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Setting up the background

Cryptographic properties — Equivalence classes — CCZ-equivalence



Cryptographic Properties

F :F3 —TF5 and G : F§ — FY' are functions (e.g. S-Boxes).

Definition (DDT/LAT)
The D(ifference) D(istribution) T(able) of F : F§ — F2 is
De(o, B) = #{x, F(x® o) ® F(x) = 5}

The L(inear) A(pproximation) T(able) of F : F§ — F7 is

WF((l,rj) = Z(—l)("x+‘j'F(X) .

x€Fy



Cryptographic Properties
F :F3 —TF5 and G : F§ — FY' are functions (e.g. S-Boxes).
Definition (DDT/LAT)
The D(ifference) D(istribution) T(able) of F : F§ — F2 is
De(o, B) = #{x,F(x® a)® F(x) = 5}
The L(inear) A(pproximation) T(able) of F : Fj — F7 is
Wela,0) = 3 (1))

x€Fy

Big APN Problem
Is there an APN permutation on 2t bits such that max(DDT) = 27?



Equivalence Relations that ~ Preserve DDT/LAT (1/2)

Definition (Affine-Equivalence)

F and G are affine equivalent if G(x) = (B o F o A)(x), where A, B are
affine permutations.
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Definition (Affine-Equivalence)

F and G are affine equivalent if G(x) = (B o F o A)(x), where A, B are
affine permutations.

Definition (EA-Equivalence; EA-mapping)

F and G are E(xtented) A(ffine) equivalent if
G(x) = (Bo FoA)(x)+ C(x), where A, B, C are affine and A, B are
permutations; so that

(oenwery = [ A5 B ] derenwersy) .

Affine permutations with such linear part are EA-mappings; their
transposes are TEA-mappings



Equivalence Relations that ~ Preserve DDT/LAT (2/2)

Definition (CCZ-Equivalence)

F:F5 —FY and G : F§ — F5 are C(arlet)-C(harpin)-Z(inoviev)
equivalent if

g = {(x, G(x)),Vx € IF"Q’} = ({(x7 F(x)),Vx € IF’Q’}) =L(TF),

where L : F5T™ — FS*™ is an affine permutation.
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Equivalence Relations that ~ Preserve DDT /LAT (2/2)

Definition (CCZ-Equivalence)

F:F5 —FY and G : F§ — F5 are C(arlet)-C(harpin)-Z(inoviev)
equivalent if

e = {(X, G(x)),Vx € Fg} =L ({(X7 F(x)),¥x € Fg}) =L(TF),
where L : F5T™ — F53"™ is an affine permutation.

CCZ-equivalence plays a crucial role in the investigation of the big APN
problem.

What is the relation between functions that are CCZ- but not
EA-equivalent?



The Problem with CCZ-Equivalence

Admissible Mapping

For F : F5 — F1, the affine permutation L is admissible for F if
L({(x, F(x)),Vx € F3}) = {(x, G(x)) ,Vx € F5}

for a well defined function G : F§ — F7J'.



The Problem with CCZ-Equivalence

Admissible Mapping

For F : F5 — 5, the affine permutation L is admissible for F if
L({(x, F(x)),Vx € F3}) = {(x, G(x)) ,Vx € F5}

for a well defined function G : F§ — F7J'.

How can we list all admissible mappings for F?



Structure of this talk

CCZ-Equivalence and Vector Spaces of 0

Function Twisting

Necessary and Efficient Conditions for CCZ-Equivalence to a
Permutation

A Conclusion
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Definition (Walsh Zeroes)

The Walsh zeroes of F : Fj — F7' is the set
Zr = {ueF] xF7, Wr(u) =0} U {0} .

With V = {(x,0),Vx € F§} C F3™", we have V C ZF.
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Walsh Zeroes

For all F:F; — %', we have

We(,0) = > (=1)**H0F0 = o,

x€Fj

Definition (Walsh Zeroes)

The Walsh zeroes of F : Fj — F7' is the set

Zr = {ueF] xF7, Wr(u) =0} U {0} .

With V = {(x,0),Vx € F§} C F3™", we have V C ZF.

Note that if ¢ = L([F), then Z¢ = (LT)71(ZF).



CCZ-Equivalence and Vector Spaces of 0
Function Twistin Vector Spaces of Zeroes

onditions for CCZ-Equivalence to a Permutation

Admissibility for F

Lemma

Let L : F5t™ — F5t™ be a linear permutation. It is admissible for
F :F3 — F3 if and only if

LT(V) C Z¢
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CCZ-Equivalence and Vector Spaces of 0
Vector Spaces of Zeroes
Partitioning a CCZ-Class into EA-Classes

Admissibility of EA-mappings

EA-mappings are admissible for all F : F§ — F7":

[? E}Tm: HT g;]({[g},vxewgp = V.



CCZ-Equivalence and Vector Spaces of 0
Function Twistin Vector Spaces of Zeroes

onditions for CCZ-Equivalence to a Permutation

Permutations

We define

Vvt = {(0,y),Yy €eFJ} C F3tm.

Lemma

F :F5 — FT is a permutation if and only if

VJ_CZF.
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CCZ-Equivalence and Vector Spaces of 0
Vector Spaces of Zeroes
Partitioning a CCZ-Class into EA-Classes

EA-classes imply vector spaces

Lemma
let F, G and G’ be such that T'¢ = L(['F) and T'¢: = L'(T'F).
IfLT(V) = L'T(V), then G and G’ are EA-equivalent.
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Partitioning a CCZ-Class into EA-Classes

EA-classes imply vector spaces

Lemma

let F, G and G’ be such that ¢ = L(T'r) and T¢: = L'(T'F).
IfLT(V) = L'T(V), then G and G’ are EA-equivalent.

Can we use this knowledge to partition a CCZ-class into its
EA-classes?

The Lemma gives us hope!

1 EA-class = 1 vector space of zeroes of dimension n in Z,

Reality takes it back...

The converse of the lemma is wrong.

11/25
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Equivalence and Vector Spaces of 0
Function Twisting The Twist

Necessary and Effic Col C CZ-Equivalence to a Permutation

EA-equivalence is a simple sub-case of CCZ-Equivalence...
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CCZ-Equivalence
Function Twisting The Twist

cient Conditions for CCZ-Equivalence to a Permutation

Conclusion

EA-equivalence is a simple sub-case of CCZ-Equivalence...

What must we add to EA-equivalence to fully describe
CCZ-Equivalence?

12/



The Twist

Definition of the Twist

Any function F : Fj — F4" can be projected on F5 x FJ'~":
F(Xv}/) = (Ty(X)v UX(Y))

t n—t

ol £
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Definition of the Twist

Any function F : Fj — F4" can be projected on F5 x FJ'~":
F(Xv}/) = (Ty(X)v UX(Y))

t n—t Jit +n—t

T—l
> U

it im—t F im—t
F G

If T, is a permutation for all y, then we define the t-twist equivalent
of F as G such that, for all (x,y) € F§ x F5~":

G(x,y) = (T;l(x)a UT;l(X)(}’))
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The Twist

Definition of the Twist

Any function F : Fj — F4" can be projected on F5 x FJ'~":
F(Xv}/) = (Ty(X)v UX(Y))

t n—t Jit +n—t

T—l
> U

it im—t F im—t
F G

If T, is a permutation for all y, then we define the t-twist equivalent
of F as G such that, for all (x,y) € F§ x F5~":

G(x,y) = (T;l(x)a UT;l(X)(}’))

The identiy is a 0-twist, functional inversion is an n-twist.

kY

13/25



Function Twisting The Twist
CCZ = EA + Twist

Swap Matrices

The swap matrix permuting F5™" is defined for t < min(n, m) as

10 5 0 0O
Mi=11 0 o o
0 0 0 In
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The Twist

Swap Matrices

The swap matrix permuting F5™" is defined for t < min(n, m) as

o o [ 0
0 lh—r 0 O
I, 0 0 0
0 0 0 [pn

M, =

It has a simple interpretation:
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The Twist

Swap Matrices

The swap matrix permuting F5™" is defined for t < min(n, m) as

0 0 L O

o . 0 o0

M=10 0 o o
0 0 0 In.

For all t < min(n, m), M; is an orthogonal and symmetric involution.

14 /25



The Twist

Swap Matrices and Twisting

F:TF5 — Fy G:Fj — Fg
t n—t J:t +n—+t
t-twist
T—l
T < > (J U

Fo S S
~
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The Twist

Swap Matrices and Twisting

F:F3 - FY G:Fj - Fy
t n—t J:t +n—+t
t-twist
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Swap Matrices and Twisting

F:F3 - FY G:Fj - Fy
t n—t J:t +n—+t
t-twist
T—l
T < > (J U
it im—t I ’I;m*t
M;

Me={(x,F(x),¥x €F5}  ——  T¢={(x,G(x)),VxeFs}

We(u) = We (Mi(v))
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Function Twisting The Twist
CCZ = EA + Twist

Twisting and CCZ-Class

Lemma

Twisting preserves the CCZ-equivalence class.

16 /25



CCZ = EA + Twist

Main Result

Theorem
If F:F3 —F5 and G : F§ — FZ' are CCZ-equivalent, then

FG = (B X Mt X A)(r/:) y
where A and B are EA-mappings and where
t = dim (proj,. (AT x M, x BT)(V))) .

In other words, EA-equivalence and twists are sufficient to fully
describe CCZ-equivalence!
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CCZ = EA + Twist

Main Result

Theorem
If F:F3 —F5 and G : F§ — FZ' are CCZ-equivalent, then

FG = (B X Mt X A)(r/:) y
where A and B are EA-mappings and where

t = dim (proj,. (AT x M, x BT)(V))) .

In other words, EA-equivalence and twists are sufficient to fully
describe CCZ-equivalence!

Corollary

If a function is CCZ-equivalent but not EA-equivalent to another
function, then they have to be EA-equivalent to functions for which a
t-twist is possible.

17/25



CCZ-Equivalence and Vector Spaces of 0
Function Twistin

Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

Outline

Necessary and Efficient Conditions for CCZ-Equivalence to a
Permutation
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Necessary and Efficient Conditions for CCZ-Equivalence to a
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Function Twistin Efficient Criterion

Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

Another Problem

How do we know if a function is CCZ-equivalent to a permutation?

18/
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Reminder

Recall that F is a permutation if and only if V C ZF and Vi c ze.
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Vector >f 0
Functi istin Efficient Criterion

Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

Conclusion

Reminder

Recall that F is a permutation if and only if V C ZF and Vi c ze.

Lemma

G is CCZ-equivalent to a permutation if and only if
V=LWV)CZc and V' =L(V)C Z¢
for some linear permutation L. Note that

span(V U V') =F5 x Fy' .

19/25
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Projected Spaces Criterion

Key observation

The projections

pi(xy) = x and p':(x.y) =y

mapping F5 x 5" to 5 and F7' respectively are linear.
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Fi in Efficient Criterion

u
Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

Projected Spaces Criterion

Key observation

The projections
p:(x,y)=x and p':(x,y) =y
mapping F5 x 5" to 5 and F7' respectively are linear.
Thus, If G is CCZ-equivalent to a permutation then p(V/) and p(V/') are
subspaces of Fj whose span is F5.

We deduce that dim (p(V)) + dim (p(V’)) > n

Projected Spaces Criterion

If F:F; — F5 is CCZ-equivalent to a permutation, then there are at
least two subspaces of dimension n/2 in p(Z¢) and in p'(ZF).

20/25



CZ-Equivalence and Ve
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Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation Applications to APN Functions

Conclusion

QAM

Yu et al. (DCC'14) generated 8180 8-APN quadratic functions
from “QAM” (matrices).
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Vector >f 0
Functi istin

Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation Applications to APN Functions

Conclusion

QAM

Yu et al. (DCC'14) generated 8180 8-APN quadratic functions
from “QAM” (matrices).

None of them are CCZ-equivalent to a permutation
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Equivalence and Vector Space:
Functior

>al »f 0
Twistin
Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation Applications to APN Functions

Gologlu's Candidates (1/2)

Gologlu's introduced APN functions

K n/2 Ak
fioixi= x2 T (x4 x277)2

for n = 4t. They have the subspace property of the Kim mapping.
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Function Twistin
Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation Applications to APN Functions

Conclusion

Gologlu's Candidates (1/2)

Gologlu's introduced APN functions
foox s x® Ty (x+ X2n/2)2k+1
for n = 4t. They have the subspace property of the Kim mapping.

Unfortunately, f, are not equivalent to permutations on n = 4,8
and does not seem to be equivalent to one on n = 12 (we
say ‘it does not seem to be equivalent to a permutation” since
checking the existence of CCZ-equivalent permutations requires
huge amount of computing and is infeasible on n = 12; our
program was still running at the time of writing).

22/25



CCZ-Equivalence v 5 of 0
F Twistin
Applications to APN Functions

|
Necessary and Efficient Conditions for CCZ-Equivalence to a Perm

Gologlu's Candidates (2/2)

n  cardinal proj. time proj. (s) time BasesExtraction (s)

12 1365 0.066 0.0012
16 21845 16.79 0.084
20 349525 10096.00 37.48

Time needed to show that f, is not CCZ-equivalent to a permutation.
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Summary

and Efficient Conditions for CCZ-Equivalence to a Perm ion
Conclusion

Conclusion

m CCZ = EA + Twist, both of which have a simple interpretation.

Efficient criteria to know if a function is CCZ-equivalent to a
permutation...

m ... implemented using a very efficient vector space extraction
algorithm (not presented)

It also explains why Dillon et al.’s technique for finding a 6-bit APN
permutation yielded a butterfly!

The Fourier transform solves everything!

24 /25
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Open Problems

EA-equivalence

How can we efficiently check the EA-equivalence of two functions?
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quivalel

and Efficient Conditions for CCZ-Equivalence to a Perm tion Open Problems
Conclusion

Open Problems

EA-equivalence

How can we efficiently check the EA-equivalence of two functions?

Conjecture

If the CCZ-class of a permutation P is not reduced to the EA-classes of
P and P71, then P has the following decomposition

J:t T+ n—t

T

U
Tt in—t
v

where both T and U are keyed permutations.

25/25
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