Constructing More Quadratic APN Functions with the QAM Method

Yuyin Yu ${ }^{1}$ Léo Perrin ${ }^{2}$

${ }^{1}$ Guangzhou University, Guangzhou, China
${ }^{2}$ Inria, France

September 6th, 2021
BFA 2021
Rosendal, Norway

Outline

1 Context

2 Generating New Classes of Functions with the QAM Method

3 New Functions and Some Conjectures

4 Conclusion

Plan of this Section

1 Context

2 Generating New Classes of Functions with the QAM Method

3 New Functions and Some Conjectures

4 Conclusion

Why Generate Quadratic APN Functions?

Definition (APN function)

A function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ is Almost Perfect Non-linear (APN) if

$$
F(x+a)-F(x)=b
$$

has at most two solutions for all $a \neq 0, b$.

Why Generate Quadratic APN Functions?

Definition (APN function)

A function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ is Almost Perfect Non-linear (APN) if

$$
F(x+a)-F(x)=b
$$

has at most two solutions for all $a \neq 0, b$.

The Big APN Problem
Does there exist an APN permutation on \mathbb{F}_{2}^{n} for n even?

Why Generate Quadratic APN Functions?

Definition (APN function)

A function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ is Almost Perfect Non-linear (APN) if

$$
F(x+a)-F(x)=b
$$

has at most two solutions for all $a \neq 0, b$.

The Big APN Problem
Does there exist an APN permutation on \mathbb{F}_{2}^{n} for n even?
■ $n=4$

- $n=6$
- $n \geq 8$

Why Generate Quadratic APN Functions?

Definition (APN function)

A function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ is Almost Perfect Non-linear (APN) if

$$
F(x+a)-F(x)=b
$$

has at most two solutions for all $a \neq 0, b$.

The Big APN Problem
Does there exist an APN permutation on \mathbb{F}_{2}^{n} for n even?
■ $n=4$ No.

- $n=6$ Yes! [Dillon et al. 09]

■ $n \geq 8$???

Why Generate Quadratic APN Functions?

Definition (APN function)

A function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ is Almost Perfect Non-linear (APN) if

$$
F(x+a)-F(x)=b
$$

has at most two solutions for all $a \neq 0, b$.

The Big APN Problem
Does there exist an APN permutation on \mathbb{F}_{2}^{n} for n even?

- $n=4 \mathrm{No}$.
- $n=6$ Yes! [Dillon et al. 09]

Find permutation in the CCZ-class of a known APN function (the "Kim
mapping")

- $n \geq 8$???

Equivalence Relations

Definition (Affine-Equivalence)

F and G are affine equivalent if $G(x)=(B \circ F \circ A)(x)$, where A, B are affine permutations.

Equivalence Relations

Definition (Affine-Equivalence)

F and G are affine equivalent if $G(x)=(B \circ F \circ A)(x)$, where A, B are affine permutations.

Definition (EA-Equivalence)

F and G are E (xtented) A (ffine) equivalent if $G(x)=(B \circ F \circ A)(x)+C(x)$, where A, B, C are affine and A, B are permutations.

Definition (CCZ-Equivalence)

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are $C($ arlet)-C(harpin)-Z(inoviev) equivalent if

$$
\Gamma_{G}=\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}=L\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=L\left(\Gamma_{F}\right),
$$

where $L: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}^{n+m}$ is an affine permutation.

Already Known 8-bit Quadratic APN permutations

1 "Switching" method [Edel Pott 2009]

Already Known 8-bit Quadratic APN permutations

1 "Switching" method [Edel Pott 2009]
2. QAM method [Yu et al. 2014]
(see rest of this talk).

Already Known 8-bit Quadratic APN permutations

1 "Switching" method [Edel Pott 2009]
2. QAM method [Yu et al. 2014]
(see rest of this talk).

3 Self-equivalent functions [Beierle Leander 2020]: Look for functions $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ such that

$$
F \circ A=B \circ F
$$

for linear permutations A and B.

Already Known 8-bit Quadratic APN permutations

1 "Switching" method [Edel Pott 2009]
2 QAM method [Yu et al. 2014]
(see rest of this talk).

3 Self-equivalent functions [Beierle Leander 2020]: Look for functions $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ such that

$$
F \circ A=B \circ F
$$

for linear permutations A and B.
4 QIC [Ghosh Perrin 2020]
(see next talk).

Already Known 8-bit Quadratic APN permutations

1 "Switching" method [Edel Pott 2009]
[QAM method [Yu et al. 2014] 8179
(see rest of this talk).

3 Self-equivalent functions [Beierle Leander 2020]:
Look for functions $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ such that

$$
F \circ A=B \circ F
$$

for linear permutations A and B.
4 QIC [Ghosh Perrin 2020]
(see next talk).

Already Known 8-bit Quadratic APN permutations

1 "Switching" method [Edel Pott 2009]
2. QAM method [Yu et al. 2014] 8179
(see rest of this talk).

3 Self-equivalent functions [Beierle Leander 2020]:
Look for functions $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ such that

$$
F \circ A=B \circ F
$$

for linear permutations A and B.
4 QIC [Ghosh Perrin 2020]
(see next talk).

Some Questions

1 How many quadratic APN functions exist in dimension 8?

Some Questions

1 How many quadratic APN functions exist in dimension 8?

2 What's the overlap between the classes of known funcitons?

Some Questions

1 How many quadratic APN functions exist in dimension 8?
Conjecture: > 50, 000
2. What's the overlap between the classes of known funcitons?

Some Questions

1 How many quadratic APN functions exist in dimension 8?
Conjecture: > 50, 000

2 What's the overlap between the classes of known funcitons?

Plan of this Section

1 Context

2 Generating New Classes of Functions with the QAM Method

3 New Functions and Some Conjectures

4 Conclusion

Definition of the QAM

Definition (Quadratic Homogeneous Functions)

Quadratic functions without linear or constant terms are called quadratic homogeneous functions:

$$
F(x)=\sum_{1 \leq j<i \leq n} c_{i, j, x^{x^{i-1}+2^{j-1}}} \in \mathbb{F}_{2^{n}}[x] .
$$

Definition (QAM)

Let $H=\left(h_{i, j}\right)_{n \times n}$ be an $n \times n$ matrix of $\mathbb{F}_{2^{n}}$. It is a Quadratic APN Matrix (QAM) if
11 it is symmetric and the elements in its main diagonal are all zeros; and
[2 every nonzero linear combination of its rows has rank $n-1$.

Properties

$$
H=\left(\begin{array}{cccccccc}
0 & g^{34} & g^{81} & g^{83} & g^{170} & g^{106} & \mathbf{x}_{13} & \mathbf{x}_{7} \\
g^{34} & 0 & g^{68} & g^{162} & g^{166} & g^{85} & \mathbf{x}_{12} & \mathbf{x}_{6} \\
g^{81} & g^{68} & 0 & g^{136} & g^{69} & g^{77} & \mathbf{x}_{11} & \mathbf{x}_{5} \\
g^{83} & g^{162} & g^{136} & 0 & g^{17} & g^{138} & \mathbf{x}_{10} & \mathbf{x}_{4} \\
g^{170} & g^{166} & g^{69} & g^{17} & 0 & g^{34} & \mathbf{x}_{9} & \mathbf{x}_{3} \\
g^{106} & g^{85} & g^{77} & g^{138} & g^{34} & 0 & \mathbf{x}_{8} & \mathbf{x}_{2} \\
\mathbf{x}_{13} & \mathbf{x}_{12} & \mathbf{x}_{11} & \mathbf{x}_{10} & \mathbf{x}_{9} & \mathbf{x}_{8} & 0 & \mathbf{x}_{1} \\
\mathbf{x}_{7} & \mathbf{x}_{6} & \mathbf{x}_{5} & \mathbf{x}_{4} & \mathbf{x}_{3} & \mathbf{x}_{2} & \mathbf{x}_{1} & 0
\end{array}\right)
$$

Theorem (Yu et al. ${ }^{1}$)

There exists a one to one correspondence between quadratic homogeneous APN functions and QAMs.

[^0]
Generating New Functions

1 Take an APN function $\left(x \mapsto x^{3}\right)$

Generating New Functions

1 Take an APN function $\left(x \mapsto x^{3}\right)$
2. Compute its QAM.

Generating New Functions

1 Take an APN function $\left(x \mapsto x^{3}\right)$
2 Compute its QAM.
3 Let the last two rows/columns be variables $\left\{x_{1}, \ldots\right\}$:

$$
H=\left(\begin{array}{cccccccc}
0 & g^{34} & g^{81} & g^{83} & g^{170} & g^{106} & \mathrm{x}_{13} & \mathrm{x}_{7} \\
g^{34} & 0 & g^{68} & g^{162} & g^{166} & g^{85} & \mathrm{x}_{12} & \mathrm{x}_{6} \\
g^{81} & g^{68} & 0 & g^{136} & g^{69} & g^{77} & \mathrm{x}_{11} & \mathrm{x}_{5} \\
g^{83} & g^{162} & g^{136} & 0 & g^{17} & g^{138} & \mathrm{x}_{10} & \mathrm{x}_{4} \\
g^{170} & g^{166} & g^{69} & g^{17} & 0 & g^{34} & \mathrm{x}_{9} & \mathrm{x}_{3} \\
\mathrm{~g}^{106} & g^{85} & g^{77} & g^{138} & g^{34} & 0 & \mathrm{x}_{8} & \mathrm{x}_{2} \\
\mathrm{x}_{13} & \mathrm{x}_{12} & \mathrm{x}_{11} & \mathrm{x}_{10} & \mathrm{x}_{9} & \mathrm{x}_{8} & 0 & \mathrm{x}_{1} \\
\mathrm{x}_{7} & \mathrm{x}_{6} & \mathrm{x}_{5} & \mathrm{x}_{4} & \mathrm{x}_{3} & \mathrm{x}_{2} & \mathrm{x}_{1} & 0
\end{array}\right)
$$

Generating New Functions

1 Take an APN function $\left(x \mapsto x^{3}\right)$
2 Compute its QAM.
3 Let the last two rows/columns be variables $\left\{x_{1}, \ldots\right\}$:

$$
H=\left(\begin{array}{cccccccc}
0 & g^{34} & g^{81} & g^{83} & g^{170} & g^{106} & \mathrm{x}_{13} & \mathrm{x}_{7} \\
g^{34} & 0 & g^{68} & g^{162} & g^{166} & g^{85} & \mathrm{x}_{12} & \mathrm{x}_{6} \\
g^{81} & g^{68} & 0 & g^{136} & g^{69} & g^{77} & \mathrm{x}_{11} & \mathrm{x}_{5} \\
g^{83} & g^{162} & g^{136} & 0 & g^{17} & g^{138} & \mathrm{x}_{10} & \mathrm{x}_{4} \\
g^{170} & g^{166} & g^{69} & g^{17} & 0 & g^{34} & \mathrm{x}_{9} & \mathrm{x}_{3} \\
g^{106} & g^{85} & g^{77} & g^{138} & g^{34} & 0 & \mathrm{x}_{8} & \mathrm{x}_{2} \\
\mathrm{x}_{13} & \mathrm{x}_{12} & \mathrm{x}_{11} & \mathrm{x}_{10} & \mathrm{x}_{9} & \mathrm{x}_{8} & 0 & \mathrm{x}_{1} \\
\mathrm{x}_{7} & \mathrm{x}_{6} & \mathrm{x}_{5} & \mathrm{x}_{4} & \mathrm{x}_{3} & \mathrm{x}_{2} & \mathrm{x}_{1} & 0
\end{array}\right)
$$

4 Let $\left\{x_{1}, \ldots\right\}$ take different values and check if we have a QAM.

Sorting the Result

This approach works (see later)!

Sorting the Result

This approach works (see later)!

One Problem

How to ensure that we do not generate the same function multiple times?

Sorting the Result

This approach works (see later)!

One Problem

How to ensure that we do not generate the same function multiple times?

A better statement
How to partition the functions obtained into

Sorting the Result

This approach works (see later)!

One Problem
How to ensure that we do not generate the same function multiple times?

A better statement
How to partition the functions obtained into CCZ-equivalence classes?

Invariant-based Approach

Theorem ([Yos12]²)

Quadratic APN functions are CCZ-equivalent if and only if they are EA-equivalent.

[^1]
Invariant-based Approach

Theorem ([Yos12]²)

Quadratic APN functions are CCZ-equivalent if and only if they are EA-equivalent.
We use EA-class invariants:

[^2]
Invariant-based Approach

Theorem ([Yos12] ${ }^{2}$)

Quadratic APN functions are CCZ-equivalent if and only if they are EA-equivalent.
We use EA-class invariants:
δ-rank; Γ-rank: the ranks of $2^{2 n} \times 2^{2 n}$ matrices computed from F.

[^3]
Invariant-based Approach

Theorem ([Yos12] ${ }^{2}$)

Quadratic APN functions are CCZ-equivalent if and only if they are EA-equivalent.
We use EA-class invariants:
δ-rank; Γ-rank: the ranks of $2^{2 n} \times 2^{2 n}$ matrices computed from F.
Thickness spectrum: A property of the Walsh zeroes of F.
$\sum_{F}^{k}(0)$: How many tuples $\left(x_{1}, \ldots, x_{k}\right)$ such that:

$$
x_{1}+\ldots+x_{k}=0 ; \text { and } F\left(x_{1}\right)+\ldots+F\left(x_{k}\right)=0 .
$$

[^4]
Invariant-based Approach

Theorem ([Yos12] ${ }^{2}$)

Quadratic APN functions are CCZ-equivalent if and only if they are EA-equivalent.
We use EA-class invariants:
δ-rank; Γ-rank: the ranks of $2^{2 n} \times 2^{2 n}$ matrices computed from F.
Thickness spectrum: A property of the Walsh zeroes of F.
$\sum_{F}^{k}(0)$: How many tuples $\left(x_{1}, \ldots, x_{k}\right)$ such that:

$$
x_{1}+\ldots+x_{k}=0 ; \text { and } F\left(x_{1}\right)+\ldots+F\left(x_{k}\right)=0 .
$$

Ortho-derivative: $\pi_{F}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is the unique function such that $\pi_{F}(0)=0$ and, for all x, a :

$$
\pi_{F}(a) \cdot(F(x+a)+F(x)+F(a)+F(0))=0 .
$$

Its affine equivalence-class is an EA-class invariant.

[^5]
Implementation aspects

$$
\begin{aligned}
& F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n} \\
& \mathrm{~F}=\left[F(0), F(1), \ldots, F\left(2^{n}-1\right)\right]
\end{aligned}
$$

Implementation aspects

$$
\begin{aligned}
& F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n} \\
& \mathrm{~F}=\left[F(0), F(1), \ldots, F\left(2^{n}-1\right)\right]
\end{aligned}
$$

Name
Complexity sboxU function

δ-ranks	$0\left(2^{2 \omega n}\right)$	delta_rank (F)
Γ-ranks	$0\left(2^{2 \omega n}\right)$	gamma_rank(F)
Thickness spectrum	$?$	thickness_spectrum (F)
\sum_{F}^{k}	$O\left(n 2^{2 n}\right)$	sigma_multiplicities(F, $k)$
π_{F}	$O\left(2^{2 n}\right)$	ortho_derivative_label(F)

Implementation aspects

$$
\begin{aligned}
& F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n} \\
& \mathrm{~F}=\left[F(0), F(1), \ldots, F\left(2^{n}-1\right)\right]
\end{aligned}
$$

Name
Complexity sboxU function

δ-ranks	$\mathrm{O}\left(2^{2 \omega n}\right)$	delta_rank (F)
Γ-ranks	$\mathrm{O}\left(2^{2 \omega n}\right)$	gamma_rank (F)
Thickness spectrum	$?$	thickness_spectrum (F)
\sum_{F}^{k}	$\mathrm{O}\left(n 2^{2 n}\right)$	sigma_multiplicities (F, k)
π_{F}	$\mathrm{O}\left(2^{2 n}\right)$	ortho_derivative_label(F)

Are my APN functions new?

```
from collections import defaultdict
from sboxU import *
ea_counters = defaultdict
known_apn_functions = eightBitAPN.all_quadratics()
for f in known_apn_functions:
    ea_counters[ortho_derivative_label(f)] += 1
new_QAMs = [[0, ..., 255], ... ]
updated_apn_functions = known_apn_functions[:]
for f in new_QAMs:
    l = ortho_derivative_label(f)
    ea_counters[l] += 1
    if ea_counters[l] == 1:
        updated_apn_functions.append(f)
```


Plan of this Section

1 Context

2 Generating New Classes of Functions with the QAM Method

3 New Functions and Some Conjectures

4 Conclusion

8-bit Quadratic APN Generation

Yu et al. 14

8-bit Quadratic APN Generation

8-bit Quadratic APN Generation

Yu et al. 14

8-bit Quadratic APN Generation

Beierle Leander 20
Yu et al. 14

8-bit Quadratic APN Generation

8-bit Quadratic APN Generation

Beierle Leander 20
Yu et al. 14

12812

8-bit Quadratic APN Generation

Beierle Leander 20
Yu et al. 14

8-bit Quadratic APN Generation

Beierle Leander 20
Yu et al. 14

8-bit Quadratic APN Generation

Beierle Leander 20
Yu et al. 14

8-bit Quadratic APN Generation

Beierle Leander 20

This work

8-bit Quadratic APN Generation

Beierle Leander 20
Yu et al. 14

This work

8-bit Quadratic APN Generation

Beierle Leander 20
Yu et al. 14

This work

8-bit Quadratic APN Generation

len(sboxU.eightBitAPN.all_quadratics()) $=26524$

Total Number of APN Functions

A simple test

Knowing that k quadratic APN functions of \mathbb{F}_{2}^{n} have been generated using QAMs, what is the probability P_{k}^{n} that the next generated function is new?

Total Number of APN Functions

A simple test

Knowing that k quadratic APN functions of \mathbb{F}_{2}^{n} have been generated using QAMs, what is the probability P_{k}^{n} that the next generated function is new?

$$
n=6 \text { For } k=6 \text { (out of } 13 \text {), } P_{6} \approx 75 \%
$$

Total Number of APN Functions

A simple test

Knowing that k quadratic APN functions of \mathbb{F}_{2}^{n} have been generated using QAMs, what is the probability P_{k}^{n} that the next generated function is new?

$$
\begin{aligned}
& n=6 \text { For } k=6 \text { (out of } 13 \text {), } P_{6} \approx 75 \% \\
& n=7 \text { For } k=230 \text { (out of } 488 \text {), } P_{230} \approx 79 \%
\end{aligned}
$$

Total Number of APN Functions

A simple test

Knowing that k quadratic APN functions of \mathbb{F}_{2}^{n} have been generated using QAMs, what is the probability P_{k}^{n} that the next generated function is new?

$$
\begin{aligned}
& n=6 \text { For } k=6 \text { (out of } 13 \text {), } P_{6} \approx 75 \% \\
& n=7 \text { For } k=230 \text { (out of } 488 \text {), } P_{230} \approx 79 \% \\
& n=8 \text { For } k=25624, P_{25624} \approx 79 \%
\end{aligned}
$$

Total Number of APN Functions

A simple test

Knowing that k quadratic APN functions of \mathbb{F}_{2}^{n} have been generated using QAMs, what is the probability P_{k}^{n} that the next generated function is new?

$$
\begin{aligned}
& n=6 \text { For } k=6 \text { (out of } 13 \text {), } P_{6} \approx 75 \% \\
& n=7 \text { For } k=230 \text { (out of } 488 \text {), } P_{230} \approx 79 \% \\
& n=8 \text { For } k=25624, P_{25624} \approx 79 \%
\end{aligned}
$$

Conjecture

There are at least 50, 000 quadratic APN functions on 8 bits.

How to get them?

Using the QAM method

For a given n, how many QAMs do we need to generate to obtain all ℓ_{n} quadratic APN functions?

How to get them?

Using the QAM method

For a given n, how many QAMs do we need to generate to obtain all ℓ_{n} quadratic APN functions?
$n=6$ We need $200 \approx 16 \times \ell_{6}$ QAMs to obtain all $\ell_{n}=13$

How to get them?

Using the QAM method

For a given n, how many QAMs do we need to generate to obtain all ℓ_{n} quadratic APN functions?
$n=6$ We need $200 \approx 16 \times \ell_{6}$ QAMs to obtain all $\ell_{n}=13$
$n=7$ We need $3000 \approx 8 \times \ell_{7}$ QAMs to obtain all $\ell_{n}=488$

How to get them?

Using the QAM method

For a given n, how many QAMs do we need to generate to obtain all ℓ_{n} quadratic APN functions?

$$
\begin{aligned}
& n=6 \text { We need } 200 \approx 16 \times \ell_{6} \text { QAMs to obtain all } \ell_{n}=13 \\
& n=7 \text { We need } 3000 \approx 8 \times \ell_{7} \text { QAMs to obtain all } \ell_{n}=488 \\
& n=8 ?
\end{aligned}
$$

How to get them?

Using the QAM method

For a given n, how many QAMs do we need to generate to obtain all ℓ_{n} quadratic APN functions?

$$
\begin{aligned}
& n=6 \text { We need } 200 \approx 16 \times \ell_{6} \text { QAMs to obtain all } \ell_{n}=13 \\
& n=7 \text { We need } 3000 \approx 8 \times \ell_{7} \text { QAMs to obtain all } \ell_{n}=488 \\
& n=8 ?
\end{aligned}
$$

Conjecture

For $n=8$, we would need to generate $4 \times \ell_{8} \approx 200,000$ QAMs to generate all of them, i.e. about 50 CPU•year.

Plan of this Section

1 Context

2 Generating New Classes of Functions with the QAM Method

3 New Functions and Some Conjectures

4 Conclusion

Conclusion

There are many 8-bit quadratic APN functions!

[^0]: ${ }^{1} \mathrm{Y} . \mathrm{Yu}, \mathrm{M}$. Wang, Y. Li, A matrix approach for constructing quadratic APN functions. Designs Codes and Cryptography 73, p.587-600 (2014).

[^1]: ${ }^{2}$ Satoshi Yoshiara. Equivalences of quadratic apn functions. Journal of Algebraic Combinatorics, 35(3):461-475, 2012.

[^2]: ${ }^{2}$ Satoshi Yoshiara. Equivalences of quadratic apn functions. Journal of Algebraic Combinatorics, 35(3):461-475, 2012.

[^3]: ${ }^{2}$ Satoshi Yoshiara. Equivalences of quadratic apn functions. Journal of Algebraic Combinatorics, 35(3):461-475, 2012.

[^4]: ${ }^{2}$ Satoshi Yoshiara. Equivalences of quadratic apn functions. Journal of Algebraic Combinatorics, 35(3):461-475, 2012.

[^5]: ${ }^{2}$ Satoshi Yoshiara. Equivalences of quadratic apn functions. Journal of Algebraic Combinatorics, 35(3):461-475, 2012.

