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Context

Why Generate Quadratic APN Functions?

Definition (APN function)

A function F : Fn
2 → Fm

2 is Almost Perfect Non-linear (APN) if

F(x+ a)− F(x) = b

has at most two solutions for all a ̸= 0, b.

The Big APN Problem

Does there exist an APN permutation on Fn
2 for n even?

n = 4

No.

n = 6

Yes! [Dillon et al. 09]
Find permutation in the CCZ-class of a known APN function (the “Kim

mapping”)

n ≥ 8

???

1 / 15



Context

Why Generate Quadratic APN Functions?

Definition (APN function)

A function F : Fn
2 → Fm

2 is Almost Perfect Non-linear (APN) if

F(x+ a)− F(x) = b

has at most two solutions for all a ̸= 0, b.

The Big APN Problem

Does there exist an APN permutation on Fn
2 for n even?

n = 4

No.

n = 6

Yes! [Dillon et al. 09]
Find permutation in the CCZ-class of a known APN function (the “Kim

mapping”)

n ≥ 8

???

1 / 15



Context

Why Generate Quadratic APN Functions?

Definition (APN function)

A function F : Fn
2 → Fm

2 is Almost Perfect Non-linear (APN) if

F(x+ a)− F(x) = b

has at most two solutions for all a ̸= 0, b.

The Big APN Problem

Does there exist an APN permutation on Fn
2 for n even?

n = 4

No.

n = 6

Yes! [Dillon et al. 09]
Find permutation in the CCZ-class of a known APN function (the “Kim

mapping”)

n ≥ 8

???

1 / 15



Context

Why Generate Quadratic APN Functions?

Definition (APN function)

A function F : Fn
2 → Fm

2 is Almost Perfect Non-linear (APN) if

F(x+ a)− F(x) = b

has at most two solutions for all a ̸= 0, b.

The Big APN Problem

Does there exist an APN permutation on Fn
2 for n even?

n = 4 No.

n = 6 Yes! [Dillon et al. 09]

Find permutation in the CCZ-class of a known APN function (the “Kim
mapping”)

n ≥ 8 ???
1 / 15



Context

Why Generate Quadratic APN Functions?

Definition (APN function)

A function F : Fn
2 → Fm

2 is Almost Perfect Non-linear (APN) if

F(x+ a)− F(x) = b

has at most two solutions for all a ̸= 0, b.

The Big APN Problem

Does there exist an APN permutation on Fn
2 for n even?

n = 4 No.

n = 6 Yes! [Dillon et al. 09]
Find permutation in the CCZ-class of a known APN function (the “Kim

mapping”)

n ≥ 8 ???
1 / 15



Context

Equivalence Relations

Definition (Affine-Equivalence)

F and G are affine equivalent if G(x) = (B ◦ F ◦ A)(x), where A, B are affine
permutations.

Definition (EA-Equivalence)

F and G are E(xtented) A(ffine) equivalent if G(x) = (B ◦ F ◦ A)(x) + C(x), where
A, B, C are affine and A, B are permutations.

Definition (CCZ-Equivalence)

F : Fn
2 → Fm

2 and G : Fn
2 → Fm

2 are C(arlet)-C(harpin)-Z(inoviev) equivalent if

ΓG =
{
(x, G(x)), ∀x ∈ Fn

2

}
= L

({
(x, F(x)), ∀x ∈ Fn

2

})
= L(ΓF) ,

where L : Fn+m
2 → Fn+m

2 is an affine permutation.
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Context

Already Known 8-bit Quadratic APN permutations

1 “Switching” method [Edel Pott 2009]

23

2 QAMmethod [Yu et al. 2014]

8179

(see rest of this talk).

3 Self-equivalent functions [Beierle Leander 2020]:

12812+188

Look for functions F : Fn
2 → Fn

2 such that

F ◦ A = B ◦ F

for linear permutations A and B.

4 QIC [Ghosh Perrin 2020]

–

(see next talk).

Total (without redundancy) 21112
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Context

Some Questions

1 Howmany quadratic APN functions exist in dimension 8?

Conjecture: > 50, 000

2 What’s the overlap between the classes of known funcitons?

not much!
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Generating New Classes of Functions with the QAMMethod

Definition of the QAM

Definition (Quadratic Homogeneous Functions)

Quadratic functions without linear or constant terms are called quadratic
homogeneous functions:

F(x) =
∑

1≤j<i≤n

ci,jx
2i−1+2j−1 ∈ F2n [x].

Definition (QAM)

Let H = (hi,j)n×n be an n× nmatrix of F2n . It is a Quadratic APNMatrix (QAM) if

1 it is symmetric and the elements in its main diagonal are all zeros; and

2 every nonzero linear combination of its rows has rank n− 1.
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Generating New Classes of Functions with the QAMMethod

Properties

H =



0 g34 g81 g83 g170 g106 x13 x7
g34 0 g68 g162 g166 g85 x12 x6
g81 g68 0 g136 g69 g77 x11 x5
g83 g162 g136 0 g17 g138 x10 x4
g170 g166 g69 g17 0 g34 x9 x3
g106 g85 g77 g138 g34 0 x8 x2
x13 x12 x11 x10 x9 x8 0 x1
x7 x6 x5 x4 x3 x2 x1 0


Theorem (Yu et al.1)

There exists a one to one correspondence between quadratic homogeneous APN
functions and QAMs.

1Y. Yu, M. Wang, Y. Li, A matrix approach for constructing quadratic APN functions. Designs Codes
and Cryptography 73, p.587-600 (2014).
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Generating New Classes of Functions with the QAMMethod

Generating New Functions

1 Take an APN function (x 7→ x3)

2 Compute its QAM.

3 Let the last two rows/columns be variables {x1, ...}:

H =



0 g34 g81 g83 g170 g106 x13 x7
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g83 g162 g136 0 g17 g138 x10 x4
g170 g166 g69 g17 0 g34 x9 x3
g106 g85 g77 g138 g34 0 x8 x2
x13 x12 x11 x10 x9 x8 0 x1
x7 x6 x5 x4 x3 x2 x1 0


4 Let {x1, ...} take different values and check if we have a QAM.
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Generating New Classes of Functions with the QAMMethod

Sorting the Result

This approach works (see later)!

One Problem
How to ensure that we do not generate the same function multiple times?

A better statement

How to partition the functions obtained into CCZ-equivalence classes?
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Generating New Classes of Functions with the QAMMethod

Invariant-based Approach

Theorem ([Yos12]2)

Quadratic APN functions are CCZ-equivalent if and only if they are EA-equivalent.

We use EA-class invariants:
δ-rank; Γ-rank: the ranks of 22n × 22n matrices computed from F.
Thickness spectrum: A property of theWalsh zeroes of F.

Σk
F(0): Howmany tuples (x1, ..., xk) such that:

x1 + ...+ xk = 0; and F(x1) + ...+ F(xk) = 0 .

Ortho-derivative: πF : Fn
2 → Fn

2 is the unique function such that πF(0) = 0 and,
for all x, a:

πF(a) ·
(
F(x+ a) + F(x) + F(a) + F(0)

)
= 0.

Its affine equivalence-class is an EA-class invariant.

2Satoshi Yoshiara. Equivalences of quadratic apn functions. Journal of Algebraic Combinatorics,
35(3):461–475, 2012.
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Generating New Classes of Functions with the QAMMethod

Implementation aspects

F : Fn
2 → Fn

2

F = [F(0), F(1), ..., F(2n − 1)]

Name Complexity sboxU function

δ-ranks delta_rank(F)
Γ-ranks gamma_rank(F)
Thickness spectrum thickness_spectrum(F)
Σk

F sigma_multiplicities(F, k)
πF ortho_derivative_label(F)

10 / 15
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Generating New Classes of Functions with the QAMMethod

Are my APN functions new?
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New Functions and Some Conjectures
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New Functions and Some Conjectures

8-bit Quadratic APN Generation

Yu et al. 14

len(sboxU.eightBitAPN.all_quadratics()) = 26524
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New Functions and Some Conjectures
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New Functions and Some Conjectures

8-bit Quadratic APN Generation
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New Functions and Some Conjectures

Total Number of APN Functions

A simple test

Knowing that k quadratic APN functions of Fn
2 have been generated using QAMs,

what is the probability Pnk that the next generated function is new?

n = 6 For k = 6 (out of 13), P6 ≈ 75%

n = 7 For k = 230 (out of 488), P230 ≈ 79%

n = 8 For k = 25624, P25624 ≈ 79%

Conjecture
There are at least 50, 000 quadratic APN functions on 8 bits.
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There are at least 50, 000 quadratic APN functions on 8 bits.
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New Functions and Some Conjectures

How to get them?

Using the QAMmethod

For a given n, howmany QAMs do we need to generate to obtain all ℓn quadratic
APN functions?

n = 6 We need 200 ≈ 16× ℓ6 QAMs to obtain all ℓn = 13

n = 7 We need 3000 ≈ 8× ℓ7 QAMs to obtain all ℓn = 488

n = 8 ?

Conjecture
For n = 8, we would need to generate 4× ℓ8 ≈ 200, 000 QAMs to generate all of
them, i.e. about 50 CPU·year.
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Conclusion

There are many 8-bit quadratic APN functions!
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