S-Box Reverse-Engineering

Boolean Functions, American/Russian Standards, and Butterflies

Léo Perrin Based on joint works with Biryukov, Canteaut, Duval and Udovenko

June 6, 2018 CECC'18

Outline

- 1 Building Blocks for Symmetric Cryptography
- 2 Statistics and Skipjack
- 3 TU-Decomposition and Kuznyechik
- 4 The Butterfly Permutations and Functions
- 5 Conclusion

Building Blocks for Symmetric Cryptography

Basics of Symmetric Cryptography Block Cipher Design

Outline

1 Building Blocks for Symmetric Cryptography

- Statistics and Skipjack

Basics of Symmetric Cryptography Block Cipher Design

Symmetric Cryptography

There are many symmetric algorithms! Hash functions, MACs...

Basics of Symmetric Cryptography Block Cipher Design

Symmetric Cryptography

There are many symmetric algorithms! Hash functions, MACs...

Basics of Symmetric Cryptography Block Cipher Design

Symmetric Cryptography

There are many symmetric algorithms! Hash functions, MACs...

Basics of Symmetric Cryptography Block Cipher Design

No Cryptanalysis?

Let us look at a typical cryptanalysis technique: the differential attack.

Basics of Symmetric Cryptography Block Cipher Design

Basics of Symmetric Cryptography Block Cipher Design

Differential Attacks

Differential Attack

If there are many x such that $E_{\kappa}(x) \oplus E_{\kappa}(x \oplus a) = b$, then the cipher is **not secure**.

Basics of Symmetric Cryptography Block Cipher Design

Basic Block Cipher Structure

How do we build block ciphers that prevent such attacks (as well as others)?

Basics of Symmetric Cryptography Block Cipher Design

Basic Block Cipher Structure

How do we build block ciphers that prevent such attacks (as well as others)?

Basics of Symmetric Cryptography Block Cipher Design

Basic Block Cipher Structure

How do we build block ciphers that prevent such attacks (as well as others)?

Substitution-Permutation Network

Such a block cipher iterates the round function above several times. *S* is the **S**ubstitution **B**ox (S-Box).

Basics of Symmetric Cryptography Block Cipher Design

The S-Box (1/2)

 π' = (252, 238, 221, 17, 207, 110, 49, 22, 251, 196, 250, 218, 35, 197, 4, 77, 233, 119, 240, 219, 147, 46, 153, 186, 23, 54, 241. 187, 20, 205, 95, 193, 249, 24, 101, 90, 226, 92, 239, 33, 129, 28, 60, 66, 139, 1, 142, 79, 5, 132, 2, 174, 227, 106, 143, 160, 6, 11, 237, 152, 127, 212, 211, 31, 235, 52, 44, 81, 234, 200, 72, 171, 242, 42, 104, 162, 253, 58, 206, 204, 181, 112, 14, 86, 8, 12, 118, 18, 191, 114, 19, 71, 156, 133, 93, 135, 21, 161, 150, 41, 16, 123, 154, 199, 243, 145, 120, 111, 157, 158, 178, 177, 50, 117, 25, 61, 255, 53, 138, 126, 109, 84, 198, 128, 195, 189, 13, 87, 223, 245, 36, 169, 62, 168, 67, 201, 215, 121, 214, 246, 124, 34, 185, 3, 224, 15, 236, 222, 122, 148, 176, 188, 220, 232, 40, 80, 78, 51, 10, 74, 167, 151, 96, 115, 30, 0, 98, 68, 26, 184, 56, 130, 100, 159, 38, 65, 173, 69, 70, 146, 39, 94, 85, 47, 140, 163, 165, 125, 105, 213, 149, 59, 7, 88, 179, 64, 134, 172, 29, 247, 48, 55, 107, 228, 136, 217, 231, 137, 225, 27, 131, 73, 76, 63, 248, 254, 141, 83, 170, 144, 202, 216, 133, 97, 32, 113, 103, 164, 45, 43, 9, 91, 203, 155, 37, 208, 190, 229, 108, 82, 89, 166, 116, 210, 230, 244, 180, 192, 209, 102, 175, 194, 57, 75, 99, 182).

The S-Box π of the latest Russian standards, Kuznyechik (BC) and Streebog (HF).

Basics of Symmetric Cryptography Block Cipher Design

The S-Box (2/2)

Importance of the S-Box

If S is such that

 $S(x) \oplus S(x \oplus a) = b$

does not have many solutions *x* for all (*a*, *b*) then the cipher may be proved secure against differential attacks.

Basics of Symmetric Cryptography Block Cipher Design

The S-Box (2/2)

Importance of the S-Box

If S is such that

 $S(x) \oplus S(x \oplus a) = b$

does not have many solutions *x* for all (*a*, *b*) then the cipher may be proved secure against differential attacks.

In academic papers presenting new block ciphers, the choice of S is carefully explained.

Basics of Symmetric Cryptography Block Cipher Design

S-Box Design

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
- SPN
- Misty
- Feistel
- Lai-Massey
- Pseudo-random
- Hill climbing
- Unknown

Basics of Symmetric Cryptography Block Cipher Design

S-Box Design

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
- SPN
- Misty
- Feistel
- Lai-Massey
- Pseudo-random
- \blacksquare Hill climbing
- Unknown

Basics of Symmetric Cryptography Block Cipher Design

S-Box Design

- AES S-Box ■ Inverse (other) Exponential Math (other) SPN Misty Feistel Lai-Massey Pseudo-random
- Hill climbing
- Unknown

Basics of Symmetric Cryptography Block Cipher Design

S-Box Reverse-Engineering

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
- SPN
- Misty
- Feistel
- Lai-Massey
- Pseudo-random
- \blacksquare Hill climbing
- Unknown

Basics of Symmetric Cryptography Block Cipher Design

S-Box Reverse-Engineering

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
- SPN
- Misty
- Feistel
- Lai-Massey
- Pseudo-random
- \blacksquare Hill climbing
- Unknown

Basics of Symmetric Cryptography Block Cipher Design

Motivation (1/3)

A malicious designer can easily hide a structure in an S-Box.

Basics of Symmetric Cryptography Block Cipher Design

Motivation (1/3)

A malicious designer can easily hide a structure in an S-Box.

To keep an advantage in implementation (WB crypto)...

Basics of Symmetric Cryptography Block Cipher Design

Motivation (1/3)

A malicious designer can easily hide a structure in an S-Box.

To keep an advantage in implementation (WB crypto)... ... or an advantage in cryptanalysis (backdoor).

Basics of Symmetric Cryptography Block Cipher Design

Motivation (2/3)

Definition (Kleptography)

The study of trapdoored cryptography is called kleptography (term introduced by Jung and Young).

S-Box based backdoors in the literature

- Rijmen, V., & Preneel, B. (1997). A family of trapdoor ciphers. FSE'97.
- Patterson, K. (1999). Imprimitive Permutation Groups and Trapdoors in Iterated Block Ciphers. FSE'99.
- Blondeau, C., Civino, R., & Sala, M. (2017). Differential Attacks: Using Alternative Operations. eprint report 2017/610.
- Bannier, A., & Filiol, E. (2017). Partition-based trapdoor ciphers. InTech'17.

Basics of Symmetric Cryptography Block Cipher Design

Motivation (3/3)

Even without malicious intent, an unexpected structure can be a problem.

⇒ We need tools to *reverse-engineer* S-Boxes!

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

Outline

Building Blocks for Symmetric Cryptography

2 Statistics and Skipjack

- 3 TU-Decomposition and Kuznyechik
- 4 The Butterfly Permutations and Functions

5 Conclusion

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

Summary

We can recover parts of the design process of an S-Box using some statistics.

- The two tables (basics of Boolean functions for cryptography)
- 2 A satistical tool based on the two tables
- Application to NSA's Skipjack

The Two Tables Statistical Analysis of the Two Table Application to Skipjack

The Two Tables

Let $S : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be an S-Box.

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

The Two Tables

Let $S : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be an S-Box.

Definition (DDT)

The Difference Distribution Table of S is a matrix of size $2^n \times 2^n$ such that

 $DDT[a, b] = \#\{x \in \mathbb{F}_2^n \mid S(x \oplus a) \oplus S(x) = b\}.$

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

The Two Tables

Let $S : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be an S-Box.

Definition (DDT)

The Difference Distribution Table of S is a matrix of size $2^n \times 2^n$ such that

$$DDT[a, b] = \#\{x \in \mathbb{F}_2^n \mid S(x \oplus a) \oplus S(x) = b\}.$$

Definition (LAT)

The Linear Approximations Table of S is a matrix of size $2^n \times 2^n$ such that

$$LAT[a, b] = \#\{x \in \mathbb{F}_{2}^{n} | x \cdot a = S(x) \cdot b\} - 2^{n-1}.$$

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

Example

$$S = [4, 2, 1, 6, 0, 5, 7, 3]$$

The DDT of S.

The LAT of S.

1	F 8	0	0	0	0	0	0	0 J	
	0	0	0	0	2	2	2	2	
	0	0	0	0	2	2		2	
	0	0	4	4	0	0	0	0	
	0	0	0	0	2	2	2	2	
	0	4	4	0	0	0	0	0	
	0	4	0	4	0	0	0	0	
	Lo	0	0	0	2	2	2	2	

Γ4	0	0					ך 0
0	0	2	2		0	2	-2
0	2	2		0	2	-2	0
0	2	0	2	0	-2	0	2
0	2	0	-2	0	-2	0	-2
0	-2	2	0	0	-2	-2	0
0	0	-2	2	0	0	-2	-2
Lο	0	0	0	-4	0	0	0]

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

Coefficient Distribution in the DDT

If an *n*-bit S-Box is bijective, then its DDT coefficients behave like independent and identically distributed random variables following a Poisson distribution:

$$\Pr[DDT[a, b] = 2z] = \frac{e^{-1/2}}{2^{z}z}$$

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

Coefficient Distribution in the DDT

If an *n*-bit S-Box is bijective, then its DDT coefficients behave like independent and identically distributed random variables following a Poisson distribution:

$$\Pr[DDT[a, b] = 2z] = \frac{e^{-1/2}}{2^{z}z}$$

- Always even, ≥ 0
- Typically between 0 and 16.
- Lower is better.

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

Coefficient Distribution in the LAT

If an *n*-bit S-Box is bijective, then its LAT coefficients behave like independent and identically distributed random variables following this distribution:

Pr [LAT[a, b] = 2z] =
$$\frac{\binom{2^{n-1}}{2^{n-2+z}}}{\binom{2^n}{2^{n-1}}}$$
.

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

Coefficient Distribution in the LAT

If an *n*-bit S-Box is bijective, then its LAT coefficients behave like independent and identically distributed random variables following this distribution:

$$\Pr\left[\operatorname{LAT}[a,b]=2z\right] = \frac{\binom{2^{n-1}}{2^{n-2+2}}}{\binom{2^n}{2^{n-1}}}.$$

- Always even, signed.
- Typically between -40 and 40.
- Lower absolute value is better.

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

Looking Only at the Maximum

δ	$\log_2 \left(\Pr\left[max(DDT) \leq \delta ight] ight)$	-	l	$\log_2\left(\Pr\left[\max(LAT) \leq \ell ight] ight)$	
		-	38	-0.084	
14	-0.006		36	-0.302	
12	-0.094		34	-1.008	
			32	-3.160	
10	-1.329		30	-9.288	
8	-16.148		28	-25.623	
6	-164.466		26	-66.415	
б	-104.400		24	-161.900	
4	-1359.530		22	-371.609	
DDT		LAT			

Probability that the maximum coefficient in the DDT/LAT of an 8-bit permutation is at most equal to a certain threshold.

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

Looking Only at the Maximum

δ	$\log_2 \left(\Pr\left[max(DDT) \leq \delta ight] ight)$	-	l	$\log_2 \left(\Pr\left[\max(LAT) \leq \ell ight] ight)$
		-	38	-0.084
14	-0.006		36	-0.302
12	-0.094		34	-1.008
			32	-3.160
10	-1.329		30	-9.288
8	-16.148		28	-25.623
6	-164.466	167.766	26	-66.415
б	-104.400		24	-161.900
4	-1359.530		22	-371.609
DDT		LAT		

Probability that the maximum coefficient in the DDT/LAT of an 8-bit permutation is at most equal to a certain threshold.

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

What is Skipjack? (1/2)

- Type Block cipher Bloc 64 bits Key 80 bits Authors NSA
- Publication 1998

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

What is Skipjack? (2/2)

- Skipjack was supposed to be secret...
- ... but eventually published in 1998.

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

What is Skipjack? (2/2)

- Skipjack was supposed to be secret...
- ... but eventually published in 1998.
- Skipjack was to be used by the Clipper Chip,

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

What is Skipjack? (2/2)

- Skipjack was supposed to be secret...
- ... but eventually published in 1998.
- Skipjack was to be used by the Clipper Chip,
- It uses an 8 × 8 S-Box (F) specified only by its LUT.

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

Reverse-Engineering F

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

Reverse-Engineering F

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

Reverse-Engineering F

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

Reverse-Engineering F

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

What Can We Deduce?

- F has not been picked uniformly at random.
- F has not been picked among a feasibly large set of random S-Boxes.
- Its linear properties were optimized (though poorly).

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

What Can We Deduce?

- F has not been picked uniformly at random.
- F has not been picked among a feasibly large set of random S-Boxes.
- Its linear properties were optimized (though poorly).

The S-Box of Skipjack was built using a dedicated algorithm.

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

Timeline

Jun 98 Declassification of Skipjack

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

Timeline

1987 Initial design of Skipjack

Jul 93 "interim report" on Skipjack published by external cryptographers

Jun 98 Declassification of Skipjack

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

Timeline

1987 Initial design of Skipjack

- Jul 93 "interim report" on Skipjack published by external cryptographers
- Aug 95 Alleged "Skipjack" (actually not) is leaked to usenet
- Sep 95 Schneier published his thoughts on "alleged Skipjack", including the result of a FOIA request
- Jun 98 Declassification of Skipjack

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

Timeline

1987 Initial design of Skipjack

Aug 92 The S-Box ("F-table") of Skipjack is changed

- Jul 93 "interim report" on Skipjack published by external cryptographers
- Aug 95 Alleged "Skipjack" (actually not) is leaked to usenet
- Sep 95 Schneier published his thoughts on "alleged Skipjack", including the result of a FOIA request
- Jun 98 Declassification of Skipjack

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

Timeline

1987 Initial design of Skipjack

- Aug 90 (CRYPTO) Gilbert et al. use linear relations for key recovery (FEAL)
- Aug 91 (CRYPTO) Attack against FEAL using linear relations between key, plaintext and ciphertext
- May 92 (EUROCRYPT) Other attack against FEAL using linear relations between key, plaintext and ciphertext
- Aug 92 The S-Box ("F-table") of Skipjack is changed
- Jul 93 "interim report" on Skipjack published by external cryptographers
- Aug 95 Alleged "Skipjack" (actually not) is leaked to usenet
- Sep 95 Schneier published his thoughts on "alleged Skipjack", including the result of a FOIA request
- Jun 98 Declassification of Skipjack

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

Conclusion on Skipjack

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
- SPN
- Misty
- Feistel
- Lai-Massey
- Pseudo-random
- Hill climbing
- Unknown

The Two Tables Statistical Analysis of the Two Tables Application to Skipjack

Conclusion on Skipjack

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
- SPN
- Misty
- Feistel
- Lai-Massey
- Pseudo-random
- Hill climbing
- Unknown

Streebog and Kuznyechik Decomposing the Mysterious S-Box

Outline

2 Statistics and Skipjack

3 TU-Decomposition and Kuznyechik

4 The Butterfly Permutations and Functions

5 Conclusion

Streebog and Kuznyechik Decomposing the Mysterious S-Box

Summary

We can recover an actual decomposition using patterns in the LAT.

- Our target, the S-Box of Kuznyechik and Streebog
- 2 TU-decomposition: what is it and how to apply it to Kuznyechik

Streebog and Kuznyechik Decomposing the Mysterious S-Box

Kuznyechik/Stribog

Stribog

Type Hash function Publication 2012

Kuznyechik

Type Block cipher Publication 2015

Streebog and Kuznyechik Decomposing the Mysterious S-Box

Kuznyechik/Stribog

Stribog

Type Hash function Publication 2012

Kuznyechik

Type Block cipher Publication 2015

Common ground

- Both are standard symmetric primitives in Russia.
- Both were designed by the FSB (TC26).
- Both use the same 8 × 8 S-Box, π.

Streebog and Kuznyechik Decomposing the Mysterious S-Box

The LAT of π

Streebog and Kuznyechik Decomposing the Mysterious S-Box

The LAT of η (reordered columns)

Streebog and Kuznyechik Decomposing the Mysterious S-Box

The LAT of $\eta \circ \pi \circ \mu$

Streebog and Kuznyechik Decomposing the Mysterious S-Box

The TU-Decomposition

Definition

The TU-decomposition is a decomposition algorithm working against S-Boxes with vector spaces of zeroes in their LAT.

T and U are mini-block ciphers ; μ and η are linear permutations.

Streebog and Kuznyechik Decomposing the Mysterious S-Box

Final Decomposition Number 1

- \odot Multiplication in \mathbb{F}_{2^4}
- lpha Linear permutation
- $\mathcal I$ Inversion in $\mathbb F_{2^4}$
- ν_0, ν_1, σ 4 imes 4 permutations
 - ϕ 4 imes 4 function
 - ω Linear permutation

Streebog and Kuznyechik Decomposing the Mysterious S-Box

Hardware Performance

Structure	Area (μm^2)	Delay (ns)
Naive implementation	3889.6	362.52
Feistel-like	1534.7	61.53
Multiplications-first	1530.3	54.01
Feistel-like (with tweaked MUX)	1530.1	46.11

Streebog and Kuznyechik Decomposing the Mysterious S-Box

Conclusion for Kuznyechik/Stribog?

The Russian S-Box was built like a strange Feistel...

Streebog and Kuznyechik Decomposing the Mysterious S-Box

Conclusion for Kuznyechik/Stribog?

The Russian S-Box was built like a strange Feistel...

... or was it?

Streebog and Kuznyechik Decomposing the Mysterious S-Box

Conclusion for Kuznyechik/Stribog?

The Russian S-Box was built like a strange Feistel...

... or was it?

Belarussian inspiration

- The last standard of Belarus (BelT) uses an 8-bit S-box,
- somewhat similar to π...

Streebog and Kuznyechik Decomposing the Mysterious S-Box

Conclusion for Kuznyechik/Stribog?

The Russian S-Box was built like a strange Feistel...

... or was it?

Belarussian inspiration

- The last standard of Belarus (BelT) uses an 8-bit S-box,
- somewhat similar to π...
- ... based on a finite field exponential!

Streebog and Kuznyechik Decomposing the Mysterious S-Box

Final Decomposition Number 2 (!)

	0	1	2	3	4	5	6	7	8	9	a	b	с	d	e	f
T ₀ T ₁	0	1	2	3	4	5	6	7	8	9	a	b	с	d	е	f
T_1	0	1	2	3	4	5	6	7	8	9	a	b	с	d	e	f
T ₂ T ₃	0	1	2	3	4	5	6	7	8	9	a	b	с	d	f	е
T_3	0	1	2	3	4	5	6	7	8	9	a	b	с	f	d	е
T 4	0	1	2	3	4	5	6	7	8	9	a	b	f	с	d	е
T_5	0	1	2	3	4	5	6	7	8	9	a	f	b	с	d	е
Τ ₆ Τ ₇	0	1	2	3	4	5	6	7	8	9	f	a	b	с	d	е
T_7	0	1	2	3	4	5	6	7	8	f	9	a	b	с	d	е
Τo	0	1	2	3	4	5	6	7	f	8	9	а	h	c	Ь	e
T ₉	0	1	2	3	4	5	6	f	7	8	9	a	b	с	d	е
Τ ₉ Τ _α	0	1	2	3	4	5	f	6	7	8	9	a	b	с	d	е
T_b	0 0	1	2	3	4	f	5	6	7	8	9	a	b	с	d	е
Tc	0	1	2	3	f	4	5	6	7	8	9	a	b	с	d	e
T _d	0	1	2	f	3	4	5	6	7	8	9	a	b	с	d	е
T _e T _f	0	1	f	2	3	4	5	6	7	8	9	a	b	с	d	e
T_f	0	f	1	2	3	4	5	6	7	8	9	a	b	с	d	е

Streebog and Kuznyechik Decomposing the Mysterious S-Box

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
- SPN
- Misty
- Feistel
- Lai-Massey
- Pseudo-random
- Hill climbing
- Unknown

Streebog and Kuznyechik Decomposing the Mysterious S-Box

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
- SPN
- Misty
- Feistel
- Lai-Massey
- Pseudo-random
- Hill climbing
- Unknown

Streebog and Kuznyechik Decomposing the Mysterious S-Box

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
- SPN
- Misty
- Feistel
- Lai-Massey
- Pseudo-random
- Hill climbing
- Unknown

Streebog and Kuznyechik Decomposing the Mysterious S-Box

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
- SPN
- Misty
- Feistel
- Lai-Massey
- Pseudo-random
- Hill climbing
- Unknown

The Big APN Problem and its Only Known Solution On Butterflies

Outline

2 Statistics and Skipjack

- 3 TU-Decomposition and Kuznyechik
- 4 The Butterfly Permutations and Functions
- 5 Conclusion

The Big APN Problem and its Only Known Solution On Butterflies

Summary

We can obtain new mathematical results using reverse-engineering techniques.

- 1 The big APN problem and its only known solution
- 2 Decomposing and generalizing this solution as butterflies

The Big APN Problem and its Only Known Solution On Butterflies

NSUCRYPTO (Olympiad in Cryptography)

"Try to find an APN permutation on 8 variables or prove that it doesn't exist."

https://nsucrypto.nsu.ru/

The Big APN Problem and its Only Known Solution On Butterflies

The Big APN Problem

Definition (APN function)

A function S : $\mathbb{F}_2^n \to \mathbb{F}_2^n$ is Almost Perfect Non-linear (APN) if

$$S(x \oplus a) \oplus S(x) = b$$

has 0 or 2 solutions for all $a \neq 0$ and for all b.

The Big APN Problem and its Only Known Solution On Butterflies

The Big APN Problem

Definition (APN function)

A function S : $\mathbb{F}_2^n \to \mathbb{F}_2^n$ is Almost Perfect Non-linear (APN) if

 $S(x \oplus a) \oplus S(x) = b$

has 0 or 2 solutions for all $a \neq 0$ and for all b.

Big APN Problem

Are there APN permutations operating on \mathbb{F}_2^n where *n* is even?

The Big APN Problem and its Only Known Solution On Butterflies

Dillon et al.'s Permutation

Only One Known Solution!

For n = 6, Dillon et al. found an APN permutation.

The Big APN Problem and its Only Known Solution On Butterflies

Dillon et al.'s Permutation

Only One Known Solution!

For n = 6, Dillon et al. found an APN permutation.

The Big APN Problem and its Only Known Solution On Butterflies

Dillon et al.'s Permutation

Only One Known Solution!

For n = 6, Dillon et al. found an APN permutation.

The Big APN Problem and its Only Known Solution On Butterflies

Dillon et al.'s Permutation

Only One Known Solution!

For n = 6, Dillon et al. found an APN permutation.

It is possible to make a TU-decomposition!

The Big APN Problem and its Only Known Solution On Butterflies

On the Butterfly Structure

Definition (Open Butterfly $H^{3}_{\alpha,\beta}$)

This permutation is an open butterfly.

The Big APN Problem and its Only Known Solution On Butterflies

On the Butterfly Structure

Definition (Open Butterfly $H^{3}_{\alpha,\beta}$)

This permutation is an open butterfly.

Lemma

Dillon's permutation is affine-equivalent to $H^{3}_{w,\nu}$ where Tr(w) = 0.

The Big APN Problem and its Only Known Solution On Butterflies

Closed Butterflies

Definition (Closed butterfly $V^3_{\alpha,\beta}$)

This quadratic function is a closed butterfly.

The Big APN Problem and its Only Known Solution On Butterflies

Closed Butterflies

Definition (Closed butterfly $V^3_{\alpha,\beta}$)

This quadratic function is a closed butterfly.

Lemma (Equivalence)

Open and closed butterflies with the same parameters are CCZ-equivalent.

The Big APN Problem and its Only Known Solution On Butterflies

Some Properties of Butterflies

Theorem (Properties of butterflies)

Let $V^3_{\alpha,\beta}$ and $H^3_{\alpha,\beta}$ be butterflies operating on 2n bits, n odd. Then:

• deg
$$\left(V^{3}_{\alpha,\beta}\right) = 2$$
,

• if
$$n = 3$$
, $Tr(\alpha) = 0$ and $\beta + \alpha^3 \in \{\alpha, 1/\alpha\}$, then
 $\max(DDT) = 2$, $\max(W) = 2^{n+1}$ and $\deg(H^3_{\alpha,\beta}) = n + 1$,

• if
$$\beta = (1 + \alpha)^3$$
, then
 $\max(DDT) = 2^{n+1}$, $\max(W) = 2^{(3n+1)/2}$ and $\deg(H^3_{\alpha,\beta}) = n$,

otherwise,

$$\begin{aligned} \max(DDT) &= 4, \ \max(\mathcal{W}) = 2^{n+1} \ and \ \deg\left(H^3_{\alpha,\beta}\right) \in \{n, n+1\}\\ and \ \deg\left(H^3_{\alpha,\beta}\right) &= n \ if \ and \ only \ if \\ 1 + \alpha\beta + \alpha^4 \ = \ (\beta + \alpha + \alpha^3)^2 \ .\end{aligned}$$

Conclusion

Outline

2 Statistics and Skipjack

- 3 TU-Decomposition and Kuznyechik
- 4 The Butterfly Permutations and Functions

5 Conclusion

Conclusion

Open Problem

Cellular Message Encryption Algorithm

From Wikipedia, the free encyclopedia

In cryptography, the Cellular Message Encryption Algorithm

(CMEA) is a block cipher which was used for securing mobile phones in the United States. CMEA is one of four cryptographic primitives specified in a Telecommunications Industry Association (TIA) standard, and is designed to encrypt the control channel, rather than the voice data. In 1997, a group of cryptographers published attacks on the cipher showing it had several weaknesses which give it a trivial effective strength of a 24-bit to 32-bit cipher.^[1]

CMEA

General									
Designers	James A. Reeds III								
First published	1991								
Cipher detail									
Key sizes	64 bits								
Block sizes	16-64 bits								
Rounds	3								

Conclusion

Open Problem

Cellular Message Encryption Algorithm					
From Wikipedia, the free encyclopedia					
In cryptography, the Cellular Message Encryption Algorithm	СМЕА				
(CMEA) is a block cipher which was used for securing mobile phones in the United States. CMEA is one of four cryptographic primitives	General				
	Designers	James A. Reeds III			
	First published	1991			
the voice data. In 1997, a group of cryptographers published attacks	Cipher detail				
	Key sizes	64 bits			
trivial effective strength of a 24-bit to 32-bit cipher. ^[1]	Block sizes	16-64 bits			
	Rounds	3			

A hidden structure!

CMEA uses an 8-bit (non-bijective) S-Box... With a TU-decomposition!

What is its actual structure?

Conclusion

Conclusion

Cryptographers use mathematics but mathematicians could also use crypto!

Conclusion

Conclusion

- Cryptographers use mathematics but mathematicians could also use crypto!
- If you design a cipher, justify every step of your design.

Conclusion

Conclusion

- Cryptographers use mathematics but mathematicians could also use crypto!
- **2** If you design a cipher, justify every step of your design.
- If you choose a cipher, demand a full design explanation.

Conclusion

The Last S-Box

14	11	60	6d	e9	10	e3	2	b	90	d	17	c5	Ъ0	9f	c5
d8	da	be	22	8	f3	4	a9	fe	f3	f5	fc	bc	30	be	26
bb	88	85	46	f4	2e	е	fd	76	fe	b0	11	4e	de	35	bb
30	4b	30	d6	dd	df	df	d4	90	7a	d8	8c	6a	89	30	39
e9	1	da	d2	85	87	d3	d4	ba	2b	d4	9f	9c	38	8c	55
d3	86	bb	db	ec	e0	46	48	bf	46	1b	1c	d7	d9	1b	e0
23	d4	d7	7f	16	3f	3	3	44	c3	59	10	2a	da	ed	e9
8e	d8	d1	db	cb	cb	c3	c7	38	22	34	3d	db	85	23	7c
24	d1	d8	2e	fc	44	8	38	c8	c7	39	4c	5f	56	2a	cf
d0	e9	d2	68	e4	e3	e9	13	e2	С	97	e4	60	29	d7	9b
d9	16	24	94	b3	e3	4c	4c	4f	39	e0	4b	bc	2c	d3	94
81	96	93	84	91	d0	2e	d6	d2	2b	78	ef	d6	9e	7b	72
ad	c4	68	92	7a	d2	5	2b	1e	d0	dc	b1	22	3f	c3	c3
88	b1	8d	b5	e3	4e	d7	81	3	15	17	25	4e	65	88	4e
e4	Зb	81	81	fa	1	1d	4	22	0	6	1	27	68	27	2e
Зb	83	c7	сс	25	9Ъ	d8	d5	1c	1f	e5	59	7f	3f	3f	ef

Conclusion

