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How to

You need to have SAGE installed

Then head to https://github.com/lpp-crypto/sboxU

Demo
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Sbox from SAGE vs. sboxU

There are already many functions for investigating vectorial boolean
functions in SAGE:

Class SBox from sage.crypto.sbox (or
sage.crypto.mq.sbox in older versions)
Module boolean_function from sage.crypto

SAGE SBox

Supports output size ̸= input
size

Sub-routines written in
Python or Cython
Built-in SAGE

sboxU

Assumes output size= input
size

Sub-routines written in
Python or multi-threaded C++
Cutting functionalities
functionalities
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Some Tools

1 DDT/LAT (+ Pollock representation thereof )

2 ANF, algebraic degree

3 Finite field arithmetic

4 Linear mappings

Demo
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CCZ- and EA-equivalence

Definition (CCZ-Equivalence)

F : Fn
2 → Fm

2 and G : Fn
2 → Fm

2 are C(arlet)-C(harpin)-Z(inoviev)
equivalent if

ΓG =
{
(x, G(x)), ∀x ∈ Fn

2

}
= L

({
(x, F(x)), ∀x ∈ Fn

2

})
= L(ΓF) ,

where L : Fn+m
2 → Fn+m

2 is an affine permutation.

Definition (EA-Equivalence; EA-mapping)

F and G are E(xtented) A(ffine) equivalent if G(x) = (B ◦ F ◦ A)(x) + C(x),
where A, B, C are affine and A, B are permutations; so that

{
(x, G(x)), ∀x ∈ Fn

2

}
=

[
A−1 0
CA−1 B

] ({
(x, F(x)), ∀x ∈ Fn

2

})
.
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Some Algorithmic Problems with CCZ-Equivalence

CCZ-class

F

EA-class EA-class EA-class EA-class EA-class

F

F1

F2

F3

F4

F′

G
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Exploring a CCZ-class

Algorithms used here are based on:

an efficient vector space search algorithm from “Anomalies and Vector Space Search:
Tools for S-Box Analysis” (ASIACRYPT’19), and

the framework based on Walsh zeroes we introduced in “On CCZ-equivalence,
extended-affine equivalence, and function twisting”, FFA’19

Finding representatives of EA-classes

Demo

Finding permutations!

Demo
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Class Invariants

Definition (Differential spectrum)

Recall that DDTF[a, b] = #
{
x, F(x+ a) + F(x) = b

}
. The differential

spectrum is the number of occurrences of each number in the DDT.

Definition (Walsh spectrum)

Recall thatWF[a, b] =
∑

x(−1)a·x+b·F(x). The Walsh spectrum is the
number of occurrences of each number in the LAT. The extended Walsh
spectrum considers only absolute values.

Differential and extended Walsh spectra are constant in a CCZ-class.
The algebraic degree and the thickness spectrum are constant in an
EA-class.

Demo
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Definition

Definition (Ortho-Derivative)

Let F be a quadratic function of Fn
2 . The ortho-derivatives of F are the

functions of Fn
2 such that

∀x ∈ Fn
2 , πF(a) ·

(
F(x+ a) + F(x)︸ ︷︷ ︸

∆aF(x)

+F(a) + F(0)
)
= 0 .

πF(a) is orthogonal to the linear part of the hyperplane Im(∆aF)

πF can take any value in 0.
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Basic Properties

Lemma (Ortho-derivatives of APN functions)

F is APN if and only if πF(a) is uniquely defined for all a ∈ (Fn
2)

∗.

Lemma (Interaction with EA-equivalence)

If G = B ◦ F ◦ A+ C where A and B are linear permutations and C is a
linear function, then

πG = (BT)−1 ◦ πF ◦ A

It seems like1 the algebraic degree of the ortho-derivative of an APN
function is always n− 2.

1See also A note on the properties of associated Boolean functions of quadratic APN
functions by Anastasiya Gorodilova on ArXiv.

11 / 17



Basic Functionalities
CCZ-Equivalence
Ortho-Derivative

Conclusion

Definition and Basic Theorems
Algorithmic Uses
Inverting the DDT of a Quadratic Function

Basic Properties

Lemma (Ortho-derivatives of APN functions)

F is APN if and only if πF(a) is uniquely defined for all a ∈ (Fn
2)

∗.

Lemma (Interaction with EA-equivalence)

If G = B ◦ F ◦ A+ C where A and B are linear permutations and C is a
linear function, then

πG = (BT)−1 ◦ πF ◦ A

It seems like1 the algebraic degree of the ortho-derivative of an APN
function is always n− 2.

1See also A note on the properties of associated Boolean functions of quadratic APN
functions by Anastasiya Gorodilova on ArXiv.

11 / 17



Basic Functionalities
CCZ-Equivalence
Ortho-Derivative

Conclusion

Definition and Basic Theorems
Algorithmic Uses
Inverting the DDT of a Quadratic Function

Basic Properties

Lemma (Ortho-derivatives of APN functions)

F is APN if and only if πF(a) is uniquely defined for all a ∈ (Fn
2)

∗.

Lemma (Interaction with EA-equivalence)

If G = B ◦ F ◦ A+ C where A and B are linear permutations and C is a
linear function, then

πG = (BT)−1 ◦ πF ◦ A

It seems like1 the algebraic degree of the ortho-derivative of an APN
function is always n− 2.

1See also A note on the properties of associated Boolean functions of quadratic APN
functions by Anastasiya Gorodilova on ArXiv.

11 / 17



Basic Functionalities
CCZ-Equivalence
Ortho-Derivative

Conclusion

Definition and Basic Theorems
Algorithmic Uses
Inverting the DDT of a Quadratic Function

Preimages of the Ortho-Derivative

Theorem (Linear Structures (APN case))

If
TF(b) =

{
x ∈ Fn

2 : πF(x) = b
}
,

then TF(b) = LS(x 7→ b · F(x)).

Corollary

For any b, TF(b) is a linear subspace of Fn
2 whose dimension has the same

parity as n. Furthermore,(
WF[a, b]

)2 ∈ {
0, 2n+dim TF(b)

}

12 / 17
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Identifying EA- and CCZ-classes

Corollary (Ortho-derivatives of APN functions)

The differential and extendedWalsh spectra of the ortho-derivative of an
APN function is the same within an EA-class.

Observation

In practice, these spectra differ from one EA-class to the next!

We can use this to very efficiently sort large numbers of quadratic
functions into distinct EA-classes.

Demo
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Principle

Is it possible to recover F given πF?

Yes!

The Key Observation

We can write the scalar product x · y as (⃗x)T × y⃗, where× is a matrix
operation.

We represent F as a vector of Fn2n
2 by concatenating the n-bit

representation of each of the 2n values F(x):

vec(F) =


F0(0)
F1(0)
...

Fn−1(0)
F0(1)
...

Fn−1(2
n − 1)

 .

14 / 17
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Re-Defining Ortho-Derivatives

Let G be a function and ζa(G) be a matrix defined by

1 ζG(a)[x, x] = ⃗G(a)
T
, ζG(a)[x, x+ a] = ⃗G(a)

T
,

2 ζG(a)[x, 0] = ⃗G(a)
T
, ζG(a)[x, a] = ⃗G(a)

T
,

so that

ζG(a)× vec(F) =

[
G(a) ·

(
F(0) + F(0 + a) + F(a) + F(0)

)
G(a) ·

(
F(1) + F(1 + a) + F(a) + F(0)

)
...

G(a) ·
(
F(2n − 1) + F(2n − 1 + a) + F(a) + F(0)

)
]
,

from which we deduce that if πF is an ortho-derivative of F then

vec(F) ∈ ker
(
ζ(πF)

)
where ζ(πF) =

 ζ0(πF)
...

ζ2n−1(πF)

 .
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Inverting the DDT of a Quadratic Function

1 Find a DDT,

2 deduce the corresponding π,

3 build ζ(π),

4 find ker (ζ(π)),

5 obtain vec(F)!

In practice, starting from “cleverly” built functions π yields ζ(π) with
empty2 kernels...

2Tricks are used to get rid of redundancies in ζ , and trivial solutions.
16 / 17



Basic Functionalities
CCZ-Equivalence
Ortho-Derivative

Conclusion

Definition and Basic Theorems
Algorithmic Uses
Inverting the DDT of a Quadratic Function

Inverting the DDT of a Quadratic Function

1 Find a DDT,

2 deduce the corresponding π,

3 build ζ(π),

4 find ker (ζ(π)),

5 obtain vec(F)!

In practice, starting from “cleverly” built functions π yields ζ(π) with
empty2 kernels...

2Tricks are used to get rid of redundancies in ζ , and trivial solutions.
16 / 17



Basic Functionalities
CCZ-Equivalence
Ortho-Derivative

Conclusion

Plan of this Section

1 Basic Functionalities

2 CCZ-Equivalence

3 Ortho-Derivative

4 Conclusion

16 / 17



Basic Functionalities
CCZ-Equivalence
Ortho-Derivative

Conclusion

Conclusion

Go an use sboxU! https://github.com/lpp-crypto/sboxU

Send me an email (leo.perrin@inria.fr) if you want to join the
sboxU mailing list.

Thank you!
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