On CCZ-Equivalence, Extended-Affine Equivalence and Function Twisting

Anne Canteaut, Léo Perrin

June 3, 2019
Fq14, Vancouver

Setting up the background

Cryptographic properties \rightarrow Equivalence classes \rightarrow CCZ-equivalence

Cryptographic Properties

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are functions (e.g. S-Boxes).

Definition (DDT/LAT)

The D (ifference) D (istribution) T (able) of $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ is

$$
\mathcal{D}_{F}(\alpha, \beta)=\#\{x, F(x \oplus \alpha) \oplus F(x)=\beta\}
$$

The L (inear) A (pproximation) T (able) of $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ is

$$
\mathcal{W}_{F}(\alpha, \beta)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{\alpha \cdot x+\beta \cdot F(x)}
$$

Cryptographic Properties

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are functions (e.g. S-Boxes).

Definition (DDT/LAT)

The D (ifference) D (istribution) T (able) of $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ is

$$
\mathcal{D}_{F}(\alpha, \beta)=\#\{x, F(x \oplus \alpha) \oplus F(x)=\beta\}
$$

The L (inear) A (pproximation) T (able) of $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ is

$$
\mathcal{W}_{F}(\alpha, \beta)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{\alpha \cdot x+\beta \cdot F(x)}
$$

Big APN Problem

Is there an APN permutation on $2 t$ bits such that $\max (D D T)=2$?

Equivalence Relations that \approx Preserve DDT/LAT $(1 / 2)$

Definition (Affine-Equivalence)
F and G are affine equivalent if $G(x)=(B \circ F \circ A)(x)$, where A, B are affine permutations.

Equivalence Relations that \approx Preserve DDT/LAT $(1 / 2)$

Definition (Affine-Equivalence)

F and G are affine equivalent if $G(x)=(B \circ F \circ A)(x)$, where A, B are affine permutations.

Definition (EA-Equivalence; EA-mapping)

F and G are $E(x$ tented) $A($ ffine) equivalent if
$G(x)=(B \circ F \circ A)(x)+C(x)$, where A, B, C are affine and A, B are permutations; so that

$$
\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}=\left[\begin{array}{cc}
A^{-1} & 0 \\
C A^{-1} & B
\end{array}\right]\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right) .
$$

Equivalence Relations that \approx Preserve DDT/LAT $(1 / 2)$

Definition (Affine-Equivalence)

F and G are affine equivalent if $G(x)=(B \circ F \circ A)(x)$, where A, B are affine permutations.

Definition (EA-Equivalence; EA-mapping)

F and G are $E(x t e n t e d) A(f f i n e)$ equivalent if
$G(x)=(B \circ F \circ A)(x)+C(x)$, where A, B, C are affine and A, B are permutations; so that

$$
\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}=\left[\begin{array}{cc}
A^{-1} & 0 \\
C A^{-1} & B
\end{array}\right]\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right) .
$$

Affine permutations with such linear part are EA-mappings; their transposes are TEA-mappings

Equivalence Relations that \approx Preserve DDT/LAT $(2 / 2)$

Definition (CCZ-Equivalence)

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are C (arlet)- C (harpin)-Z(inoviev) equivalent if

$$
\Gamma_{G}=\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}=L\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=L\left(\Gamma_{F}\right),
$$

where $L: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}^{n+m}$ is an affine permutation.

Equivalence Relations that \approx Preserve DDT/LAT $(2 / 2)$

Definition (CCZ-Equivalence)

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are $C($ arlet $)-C($ harpin)-Z(inoviev) equivalent if

$$
\Gamma_{G}=\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}=L\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=L\left(\Gamma_{F}\right),
$$

where $L: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}^{n+m}$ is an affine permutation.
CCZ-equivalence plays a crucial role in the investigation of the big APN problem.

Equivalence Relations that \approx Preserve DDT/LAT $(2 / 2)$

Definition (CCZ-Equivalence)

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are $C($ arlet)-C(harpin)-Z(inoviev) equivalent if

$$
\Gamma_{G}=\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}=L\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=L\left(\Gamma_{F}\right),
$$

where $L: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}^{n+m}$ is an affine permutation.
CCZ-equivalence plays a crucial role in the investigation of the big APN problem.

What is the relation between functions that are CCZ- but not EA-equivalent?

The Problem with CCZ-Equivalence

Admissible Mapping
For $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, the affine permutation L is admissible for \mathbb{F} if

$$
L\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}
$$

for a well defined function $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$.

The Problem with CCZ-Equivalence

Admissible Mapping
For $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, the affine permutation L is admissible for \mathbb{F} if

$$
L\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}
$$

for a well defined function $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$.

How can we list all admissible mappings for F?

Structure of this talk

1 CCZ-Equivalence and Vector Spaces of 0

2 Function Twisting
3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

4 Conclusion

Outline

1 CCZ-Equivalence and Vector Spaces of 0

2 Function Twisting

3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

4 Conclusion

Plan of this Section

1 CCZ-Equivalence and Vector Spaces of 0

- Vector Spaces of Zeroes
- Partitioning a CCZ-Class into EA-Classes

2 Function Twisting
3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

4 Conclusion

Walsh Zeroes

For all $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, we have

$$
\mathcal{W}_{F}(\alpha, 0)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{\alpha \cdot x+0 \cdot F(x)}=0
$$

Walsh Zeroes

For all $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, we have

$$
\mathcal{W}_{F}(\alpha, 0)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{\alpha \cdot x+0 \cdot F(x)}=0
$$

Definition (Walsh Zeroes)

The Walsh zeroes of $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ is the set

$$
\mathcal{Z}_{F}=\left\{u \in \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}, \mathcal{W}_{F}(u)=0\right\} \cup\{0\} .
$$

With $\mathcal{V}=\left\{(x, 0), \forall x \in \mathbb{F}_{2}^{n}\right\} \subset \mathbb{F}_{2}^{n+m}$, we have $\mathcal{V} \subset \mathcal{Z}_{F}$.

Walsh Zeroes

For all $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, we have

$$
\mathcal{W}_{F}(\alpha, 0)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{\alpha \cdot x+0 \cdot F(x)}=0
$$

Definition (Walsh Zeroes)

The Walsh zeroes of $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ is the set

$$
\mathcal{Z}_{F}=\left\{u \in \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}, \mathcal{W}_{F}(u)=0\right\} \cup\{0\} .
$$

With $\mathcal{V}=\left\{(x, 0), \forall x \in \mathbb{F}_{2}^{n}\right\} \subset \mathbb{F}_{2}^{n+m}$, we have $\mathcal{V} \subset \mathcal{Z}_{F}$.
Note that if $\Gamma_{G}=L\left(\Gamma_{F}\right)$, then $\mathcal{Z}_{G}=\left(L^{T}\right)^{-1}\left(\mathcal{Z}_{F}\right)$.

Admissibility for F

Lemma

Let $L: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}^{n+m}$ be a linear permutation. It is admissible for $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ if and only if

$$
L^{T}(\mathcal{V}) \subseteq \mathcal{Z}_{F}
$$

Admissibility of EA-mappings

EA-mappings are admissible for all $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$:

$$
\left[\begin{array}{ll}
A & 0 \\
C & B
\end{array}\right]^{T}(\mathcal{V})=\left[\begin{array}{cc}
A^{T} & C^{T} \\
0 & B^{T}
\end{array}\right]\left(\left\{\left[\begin{array}{l}
x \\
0
\end{array}\right], \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=\mathcal{V} .
$$

Permutations

We define

$$
\mathcal{V}^{\perp}=\left\{(0, y), \forall y \in \mathbb{F}_{2}^{m}\right\} \subset \mathbb{F}_{2}^{n+m} .
$$

Lemma

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ is a permutation if and only if

$$
\mathcal{V}^{\perp} \subset \mathcal{Z}_{F}
$$

EA-classes imply vector spaces

Lemma

let F, G and G^{\prime} be such that $\Gamma_{G}=L\left(\Gamma_{F}\right)$ and $\Gamma_{G^{\prime}}=L^{\prime}\left(\Gamma_{F}\right)$.
If $L^{T}(\mathcal{V})=L^{\prime T}(\mathcal{V})$, then G and G^{\prime} are EA-equivalent.

EA-classes imply vector spaces

Lemma

let F, G and G^{\prime} be such that $\Gamma_{G}=L\left(\Gamma_{F}\right)$ and $\Gamma_{G^{\prime}}=L^{\prime}\left(\Gamma_{F}\right)$. If $L^{T}(\mathcal{V})=L^{\prime T}(\mathcal{V})$, then G and G^{\prime} are EA-equivalent.

Can we use this knowledge to partition a CCZ-class into its EA-classes?

EA-classes imply vector spaces

Lemma

let F, G and G^{\prime} be such that $\Gamma_{G}=L\left(\Gamma_{F}\right)$ and $\Gamma_{G^{\prime}}=L^{\prime}\left(\Gamma_{F}\right)$.
If $L^{T}(\mathcal{V})=L^{\prime T}(\mathcal{V})$, then G and G^{\prime} are EA-equivalent.

Can we use this knowledge to partition a CCZ-class into its EA-classes?

The Lemma gives us hope!
1 EA-class $\Longrightarrow 1$ vector space of zeroes of dimension n in \mathcal{Z}_{n}

EA-classes imply vector spaces

Lemma

let F, G and G^{\prime} be such that $\Gamma_{G}=L\left(\Gamma_{F}\right)$ and $\Gamma_{G^{\prime}}=L^{\prime}\left(\Gamma_{F}\right)$.
If $L^{T}(\mathcal{V})=L^{\prime T}(\mathcal{V})$, then G and G^{\prime} are EA-equivalent.

Can we use this knowledge to partition a CCZ-class into its EA-classes?

The Lemma gives us hope!
1 EA-class $\Longrightarrow 1$ vector space of zeroes of dimension n in \mathcal{Z}_{n}

Reality takes it back...
The converse of the lemma is wrong.

Outline

1 CCZ-Equivalence and Vector Spaces of 0

2 Function Twisting
3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

4 Conclusion

Plan of this Section

1 CCZ-Equivalence and Vector Spaces of 0

2 Function Twisting

- The Twist
- CCZ = EA + Twist

3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

4 Conclusion

EA-equivalence is a simple sub-case of CCZ-Equivalence...

EA-equivalence is a simple sub-case of CCZ-Equivalence...

What must we add to EA-equivalence to fully describe CCZ-Equivalence?

Definition of the Twist

Any function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ can be projected on $\mathbb{F}_{2}^{t} \times \mathbb{F}_{2}^{m-t}$:
$F(x, y)=\left(T_{y}(x), U_{x}(y)\right)$

Definition of the Twist

Any function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ can be projected on $\mathbb{F}_{2}^{t} \times \mathbb{F}_{2}^{m-t}$:
$F(x, y)=\left(T_{y}(x), U_{x}(y)\right)$

F

G

If T_{y} is a permutation for all y, then we define the t-twist equivalent of F as G such that, for all $(x, y) \in \mathbb{F}_{2}^{t} \times \mathbb{F}_{2}^{n-t}$:

$$
G(x, y)=\left(T_{y}^{-1}(x), U_{T_{y}^{-1}(x)}(y)\right)
$$

Definition of the Twist

Any function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ can be projected on $\mathbb{F}_{2}^{t} \times \mathbb{F}_{2}^{m-t}$:
$F(x, y)=\left(T_{y}(x), U_{x}(y)\right)$

F

G

If T_{y} is a permutation for all y, then we define the t-twist equivalent of F as G such that, for all $(x, y) \in \mathbb{F}_{2}^{t} \times \mathbb{F}_{2}^{n-t}$:

$$
G(x, y)=\left(T_{y}^{-1}(x), U_{T_{y}^{-1}(x)}(y)\right)
$$

The identiy is a 0 -twist, functional inversion is an n-twist.

Swap Matrices

The swap matrix permuting \mathbb{F}_{2}^{n+m} is defined for $t \leq \min (n, m)$ as

$$
M_{t}=\left[\begin{array}{cccc}
0 & 0 & I_{t} & 0 \\
0 & I_{n-t} & 0 & 0 \\
I_{t} & 0 & 0 & 0 \\
0 & 0 & 0 & I_{m-t}
\end{array}\right] .
$$

Swap Matrices

The swap matrix permuting \mathbb{F}_{2}^{n+m} is defined for $t \leq \min (n, m)$ as

$$
M_{t}=\left[\begin{array}{cccc}
0 & 0 & I_{t} & 0 \\
0 & I_{n-t} & 0 & 0 \\
I_{t} & 0 & 0 & 0 \\
0 & 0 & 0 & I_{m-t}
\end{array}\right] .
$$

It has a simple interpretation:

Swap Matrices

The swap matrix permuting \mathbb{F}_{2}^{n+m} is defined for $t \leq \min (n, m)$ as

$$
M_{t}=\left[\begin{array}{cccc}
0 & 0 & I_{t} & 0 \\
0 & I_{n-t} & 0 & 0 \\
I_{t} & 0 & 0 & 0 \\
0 & 0 & 0 & I_{m-t}
\end{array}\right] .
$$

It has a simple interpretation:

For all $t \leq \min (n, m), M_{t}$ is an orthogonal and symmetric involution.

Swap Matrices and Twisting

Swap Matrices and Twisting

Swap Matrices and Twisting

$\mathrm{F}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$

$\Gamma_{F}=\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}$

$\Gamma_{G}=\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}$

$$
\mathcal{W}_{F}(u)=\mathcal{W}_{G}\left(M_{t}(u)\right)
$$

Twisting and CCZ-Class

Lemma

Twisting preserves the CCZ-equivalence class.

Main Result

Theorem

If $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are $C C Z$-equivalent, then

$$
\Gamma_{G}=\left(B \times M_{t} \times A\right)\left(\Gamma_{F}\right),
$$

where A and B are EA-mappings and where

$$
t=\operatorname{dim}\left(\operatorname{proj}_{\mathcal{V}}\left(\left(A^{T} \times M_{t} \times B^{T}\right)(\mathcal{V})\right)\right)
$$

In other words, EA-equivalence and twists are sufficient to fully describe CCZ-equivalence!

Main Result

Theorem

If $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are CCZ-equivalent, then

$$
\Gamma_{G}=\left(B \times M_{t} \times A\right)\left(\Gamma_{F}\right),
$$

where A and B are EA-mappings and where

$$
t=\operatorname{dim}\left(\operatorname{proj}_{\mathcal{V}^{\perp}}\left(\left(A^{T} \times M_{t} \times B^{T}\right)(\mathcal{V})\right)\right)
$$

In other words, EA-equivalence and twists are sufficient to fully describe CCZ-equivalence!

Corollary

If a function is CCZ-equivalent but not EA-equivalent to another function, then they have to be EA-equivalent to functions for which a t-twist is possible.

Outline

1 CCZ-Equivalence and Vector Spaces of 0

2 Function Twisting
3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

4 Conclusion

Plan of this Section

1 CCZ-Equivalence and Vector Spaces of 0

2 Function Twisting

3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

- Efficient Criterion
- Applications to APN Functions

4 Conclusion

Another Problem

How do we know if a function is CCZ-equivalent to a permutation?

Reminder

Recall that F is a permutation if and only if $\mathcal{V} \subset \mathcal{Z}_{F}$ and $\mathcal{V}^{\perp} \subset \mathcal{Z}_{F}$.

Reminder

Recall that F is a permutation if and only if $\mathcal{V} \subset \mathcal{Z}_{F}$ and $\mathcal{V}^{\perp} \subset \mathcal{Z}_{F}$.

Lemma

G is CCZ-equivalent to a permutation if and only if

$$
V=L(\mathcal{V}) \subset \mathcal{Z}_{G} \quad \text { and } \quad V^{\prime}=L\left(\mathcal{V}^{\perp}\right) \subset \mathcal{Z}_{G}
$$

for some linear permutation L. Note that

$$
\operatorname{span}\left(V \cup V^{\prime}\right)=\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}
$$

Projected Spaces Criterion

Key observation

The projections

$$
p:(x, y) \mapsto x \text { and } p^{\prime}:(x, y) \mapsto y
$$

mapping $\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}$ to \mathbb{F}_{2}^{n} and \mathbb{F}_{2}^{m} respectively are linear.

Projected Spaces Criterion

Key observation

The projections

$$
p:(x, y) \mapsto x \text { and } p^{\prime}:(x, y) \mapsto y
$$

mapping $\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}$ to \mathbb{F}_{2}^{n} and \mathbb{F}_{2}^{m} respectively are linear.

Thus, If G is CCZ-equivalent to a permutation then $p(V)$ and $p\left(V^{\prime}\right)$ are subspaces of \mathbb{F}_{2}^{n} whose span is \mathbb{F}_{2}^{n}.

Projected Spaces Criterion

Key observation

The projections

$$
p:(x, y) \mapsto x \text { and } p^{\prime}:(x, y) \mapsto y
$$

mapping $\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}$ to \mathbb{F}_{2}^{n} and \mathbb{F}_{2}^{m} respectively are linear.

Thus, If G is CCZ-equivalent to a permutation then $p(V)$ and $p\left(V^{\prime}\right)$ are subspaces of \mathbb{F}_{2}^{n} whose span is \mathbb{F}_{2}^{n}.

We deduce that $\operatorname{dim}(p(V))+\operatorname{dim}\left(p\left(V^{\prime}\right)\right) \geq n$

Projected Spaces Criterion

Key observation

The projections

$$
p:(x, y) \mapsto x \text { and } p^{\prime}:(x, y) \mapsto y
$$

mapping $\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}$ to \mathbb{F}_{2}^{n} and \mathbb{F}_{2}^{m} respectively are linear.

Thus, If G is CCZ-equivalent to a permutation then $p(V)$ and $p\left(V^{\prime}\right)$ are subspaces of \mathbb{F}_{2}^{n} whose span is \mathbb{F}_{2}^{n}.

We deduce that $\operatorname{dim}(p(V))+\operatorname{dim}\left(p\left(V^{\prime}\right)\right) \geq n$

Projected Spaces Criterion

If $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ is CCZ-equivalent to a permutation, then there are at least two subspaces of dimension $n / 2$ in $p\left(\mathcal{Z}_{F}\right)$ and in $p^{\prime}\left(\mathcal{Z}_{F}\right)$.

QAM

Yu et al. (DCC'14) generated 8180 8-APN quadratic functions from "QAM" (matrices).

QAM

Yu et al. (DCC'14) generated 8180 8-APN quadratic functions from "QAM" (matrices).

None of them are CCZ-equivalent to a permutation

Göloğlu's Candidates (1/2)

Göloğlu's introduced APN functions

$$
f_{k}: x \mapsto x^{2^{k}+1}+\left(x+x^{2^{n / 2}}\right)^{2^{k}+1}
$$

for $n=4 t$. They have the subspace property of the Kim mapping.

Göloğlu's Candidates (1/2)

Göloğlu's introduced APN functions

$$
f_{k}: x \mapsto x^{2^{k}+1}+\left(x+x^{2^{n / 2}}\right)^{2^{k}+1}
$$

for $n=4 t$. They have the subspace property of the Kim mapping.
Unfortunately, f_{k} are not equivalent to permutations on $n=4,8$ and does not seem to be equivalent to one on $n=12$ (we say "it does not seem to be equivalent to a permutation" since checking the existence of CCZ-equivalent permutations requires huge amount of computing and is infeasible on $n=12$; our program was still running at the time of writing).

Göloğlu's Candidates (2/2)

n	cardinal proj.	time proj. (s)	time BasesExtraction (s)
12	1365	0.066	0.0012
16	21845	16.79	0.084
20	349525	10096.00	37.48

Time needed to show that f_{k} is not CCZ-equivalent to a permutation.

Outline

1 CCZ-Equivalence and Vector Spaces of 0

2 Function Twisting

3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

4 Conclusion

Plan of this Section

1 CCZ-Equivalence and Vector Spaces of 0

2 Function Twisting

3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

4 Conclusion

- Summary
- Open Problems

Conclusion

- $C C Z=E A+$ Twist, both of which have a simple interpretation.

Conclusion

■ $C C Z=E A+$ Twist, both of which have a simple interpretation.

- Efficient criteria to know if a function is CCZ-equivalent to a permutation...
- ... implemented using a very efficient vector space extraction algorithm (not presented)

Conclusion

$■ C C Z=E A+$ Twist, both of which have a simple interpretation.

- Efficient criteria to know if a function is CCZ-equivalent to a permutation...

■ ... implemented using a very efficient vector space extraction algorithm (not presented)

■ It also explains why Dillon et al.'s technique for finding a 6-bit APN permutation yielded a butterfly!

Conclusion

$■ C C Z=E A+$ Twist, both of which have a simple interpretation.

- Efficient criteria to know if a function is CCZ-equivalent to a permutation...

■ ... implemented using a very efficient vector space extraction algorithm (not presented)

- It also explains why Dillon et al.'s technique for finding a 6-bit APN permutation yielded a butterfly!

The Fourier transform solves everything!

Open Problems

EA-equivalence

How can we efficiently check the EA-equivalence of two functions?

Open Problems

EA-equivalence

How can we efficiently check the EA-equivalence of two functions?

Conjecture

If the CCZ-class of a permutation P is not reduced to the EA-classes of P and P^{-1}, then P has the following decomposition

where both T and U are keyed permutations.

