Constructing More Quadratic APN Functions with the QAM Method

Yuyin Yu¹ <u>Léo Perrin²</u>

¹Guangzhou University, Guangzhou, China ²Inria, France

> September 6th, 2021 BFA 2021 Rosendal, Norway

- 2 Generating New Classes of Functions with the QAM Method
- 3 New Functions and Some Conjectures

4 Conclusion

Plan of this Section

1 Context

- 2 Generating New Classes of Functions with the QAM Method
- 3 New Functions and Some Conjectures

4 Conclusion

Definition (APN function)

A function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ is Almost Perfect Non-linear (APN) if

$$F(x+a)-F(x)=b$$

has at most two solutions for all $a \neq 0$, b.

Definition (APN function)

A function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ is Almost Perfect Non-linear (APN) if

$$F(x+a)-F(x)=b$$

has at most two solutions for all $a \neq 0$, b.

The Big APN Problem

Does there exist an APN permutation on \mathbb{F}_2^n for *n* even?

Definition (APN function)

A function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ is Almost Perfect Non-linear (APN) if

$$F(x+a)-F(x)=b$$

has at most two solutions for all $a \neq 0$, b.

The Big APN Problem

Does there exist an APN permutation on \mathbb{F}_2^n for *n* even?

Definition (APN function)

A function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ is Almost Perfect Non-linear (APN) if

$$F(x+a)-F(x)=b$$

has at most two solutions for all $a \neq 0$, b.

The Big APN Problem

Does there exist an APN permutation on \mathbb{F}_2^n for *n* even?

n = 4 No.

n = 6 Yes! [Dillon et al. 09]

■ *n* ≥ 8 ???

Definition (APN function)

A function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ is Almost Perfect Non-linear (APN) if

$$F(x+a)-F(x)=b$$

has at most two solutions for all $a \neq 0$, b.

The Big APN Problem

Does there exist an APN permutation on \mathbb{F}_2^n for *n* even?

n = 4 No.

n = 6 Yes! [Dillon et al. 09]

Find permutation in the *CCZ-class* of a known APN function (the "Kim mapping")

■ *n* ≥ 8 ???

Equivalence Relations

Definition (Affine-Equivalence)

F and *G* are affine equivalent if $G(x) = (B \circ F \circ A)(x)$, where *A*, *B* are affine permutations.

Equivalence Relations

Definition (Affine-Equivalence)

F and *G* are affine equivalent if $G(x) = (B \circ F \circ A)(x)$, where *A*, *B* are affine permutations.

Definition (EA-Equivalence)

F and *G* are *E*(*xtented*) *A*(*ffine*) *equivalent* if $G(x) = (B \circ F \circ A)(x) + C(x)$, where *A*, *B*, *C* are affine and *A*, *B* are permutations.

Definition (CCZ-Equivalence)

 $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ and $G: \mathbb{F}_2^n \to \mathbb{F}_2^m$ are C(arlet)-C(harpin)-Z(inoviev) equivalent if

$$\Gamma_{G} = \left\{ (x, G(x)), \forall x \in \mathbb{F}_{2}^{n} \right\} = L\left(\left\{ (x, F(x)), \forall x \in \mathbb{F}_{2}^{n} \right\} \right) = L(\Gamma_{F})$$

where $L: \mathbb{F}_2^{n+m} \to \mathbb{F}_2^{n+m}$ is an affine permutation.

,

Already Known 8-bit Quadratic APN permutations

"Switching" method [Edel Pott 2009]

Already Known 8-bit Quadratic APN permutations

- "Switching" method [Edel Pott 2009]
- 2 QAM method [Yu et al. 2014] (see rest of this talk).

Already Known 8-bit Quadratic APN permutations

- 1 "Switching" method [Edel Pott 2009]
- 2 QAM method [Yu et al. 2014] (see rest of this talk).
- Self-equivalent functions [Beierle Leander 2020]: Look for functions F : Fⁿ₂ → Fⁿ₂ such that

$$F \circ A = B \circ F$$

for linear permutations A and B.

Already Known 8-bit Quadratic APN permutations

- "Switching" method [Edel Pott 2009]
- 2 QAM method [Yu et al. 2014] (see rest of this talk).
- Self-equivalent functions [Beierle Leander 2020]: Look for functions F : Fⁿ₂ → Fⁿ₂ such that

$$F \circ A = B \circ F$$

for linear permutations A and B.

 QIC [Ghosh Perrin 2020] (see next talk).

Already Known 8-bit Quadratic APN permutations

1	"Switching" method [Edel Pott 2009]	23
2	QAM method [Yu et al. 2014] (see rest of this talk).	8179
3	Self-equivalent functions [Beierle Leander 2020]: Look for functions $F: \mathbb{F}_2^n o \mathbb{F}_2^n$ such that	12812+188

$$F \circ A = B \circ F$$

for linear permutations A and B.

 QIC [Ghosh Perrin 2020] (see next talk).

Already Known 8-bit Quadratic APN permutations

"Switching" method [Edel Pott 2009]	23
 QAM method [Yu et al. 2014] (see rest of this talk). 	8179
3 Self-equivalent functions [Beierle Leander Look for functions $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ such that	er 2020]: 12812+188 t
$F \circ A =$	B ○ F
for linear permutations A and B	

for linear permutations A and B.

 QIC [Ghosh Perrin 2020] (see next talk).

1 How many quadratic APN functions exist in dimension 8?

How many quadratic APN functions exist in dimension 8?

2 What's the overlap between the classes of known funcitons?

Conjecture: > 50,000

2 What's the overlap between the classes of known funcitons?

Conjecture: > 50,000

2 What's the overlap between the classes of known funcitons?

not much!

Plan of this Section

1 Context

2 Generating New Classes of Functions with the QAM Method

3 New Functions and Some Conjectures

4 Conclusion

Definition of the QAM

Definition (Quadratic Homogeneous Functions)

Quadratic functions without linear or constant terms are called **quadratic homogeneous functions**:

$$F(x) = \sum_{1 \le j < i \le n} c_{i,j} x^{2^{i-1}+2^{j-1}} \in \mathbb{F}_{2^n}[x].$$

Definition (QAM)

- Let $H = (h_{i,j})_{n \times n}$ be an $n \times n$ matrix of \mathbb{F}_{2^n} . It is a Quadratic APN Matrix (QAM) if
 - 11 it is symmetric and the elements in its main diagonal are all zeros; and
 - **2** every nonzero linear combination of its rows has rank n 1.

Properties

$$H = \begin{pmatrix} 0 & g^{34} & g^{81} & g^{83} & g^{170} & g^{106} & x_{13} & x_7 \\ g^{34} & 0 & g^{68} & g^{162} & g^{166} & g^{85} & x_{12} & x_6 \\ g^{81} & g^{68} & 0 & g^{136} & g^{69} & g^{77} & x_{11} & x_5 \\ g^{83} & g^{162} & g^{136} & 0 & g^{17} & g^{138} & x_{10} & x_4 \\ g^{170} & g^{166} & g^{69} & g^{17} & 0 & g^{34} & x_9 & x_3 \\ g^{106} & g^{85} & g^{77} & g^{138} & g^{34} & 0 & x_8 & x_2 \\ x_{13} & x_{12} & x_{11} & x_{10} & x_9 & x_8 & 0 & x_1 \\ x_7 & x_6 & x_5 & x_4 & x_3 & x_2 & x_1 & 0 \end{pmatrix}$$

Theorem (Yu et al.¹)

There exists a one to one correspondence between quadratic homogeneous APN functions and QAMs.

¹Y. Yu, M. Wang, Y. Li, A matrix approach for constructing quadratic APN functions. Designs Codes and Cryptography 73, p.587-600 (2014).

1 Take an APN function $(x \mapsto x^3)$

- **1** Take an APN function $(x \mapsto x^3)$
- 2 Compute its QAM.

- **1** Take an APN function $(x \mapsto x^3)$
- 2 Compute its QAM.
- 3 Let the last two rows/columns be variables {x₁, ...}:

- **1** Take an APN function $(x \mapsto x^3)$
- 2 Compute its QAM.
- **3** Let the last two rows/columns be variables $\{x_1, ...\}$:

4 Let $\{x_1, ...\}$ take different values and check if we have a QAM.

This approach works (see later)!

This approach works (see later)!

One Problem

How to ensure that we do not generate the same function multiple times?

This approach works (see later)!

One Problem

How to ensure that we do not generate the same function multiple times?

A better statement

How to partition the functions obtained into

This approach works (see later)!

One Problem

How to ensure that we do not generate the same function multiple times?

A better statement

How to partition the functions obtained into CCZ-equivalence classes?

Theorem ([Yos12]²)

Quadratic APN functions are CCZ-equivalent if and only if they are EA-equivalent.

²Satoshi Yoshiara. Equivalences of quadratic apn functions. Journal of Algebraic Combinatorics, 35(3):461–475, 2012.

Theorem ([Yos12]²)

Quadratic APN functions are CCZ-equivalent if and only if they are EA-equivalent.

We use EA-class invariants:

²Satoshi Yoshiara. Equivalences of quadratic apn functions. Journal of Algebraic Combinatorics, 35(3):461–475, 2012.

Theorem ([Yos12]²)

Quadratic APN functions are CCZ-equivalent if and only if they are EA-equivalent.

We use EA-class invariants:

 δ -rank; Γ -rank: the ranks of $2^{2n} \times 2^{2n}$ matrices computed from F.

²Satoshi Yoshiara. Equivalences of quadratic apn functions. Journal of Algebraic Combinatorics, 35(3):461–475, 2012.

Theorem ([Yos12]²)

Quadratic APN functions are CCZ-equivalent if and only if they are EA-equivalent.

We use EA-class invariants:

 δ -rank; Γ -rank: the ranks of $2^{2n} \times 2^{2n}$ matrices computed from *F*.

Thickness spectrum: A property of the Walsh zeroes of F.

 $\Sigma_F^k(0)$: How many tuples $(x_1, ..., x_k)$ such that:

 $x_1 + ... + x_k = 0$; and $F(x_1) + ... + F(x_k) = 0$.

²Satoshi Yoshiara. Equivalences of quadratic apn functions. Journal of Algebraic Combinatorics, 35(3):461–475, 2012.

Theorem ([Yos12]²)

Quadratic APN functions are CCZ-equivalent if and only if they are EA-equivalent.

We use EA-class invariants:

 δ -rank; Γ -rank: the ranks of $2^{2n} \times 2^{2n}$ matrices computed from *F*.

Thickness spectrum: A property of the Walsh zeroes of F.

 $\Sigma_F^k(0)$: How many tuples $(x_1, ..., x_k)$ such that:

$$x_1 + ... + x_k = 0$$
; and $F(x_1) + ... + F(x_k) = 0$.

Ortho-derivative: $\pi_F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ is the unique function such that $\pi_F(0) = 0$ and, for all x, a:

$$\pi_F(a)\cdot \big(F(x+a)+F(x)+F(a)+F(0)\big)=0.$$

Its affine equivalence-class is an EA-class invariant.

²Satoshi Yoshiara. Equivalences of quadratic apn functions. Journal of Algebraic Combinatorics, 35(3):461–475, 2012.

Implementation aspects

$$F: \mathbb{F}_2^n \to \mathbb{F}_2^n$$

$$F = [F(0), F(1), \dots, F(2^n - 1)]$$

Implementation aspects

$$F: \mathbb{F}_{2}^{n} \to \mathbb{F}_{2}^{n}$$

$$F = [F(0), F(1), ..., F(2^{n} - 1)]$$

Name	Complexity	sboxU function
δ -ranks	$O(2^{2\omega n})$	$delta_rank(F)$
Γ-ranks	$O(2^{2\omega n})$	$gamma_rank(F)$
Thickness spectrum	?	$\texttt{thickness_spectrum}(\texttt{F})$
Σ_F^k	0(n2 ²ⁿ)	$sigma_multiplicities(F,k)$
π _F	0(2 ²ⁿ)	$ortho_derivative_label(F)$

Implementation aspects

$$F: \mathbb{F}_{2}^{n} \to \mathbb{F}_{2}^{n}$$

$$F = [F(0), F(1), ..., F(2^{n} - 1)]$$

Name	Complexity	sboxU function
δ -ranks	$O(2^{2\omega n})$	$delta_rank(F)$
Γ-ranks	$0(2^{2\omega n})$	$gamma_rank(F)$
Thickness spectrum	?	$\texttt{thickness_spectrum}(F)$
Σ_F^k	0(n2 ²ⁿ)	$sigma_multiplicities(F, k)$
π_F	0(2 ²ⁿ)	$ortho_derivative_label(F)$

Are my APN functions new?

```
from collections import defaultdict
from sboxU import *
ea counters = defaultdict
known_apn_functions = eightBitAPN.all_quadratics()
for f in known apn functions:
    ea counters[ortho derivative label(f)] += 1
new QAMs = [[0, ..., 255], ... ]
updated apn functions = known apn functions[:]
for f in new OAMs:
    l = ortho_derivative_label(f)
    ea counters[l] += 1
   if ea counters[l] == 1:
        updated apn functions.append(f)
```

Plan of this Section

1 Context

2 Generating New Classes of Functions with the QAM Method

3 New Functions and Some Conjectures

4 Conclusion

Yu et al. 14

len(sboxU.eightBitAPN.all_quadratics()) = 26524

A simple test

Knowing that k quadratic APN functions of \mathbb{F}_2^n have been generated using QAMs, what is the probability P_k^n that the next generated function is new?

A simple test

Knowing that k quadratic APN functions of \mathbb{F}_2^n have been generated using QAMs, what is the probability \mathcal{P}_k^n that the next generated function is new?

n = 6 For k = 6 (out of 13), $P_6 \approx 75\%$

A simple test

Knowing that k quadratic APN functions of \mathbb{F}_2^n have been generated using QAMs, what is the probability \mathcal{P}_k^n that the next generated function is new?

n = 6 For k = 6 (out of 13), $P_6 \approx 75\%$

n = 7 For k = 230 (out of 488), $P_{230} \approx 79\%$

A simple test

Knowing that k quadratic APN functions of \mathbb{F}_2^n have been generated using QAMs, what is the probability \mathcal{P}_k^n that the next generated function is new?

$$n = 6$$
 For $k = 6$ (out of 13), $P_6 \approx 75\%$

$$n = 7$$
 For $k = 230$ (out of 488), $P_{230} \approx 79\%$

$$n = 8$$
 For $k = 25624$, $P_{25624} \approx 79\%$

A simple test

Knowing that k quadratic APN functions of \mathbb{F}_2^n have been generated using QAMs, what is the probability P_k^n that the next generated function is new?

$$n = 6$$
 For $k = 6$ (out of 13), $P_6 \approx 75\%$
 $n = 7$ For $k = 230$ (out of 488), $P_{230} \approx 79\%$
 $n = 8$ For $k = 25624$, $P_{25624} \approx 79\%$

Conjecture

There are at least 50, 000 quadratic APN functions on 8 bits.

Using the QAM method

For a given *n*, how many QAMs do we need to generate to obtain all ℓ_n quadratic APN functions?

Using the QAM method

For a given n, how many QAMs do we need to generate to obtain all ℓ_n quadratic APN functions?

n = 6 We need 200 \approx 16 $\times \ell_6$ QAMs to obtain all $\ell_n =$ 13

Using the QAM method

For a given n, how many QAMs do we need to generate to obtain all ℓ_n quadratic APN functions?

n = 6 We need 200 \approx 16 $\times \ell_6$ QAMs to obtain all $\ell_n =$ 13

n=7 We need 3000 \approx 8 \times ℓ_7 QAMs to obtain all $\ell_n=488$

Using the QAM method

For a given n, how many QAMs do we need to generate to obtain all ℓ_n quadratic APN functions?

 $\begin{array}{l} n=6 \ \, \mbox{We need 200}\approx 16\times \ell_6 \ \, \mbox{QAMs to obtain all } \ell_n=13\\ n=7 \ \, \mbox{We need 3000}\approx 8\times \ell_7 \ \, \mbox{QAMs to obtain all } \ell_n=488\\ n=8 \ \, \mbox{?} \end{array}$

Using the QAM method

For a given n, how many QAMs do we need to generate to obtain all ℓ_n quadratic APN functions?

 $n = 6 \text{ We need } 200 \approx 16 \times \ell_6 \text{ QAMs to obtain all } \ell_n = 13$ $n = 7 \text{ We need } 3000 \approx 8 \times \ell_7 \text{ QAMs to obtain all } \ell_n = 488$ n = 8 ?

Conjecture

For n=8, we would need to generate 4 $imes \ell_8 pprox$ 200, 000 QAMs to generate all of them, i.e. about 50 CPU·year.

Plan of this Section

1 Context

- 2 Generating New Classes of Functions with the QAM Method
- 3 New Functions and Some Conjectures

4 Conclusion

Conclusio

Conclusion

There are many 8-bit quadratic APN functions!