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Setting up the background

Cryptographic properties → Equivalence classes → CCZ-equivalence



Cryptographic Properties

F : Fn
2 → Fm

2 and G : Fn
2 → Fm

2 are functions (e.g. S-Boxes).

Definition (DDT/LAT)

The D(ifference) D(istribution) T(able) of F : Fn
2 → Fm

2 is

𝒟F (𝛼, 𝛽) = # {x ,F (x ⊕ 𝛼) ⊕ F (x) = 𝛽}

The L(inear) A(pproximation) T(able) of F : Fn
2 → Fm

2 is

𝒲F (𝛼, 𝛽) =
∑︁
x∈Fn

2

(−1)𝛼·x+𝛽·F (x) .

Big APN Problem

Is there an APN permutation on 2t bits such that max(DDT) = 2?
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Equivalence Relations that ≈ Preserve DDT/LAT (1/2)

Definition (Affine-Equivalence)

F and G are affine equivalent if G (x) = (B ∘ F ∘ A)(x), where A,B are
affine permutations.

Definition (EA-Equivalence; EA-mapping)

F and G are E(xtented) A(ffine) equivalent if
G (x) = (B ∘ F ∘ A)(x) + C (x), where A,B,C are affine and A,B are
permutations; so that

{︀
(x ,G (x)),∀x ∈ Fn

2

}︀
=

[︂
A−1 0
CA−1 B

]︂ (︀{︀
(x ,F (x)),∀x ∈ Fn

2

}︀)︀
.

Affine permutations with such linear part are EA-mappings; their
transposes are TEA-mappings
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Equivalence Relations that ≈ Preserve DDT/LAT (2/2)

Definition (CCZ-Equivalence)

F : Fn
2 → Fm

2 and G : Fn
2 → Fm

2 are C(arlet)-C(harpin)-Z(inoviev)
equivalent if

ΓG =
{︀

(x ,G (x)),∀x ∈ Fn
2

}︀
= L

(︀{︀
(x ,F (x)),∀x ∈ Fn

2

}︀)︀
= L(ΓF ) ,

where L : Fn+m
2 → Fn+m

2 is an affine permutation.

CCZ-equivalence plays a crucial role in the investigation of the big APN
problem.

What is the relation between functions that are CCZ- but not
EA-equivalent?
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The Problem with CCZ-Equivalence

Admissible Mapping

For F : Fn
2 → Fm

2 , the affine permutation L is admissible for F if

L
(︀
{(x ,F (x)) ,∀x ∈ Fn

2}
)︀

= {(x ,G (x)) ,∀x ∈ Fn
2}

for a well defined function G : Fn
2 → Fm

2 .

How can we list all admissible mappings for F?
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Structure of this talk

1 CCZ-Equivalence and Vector Spaces of 0

2 Function Twisting

3 Necessary and Efficient Conditions for CCZ-Equivalence to a
Permutation

4 Conclusion
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CCZ-Equivalence and Vector Spaces of 0
Function Twisting

Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

Vector Spaces of Zeroes
Partitioning a CCZ-Class into EA-Classes

Walsh Zeroes

For all F : Fn
2 → Fm

2 , we have

𝒲F (𝛼, 0) =
∑︁
x∈Fn

2

(−1)𝛼·x+0·F (x) = 0.

Definition (Walsh Zeroes)

The Walsh zeroes of F : Fn
2 → Fm

2 is the set

𝒵F = {u ∈ Fn
2 × Fm

2 ,𝒲F (u) = 0} ∪ {0} .

With 𝒱 = {(x , 0),∀x ∈ Fn
2} ⊂ Fn+m

2 , we have 𝒱 ⊂ 𝒵F .

Note that if ΓG = L(ΓF ), then 𝒵G = (LT )−1(𝒵F ).
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CCZ-Equivalence and Vector Spaces of 0
Function Twisting

Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

Vector Spaces of Zeroes
Partitioning a CCZ-Class into EA-Classes

Admissibility for F

Lemma

Let L : Fn+m
2 → Fn+m

2 be a linear permutation. It is admissible for
F : Fn

2 → Fm
2 if and only if

LT (𝒱) ⊆ 𝒵F
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CCZ-Equivalence and Vector Spaces of 0
Function Twisting

Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

Vector Spaces of Zeroes
Partitioning a CCZ-Class into EA-Classes

Admissibility of EA-mappings

EA-mappings are admissible for all F : Fn
2 → Fm

2 :[︂
A 0
C B

]︂T
(𝒱) =

[︂
AT CT

0 BT

]︂(︂{︂[︂
x
0

]︂
,∀x ∈ Fn

2

}︂)︂
= 𝒱 .
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CCZ-Equivalence and Vector Spaces of 0
Function Twisting

Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

Vector Spaces of Zeroes
Partitioning a CCZ-Class into EA-Classes

Permutations

We define
𝒱⊥ = {(0, y),∀y ∈ Fm

2 } ⊂ Fn+m
2 .

Lemma

F : Fn
2 → Fm

2 is a permutation if and only if

𝒱⊥ ⊂ 𝒵F .
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CCZ-Equivalence and Vector Spaces of 0
Function Twisting

Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

Vector Spaces of Zeroes
Partitioning a CCZ-Class into EA-Classes

EA-classes imply vector spaces

Lemma

let F , G and G ′ be such that ΓG = L(ΓF ) and ΓG ′ = L′(ΓF ).
If LT (𝒱) = L′T (𝒱), then G and G ′ are EA-equivalent.

Can we use this knowledge to partition a CCZ-class into its
EA-classes?

The Lemma gives us hope!

1 EA-class =⇒ 1 vector space of zeroes of dimension n in 𝒵n

Reality takes it back...

The converse of the lemma is wrong.

11 / 25
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EA-equivalence is a simple sub-case of CCZ-Equivalence...

What must we add to EA-equivalence to fully describe
CCZ-Equivalence?
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CCZ-Equivalence and Vector Spaces of 0
Function Twisting

Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

The Twist
CCZ = EA + Twist

Definition of the Twist

Any function F : Fn
2 → Fm

2 can be projected on Ft
2 × Fm−t

2 :
F (x , y) =

(︀
T y (x),Ux(y)

)︀

T U

t n − t

t m − t

F

T−1

U

t n − t

t m − t

G

If T y is a permutation for all y , then we define the t-twist equivalent
of F as G such that, for all (x , y) ∈ Ft

2 × Fn−t
2 :

G (x , y) =
(︀
T−1

y (x),UT−1
y (x)(y)

)︀
The identiy is a 0-twist, functional inversion is an n-twist.
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CCZ-Equivalence and Vector Spaces of 0
Function Twisting

Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

The Twist
CCZ = EA + Twist

Swap Matrices

The swap matrix permuting Fn+m
2 is defined for t ≤ min(n,m) as

Mt =

⎡⎢⎢⎣
0 0 It 0
0 In−t 0 0
It 0 0 0
0 0 0 Im−t

⎤⎥⎥⎦ .

It has a simple interpretation:

t n − t t m − t

For all t ≤ min(n,m), Mt is an orthogonal and symmetric involution.
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Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
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The Twist
CCZ = EA + Twist

Swap Matrices and Twisting

F : Fn
2 → Fm

2

T U

t n − t

t m − t

t-twist

G : Fn
2 → Fm

2

T−1

U

t n − t

t m − t

ΓF =
{︀

(x ,F (x)) ,∀x ∈ Fn
2

}︀ Mt
ΓG =

{︀
(x ,G (x)) ,∀x ∈ Fn

2

}︀
𝒲F (u) = 𝒲G (Mt(u))
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CCZ-Equivalence and Vector Spaces of 0
Function Twisting

Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

The Twist
CCZ = EA + Twist

Twisting and CCZ-Class

Lemma

Twisting preserves the CCZ-equivalence class.
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CCZ-Equivalence and Vector Spaces of 0
Function Twisting

Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

The Twist
CCZ = EA + Twist

Main Result

Theorem

If F : Fn
2 → Fm

2 and G : Fn
2 → Fm

2 are CCZ-equivalent, then

ΓG = (B ×Mt × A)(ΓF ) ,

where A and B are EA-mappings and where

t = dim
(︀
proj𝒱⊥

(︀
(AT ×Mt × BT )(𝒱)

)︀)︀
.

In other words, EA-equivalence and twists are sufficient to fully
describe CCZ-equivalence!

Corollary

If a function is CCZ-equivalent but not EA-equivalent to another
function, then they have to be EA-equivalent to functions for which a
t-twist is possible.
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Another Problem

How do we know if a function is CCZ-equivalent to a permutation?
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Reminder

Recall that F is a permutation if and only if 𝒱 ⊂ 𝒵F and 𝒱⊥ ⊂ 𝒵F .

Lemma

G is CCZ-equivalent to a permutation if and only if

V = L(𝒱) ⊂ 𝒵G and V ′ = L(𝒱⊥) ⊂ 𝒵G

for some linear permutation L. Note that

span
(︀
V ∪ V ′)︀ = Fn

2 × Fm
2 .
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Projected Spaces Criterion

Key observation

The projections

p : (x , y) ↦→ x and p′ : (x , y) ↦→ y

mapping Fn
2 × Fm

2 to Fn
2 and Fm

2 respectively are linear.

Thus, If G is CCZ-equivalent to a permutation then p(V ) and p(V ′) are
subspaces of Fn

2 whose span is Fn
2.

We deduce that dim (p(V )) + dim (p(V ′)) ≥ n

Projected Spaces Criterion

If F : Fn
2 → Fm

2 is CCZ-equivalent to a permutation, then there are at
least two subspaces of dimension n/2 in p(𝒵F ) and in p′(𝒵F ).
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QAM

Yu et al. (DCC’14) generated 8180 8-APN quadratic functions
from “QAM” (matrices).

None of them are CCZ-equivalent to a permutation
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Göloğlu’s Candidates (1/2)

Göloğlu’s introduced APN functions

fk : x ↦→ x2
k+1 + (x + x2

n/2

)2
k+1

for n = 4t. They have the subspace property of the Kim mapping.

Unfortunately, fk are not equivalent to permutations on n = 4, 8
and does not seem to be equivalent to one on n = 12 (we
say “it does not seem to be equivalent to a permutation” since
checking the existence of CCZ-equivalent permutations requires
huge amount of computing and is infeasible on n = 12; our
program was still running at the time of writing).
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Göloğlu’s Candidates (2/2)

n cardinal proj. time proj. (s) time BasesExtraction (s)

12 1365 0.066 0.0012

16 21845 16.79 0.084

20 349525 10096.00 37.48

Time needed to show that fk is not CCZ-equivalent to a permutation.
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Conclusion

CCZ = EA + Twist, both of which have a simple interpretation.

Efficient criteria to know if a function is CCZ-equivalent to a
permutation...

... implemented using a very efficient vector space extraction
algorithm (not presented)

It also explains why Dillon et al.’s technique for finding a 6-bit APN
permutation yielded a butterfly!

The Fourier transform solves everything!
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Open Problems

EA-equivalence

How can we efficiently check the EA-equivalence of two functions?

Conjecture

If the CCZ-class of a permutation P is not reduced to the EA-classes of
P and P−1, then P has the following decomposition

T

U

t n − t

t n − t

where both T and U are keyed permutations.
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