than the corresponding
generic attack.

Target. At first, we reduce the number of rounds in
the inner primitive.

1 practical attacks are found aMer theoretical results

2 theoretical results on hash functions are found aMer theoretical results on its inner
primitive (e.g. the permutation for sponge functions).

18 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Goal

What does itmean to attack a hash function?

Practical Attack

Actually exhibit x and y such that
H(x) = H(y).

Practically broken hash functions:

MD4

SHA-1

Theoretical Result

Aim. Describe an algorithm capable of finding
(x, y) faster than the corresponding
generic attack.

Target. At first, we reduce the number of rounds in
the inner primitive.

1 practical attacks are found aMer theoretical results

2 theoretical results on hash functions are found aMer theoretical results on its inner
primitive (e.g. the permutation for sponge functions).

18 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Goal

What does itmean to attack a hash function?

Practical Attack

Actually exhibit x and y such that
H(x) = H(y).

Practically broken hash functions:

MD4

SHA-1

Theoretical Result

Aim. Describe an algorithm capable of finding
(x, y) faster than the corresponding
generic attack.

Target. At first, we reduce the number of rounds in
the inner primitive.

1 practical attacks are found aMer theoretical results

2 theoretical results on hash functions are found aMer theoretical results on its inner
primitive (e.g. the permutation for sponge functions).

18 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Goal

What does itmean to attack a hash function?

Practical Attack

Actually exhibit x and y such that
H(x) = H(y).

Practically broken hash functions:

MD4

SHA-1

Theoretical Result

Aim. Describe an algorithm capable of finding
(x, y) faster than the corresponding
generic attack.

Target. At first, we reduce the number of rounds in
the inner primitive.

1 practical attacks are found aMer theoretical results

2 theoretical results on hash functions are found aMer theoretical results on its inner
primitive (e.g. the permutation for sponge functions).

18 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Milestone Towards the Goal

What does itmean to attack a permutation?

Does it even make sense?

The specification of a permutation is public:
there is no key to protect!

Ideally, an attacker wants to be able to
control the capacity of the output
using only the rate of the input.

The security proof of the sponge relies
on the permutation “behaving like a
random permutation”.

Examples of distinguishers

CICO. Can you find (x, 0) such that
P(x, 0) = (y, 0) (faster than a
brute-force search)?

Low Degree. The univariate (or algebraic) degree of
P is lower than expected.

Differential. next slide

Others! Linear, integral...

19 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Milestone Towards the Goal

What does itmean to attack a permutation?

Does it even make sense?

The specification of a permutation is public:
there is no key to protect!

Ideally, an attacker wants to be able to
control the capacity of the output
using only the rate of the input.

The security proof of the sponge relies
on the permutation “behaving like a
random permutation”.

Examples of distinguishers

CICO. Can you find (x, 0) such that
P(x, 0) = (y, 0) (faster than a
brute-force search)?

Low Degree. The univariate (or algebraic) degree of
P is lower than expected.

Differential. next slide

Others! Linear, integral...

19 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Milestone Towards the Goal

What does itmean to attack a permutation?

Does it even make sense?

The specification of a permutation is public:
there is no key to protect!

Ideally, an attacker wants to be able to
control the capacity of the output
using only the rate of the input.

The security proof of the sponge relies
on the permutation “behaving like a
random permutation”.

Examples of distinguishers

CICO. Can you find (x, 0) such that
P(x, 0) = (y, 0) (faster than a
brute-force search)?

Low Degree. The univariate (or algebraic) degree of
P is lower than expected.

Differential. next slide

Others! Linear, integral...

19 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How DoWe Test Their Security?
Principles of the Cryptanalysis of Hash Functions
Attack Techniques

3 Some Cryptanalyses

4 Conclusion

19 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Differential Attacks

Differential equation

P(x+ a)− P(x) = b

Aim: find (a, b) such that there are many solutions x.

In practice, we find (ai, ai+1) at each round.

Successfully applied to the inner block cipher of
SHA-1 (in {0, 1}∗), thus leading to its break...

... A priori less applicable in Fq (or is it?→ RESCUE)

x0 = x

x1

F0

...

F1

P(x)

Fℓ−1

x0 + a0 = x+ a

x1 + a1

F0

...

F1

P(x+ a) = P(x) + b

Fℓ−1

20 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Differential Attacks

Differential equation

P(x+ a)− P(x) = b

Aim: find (a, b) such that there are many solutions x.

In practice, we find (ai, ai+1) at each round.

Successfully applied to the inner block cipher of
SHA-1 (in {0, 1}∗), thus leading to its break...

... A priori less applicable in Fq (or is it?→ RESCUE)

x0 = x

x1

F0

...

F1

P(x)

Fℓ−1

x0 + a0 = x+ a

x1 + a1

F0

...

F1

P(x+ a) = P(x) + b

Fℓ−1

20 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Differential Attacks

Differential equation

P(x+ a)− P(x) = b

Aim: find (a, b) such that there are many solutions x.

In practice, we find (ai, ai+1) at each round.

Successfully applied to the inner block cipher of
SHA-1 (in {0, 1}∗), thus leading to its break...

... A priori less applicable in Fq (or is it?→ RESCUE)

x0 = x

x1

F0

...

F1

P(x)

Fℓ−1

x0 + a0 = x+ a

x1 + a1

F0

...

F1

P(x+ a) = P(x) + b

Fℓ−1

20 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Algebraic Attacks

x0 = x

x1

F0

...

F1

P(x) = xℓ

Fℓ−1

Main equation system

x1 = F0(x0)

...

xℓ = Fℓ−1(xℓ−1)

If the system can be solved, then we can enforce constraints on x0 and xℓ (e.g.
CICO).

First, compute a Gröbner basis of the system. Then, deduce a solution in the
correct field.

Complexity is not so easy to estimate:
We can give bounds based on the best Gröbner basis algorithms...
... but they don’t take the shape of the system into account.

21 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Algebraic Attacks

x0 = x

x1

F0

...

F1

P(x) = xℓ

Fℓ−1

Main equation system

x1 = F0(x0)

...

xℓ = Fℓ−1(xℓ−1)

If the system can be solved, then we can enforce constraints on x0 and xℓ (e.g.
CICO).

First, compute a Gröbner basis of the system. Then, deduce a solution in the
correct field.

Complexity is not so easy to estimate:
We can give bounds based on the best Gröbner basis algorithms...
... but they don’t take the shape of the system into account.

21 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Algebraic Attacks

x0 = x

x1

F0

...

F1

P(x) = xℓ

Fℓ−1

Main equation system

x1 = F0(x0)

...

xℓ = Fℓ−1(xℓ−1)

If the system can be solved, then we can enforce constraints on x0 and xℓ (e.g.
CICO).

First, compute a Gröbner basis of the system. Then, deduce a solution in the
correct field.

Complexity is not so easy to estimate:
We can give bounds based on the best Gröbner basis algorithms...
... but they don’t take the shape of the system into account.

21 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How DoWe Test Their Security?

3 Some Cryptanalyses

4 Conclusion

21 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

The limits of previous attempts

Algorithm Attacks

MiMC ASIACRYPT’16 Higher-order differential in progress

gMiMC ESORICS’19 Integral attack CRYPTO’20

Jarvis/RESCUE ToSC’18
Algebraic attack ASIACRYPT’19

Differential attack eprint 2020/820

Starkad/Poseidon USENIX’21 Invariant subspace CRYPTO’20, EUROCRYPT’21

22 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How DoWe Test Their Security?

3 Some Cryptanalyses
A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

4 Conclusion

22 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Accurate Computations of the Algebraic Degree

Joint work with Clémence Bouvier and Anne Canteaut

Definition

Algebraic Degree F2n can be seen as (F2)
n, so

G : F2n → F2n is the same as
G′ : (F2)

n → (F2)
n, where

G′i =
∑

u∈(F2)n

αu

n−1∏
i=0

xuii

The algebraic degree of G′i is the maximum
Hamming weight of u such thatαu ̸= 0.

dega ((x, y) 7→ xy) = 2

dega(x 7→ x3) = 2

The round function of MiMC is:

Fi :

{
F2n → F2n

x 7→ (x+ ci)3

The univariate degree is trivial (3r), what about
the algebraic degree?

23 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Accurate Computations of the Algebraic Degree

Joint work with Clémence Bouvier and Anne Canteaut

Definition

Algebraic Degree F2n can be seen as (F2)
n, so

G : F2n → F2n is the same as
G′ : (F2)

n → (F2)
n, where

G′i =
∑

u∈(F2)n

αu

n−1∏
i=0

xuii

The algebraic degree of G′i is the maximum
Hamming weight of u such thatαu ̸= 0.

dega ((x, y) 7→ xy) = 2

dega(x 7→ x3) = 2

The round function of MiMC is:

Fi :

{
F2n → F2n

x 7→ (x+ ci)3

The univariate degree is trivial (3r), what about
the algebraic degree?

23 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Accurate Computations of the Algebraic Degree

Joint work with Clémence Bouvier and Anne Canteaut

Definition

Algebraic Degree F2n can be seen as (F2)
n, so

G : F2n → F2n is the same as
G′ : (F2)

n → (F2)
n, where

G′i =
∑

u∈(F2)n

αu

n−1∏
i=0

xuii

The algebraic degree of G′i is the maximum
Hamming weight of u such thatαu ̸= 0.

dega ((x, y) 7→ xy) = 2

dega(x 7→ x3) = 2

The round function of MiMC is:

Fi :

{
F2n → F2n

x 7→ (x+ ci)3

The univariate degree is trivial (3r), what about
the algebraic degree?

23 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Accurate Computations of the Algebraic Degree

Joint work with Clémence Bouvier and Anne Canteaut

Definition

Algebraic Degree F2n can be seen as (F2)
n, so

G : F2n → F2n is the same as
G′ : (F2)

n → (F2)
n, where

G′i =
∑

u∈(F2)n

αu

n−1∏
i=0

xuii

The algebraic degree of G′i is the maximum
Hamming weight of u such thatαu ̸= 0.

dega ((x, y) 7→ xy) = 2

dega(x 7→ x3) = 2

The round function of MiMC is:

Fi :

{
F2n → F2n

x 7→ (x+ ci)3

The univariate degree is trivial (3r), what about
the algebraic degree?

23 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Take Away

Seemingly simple concepts have extremely complex behaviours in the
arithmetization-friendly case!

24 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How DoWe Test Their Security?

3 Some Cryptanalyses
A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

4 Conclusion

24 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Preliminary results on RESCUE
RESCUE is a block cipher published in 2019, which is the base of a hash function
(RESCUE-prime).

Let P : Fq → Fq. Its differential uniformity is:

max
a̸=0,b∈Fq

{x ∈ Fq | P(x+ a)− P(x) = b} .

It must be low, and should
decrease with the number of
rounds/steps.

→ Experimental verification
for weakened variants of
Rescue.

?

25 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Preliminary results on RESCUE
RESCUE is a block cipher published in 2019, which is the base of a hash function
(RESCUE-prime).

Let P : Fq → Fq. Its differential uniformity is:

max
a̸=0,b∈Fq

{x ∈ Fq | P(x+ a)− P(x) = b} .

It must be low, and should
decrease with the number of
rounds/steps.

→ Experimental verification
for weakened variants of
Rescue.

?

25 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Preliminary results on RESCUE
RESCUE is a block cipher published in 2019, which is the base of a hash function
(RESCUE-prime).

Let P : Fq → Fq. Its differential uniformity is:

max
a̸=0,b∈Fq

{x ∈ Fq | P(x+ a)− P(x) = b} .

It must be low, and should
decrease with the number of
rounds/steps.

→ Experimental verification
for weakened variants of
Rescue.

?

25 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Preliminary results on RESCUE
RESCUE is a block cipher published in 2019, which is the base of a hash function
(RESCUE-prime).

Let P : Fq → Fq. Its differential uniformity is:

max
a̸=0,b∈Fq

{x ∈ Fq | P(x+ a)− P(x) = b} .

It must be low, and should
decrease with the number of
rounds/steps.

→ Experimental verification
for weakened variants of
Rescue.

?

25 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Take Away

This high probability differentialmay be a consequence of somemultiplicative pattern traversing
both x 7→ x3 and the linear layer.

No Frobenius automorphism implies that only simpler linear functions
are available to designers, which in turn can imply strange differential

behaviour!

26 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How DoWe Test Their Security?

3 Some Cryptanalyses
A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

4 Conclusion

26 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Improving Integral Attacks

Principle (saturation approach)

1 Choose an input word, say, x3.

2 Let it take all possible values while keeping
other words constants.

3 Observe aMer each round whether each
word is:

Constant

Takes all possible
values

Sums to 0
Has no pattern
anymore

Suppose that q = 1+
∏

i pi.
Then, there are many small multiplicative
subgroups in Fq,

where all these properties are
well defined!

27 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Improving Integral Attacks

Principle (saturation approach)

1 Choose an input word, say, x3.

2 Let it take all possible values while keeping
other words constants.

3 Observe aMer each round whether each
word is:

Constant

Takes all possible
values

Sums to 0
Has no pattern
anymore

Suppose that q = 1+
∏

i pi.
Then, there are many small multiplicative
subgroups in Fq,

where all these properties are
well defined!

27 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Improving Integral Attacks

Principle (saturation approach)

1 Choose an input word, say, x3.

2 Let it take all possible values while keeping
other words constants.

3 Observe aMer each round whether each
word is:

Constant

Takes all possible
values

Sums to 0
Has no pattern
anymore

Suppose that q = 1+
∏

i pi.
Then, there are many small multiplicative
subgroups in Fq,

where all these properties are
well defined!

27 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Improving Integral Attacks

Principle (saturation approach)

1 Choose an input word, say, x3.

2 Let it take all possible values while keeping
other words constants.

3 Observe aMer each round whether each
word is:

Constant

Takes all possible
values

Sums to 0
Has no pattern
anymore

Suppose that q = 1+
∏

i pi.
Then, there are many small multiplicative
subgroups in Fq,

where all these properties are
well defined!

27 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Improving Integral Attacks

Principle (saturation approach)

1 Choose an input word, say, x3.

2 Let it take all possible values while keeping
other words constants.

3 Observe aMer each round whether each
word is:

Constant

Takes all possible
values

Sums to 0
Has no pattern
anymore

Suppose that q = 1+
∏

i pi.
Then, there are many small multiplicative
subgroups in Fq,

where all these properties are
well defined!

27 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Improving Integral Attacks

Principle (saturation approach)

1 Choose an input word, say, x3.

2 Let it take all possible values while keeping
other words constants.

3 Observe aMer each round whether each
word is:

Constant

Takes all possible
values

Sums to 0
Has no pattern
anymore

Suppose that q = 1+
∏

i pi.
Then, there are many small multiplicative
subgroups in Fq, where all these properties are
well defined! 27 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

A Better Understanding of MiMC
An Observation on Rescue
Better Integral Attacks Against gMiMC

Take Away

A basic saturation attack requires q queries to the permutation. If q is larger than the security
parameter, they are infeasible.

The presence of small multiplicative subgroups significantly enhances
saturation attacks by decreasing their data complexity!

28 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How DoWe Test Their Security?

3 Some Cryptanalyses

4 Conclusion

28 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Conclusion

1 Designing airthmetization-oriented hash functions is difficult
because it is largely uncharted territory:

if q = 2n , estimating the algebraic degree is hard (MiMC);
if q = p, multiplicative subgroups bother us (gMiMC);
if q = p, absence of Frobenius automorphisms→ fewers options for linear operations
(RESCUE).

2 There are theoretical issues with several of the new hash functions...

3 There is room for improvement!

Changing the underlying mathematical structure in cryptographic primitives is a
significant change that requires substantial care.

Thank you!

29 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Conclusion

1 Designing airthmetization-oriented hash functions is difficult
because it is largely uncharted territory:

if q = 2n , estimating the algebraic degree is hard (MiMC);
if q = p, multiplicative subgroups bother us (gMiMC);
if q = p, absence of Frobenius automorphisms→ fewers options for linear operations
(RESCUE).

2 There are theoretical issues with several of the new hash functions...

3 There is room for improvement!

Changing the underlying mathematical structure in cryptographic primitives is a
significant change that requires substantial care.

Thank you!

29 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Conclusion

1 Designing airthmetization-oriented hash functions is difficult
because it is largely uncharted territory:

if q = 2n , estimating the algebraic degree is hard (MiMC);
if q = p, multiplicative subgroups bother us (gMiMC);
if q = p, absence of Frobenius automorphisms→ fewers options for linear operations
(RESCUE).

2 There are theoretical issues with several of the new hash functions...

3 There is room for improvement!

Changing the underlying mathematical structure in cryptographic primitives is a
significant change that requires substantial care.

Thank you!

29 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Conclusion

1 Designing airthmetization-oriented hash functions is difficult
because it is largely uncharted territory:

if q = 2n , estimating the algebraic degree is hard (MiMC);
if q = p, multiplicative subgroups bother us (gMiMC);
if q = p, absence of Frobenius automorphisms→ fewers options for linear operations
(RESCUE).

2 There are theoretical issues with several of the new hash functions...

3 There is room for improvement!

Changing the underlying mathematical structure in cryptographic primitives is a
significant change that requires substantial care.

Thank you!

29 / 29

What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Some Cryptanalyses
Conclusion

Conclusion

1 Designing airthmetization-oriented hash functions is difficult
because it is largely uncharted territory:

if q = 2n , estimating the algebraic degree is hard (MiMC);
if q = p, multiplicative subgroups bother us (gMiMC);
if q = p, absence of Frobenius automorphisms→ fewers options for linear operations
(RESCUE).

2 There are theoretical issues with several of the new hash functions...

3 There is room for improvement!

Changing the underlying mathematical structure in cryptographic primitives is a
significant change that requires substantial care.

Thank you! 29 / 29

	What are Arithmetization-Oriented Hash Functions
	Scope statement
	How do we build and select symmetric primitives?
	Examples of such Functions

	How Do We Test Their Security?
	Principles of the Cryptanalysis of Hash Functions
	Attack Techniques

	Some Cryptanalyses
	A Better Understanding of MiMC
	An Observation on Rescue
	Better Integral Attacks Against gMiMC

	Conclusion

