# S-Box Decompositions and some Applications 

Léo Perrin

January 28, 2019, Nancy


## Curriculum

- Currently: post-doc at SECRET in Inria Paris

■ PhD: University of Luxembourg (symmetric cryptography)

- Masters: double degree Centrale Lyon/KTH (discrete math/theoretical CS)


## Outline

1 My Area of Research: Symmetric Cryptography

2 From Russia With Love

3 Cryptanalysis of a Theorem

4 Conclusion

## Outline

1 My Area of Research: Symmetric Cryptography

2 From Russia With Love

3 Cryptanalysis of a Theorem

4 Conclusion

## Symmetric Cryptography

We assume that a secret key has already been shared!

## Symmetric Cryptography

We assume that a secret key has already been shared!

## Definition (Block Cipher)

- Input: $n$-bit block $x$
- Parameter: $k$-bit key $\kappa$
- Output: $n$-bit block $E_{\kappa}(x)$
- Symmetry: $E$ and $E^{-1}$ use the same $\kappa$



## Symmetric Cryptography

We assume that a secret key has already been shared!

## Definition (Block Cipher)

- Input: $n$-bit block $x$
- Parameter: $k$-bit key $\kappa$
- Output: $n$-bit block $E_{\kappa}(x)$
- Symmetry: $E$ and $E^{-1}$ use the same $\kappa$


No Key Recovery. Given many pairs $\left(x, E_{\kappa}(x)\right)$, it must be impossible to recover $\kappa$.

## Symmetric Cryptography

We assume that a secret key has already been shared!

## Definition (Block Cipher)

- Input: $n$-bit block $x$
- Parameter: $k$-bit key $\kappa$

■ Output: $n$-bit block $E_{k}(x)$

- Symmetry: $E$ and $E^{-1}$ use the same $\kappa$


No Key Recovery. Given many pairs $\left(x, E_{\kappa}(x)\right)$, it must be impossible to recover $\kappa$.

Indistinguishability. Given an $n$ permutation $P$, it must be impossible to figure out if $P=E_{\kappa}$ for some $\kappa$.

## Security Arguments



## The Specification

Contains a full design rationale, meaning we can trust the cipher because:

- we trust the security arguments of the designer
- we have a starting point for cryptanalysis


## Security Arguments



## The Specification

Does not contain a full design rationale, meaning we cannot trust the cipher because:

- we have to start cryptanalysis from scratch
- what are they trying to hide?

Symmetric Cryptography 101
My Contributions

## To Build a Cipher

## Iterated Construction



## To Build a Cipher

## Iterated Construction



Two different sub-components for $f$


> Linear layer (diffusion)
> S-box layer (non-linearity)

## The S-box

$\pi^{\prime}=(252,238,221,17,207,110,49,22,251,196,250,218,35,197,4,77,233$,
$119,240,219,147,46,153,186,23,54,241.187,20,205,95,193,249,24,101$,
$90,226,92,239,33,129,28,60,66,199,1,142,79,5,132,2,174,227,106,143$,
$160,6,11,237,15,127,212,211,31,235,52,44,81,234,200,72,171,242,42$,
$104,162,253,58,206,204,181,112,14,86,8,12,118,18,191,114,19,71,156$,
$183,93,135,21,161,150,41,16,123,154,199,243,145,120,111,157,158,178$,
$177,50,117,25,61,255,53,138,126,109,84,198,128,195,189,13,87,223$,
$245,36,169,62,168,67,201,215,121,214,246,124,34,185,3,224,15,236$,
$222,122,148,176,188,220,232,40,80,78,51,10,74,167,151,96,115,30,0$
$98,68,26,184,56,130,100,159,38,65,173,69,70,146,39,94,85,47,140,163$,
$165,125,105,213,149,59,7,88,179,64,134,172,29,247,48,55,107,228,136$,
$217,231,137,225,27,131,73,76,63,248,254,141,83,170,144,202,216,133$,
$97,32,113,103,164,45,43,9,91,203,155,37,208,190,229,108,82,89,166$,
$116,210,230,244,180,192,209,102,175,194,57,75,99,182)$.

## The S-box

$\pi^{\prime}=(252,238,221,17,207,110,49,22,251,196,250,218,35,197,4,77,233$,
$119,240,219,147,46,153,186,23,54,241.187,20,205,95,193,249,24,101$,
$90,226,92,239,33,129,28,60,66,199,1,142,79,5,132,2,174,227,106,143$,
$160,6,11,237,15,127,212,211,31,235,52,44,81,234,200,72,171,242,42$,
$104,162,253,58,206,204,181,112,14,86,8,12,118,18,191,114,19,71,156$,
$183,93,135,21,161,150,41,16,123,154,199,243,145,120,111,157,158,178$,
$177,50,117,25,61,255,53,138,126,109,84,198,128,195,189,13,87,223$,
$245,36,169,62,168,67,201,215,121,214,246,124,34,185,3,224,15,236$,
$222,122,148,176,188,220,232,40,80,78,51,10,74,167,151,96,115,30,0$
$98,68,26,184,56,130,100,159,38,65,173,69,70,146,39,94,85,47,140,163$,
$165,125,105,213,149,59,7,88,179,64,134,172,29,247,48,55,107,228,136$,
$217,231,137,225,27,131,73,76,63,248,254,141,83,170,144,202,216,133$,
$97,32,113,103,164,45,43,9,91,203,155,37,208,190,229,108,82,89,166$,
$116,210,230,244,180,192,209,102,175,194,57,75,99,182)$.

## Importance of the S-box

If $S$ is such that the maximum number of $x$ such that

$$
S(x) \oplus S(x \oplus a)=b
$$

is low for all $a \neq 0$ and $b$ then the cipher may be proved secure against differential attacks.

## S-box Design

- AES S-Box

■ Inverse (other)

- Exponential
- Math (other)
- SPN

Misty
Feistel
■ Lai-Massey
$\square$ Pseudo-random

- Hill climbing

■ Unknown

## S-box Design

- AES S-Box

■ Inverse (other)

- Exponential
$\square$ Math (other)
- SPN

Misty
Feistel
■ Lai-Massey

- Pseudo-random
- Hill climbing

■ Unknown


## S-box Design

- AES S-Box

■ Inverse (other)

- Exponential
$\square$ Math (other)
- SPN

Misty
Feistel

- Lai-Massey
- Pseudo-random
- Hill climbing

■ Unknown


## S-box Reverse-Engineering

- AES S-Box

■ Inverse (other)

- Exponential
$\square$ Math (other)
$\square$ SPN
Misty
Feistel
■ Lai-Massey
- Pseudo-random
- Hill climbing

■ Unknown


## S-box Reverse-Engineering

- AES S-Box

■ Inverse (other)

- Exponential
$\square$ Math (other)
$\square$ SPN
$\square$ Misty
Feistel
■ Lai-Massey
- Pseudo-random
- Hill climbing

■ Unknown


## Why Reverse-Engineer S-boxes? (1/3)

A malicious designer can hide a structure in an S-box.

## Why Reverse-Engineer S-boxes? (1/3)

A malicious designer can hide a structure in an S-box.

To keep an advantage in implementation (white-box crypto)...

## Why Reverse-Engineer S-boxes? (1/3)

A malicious designer can hide a structure in an S-box.

To keep an advantage in implementation (white-box crypto)... ... or an advantage in cryptanalysis (backdoor).

## Dual EC: A Standardized Back Door

Daniel J. Bernstein ${ }^{1,2}$, Tanja Lange ${ }^{1}$, and Ruben Niederhagen ${ }^{1}$

## Why Reverse-Engineer S-boxes? (2/3)

S-box based backdoors in the literature

- Rijmen, V., \& Preneel, B. (1997). A family of trapdoor ciphers. FSE'97.
- Paterson, K. (1999). Imprimitive Permutation Groups and Trapdoors in Iterated Block Ciphers. FSE'99.
- Blondeau, C., Civino, R., \& Sala, M. (2017). Differential Attacks: Using Alternative Operations. eprint report 2017/610.
- Bannier, A., \& Filiol, E. (2017). Partition-based trapdoor ciphers. In Partition-Based Trapdoor Ciphers. InTech'17.


## Why Reverse-Engineer S-boxes? (3/3)

Even without malicious intent, an unexpected structure can be a problem.
$\Longrightarrow$ We need tools to reverse-engineer $S$-boxes!

## Design and Analysis

## Analysis

- GLUON-64 hash function (FSE'14)
- PRINCE block cipher (FSE'15)

■ TWINE block cipher (FSE'15)

## Design

- SPARX block cipher (Asiacrypt'16)
- SPARKLE permutation, ESCH hash function, SCHWAEMM authenticated cipher (NIST submission)
- Purposefully hard functions (Asiacrypt'17)
- MOE block cipher (submitted to EC)


## S-box Reverse-Engineering

When the $S$-box has a $B C$ structure
Feistel network (SAC'15, FSE'16), SPN (ToSC'17)

When it doesn't

- Analysis of Skipjack (Crypto'15)
- Structures in the Russian S-box (Eurocrypt'16, ToSC'17, ToSC'19)
- Cryptanalysis of a Theorem (Crypto'16, IEEE Trans. Inf. Th.'17, FFA'19, CC'19)


## S-box Reverse-Engineering

When the S-box has a BC structure
Feistel network (SAC'15, FSE'16), SPN (ToSC'17)

When it doesn't
■ Analysis of Skipjack (Crypto'15)

- Structures in the Russian S-box
(Eurocrypt'16, ToSC'17, ToSC'19)
- Cryptanalysis of a Theorem (Crypto'16, IEEE Trans. Inf. Th.'17, FFA'19, CC'19)


## Outline

1 My Area of Research: Symmetric Cryptography

2 From Russia With Love

3 Cryptanalysis of a Theorem

4 Conclusion

## Outline



We can recover an actual decomposition using patterns in the LAT.
1 TU-decomposition: what is it and how to apply it?
12 First results on the Russian S-box
3 Its intended decomposition (I think)

## Kuznyechik/Streebog

## Streebog

Type Hash function

Publication 2012

## Kuznyechik

Type Block cipher

Publication 2015


## Kuznyechik/Streebog

## Streebog

Type Hash function
Publication 2012

## Kuznyechik

Type Block cipher<br>Publication 2015



## Common ground

- Both are standard symmetric primitives in Russia.
- Both were designed by the FSB (TC26).
- Both use the same $8 \times 8$ S-box, $\pi$.


## Basic Tools for Analysing S-boxes

Let $S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ be an S-box.

## Basic Tools for Analysing S-boxes

Let $S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ be an S-box.

## Definition (DDT)

The Difference Distribution Table of $S$ is a matrix of size $2^{n} \times 2^{n}$ such that

$$
\operatorname{DDT}[a, b]=\#\left\{x \in \mathbb{F}_{2}^{n} \mid S(x \oplus a) \oplus S(x)=b\right\} .
$$

## Basic Tools for Analysing S-boxes

Let $S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ be an S-box.

## Definition (DDT)

The Difference Distribution Table of $S$ is a matrix of size $2^{n} \times 2^{n}$ such that

$$
\operatorname{DDT}[a, b]=\#\left\{x \in \mathbb{F}_{2}^{n} \mid S(x \oplus a) \oplus S(x)=b\right\}
$$

## Definition (LAT)

The Linear Approximations Table of $S$ is a matrix of size $2^{n} \times 2^{n}$ such that

$$
\operatorname{LAT}[a, b]=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{x \cdot a \oplus S(x) \cdot b} .
$$

## Example

$$
S=[4,2,1,6,0,5,7,3]
$$

The DDT of $S$.
The LAT of $S$.

$$
\begin{aligned}
& {\left[\begin{array}{cccccccc}
8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 & 2 & 2 & 2 & 2 \\
0 & 0 & 4 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 2 & 2 & 2 \\
0 & 4 & 4 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 2 & 2 & 2
\end{array}\right] \quad\left[\begin{array}{cccccccc}
8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 4 & 0 & 0 & 4 & -4 \\
0 & 4 & 4 & 0 & 0 & 4 & -4 & 0 \\
0 & 4 & 0 & 4 & 0 & -4 & 0 & 4 \\
0 & 4 & 0 & -4 & 0 & -4 & 0 & -4 \\
0 & -4 & 4 & 0 & 0 & -4 & -4 & 0 \\
0 & 0 & -4 & 4 & 0 & 0 & -4 & -4 \\
0 & 0 & 0 & 0 & -8 & 0 & 0 & 0
\end{array}\right]} \\
& \#\left\{x \in \mathbb{F}_{2}^{n} \mid S(x \oplus a) \oplus S(x)=b\right\} \\
& \sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{x \cdot a \oplus S(x) \cdot b} .
\end{aligned}
$$

## The LAT of $\pi$



## TU-Decomposition

Decomposing a Mysterious S-box
The Plot Thickens

## The LAT of $\pi$ (reordered columns)



## TU-Decomposition

Decomposing a Mysterious S-box
The Plot Thickens

## The LAT of $\eta \circ \pi \circ \mu$



## The TU-Decomposition

## Definition

The TU-decomposition is a decomposition algorithm working against S-boxes with vector spaces of zeroes in their LAT.

Theorem
"Square of zeroes" in the LAT.


- $T$ and $U$ are mini-block ciphers
- $\mu$ and $\eta$ are linear permutations.


## First Complete Decomposition of $\pi$ [BPU16]



$\odot$ Multiplication in $\mathbb{F}_{2^{4}}$<br>$\mathcal{I}$ Inversion in $\mathbb{F}_{2^{4}}$<br>$\nu_{0}, \nu_{1}, \sigma 4 \times 4$ permutations<br>$\phi 4 \times 4$ function<br>$\alpha, \omega$ Linear permutations

## First Complete Decomposition of $\pi$ [BPU16]


$\odot$ Multiplication in $\mathbb{F}_{2^{4}}$
$\mathcal{I}$ Inversion in $\mathbb{F}_{2^{4}}$
$\nu_{0}, \nu_{1}, \sigma 4 \times 4$ permutations
$\phi 4 \times 4$ function
$\alpha, \omega$ Linear permutations

Ugly, but it would not be there if $\pi$ were random.

## Hardware Performance

| Structure | Area $\left(\mu \mathrm{m}^{2}\right)$ | Delay (ns) |
| :--- | :---: | :---: |
| Naive implementation | 3889.6 | 362.52 |
| With TU-decomposition | 1530.1 | 46.11 |

Knowledge of this decomposition divides:
■ the area by 2.5 , and

- the delay by 8


## Conclusion for Kuznyechik/Streebog?

The Russian S-box was built with a TU-decomposition...

## Conclusion for Kuznyechik/Streebog?

The Russian S-box was built with a TU-decomposition...
... or was it?

## Reopening a Cold Case (Twice)

## Detour through Belarus [PU16]

We identified some similar properties between $\pi$ and the S-box of the standard of Belarus... Which turned out to be based on a discrete logarithm.

## Reopening a Cold Case (Twice)

## Detour through Belarus [PU16]

We identified some similar properties between $\pi$ and the S-box of the standard of Belarus... Which turned out to be based on a discrete logarithm.

New Patterns [Per18]

$$
\begin{aligned}
& \pi(0 \oplus\langle 01,0 \mathrm{a}, 44,92\rangle)=\mathrm{c} 8 \oplus\langle 02,04,10,20\rangle \\
& \pi(0 \oplus\langle 05,22,49,8 b\rangle)=20 \oplus\langle 01,0 \mathrm{a}, 44,92\rangle .
\end{aligned}
$$

## Reopening a Cold Case (Twice)

## Detour through Belarus [PU16]

We identified some similar properties between $\pi$ and the S-box of the standard of Belarus... Which turned out to be based on a discrete logarithm.

New Patterns [Per18]

$$
\begin{aligned}
& \pi(0 \oplus\langle 01,0 \mathrm{a}, 44,92\rangle)=\mathrm{c} 8 \oplus\langle 02,04,10,20\rangle \\
& \pi(0 \oplus\langle 05,22,49,8 \mathrm{~b}\rangle)=20 \oplus\langle 01,0 \mathrm{a}, 44,92\rangle
\end{aligned}
$$

- $\langle 01,0 \mathrm{a}, 44,92\rangle \oplus\langle 05,22,49,8 \mathrm{~b}\rangle=\mathbb{F}_{2}^{8}$
- $(\mathrm{c} 8 \oplus\langle 05,22,49,8 \mathrm{~b}\rangle) \oplus(20 \oplus\langle 01,0 \mathrm{a}, 44,92\rangle)=\mathbb{F}_{2}^{8}$
- $(\mathrm{c} 8 \oplus\langle 05,22,49,8 \mathrm{~b}\rangle) \cap(20 \oplus\langle 01,0 \mathrm{a}, 44,92\rangle)=\pi(0)=\mathrm{fc}$


## Cosets to Cosets

$\mathrm{GF}\left(2^{8}\right)$

$$
\pi\left(\operatorname{GF}\left(2^{8}\right)\right)=\operatorname{GF}\left(2^{8}\right)
$$



## Cosets to Cosets

$\operatorname{GF}\left(2^{8}\right)$

$$
\pi\left(\operatorname{GF}\left(2^{8}\right)\right)=\operatorname{GF}\left(2^{8}\right)
$$



## Cosets to Cosets

$\mathrm{GF}\left(2^{8}\right)$

$$
\pi\left(\operatorname{GF}\left(2^{8}\right)\right)=\operatorname{GF}\left(2^{8}\right)
$$



## Cosets to Cosets

$\operatorname{GF}\left(2^{8}\right)$

$$
\pi\left(\operatorname{GF}\left(2^{8}\right)\right)=\operatorname{GF}\left(2^{8}\right)
$$



## Cosets to Cosets

$\mathrm{GF}\left(2^{8}\right)$

$$
\pi\left(\operatorname{GF}\left(2^{8}\right)\right)=\operatorname{GF}\left(2^{8}\right)
$$



## The TKlog [Per18]

A TKlog operates on $\mathrm{GF}\left(2^{2 m}\right)$ and uses:

- $\alpha$ : a generator of $\mathrm{GF}\left(2^{2 m}\right)$,
- $\kappa$ : an affine function $\mathbb{F}_{2}^{m} \rightarrow \mathrm{GF}\left(2^{2 m}\right)$ with $\kappa\left(\mathbb{F}_{2}^{m}\right) \oplus \mathrm{GF}\left(2^{m}\right)=\mathrm{GF}\left(2^{2 m}\right)$,
- $s$ : a permutation of $\mathbb{Z} /\left(2^{m}-1\right) \mathbb{Z}$.

The corresponding TKlog is denoted $\mathscr{T}_{\kappa, s}$ and it works as follows:

$$
\begin{cases}\mathscr{T}_{\kappa, s}(0) & =\kappa(0), \\ \mathscr{T}_{k, S}\left(\left(\alpha^{2^{m}+1}\right)^{j}\right) & =\kappa\left(2^{m}-j\right), \text { for } 1 \leq j \leq 2^{m}-1, \\ \mathscr{T}_{k, S}\left(\alpha^{i+\left(2^{m}+1\right) j}\right) & =\kappa\left(2^{m}-i\right) \oplus\left(\alpha^{2^{m}+1}\right)^{s(j)}, \text { for } 0<i, 0 \leq j<2^{m}-1 .\end{cases}
$$

## Case of $\pi$

- $p=X^{8}+X^{4}+X^{3}+X^{2}+1$,
- $s=[0,12,9,8,7,4,14,6,5,10,2,11,1,3,13]$,
- $k(x)=\Lambda(x) \oplus 0 x f c$,
- $\Lambda(1)=0 \times 12, \Lambda(2)=0 \times 26, \Lambda(4)=0 \times 24, \Lambda(8)=0 \times 30$


## Case of $\pi$

- $p=X^{8}+X^{4}+X^{3}+X^{2}+1$,
- $s=[0,12,9,8,7,4,14,6,5,10,2,11,1,3,13]$,
- $\kappa(x)=\Lambda(x) \oplus 0 x f c$,
- $\Lambda(1)=0 \times 12, \Lambda(2)=0 \times 26, \Lambda(4)=0 \times 24, \Lambda(8)=0 x 30$

$$
\text { \#TKlogs }=\underbrace{16}_{p} \times \underbrace{15!}_{s} \times \underbrace{\prod_{i=4}^{7}\left(2^{8}-2^{i}\right)}_{\wedge} \times \underbrace{2^{8}}_{k(0)} \approx 2^{82.6}
$$

\#8-bit perm. $=2^{1684} ;$ \#Affine perm. $=\underbrace{2^{8}}_{\text {cstte }} \times \underbrace{\prod_{i=0}^{7}\left(2^{8}-2^{i}\right)}_{\text {linear part }} \approx 2^{70.2}$.

## The Linear Layer of Streebog (1/2)

## 5.4 Линейное преобразование множества двоичных векторов

Линейное преобразование / множества двоичных векторов $V_{64}$ задается умножением справа на матрицу А над полем $G F(2)$, строки которой записаны ниже последовательно в шестнадцатеричном виде. Строка матрицы с номером $j, j=0, \ldots, 63$, записанная в виде $a_{j, 15} \ldots a_{j, 0}$, где $a_{j, i} \in Z_{16, i}=0, \ldots, 15$, есть $\operatorname{Vec}_{4}\left(a_{j, 15}\right) \| \ldots \mid \mathrm{Vec}_{4}\left(a_{j, 0}\right)$.

| 8e20faa 72 baOb 470 | 47107ddd9b505a38 | ad08b0e0c3282d1c | d8045870ef14980e |
| :---: | :---: | :---: | :---: |
| 6c022c38f90a4c07 | 3601161cf205268d | 1b8e0b0e798c13c8 | 83478b07b2468764 |
| a011d380818e8f40 | 5086e740ce47c920 | 2843fd2067adea10 | 14aff010bdd87508 |
| Oad97808d06cb404 | 05e23c0468365a02 | 8c711e02341b2d01 | 46b60f011a83988e |
| 90dab52a387ae76f | 486dd4151c3dfdb9 | 24b86a840e90f0d2 | 125c354207487869 |
| 092e94218d243cba | 8 a 174 a 9 ec 8121 e 5 d | 4585254f64090fa0 | accc9ca9328a8950 |
| $9 \mathrm{~d} 4 \mathrm{df05d5f661451}$ | c0a878a0a1330aa6 | 60543c50de970553 | 302a1e286fc58ca7 |
| 18150f14b9ec46dd | 0c84890ad27623e0 | 0642ca05693b9f70 | 0321658cba93c138 |
| 86275 df09ce8aaa8 | 439da0784e745554 | afc0503c273aa42a | d960281e9d1d5215 |
| e230140fc0802984 | 71180a8960409a42 | b60c05ca30204d21 | 5 b 068 c 651810 a 9 e |
| 456c34887a3805b9 | ac361a443d1c8cd2 | 561 b 0 d 22900 4669 | 2b838811480723ba |
| $9 \mathrm{bcf4486248d9f5d}$ | c3e9224312c8c1a0 | effa11af0964ee50 | f97d86d98a327728 |
| e4fa2054a80b329c | 727d102a548b194e | 39b008152acb8227 | 9258048415 eb 419 d |
| 492c024284fbaec0 | aa16012142f35760 | 550 b 8 e 9 e 2177 F 30 | a48b474f9ef5dc18 |
| 70a6a56e2440598e | 3853dc371220a247 | 1ca76e95091051ad | Oedd37c48a08a6d8 |
| 07e095624504536c | 8d70c431ac02a736 | c83862965601dd1b | 641c314b2b8ee083 |

## The Linear Layer of Streebog (2/2)

It is actually a matrix multiplication in $\operatorname{GF}\left(2^{8}\right)$ :
$\left[\begin{array}{llllllll}83 & 47 & 8 b & 07 & b 2 & 46 & 87 & 64 \\ 46 & b 6 & 0 f & 01 & 1 a & 83 & 98 & 8 e \\ a c & c c & 9 c & a 9 & 32 & 8 a & 89 & 50 \\ 03 & 21 & 65 & 8 c & b a & 93 & c 1 & 38 \\ 5 b & 06 & 8 c & 65 & 18 & 10 & a 8 & 9 e \\ f 9 & 7 d & 86 & d 9 & 8 a & 32 & 77 & 28 \\ a 4 & 8 b & 47 & 4 f & 9 e & f 5 & d c & 18 \\ 64 & 1 c & 31 & 4 b & 2 b & 8 e & e 0 & 83\end{array}\right]$

## The Linear Layer of Streebog (2/2)

It is actually a matrix multiplication in $\operatorname{GF}\left(2^{8}\right)$ :
$\left[\begin{array}{llllllll}83 & 47 & 8 b & 07 & b 2 & 46 & 87 & 64 \\ 46 & b 6 & 0 f & 01 & 1 a & 83 & 98 & 8 e \\ a c & c c & 9 c & a 9 & 32 & 8 a & 89 & 50 \\ 03 & 21 & 65 & 8 c & b a & 93 & c 1 & 38 \\ 5 b & 06 & 8 c & 65 & 18 & 10 & a 8 & 9 e \\ f 9 & 7 d & 86 & d 9 & 8 a & 32 & 77 & 28 \\ a 4 & 8 b & 47 & 4 f & 9 e & f 5 & d c & 18 \\ 64 & 1 c & 31 & 4 b & 2 b & 8 e & e 0 & 83\end{array}\right]$

The polynomial used is the same as in $\pi$.

## The Linear Layer of Streebog $(2 / 2)$

It is actually a matrix multiplication in $\operatorname{GF}\left(2^{8}\right)$ :
$\left[\begin{array}{llllllll}83 & 47 & 8 b & 07 & b 2 & 46 & 87 & 64 \\ 46 & b 6 & 0 f & 01 & 1 a & 83 & 98 & 8 e \\ a c & c c & 9 c & a 9 & 32 & 8 a & 89 & 50 \\ 03 & 21 & 65 & 8 c & b a & 93 & c 1 & 38 \\ 5 b & 06 & 8 c & 65 & 18 & 10 & a 8 & 9 e \\ f 9 & 7 d & 86 & d 9 & 8 a & 32 & 77 & 28 \\ a 4 & 8 b & 47 & 4 f & 9 e & f 5 & d c & 18 \\ 64 & 1 c & 31 & 4 b & 2 b & 8 e & e 0 & 83\end{array}\right]$

The polynomial used is the same as in $\pi$.
A new security analysis is badly needed!

## The Linear Layer of Streebog (2/2)

It is actually a matrix multiplication in $\operatorname{GF}\left(2^{8}\right)$ :

$$
\left[\begin{array}{llllllll}
83 & 47 & 8 b & 07 & b 2 & 46 & 87 & 64 \\
46 & b 6 & 0 f & 01 & 1 a & 83 & 98 & 8 e \\
a c & c c & 9 c & a 9 & 32 & 8 a & 89 & 50 \\
03 & 21 & 65 & 8 c & b a & 93 & c 1 & 38 \\
5 b & 06 & 8 c & 65 & 18 & 10 & a 8 & 9 e \\
f 9 & 7 d & 86 & d 9 & 8 a & 32 & 77 & 28 \\
a 4 & 8 b & 47 & 4 f & 9 e & f 5 & d c & 18 \\
64 & 1 c & 31 & 4 b & 2 b & 8 e & e 0 & 83
\end{array}\right]
$$

The polynomial used is the same as in $\pi$.
A new security analysis is badly needed!
Reverse-engineering works!

## Outline

1 My Area of Research: Symmetric Cryptography

2 From Russia With Love

3 Cryptanalysis of a Theorem

4 Conclusion

## Outline



We can obtain new mathematical results using decompositions.
1 The big APN problem and its only known solutions
2 Decomposing and generalizing this solution as butterflies
3 Generalizing a property of butterflies

## The Big APN Problem

## Definition (APN function)

A function $S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is Almost Perfect Non-linear (APN) if

$$
S(x \oplus a) \oplus S(x)=b
$$

has 0 or 2 solutions for all $a \neq 0$ and for all $b$.

## The Big APN Problem

## Definition (APN function)

A function $S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is Almost Perfect Non-linear (APN) if

$$
S(x \oplus a) \oplus S(x)=b
$$

has 0 or 2 solutions for all $a \neq 0$ and for all $b$.

## Big APN Problem

Are there APN permutations operating on $\mathbb{F}_{2}^{n}$ where $n$ is even? [NK95]

## Dillon et al.'s Permutation

## Only One Known Solution!

For $n=6$, Dillon et al. [BDKM09] found an APN permutation.

## Dillon et al.'s Permutation

## Only One Known Solution!

For $n=6$, Dillon et al. [BDKM09] found an APN permutation.


## Dillon et al.'s Permutation

## Only One Known Solution!

For $n=6$, Dillon et al. [BDKM09] found an APN permutation.


## Dillon et al.'s Permutation

## Only One Known Solution!

For $n=6$, Dillon et al. [BDKM09] found an APN permutation.


It is possible to make a TU-decomposition! [PUB16]

## On the Butterfly Structure



## Definition (Open Butterfly $\mathrm{H}_{\alpha, \beta}^{3}$ )

This permutation is an open butterfly [PUB16].

## On the Butterfly Structure



## Definition (Open Butterfly $\mathrm{H}_{\alpha, \beta}^{3}$ )

This permutation is an open butterfly [PUB16].

## Lemma

Dillon's permutation is affine-equivalent to $\mathrm{H}_{w, 1}^{3}$, where $\operatorname{Tr}(w)=0$.

## Closed Butterflies



## Definition (Closed butterfly $\mathrm{V}_{\alpha, \beta}^{3}$ )

This quadratic function is a closed butterfly.

## Closed Butterflies



## Definition (Closed butterfly $\mathrm{V}_{\alpha, \beta}^{3}$ )

This quadratic function is a closed butterfly.

## Lemma (Equivalence)

Open and closed butterflies with the same parameters are CCZ-equivalent.

## Properties of Butterflies

Let $n \leq 3$ be odd. Butterflies...

- ... are APN but only for $n=3$ [CDP17, CPT18]
- ... are differentially-4 (the best) for $n>3$

■ ... have the best non-linearity

- ... are rather cheap to implement


## Open Butterfly


$2 n$-bit permutation.
Algebraic degree $n$ (or $n+1$ ).

Closed Butterfly

$2 n$-bit function for $n \leq 3$ odd. Algebraic degree 2.

## Equivalence Relations (1/2)

## Definition (Affine-Equivalence)

$F$ and $G$ are affine equivalent if $G(x)=(B \circ F \circ A)(x)$, where $A, B$ are affine permutations.

## Equivalence Relations (1/2)

## Definition (Affine-Equivalence)

$F$ and $G$ are affine equivalent if $G(x)=(B \circ F \circ A)(x)$, where $A, B$ are affine permutations.

Equivalently, we need to have

$$
\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}=\left[\begin{array}{cc}
A^{-1} & 0 \\
0 & B
\end{array}\right]\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right) .
$$

## Equivalence Relations (2/2)

## Definition (CCZ-Equivalence [CcZ98])

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are $C$ (arlet)- $C$ (harpin)-Z(inoviev) equivalent if

$$
\Gamma_{G}=\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}=\mathcal{L}\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=\mathcal{L}\left(\Gamma_{F}\right),
$$

where $\mathcal{L}: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}^{n+m}$ is an affine permutation.
For example, $F$ and $F^{-1}$ are CCZ-equivalent.

## Equivalence Relations (2/2)

## Definition (CCZ-Equivalence [Ccz98])

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are $C($ arlet $)-C($ harpin)-Z(inoviev) equivalent if

$$
\Gamma_{G}=\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}=\mathcal{L}\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=\mathcal{L}\left(\Gamma_{F}\right),
$$

where $\mathcal{L}: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}^{n+m}$ is an affine permutation.
For example, $F$ and $F^{-1}$ are CCZ-equivalent.
CCZ-equivalence preserves some properties (differential and linear) but not others (algebraic degree).

## Equivalence Relations (2/2)

## Definition (CCZ-Equivalence [Ccz98])

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are $C($ arlet $)$ - $C$ (harpin)-Z(inoviev) equivalent if

$$
\Gamma_{G}=\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}=\mathcal{L}\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=\mathcal{L}\left(\Gamma_{F}\right),
$$

where $\mathcal{L}: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}^{n+m}$ is an affine permutation.
For example, $F$ and $F^{-1}$ are CCZ-equivalent.
CCZ-equivalence preserves some properties (differential and linear) but not others (algebraic degree).

The TU-decomposition plays a crucial role in CCZ-equivalence.

## Twist

Any function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ can be projected on $\mathbb{F}_{2}^{t} \times \mathbb{F}_{2}^{m-t}$.


## Twist

Any function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ can be projected on $\mathbb{F}_{2}^{t} \times \mathbb{F}_{2}^{m-t}$.

$G$

If $T$ is a permutation for all secondary inputs, then we define the $t$-twist equivalent of $F$ as $G$, where

$$
G(x, y)=\left(T_{y}^{-1}(x), U_{T_{y}^{-1}(x)}(y)\right)
$$

for all $(x, y) \in \mathbb{F}_{2}^{t} \times \mathbb{F}_{2}^{n-t}$.

## TU-Decomposition and CCZ-Equivalence

## Theorem ([CP19])

If $F$ and $G$ are CCZ-equivalent then either their equivalence is trivial or it involves a $t$-twist.

## TU-Decomposition and CCZ-Equivalence

## Theorem ([CP19])

If $F$ and $G$ are CCZ-equivalent then either their equivalence is trivial or it involves a $t$-twist.

In other words, if $F$ is non-trivially CCZ-equivalent to something else then it must have a TU-decomposition!

## Outline

1 My Area of Research: Symmetric Cryptography

2 From Russia With Love

3 Cryptanalysis of a Theorem

4 Conclusion

## Conclusion

## Decompositions play a crucial role in cryptography!

- When designing

■ When implementing
■ When attacking

## Conclusion

Decompositions play a crucial role in cryptography!

- When designing

■ When implementing
■ When attacking
They allow us to bring cryptographic techniques to other fields of mathematics.

## Open Problems (Symmetric Cryptography)

## Russian Shenanigans

Is it possible to use the latest decomposition of the Russian S-box to attack the corresponding algorithms?

## Open Problems (Symmetric Cryptography)

## Russian Shenanigans

Is it possible to use the latest decomposition of the Russian S-box to attack the corresponding algorithms?

## DES

What are the decompositions in the S-boxes of the DES (that we don't know of)? Could we use them in attacks?

## Open Problems (Discrete Mathematics)

TU-decomposition in GF
The TU-decomposition and the twist are defined over $\mathbb{F}_{2}^{n}$. Can we find a nice representation over $\mathrm{GF}\left(2^{n}\right)$ ?

## Open Problems (Discrete Mathematics)

TU-decomposition in GF
The TU-decomposition and the twist are defined over $\mathbb{F}_{2}^{n}$. Can we find a nice representation over $\mathrm{GF}\left(2^{n}\right)$ ?

## Big APN Problem

Is there an APN permutation of an even number of bits ( $n \geq 8$ )?

## Open Problems (Discrete Mathematics)

TU-decomposition in GF
The TU-decomposition and the twist are defined over $\mathbb{F}_{2}^{n}$. Can we find a nice representation over $\mathrm{GF}\left(2^{n}\right)$ ?

## Big APN Problem

Is there an APN permutation of an even number of bits ( $n \geq 8$ )?

## Other Decomposition

Are there other decompositions as general as the TU-decomposition? Are other mathematical structures explained by an underlying decomposition?

## The Last S-Box

$\begin{array}{llllllllllllllll}14 & 11 & 60 & 6 d & e 9 & 10 & e 3 & 2 & b & 90 & d & 17 & c 5 & b 0 & 9 f & c 5\end{array}$ d8 da be 228 f3 4 a9 fe f3 f5 fc bc 30 be 26 bb $88 \quad 85 \quad 46$ f4 2 e e fd 76 fe b0 11 4e de 35 bb $\begin{array}{llllllllllllll}30 & 4 b & 30 & d 6 & d d & d f & d f & d 4 & 90 & 7 a & d 8 & 8 c & 6 a & 89 \\ 30 & 39\end{array}$ e9 1 da d2 8587 d3 d4 ba $2 b$ d4 $9 f \quad 9 c \quad 38$ 8c 55 d3 86 bb db ec e0 46 48 bf 46 1b 1 c d7 d9 1 b e0 $\begin{array}{lllllllllllllll}23 & d 4 & d 7 & 7 f & 16 & 3 f & 3 & 3 & 44 & c 3 & 59 & 10 & 2 a & \text { da } & \text { ed }\end{array}$ 8 e d8 d1 db cb cb c3 c7 38 22 34 24 d1 d8 2e fc $44 \quad 8 \quad 38$ c8 c7 39 4c $5 f \quad 56$ 2a $\quad c f$

 $81 \quad 96 \quad 93 \quad 84 \quad 91$ d0 2 e d6 d2 $2 b \quad 78$ ef d6 9e 7 bb 72
 88 b1 8d b5 e3 4 e d7 81 $\begin{array}{llllllllllllllll}e 4 & 3 b & 81 & 81 & f a & 1 & 1 d & 4 & 22 & 0 & 6 & 1 & 27 & 68 & 27 & 2 e\end{array}$ 3b 83 c7 cc 25 9b d8 d5 1c $1 f$ e5 59 7f $3 f$ 3f ef


## Swap Matrices

The swap matrix permuting $\mathbb{F}_{2}^{n+m}$ is defined for $t \leq \min (n, m)$ as

$$
M_{t}=\left[\begin{array}{cccc}
0 & 0 & I_{t} & 0 \\
0 & I_{n-t} & 0 & 0 \\
I_{t} & 0 & 0 & 0 \\
0 & 0 & 0 & I_{m-t}
\end{array}\right]
$$

It has a simple interpretation:


For all $t \leq \min (n, m), M_{t}$ is an orthogonal and symmetric involution.

## Swap Matrices and Twisting

$\mathrm{F}: \mathbb{F}_{2}^{\mathrm{n}} \rightarrow \mathbb{F}_{2}^{m}$


$$
\Gamma_{F}=\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\} \quad \stackrel{M_{t}}{\longleftrightarrow} \Gamma_{G}=\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}
$$

$$
\mathcal{W}_{F}(u)=\mathcal{W}_{G}\left(M_{t}(u)\right)
$$

## Twisting and CCZ-Class

## Lemma

Twisting preserves the CCZ-equivalence class.

## Main Result

## Theorem

If $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are CCZ-equivalent, then

$$
\Gamma_{G}=\left(B \times M_{t} \times A\right)\left(\Gamma_{F}\right),
$$

where $A$ and $B$ are EA-mappings and where

$$
t=\operatorname{dim}\left(\operatorname{proj}_{\mathcal{V}^{\perp}}\left(\left(A^{T} \times M_{t} \times B^{T}\right)(\mathcal{V})\right)\right)
$$

## Corollary

If a function is CCZ-equivalent but not EA-equivalent to another function, then they have to be EA-equivalent to functions for which a $t$-twist is possible.

國 K．A．Browning，J．F．Dillon，R．E．Kibler，and M．T．McQuistan．
APN Polynomials and Related Codes．
J．of Combinatorics，Information and System Sciences，
34（1－4）：135－159， 2009.
目 Alex Biryukov，Léo Perrin，and Aleksei Udovenko． Reverse－engineering the S－box of streebog，kuznyechik and STRIBOBr1．
In Marc Fischlin and Jean－Sébastien Coron，editors， EUROCRYPT 2016，Part I，volume 9665 of LNCS，pages 372－402． Springer，Heidelberg，May 2016.
嗇 Claude Carlet，Pascale Charpin，and Victor Zinoviev． Codes，bent functions and permutations suitable for DES－like cryptosystems．
Designs，Codes and Cryptography，15（2）：125－156， 1998.
目 Anne Canteaut，Sébastien Duval，and Léo Perrin．
A generalisation of Dillon＇s APN permutation with the best known differential and nonlinear properties for all fields of size $2^{4 k+2}$ ．

IEEE Transactions on Information Theory, 63(11):7575-7591, Nov 2017.

- Anne Canteaut and Léo Perrin.

On CCZ-equivalence, extended-affine equivalence, and function twisting.
Finite Fields and Their Applications, 56:209-246, 2019.

- Anne Canteaut, Léo Perrin, and Shizhu Tian. If a generalised butterfly is APN then it operates on 6 bits.
Cryptology ePrint Archive, Report 2018/1036, 2018.
https://eprint.iacr.org/2018/1036.
R Kaisa Nyberg and Lars R. Knudsen.
Provable security against a differential attack.
Journal of Cryptology, 8(1):27-37, 1995.
T- Léo Perrin.
Partitions in the S-box of Streebog and Kuznyechik.
To appear (IACR ToSC), 2018.
國 Léo Perrin and Aleksei Udovenko.

Exponential s-boxes: a link between the s-boxes of BelT and Kuznyechik/Streebog.
IACR Trans. Symm. Cryptol., 2016(2):99-124, 2016.
http://tosc.iacr.org/index.php/ToSC/article/view/567.
围
Léo Perrin, Aleksei Udovenko, and Alex Biryukov.
Cryptanalysis of a theorem: Decomposing the only known solution to the big APN problem.
In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 93-122. Springer, Heidelberg, August 2016.

