Streebog and Kuznyechik

Inconsistencies in the Claims of their Designers

Léo Perrin

IETF Workshop, Montréal

Partitions in the S-Box of Streebog and Kuznyechik

Léo Perrin

Abstract. Streebog and Kuznyechik are the latest symmetric cryptographic primiti standardized by the Russian GOST. They share the same S-Box, π , whose design process was not described by its anthors. In previous works, Birvukov, Perrin and Udovenko recovered two completely different decompositions of this S-Box. We revisit their results and identify a third decomposition of π . It is an instance of a

fairly small family of permutations operating on 2m bits which we call TKlog and which is closely related to finite field logarithms. Its simplicity and the small number of components it uses lead us to claim that it has to be the structure intentionally used by the designers of Streebog and Kumyechik.

The 2m-bit permutations of this type have a very strong algebraic structure: they map multiplicative cosets of the subfield $GF(2^m)^*$ to additive cosets of $GF(2^m)^*$ Furthermore, the function relating each multiplicative coset to the corresponding additive coset is always essentially the same. To the best of our knowledge, we are

We also investigate other properties of the TKlog and show in particular that it can always he decomposed in a fashion similar to the first decomposition of Birvukov et al., thus explaining the relation between the two previous decompositions. It also means that it is always possible to implement a TKlog efficiently in hardware and that it always exhibits a visual pattern in its LAT similar to the one present in π . While we could not find attacks based on these new results, we discuss the inmact of our work on the security of Streebog and Kurnyechik. To this end, we provide a new simpler representation of the linear layer of Streebog as a matrix multiplication in the exact same field as the one used to define π . We deduce that this matrix interacts in a non-trivial way with the partitions preserved by π .

Keywords: Boolean functions · Kuznyechik · Streebog · Reverse-Engineering · Partitions - Cosets - TKlor

1 Introduction

Many symmetric primitives rely on S-Boxes as their unique source of non-linearity, including the AES [AES01]. Such objects are small functions manning F^{as} to F^a which are often specified via their look-up tables.

Their choice is crucial as both the security and the efficiency of the primitive depends heavily on their properties. For example, a low differential uniformity [Nyb94] implies a higher resilience against differential attacks [BS91a, BS91b]. On the other hand, the existence of a simple decomposition greatly helps with an efficient bitsliced or hardware implementation [LW14, CDL16]. Thus, algorithm designers are expected to provide detailed explanation about their choice of S-Box. Each cipher that was published at a cryptography or security conference has provided such explanations

There are two prominent S-Boxes for which this information has not been provided. The first is the so-called "F-table" of Skipjack [U.S98], a lightweight block cipher designed

Licensed under Creative Commons License CC-BY 4.0.

Transactions in Symmetric Cryptology, Volume 2019, No. 1, pp. 302-329. Best paper award!

What is this result?

Why is it inconsistent with the claims of the designers of these algorithms?

Outline

1 Standards and S-boxes

- 2 On the S-box of RFC 6986 and 7801
- 3 The Core Issue: the S-Box Generation Process

4 Conclusion

Outline

1 Standards and S-boxes

- 2 On the S-box of RFC 6986 and 7801
- 3 The Core Issue: the S-Box Generation Process

4 Conclusion

Conclusion O

Design	Public Analy	sis _: D	eployment
Small teams	Academic comm	unity	Industry
 Scope statement Algorithm specification Design choices justifications Security analysis 	Try and break published algorithms		Ň
Public	cation	Standardization	time
Conf., con	npetition	NIST, ISO, IETF	

Design	Public Analysis	Deployment
Small teams	Academic community	Industry
 Scope statement Algorithm specification 	Try and break published algorithms	
 Design choices justifications 	Well-studied algorithms are	
 Security analysis 	eventually <mark>trusted</mark>	,
Public Conf., con	cation Standard	lization), IETF

Conclusion O

Design	Public Analysis	Deployment		
 Small teams Scope statement Algorithm specification Design choices justifications Security analysis 	Try and break published algorithms Well-studied algorithms are eventually trusted	Implements algorithms in actual products unless a new attack is found		
Publication Standardization time				

Breaking the Pipeline

Design	Public Analysis	Deployment	
Small teams	Academic community	Industry	
Scope	Try and break		
statement	published	Implements	
 Algorithm 	algorithms	algorithms in	
specification		actual products	
Design choices instifications	Well-studied	unless a new	
	algorithms are	attack is found	
analysis	eventually trusted		
	••••		
Public	ation 📩 Standar	dization	
Conf., con	Conf., competition NIST, ISO, IETF		

On the S-box of RFC 6986 and 7801

The Core Issue: the S-Box Generation Proces

Breaking the Pipeline

Breaking the Pipeline

S-Boxes

Definition (S(ubstitution)-box)

An S-box S : $\mathbb{F}_2^n \to \mathbb{F}_2^n$ is a small non-linear function operating on a small block size (typically $n \in \{4, 8\}$) which can be specified via its lookup table.

Specifying the AES S-box

Authors: The Rjndael Block Cipher AES Proposal Joan Daemen Vincent Bimer 7.2 The ByteSub S-box The design criteria for the S-box are inspired by differential and linear cryptanalysis on the one hand and attacks using algebraic manipulations, such as interpolation attacks, on the other: 2. Minimisation of the largest non-trivial correlation between linear combinations of input bits and linear combination of output bits. 3. Minimisation of the largest non-trivial value in the EXOR table; 4. Complexity of its algebraic expression in GF(2⁸); 5. Simplicity of description In [Ny94] several methods are given to construct S-boxes that satisfy the first three criteria. For invertible S-boxes operating on bytes, the maximum input/output correlation can be made as low as 2-3 and the maximum value in the EXOR table can be as low as 4 (corresponding to a difference propagation probability of 2"). We have decided to take from the candidate constructions in [Ny94] the S-box defined by the mapping $x \Rightarrow x^{-1}$ in GF(2⁸) By definition, the selected mapping has a very simple algebraic expression. This enables algebraic manipulations that can be used to mount attacks such as intercolation attacks [JaKn97]. Therefore, the mapping is modified by composing it with an additional invertible affine transformation. This affine transformation does not affect the properties with respect tot the first three criteria, but if properly chosen, allows the S-box to satisfy the fourth criterion. We have chosen an affine mapping that has a very simple description per se, but a complicated algebraic expression if combined with the 'inverse' mapping. It can be seen as modular polynomial multiplication followed by an addition: $b(x) = (x^{2} + x^{4} + x^{2} + x) + a(x)(x^{2} + x^{4} + x^{3} + x^{4} + 1) \mod x^{3} + 1$ The modulus has been chosen as the simplest modulus possible. The multiplication polynomial has been chosen from the set of polynomials coprime to the modulus as the one with the simplest description. The constant has been chosen in such a way that that the S-box has no fixed points (S-box(a) = a) and no 'opposite fixed points' (S-box(a) = \overline{a}). Note: other S-boxes can be found that satisfy the criteria above. In the case of suspicion of a trapdoor being built into the cloher, the current S-box might be replaced by another one. The cloher structure and number of rounds as defined even allow the use of an S-box that does not optimise the differential and linear cryptanalysis properties (criteria 2 and 3). Even an Sbox that is "average" in this respect is likely to provide enough resistance against differential and linear cryptanalysis.

https://csrc.nist.gov/csrc/media/projects/ cryptographic-standards-and-guidelines/documents/ aes-development/rijndael-ammended.pdf

Specifying the AES S-box

https://csrc.nist.gov/csrc/media/projects/ cryptographic-standards-and-guidelines/documents/ aes-development/rijndael-ammended.pdf

Clear design goals

Specifying the AES S-box

Authors: Joan Daemen Vincent Rijmen	The Rjndael Block Cipher	AES Proposal
7.2 The ByteSub	3-box	
The design criteria for th hand and attacks using	e S-box are inspired by differential and linear algebraic manipulations, such as interpolation	cryptanalysis on the one attacks, on the other:
1. Invertibility;		
Minimisation input bits and	of the largest non-trivial correlation between linear combination of output bits;	Inear combinations of
3. Minimisation	of the largest non-trivial value in the EXOR tabl	le;
4. Complexity of	its algebraic expression in GF(2 ⁸);	
In [Ny94] several metho invertible S-boxes open low as 2 ⁻³ and the maxi difference propagation (ds are given to construct S-boxes that satisfy t ting on bytes, the maximum input/output con mum value in the EXOR table can be as low robability of 2 ⁻⁶).	he first three criteria. For relation can be made as as 4 (corresponding to a
We have decided to tak mapping $x \Rightarrow x^{-1}$ in GF(e from the candidate constructions in [Ny94] ! ?).	the S-box defined by the
By definition, the select algebraic manipulations [JaKn97]. Therefore, the affine transformation. The the first three criteria, but	ted mapping has a very simple algebraic e i that can be used to mount attacks such e mapping is modified by composing it with its affine transformation does not affect the p it if properly chosen, allows the S-box to satisf	expression. This enables as interpolation attacks in an additional invertible roperties with respect to y the fourth criterion.
We have chosen an complicated algebraic e modular polynomial mul	affine mapping that has a very simple de expression if combined with the 'inverse' map tiplication followed by an addition:	scription per se, but a sping. It can be seen as
b(x) =	$x^{2} + x^{8} + x^{2} + x) + a(x)(x^{2} + x^{8} + x^{3} + x^{4} + 1)$ m	od x ^x + 1
The modulus has been has been chosen from simplest description. Th fixed points (S-box(a) =	chosen as the simplest modulus possible. The the set of polynomials coprime to the modulus e constant has been chosen in such a way the a) and no 'opposite fixed points' (S-box(a) = \overline{a}	multiplication polynomial dus as the one with the lat that the S-box has no
Note: other S-boxes ca trapdoor being built into opher structure and nu not optimise the differe box that is "average" in and linear cryptanalysis	n be found that satisfy the criteria above. In the the cipher, the current S-box might be replaa- theer of rounds as defined even allow the us tital and linear cryptanalysis properties (criter this respect is likely to provide enough resis).	te case of suspicion of a ced by another one. The se of an S-box that does ria 2 and 3). Even an S- tance against differential
roman Loan Ing 7, 11 day 11	as 55	No. 6, 21/91

https://csrc.nist.gov/csrc/media/projects/ cryptographic-standards-and-guidelines/documents/ aes-development/rijndael-ammended.pdf

Clear design goals

2 Motivation for the specific solution chosen

Specifying the AES S-box

https://csrc.nist.gov/csrc/media/projects/ cryptographic-standards-and-guidelines/documents/ aes-development/rijndael-ammended.pdf

Clear design goals

Motivation for the specific solution 2 chosen

A possible pitfall and how it is avoided

Specifying the AES S-box

https://csrc.nist.gov/csrc/media/projects/ cryptographic-standards-and-guidelines/documents/ aes-development/rijndael-ammended.pdf

Clear design goals

- 2 Motivation for the specific solution chosen
- A possible pitfall and how it is avoided
- 4 Description of the process for choosing the actual instance

Outline

2 On the S-box of RFC 6986 and 7801

3 The Core Issue: the S-Box Generation Process

4 Conclusion

Kuznyechik/Streebog

Streebog (RFC 6986)

Type Hash function

Publication 2012

(RFC in Aug. 2013)

Kuznyechik (RFC 7801)

Type Block cipher Publication 2015

(RFC in Mar. 2016)

Common ground

- Both are standards in Russia.
- They were designed by the TC26 (supervised by the FSB).
- Final term Their RFCs come from the independent stream (\neq CFRG)
- Both use the same 8-bit S-Box, π.

Standards and S-boxes 0000	On the S-box of RFC 6986 and 7801 ○●	The Core Issue: the S-Box Generation Process	Conclusion O
Timeline			
July 2012	GOST standardization of S	treehog	GOST
Aug. 2013	RFC for Streebog (RFC 698	i6)	IETF
June 2015	GOST standardization of K	uznyechik	GOST

Mar. 2016 RFC for Kuznyechik (RFC 7801) IETF

Standards and S-boxes	On the S-box of RFC 6986 and 7801 ○●	The Core Issue: the S-Box Generation Process	Conclusior O
Timeline			
July 2012	GOST standardization of S	treebog	GOST
Aug. 2013	RFC for Streebog (RFC 698	6)	IETF
June 2015	GOST standardization of K	uznyechik	GOST
Mar. 2016	RFC for Kuznyechik (RFC 7	801)	IETF
May 2016	Publication of the first dec	composition	IACR
Biryukov, P	Perrin, Udovenko. Reverse-engineering the S-box	of Streebog, Kuznyechik and STRIBOBr1. EUROCRY	PT'16
Mar. 2017	Publication of the second	decomposition	IACR

Perrin, Udovenko. Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog. IACR ToSC 2016

Standards and S-boxes 0000	On the S-box of RFC 6986 and 7801 ○●	The Core Issue: the S-Box Generation Process	Conclusion O
Timeline			
July 2012	GOST standardization of S	treebog	GOST
Aug. 2013	RFC for Streebog (RFC 698	36)	IETF
June 2015	GOST standardization of K	luznyechik	GOST
Mar. 2016	RFC for Kuznyechik (RFC 7	801)	IETF
May 2016	Publication of the first de	composition	IACR
Biryukov, I	Perrin, Udovenko. Reverse-engineering the S-box	of Streebog, Kuznyechik and STRIBOBr1. EUROCRY	PT'16
Mar. 2017	Publication of the second	decomposition	IACR
Perrin, Ud	ovenko. Exponential S-Boxes: a Link Between the	S-Boxes of BelT and Kuznyechik/Streebog. IACR To	oSC 2016

Oct. 2018 ISO standardization of Streebog (ISO 10118-3) ISO

Standards and S-boxes 0000	On the S-box of RFC 6986 and 7801 ○●	The Core Issue: the S-Box Generation Process	Conclusior O
Timeline			
July 2012	GOST standardization of S	treebog	GOST
Aug. 2013	RFC for Streebog (RFC 698	6)	IETF
June 2015	GOST standardization of K	uznyechik	GOST
Mar. 2016	RFC for Kuznyechik (RFC 7	801)	IETF
May 2016	Publication of the first dee	composition	IACR
Biryukov, F	Perrin, Udovenko. Reverse-engineering the S-box	of Streebog, Kuznyechik and STRIBOBr1. EUROCRY	'PT'16
Mar. 2017	Publication of the second	decomposition	IACR
Perrin, Ud	ovenko. Exponential S-Boxes: a Link Between the	S-Boxes of BelT and Kuznyechik/Streebog. IACR To	oSC 2016
Oct. 2018	ISO standardization of Str	eebog (ISO 10118-3)	ISO
Jan. 2019	Publication of the final de	composition	IACR
Perrin. Pa	rtitions in the S-box of Streebog and Kuznyechik.	IACR ToSC 2019.	

Standards and S-boxes	On the S-box of RFC 6986 and 7801 O●	The Core Issue: the S-Box Generation Process	Conclusior O
Timeline			
July 2012	GOST standardization of S	treebog	GOST
Aug. 2013	RFC for Streebog (RFC 698	6)	IETF
June 2015	GOST standardization of K	uznyechik	GOST
Mar. 2016	RFC for Kuznyechik (RFC 7	801)	IETF
May 2016	Publication of the first dec	composition	IACR
Biryukov, F	Perrin, Udovenko. Reverse-engineering the S-box	of Streebog, Kuznyechik and STRIBOBr1. EUROCRY	PT'16
Mar. 2017	Publication of the second	decomposition	IACR
Perrin, Udo	ovenko. Exponential S-Boxes: a Link Between the	S-Boxes of BelT and Kuznyechik/Streebog. IACR To	SC 2016
Oct. 2018	ISO standardization of Str	eebog (ISO 10118-3)	ISO
Jan. 2019	Publication of the final de	composition	IACR
Perrin. Par	rtitions in the S-box of Streebog and Kuznyechik.	IACR ToSC 2019.	
Feb. 2019	Kuznyechik at ISO: <mark>decisio</mark>	n post-poned	ISO

Standards and S-boxes	On the S-box of RFC 6986 and 7801 O●	The Core Issue: the S-Box Generation Process	Conclusior O
Timeline			
July 2012	GOST standardization of S	treebog	GOST
Aug. 2013	RFC for Streebog (RFC 698	6)	IETF
June 2015	GOST standardization of K	uznyechik	GOST
Mar. 2016	RFC for Kuznyechik (RFC 7	801)	IETF
May 2016	Publication of the first de	composition	IACR
Biryukov, F	Perrin, Udovenko. Reverse-engineering the S-box	of Streebog, Kuznyechik and STRIBOBr1. EUROCRY	'PT'16
Mar. 2017	Publication of the second	decomposition	IACR
Perrin, Ud	ovenko. Exponential S-Boxes: a Link Between the	S-Boxes of BelT and Kuznyechik/Streebog. IACR To	oSC 2016
Oct. 2018	ISO standardization of Str	eebog (ISO 10118-3)	ISO
Jan. 2019	Publication of the final de	composition	IACR
Perrin. Pa	rtitions in the S-box of Streebog and Kuznyechik.	IACR ToSC 2019.	
Feb. 2019	Kuznyechik at ISO: <mark>decisio</mark>	n post-poned	ISO
Sep. 2019	Kuznyechik at ISO: <mark>decisio</mark>	n must be taken!	ISO

Outline

1 Standards and S-boxes

2 On the S-box of RFC 6986 and 7801

3 The Core Issue: the S-Box Generation Process

4 Conclusion

Standards and S-boxes

The Core Issue: the S-Box Generation Process

The Russian S-box

 π' = (252, 238, 221, 17, 207, 110, 49, 22, 251, 196, 250, 218, 35, 197, 4, 77, 233, 119, 240, 219, 147, 46, 153, 186, 23, 54, 241, 187, 20, 205, 95, 193, 249, 24, 101, 90, 226, 92, 239, 33, 129, 28, 60, 66, 139, 1, 142, 79, 5, 132, 2, 174, 227, 106, 143, 160, 6, 11, 237, 152, 127, 212, 211, 31, 235, 52, 44, 81, 234, 200, 72, 171, 242, 42, 104, 162, 253, 58, 206, 204, 181, 112, 14, 86, 8, 12, 118, 18, 191, 114, 19, 71, 156, 183, 93, 135, 21, 161, 150, 41, 16, 123, 154, 199, 243, 145, 120, 111, 157, 158, 178, 177, 50, 117, 25, 61, 255, 53, 138, 126, 109, 84, 198, 128, 195, 189, 13, 87, 223, 245, 36, 169, 62, 168, 67, 201, 215, 121, 214, 246, 124, 34, 185, 3, 224, 15, 236, 222, 122, 148, 176, 188, 220, 232, 40, 80, 78, 51, 10, 74, 167, 151, 96, 115, 30, 0, 98, 68, 26, 184, 56, 130, 100, 159, 38, 65, 173, 69, 70, 146, 39, 94, 85, 47, 140, 163, 165, 125, 105, 213, 149, 59, 7, 88, 179, 64, 134, 172, 29, 247, 48, 55, 107, 228, 136, 217, 231, 137, 225, 27, 131, 73, 76, 63, 248, 254, 141, 83, 170, 144, 202, 216, 133, 97, 32, 113, 103, 164, 45, 43, 9, 91, 203, 155, 37, 208, 100, 229, 108, 82, 89, 166, 116, 210, 230, 244, 180, 192, 209, 102, 175, 194, 57, 75, 99, 182).

Screen capture of the specification of Kuznyechik (2015).

How Was it Generated?

According to the designers (April 2018)

questioned is the S-box π . This S-box was chosen from Streebog hash-function and it was synthesized in 2007. Note that through many years of cryptanalysis no weakness of this S-box was found. The S-box π was obtained by pseudorandom search and the following properties were taken into account. [-] No secret structure was enforced during construction of the S-box. At the

same time, it is obvious that for any transformation a lot of representations are possible (see, for example, a lot of AES S-box representations).

- Source: https://cdn.virgilsecurity.com/assets/docs/memo-on-kuznyechik-s-box.pdf
- See also the discussion summary: https://cdn.virgilsecurity.com/assets/docs/ meeting-report-for-the-discussion-on-kuznyechik-and-streebog.pdf

How Was it Generated?

According to the designers (April 2018)

questioned is the S-box π . This S-box was chosen from Streebog hash-function and it was synthesized in 2007. Note that through many years of cryptanalysis no weakness of this S-box was found. The S-box π was obtained by pseudorandom search and the following properties were taken into account. [.-] No secret structure was enforced during construction of the S-box. At the same time, it is obvious that for any transformation a lot of representations are possible (see, for example, a lot of AES S-box representations).

- Source: https://cdn.virgilsecurity.com/assets/docs/memo-on-kuznyechik-s-box.pdf
- See also the discussion summary: https://cdn.virgilsecurity.com/assets/docs/ meeting-report-for-the-discussion-on-kuznyechik-and-streebog.pdf

What I proved (IACR ToSC 2019)

$$\pi \begin{cases} \mathbb{F}_{2^8} & \to \mathbb{F}_{2^8} \\ 0 & \mapsto \kappa(0) , \\ (\alpha^{2^m+1})^j & \mapsto \kappa(2^m-j), \text{ for } 1 \leq j \leq 2^m - 1 , \\ \alpha^{j+(2^m+1)j} & \mapsto \kappa(2^m-i) \oplus (\alpha^{2^m+1})^{s(j)}, \text{ for } 0 < i, 0 \leq j < 2^m - 1 . \end{cases}$$

Lemma (more details available online¹)

There are 256! $\approx 2^{1684}$ different 8-bit permutations, meaning you need at least 1684 bits to represent all of them in any language.

¹Bonnetain, Perrin, Tian. Anomalies and Vector Space Search: Tools for S-Box Reverse-Engineering. https://ia.cr/2019/528

²Credit to @odzhan on stackexchange.

³https://codegolf.stackexchange.com/questions/186498/

 $^{{\}tt proving-that-a-russian-cryptographic-standard-is-too-structured}$

Lemma (more details available online¹)

There are 256! $\approx 2^{1684}$ different 8-bit permutations, meaning you need at least 1684 bits to represent all of them in any language.

p(x){unsigned char*k="@`rFTDVbpPB vdtfR@\xacp\xe2>4\xa6\xe9{z\xe3 5\xa7\xe8",a=2,l=0,b=17;while(x&& (l++,a^x))a=2*a^a/128*29;return l xb?k[lxb]^k[b+1/b]^b:k[l/b]^188;}

165 ASCII characters that fit on 7 bits: this program is 1155-bit long

²Credit to @odzhan on stackexchange.

proving-that-a-russian-cryptographic-standard-is-too-structured

¹Bonnetain, Perrin, Tian. Anomalies and Vector Space Search: Tools for S-Box Reverse-Engineering. https://ia.cr/2019/528

³https://codegolf.stackexchange.com/questions/186498/

Lemma (more details available online¹)

There are 256! \approx 2¹⁶⁸⁴ different 8-bit permutations, meaning you need at least 1684 bits to represent all of them in any language.

> p(x){unsigned char*k="@`rFTDVbpPB vdtfR@\xacp?\xe2>4\xa6\xe9{z\xe3a 5\xa7\xe8",a=2,l=0,b=17;while(x&& (l++,a^x))a=2*a^a/128*29;return l xb?k[lxb]^k[b+l/b]^b:k[l/b]^188;}

- 165 ASCII characters that fit on 7 bits: this program is 1155-bit long
- An AMD64 binary implementation fits² on 78 bytes, i.e. 624 bits.
- Many more short implementations have been found by code golfers!³

proving-that-a-russian-cryptographic-standard-is-too-structured

l Bonnetain, Perrin, Tian. Anomalies and Vector Space Search: Tools for S-Box Reverse-Engineering. https://ia.cr/2019/528 ² Credit to @odzhan on stackexchange.

³https://codegolf.stackexchange.com/questions/186498/

Lemma (more details available online¹)

There are 256! \approx 2¹⁶⁸⁴ different 8-bit permutations, meaning you need at least 1684 bits to represent all of them in any language.

> p(x){unsigned char*k="@`rFTDVbpPB vdtfR@\xacp?\xe2>4\xa6\xe9{z\xe3a 5\xa7\xe8",a=2,l=0,b=17;while(x&& (l++,a^x))a=2*a^a/128*29;return l %b?k[l%b]^k[b+l/b]^b:k[l/b]^188;}

- 165 ASCII characters that fit on 7 bits: this program is 1155-bit long
- An AMD64 binary implementation fits² on 78 bytes, i.e. 624 bits.
- Many more short implementations have been found by code golfers!³

The probability that a random S-box is that simple

is completely negligible ($< 2^{-1059}$).

l Bonnetain, Perrin, Tian. Anomalies and Vector Space Search: Tools for S-Box Reverse-Engineering. https://ia.cr/2019/528 ² Credit to @odzhan on stackexchange.

³https://codegolf.stackexchange.com/questions/186498/

proving-that-a-russian-cryptographic-standard-is-too-structured

Outline

1 Standards and S-boxes

- 2 On the S-box of RFC 6986 and 7801
- 3 The Core Issue: the S-Box Generation Process

4 Conclusion

On the S-box of RFC 6986 and 7801

The Core Issue: the S-Box Generation Proce

Conclusion

No secret structure was enforced during construction of the S-box. At the same time, it is obvious that for any transformation a lot of representations **VS.** are possible (see, for example, a lot of AES S-box representations).

■ This claim and this fact cannot be reconciled.

p(x){unsigned char*k="@`rFTDVbpPB vdtfR@\xacp?\xe2>4\xa6\xe9{z\xe3 5\xa7\xe8",a=2,l=0,b=17;while(x8& (l++,a^x))a=2*a^a/128*29;return l xb?k[lxb]^k[b41/b]^b:k[1/b]^188;}

Standards and S-boxes	On the S-box of RFC 6986 and 7801 OO	The Core Issue: the S-Box Generation Process		Conclusion •
Conclusion				
No secret structure w	as enforced during construction of the S	-box At the	p(x){unsigned char*k=	"@`rFTDVbpPB

- This claim and this fact cannot be reconciled.
- In my opinion, the designers of these algorithms have provided misleading information for the external analysis of their design.

vdtfR@\xacp?\xe2>4\xa6\xe9{z\xe3q
5\xa7\xe8",a=2,l=0,b=17;while(x&&

(l++,a^x))a=2*a^a/128*29;return l

Standards and S-boxes	On the S-box of RFC 6986 and 7801 OO	The Core Issue: the S-Box Generation F 000	Process Conclusion
Conclusion			
No coaret structure we	a anformed during construction of the C	how At the p(x) funsion	ed_char+k="@`rETDVbrPB

- This claim and this fact cannot be reconciled.
- In my opinion, the designers of these algorithms have provided misleading information for the external analysis of their design.
- Security analysis is hard enough with proper information: there is no good reason to complicate it further with wrong data!

vdtfR@\xacp?\xe2>4\xa6\xe9{z\xe3q 5\xa7\xe8",a=2,l=0,b=17;while(x&&

(l++,a^x))a=2*a^a/128*29;return l

Standards and S-boxes	On the S-box of RFC 6986 and 7801 OO			Conclusion •
Conclusion				
No secret structure w	as enforced during construction of the S	hoy. At the	p(x){unsigned char*k=	"@`rFTDVboPB

- This claim and this fact cannot be reconciled.
- In my opinion, the designers of these algorithms have provided misleading information for the external analysis of their design.
- Security analysis is hard enough with proper information: there is no good reason to complicate it further with wrong data!

⇒ These algorithms cannot be trusted and I believe they should be deprecated.

vdtfR@\xacp?\xe2>4\xa6\xe9{z\xe3q
5\xa7\xe8",a=2,l=0,b=17;while(x&&

(l++,a^x))a=2*a^a/128*29;return l

Standards and S-boxes	On the S-box of RFC 6986 and 7801 OO	The Core Issue: the S-Box Generation Process		Conclusion •
Conclusion				
No secret structure w	as enforced during construction of the S	-box At the	p(x){unsigned char*k=	"@`rFTDVboPB

- This claim and this fact cannot be reconciled.
- In my opinion, the designers of these algorithms have provided misleading information for the external analysis of their design.
- Security analysis is hard enough with proper information: there is no good reason to complicate it further with wrong data!

⇒ These algorithms cannot be trusted and I believe they should be deprecated.

vdtfR@\xacp?\xe2>4\xa6\xe9{z\xe3q
5\xa7\xe8",a=2,l=0,b=17;while(x&&

(l++,a^x))a=2*a^a/128*29;return l

Why it is Worrying

Russian S-box

Backdoored S-box

(https://ia.cr/2016/493)

