Cryptanalysis, Reverse-Engineering and Design of Symmetric Cryptographic Algorithms

Léo Perrin

SnT , University of Luxembourg

April 25, 2017
PhD Defence

Outline

1 Introduction

2 On S-Box Reverse-Engineering

3 On Lightweight Cryptography

4 Conclusion

Cryptography? (1/2)

Alice

Cryptography? (1/2)

Cryptography? (1/2)

Charlie

Cryptography? (1/2)

Cryptography? (2/2)

Cryptography? (2/2)

Cryptography? (2/2)

Cryptography? (2/2)

Modern Cryptography

Before
Data encrypted
Letters/Digits

Method
By hand/
machine
Linguists
Cryptographers
inventors

Example

Modern Cryptography

Before
Letters/Digits
0,1
Data encrypted
Conclusion

	Before	Now
Data encrypted	Letters/Digits	0,1
Method	By hand/	
Cryptographers	Linguists	Computer program
	inventors	Mathematicians
Example	Computer scientists	

Symmetric Cryptography

There are many symmetric algorithms! Hash functions, MACs...

Symmetric Cryptography

There are many symmetric algorithms! Hash functions, MACs...

Definition (Block Cipher)

- Input: n-bit block x
- Parameter: k-bit key κ

■ Output: n-bit block $E_{K}(x)$

- Symmetry: E and E^{-1} use the same κ

Symmetric Cryptography

There are many symmetric algorithms! Hash functions, MACs...

Definition (Block Cipher)

- Input: n-bit block x
- Parameter: k-bit key κ

■ Output: n-bit block $E_{K}(x)$

- Symmetry: E and E^{-1} use the same κ

Properties needed:
Diffusion
Confusion
No cryptanalysis!

Symmetric cryptography is the topic of this thesis.

Symmetric cryptography is the topic of this thesis.

What did I work on?

Lightweight Cryptography

- Collision spectrum, entropy loss, T-sponges, and cryptanalysis of GLUON-64 (FSE'14) Khovratovich, Perrin; [Perrin and Khovratovich, 2015]

■ Differential analysis and meet-in-the-middle attack against round-reduced TWINE (FSE'15) Biryukov, Derbez, Perrin ; [Biryukov et al., 2015]

- Meet-in-the-middle attacks and structural analysis of round-reduced PRINCE (FSE'15) Derbez, Perrin ; [Derbez and Perrin, 2015]
- Design strategies for $A R X$ with provable bounds: Sparx and LAX (ASIACRYPT'16) Dinu, Perrin, Udovenko, Velichkov, GroßschädI, Biryukov ; [Dinu et al., 2016]

■ On Lightweight Symmetric Cryptography (SoK, Long Paper) (under submission) Biryukov, Perrin; see also cryptolux.org

S-Box Reverse-Engineering (1/3)

Actual Results on S-Boxes

■ On reverse-engineering S-boxes with hidden design criteria or structure (CRYPTO'15) Biryukov, Perrin ; [Biryukov and Perrin, 2015]

■ Reverse-engineering the S-box of Streebog, Kuznyechik and STRIBOBr1 (EUROCRYPT'16) Biryukov, Perrin, Udovenko ; [Biryukov et al., 2016b]

■ Exponential S-boxes: a link between the S-boxes of BelT and Kuznyechik/Streebog (ToSC'16), Perrin, Udovenko;
[Perrin and Udovenko, 2017]

S-Box Reverse-engineering (2/3)

Structural Attacks

- Cryptanalysis of Feistel networks with secret round functions (SAC'15) Biryukov, Leurent, Perrin ; [Biryukov et al., 2016a]
- Algebraic insights into the secret Feistel network (FSE'16) Perrin, Udovenko ; [Perrin and Udovenko, 2016]

■ Multiset-algebraic cryptanalysis of reduced Kuznyechik, Khazad, and secret SPNs (ToSC'16), Biryukov, Khovratovich, Perrin;
[Biryukov et al., 2017]

S-Box Reverse-engineering (3/3)

Big APN Problem

- Cryptanalysis of a theorem: Decomposing the only known solution to the big APN problem (CRYPTO'16) Perrin, Udovenko, Biryukov; [Perrin et al., 2016]

■ A generalisation of Dillon's APN permutation with the best known differential and nonlinear properties for all fields of size $2^{4 k+2}$ (IEEE Transactions on Information Theory'17) Canteaut, Duval, Perrin; [Canteaut et al., 2017]

Purposefully Hard Cryptography

■ A Generic Framework and Examples of Symmetrically and Asymmetrically Hard Functions (under submission) Biryukov, Perrin ;

■ Katchup and Katchup-H: Proofs of Work with Different Classes of Users (under submission, a patent was filed) Biryukov, Perrin ;

Outline

1 Introduction

2 On S-Box Reverse-Engineering

3 On Lightweight Cryptography

4 Conclusion

Plan of this Section

1 Introduction

2 On S-Box Reverse-Engineering

- Mathematical Background
- Detailed Analysis of the Two Tables
- TU-Decomposition

3 On Lightweight Cryptography

4 Conclusion

S-Box?

An S-Box is a small non-linear function mapping m bits to n usually specified via its look-up table.

S-Box?

An S-Box is a small non-linear function mapping m bits to n usually specified via its look-up table.

- Typically, $n=m, n \in\{4,8\}$

■ Used by many block ciphers/hash functions/stream ciphers.

- Necessary for the wide trail strategy.

Example

$\pi^{\prime}=(252,238,221,17,207,110,49,22,251,196,250,218,35,197,4,77,233$, $119,240,219,147,46,153,186,23,54,241.187,20,205,95,193,249,24,101$, 90, 226, 92, 239, 33, 129, 28, 60, 66, 139, 1, 142, 79, 5, 132, 2, 174, 227, 106, 143, $160,6,11,237,152,127,212,211,31,235,52,44,81,234,200,72,171,242,42$, 104, 162, 253, 58, 206, 204, 181, 112, 14, 86, 8, 12, 118, 18, 191, 114, 19, 71, 156, $183,93,135,21,161,150,41,16,123,154,199,243,145,120,111,157,158,178$, $177,50,117,25,61,255,53,138,126,109,84,198,128,195,189,13,87,223$, $245,36,169,62,168,67,201,215,121,214,246,124,34,185,3,224,15,236$, 222, 122, 148, 176, 188, 220, 232, 40, 80, 78, 51, 10, 74, 167, 151, 96, 115, 30, 0, $98,68,26,184,56,130,100,159,38,65,173,69,70,146,39,94,85,47,140,163$, $165,125,105,213,149,59,7,88,179,64,134,172,29,247,48,55,107,228,136$, 217, 231, 137, 225, 27, 131, 73, 76, 63, 248, 254, 141, 83, 170, 144, 202, 216, 133, $97,32,113,103,164,45,43,9,91,203,155,37,208,190,229,108,82,89,166$, $116,210,230,244,180,192,209,102,175,194,57,75,99,182)$.

Screen capture from [GOST, 2015].

S-Box Design

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
\square SPN
- Misty
- Feistel

■ Lai-Massey

- Pseudo-random
- Hill climbing

■ Unknown

S-Box Design

- AES S-Box

■ Inverse (other)

- Exponential
- Math (other)
\square SPN
- Misty
- Feistel

■ Lai-Massey

- Pseudo-random
- Hill climbing

■ Unknown

S-Box Design

- AES S-Box

■ Inverse (other)

- Exponential
\square Math (other)
\square SPN
Misty
- Feistel

■ Lai-Massey

- Pseudo-random
- Hill climbing

■ Unknown

S-Box Reverse-Engineering

- AES S-Box

■ Inverse (other)

- Exponential
- Math (other)
- SPN
- Misty
- Feistel

■ Lai-Massey

- Pseudo-random
- Hill climbing

■ Unknown

S-Box Reverse-Engineering

- AES S-Box

■ Inverse (other)

- Exponential
- Math (other)
- SPN

Misty

- Feistel

■ Lai-Massey

- Pseudo-random
- Hill climbing

■ Unknown

Motivation

A malicious designer can easily hide a structure in an S-Box.

Motivation

A malicious designer can easily hide a structure in an S-Box.

To keep an advantage in implementation (WB crypto)...

Motivation

A malicious designer can easily hide a structure in an S-Box.

To keep an advantage in implementation (WB crypto)...
... or an advantage in cryptanalysis (backdoor).

The Two Tables

Let $S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ be an S-Box.

The Two Tables

Let $S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ be an S-Box.

Definition (DDT)

The Difference Distribution Table of S is a matrix of size $2^{n} \times 2^{n}$ such that

$$
\operatorname{DDT}[a, b]=\#\left\{x \in \mathbb{F}_{2}^{n} \mid S(x \oplus a) \oplus S(x)=b\right\} .
$$

The Two Tables

Let $S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ be an S-Box.

Definition (DDT)

The Difference Distribution Table of S is a matrix of size $2^{n} \times 2^{n}$ such that

$$
\operatorname{DDT}[a, b]=\#\left\{x \in \mathbb{F}_{2}^{n} \mid S(x \oplus a) \oplus S(x)=b\right\} .
$$

Definition (LAT)

The Linear Approximations Table of S is a matrix of size $2^{n} \times 2^{n}$ such that

$$
\operatorname{LAT}[a, b]=\#\left\{x \in \mathbb{F}_{2}^{n} \mid x \cdot a=S(x) \cdot b\right\}-2^{n-1}
$$

Example

$$
S=[4,2,1,6,0,5,7,3]
$$

The DDT of S.

$$
\left[\begin{array}{llllllll}
8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 & 2 & 2 & 2 & 2 \\
0 & 0 & 4 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 2 & 2 & 2 \\
0 & 4 & 4 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 2 & 2 & 2
\end{array}\right]
$$

$$
\left[\begin{array}{cccccccc}
4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 2 & 0 & 0 & 2 & -2 \\
0 & 2 & 2 & 0 & 0 & 2 & -2 & 0 \\
0 & 2 & 0 & 2 & 0 & -2 & 0 & 2 \\
0 & 2 & 0 & -2 & 0 & -2 & 0 & -2 \\
0 & -2 & 2 & 0 & 0 & -2 & -2 & 0 \\
0 & 0 & -2 & 2 & 0 & 0 & -2 & -2 \\
0 & 0 & 0 & 0 & -4 & 0 & 0 & 0
\end{array}\right]
$$

Coefficient Distribution in the DDT

If an n-bit S-Box is bijective, then its DDT coefficients behave like independent and identically distributed random variables following a Poisson distribution:

$$
\operatorname{Pr}[\operatorname{DDT}[a, b]=2 z]=\frac{e^{-1 / 2}}{2^{z} z} .
$$

Coefficient Distribution in the DDT

If an n-bit S-Box is bijective, then its DDT coefficients behave like independent and identically distributed random variables following a Poisson distribution:

$$
\operatorname{Pr}[\operatorname{DDT}[a, b]=2 z]=\frac{e^{-1 / 2}}{2^{z} z} .
$$

- Always even, ≥ 0
- Typically between 0 and 16 .
- Lower is better.

Coefficient Distribution in the LAT

If an n-bit S-Box is bijective, then its LAT coefficients behave like independent and identically distributed random variables following this distribution:

$$
\operatorname{Pr}[\operatorname{LAT}[a, b]=2 z]=\frac{\binom{2^{n-1}}{2^{n-2+z}}}{\binom{2^{n}}{2^{n-1}}} .
$$

Coefficient Distribution in the LAT

If an n-bit S-Box is bijective, then its LAT coefficients behave like independent and identically distributed random variables following this distribution:

$$
\operatorname{Pr}[\operatorname{LAT}[a, b]=2 z]=\frac{\binom{2^{n-1}}{2^{n-2+z}}}{\binom{2^{n}}{2^{n-1}}}
$$

■ Always even, signed.
■ Typically between -40 and 40 .
■ Lower absolute value is better.

Looking Only at the Maximum

δ	$\log _{2}(\operatorname{Pr}[\max (\mathcal{D}) \leq \delta])$	ℓ	$\log _{2}(\operatorname{Pr}[\max (\mathcal{L}) \leq \ell])$
		38	-0.084
14	-0.006	36	-0.302
12	-0.094	34	-1.008
		32	-3.160
10	-1.329	30	-9.288
8	-16.148	28	-25.623
6	-164.466	26	-66.415
6	-164.466	24	-161.900
4	-1359.530	22	-371.609
DDT		LAT	

Probability that the maximum coefficient in the DDT/LAT of an 8-bit permutation is at most equal to a certain threshold.

Looking Only at the Maximum

δ	$\log _{2}(\operatorname{Pr}[\max (\mathcal{D}) \leq \delta])$	ℓ	$\log _{2}(\operatorname{Pr}[\max (\mathcal{L}) \leq \ell])$
		38	-0.084
14	-0.006	36	-0.302
12	-0.094	34	-1.008
		32	-3.160
10	-1.329	30	-9.288
8	-16.148	28	-25.623
6	-164.466	26	-66.415
6	-164.466	24	-161.900
4	-1359.530	22	-371.609
DDT		LAT	

Probability that the maximum coefficient in the DDT/LAT of an 8-bit permutation is at most equal to a certain threshold.

Taking Number of Maximum Values into Account

Application of this Analysis?

We applied this method on the S-Box of Skipjack.

What is Skipjack? (1/2)

Type Block cipher
Bloc 64 bits
Key 80 bits
Authors NSA
Publication 1998

What is Skipjack? (2/2)

■ Skipjack was supposed to be secret...

■ ... but eventually published in 1998 [NIST, 1998],

What is Skipjack? (2/2)

■ Skipjack was supposed to be secret...

■ ... but eventually published in 1998 [NIST, 1998],
■ It uses an 8×8 S-Box (F) specified only by its LUT,

What is Skipjack? (2/2)

■ Skipjack was supposed to be secret...

■ ... but eventually published in 1998 [NIST, 1998],
■ It uses an 8×8 S-Box (F) specified only by its LUT,

- Skipjack was to be used by the Clipper Chip.

Reverse-Engineering F

For Skipjack's $F, \max ($ LAT $)=28$ and $\# 28=3$.

Reverse-Engineering F

For Skipjack's $F, \max ($ LAT $)=28$ and $\# 28=3$.

Reverse-Engineering F

For Skipjack's $F, \max ($ LAT $)=28$ and $\# 28=3$.

Reverse-Engineering F

For Skipjack's $F, \max ($ LAT $)=28$ and $\# 28=3$.

$$
\operatorname{Pr}[\max (\mathrm{LAT})=28 \text { and } \# 28 \leq 3] \approx 2^{-55}
$$

What Can We Deduce?

- F has not been picked uniformly at random.
- F has not been picked among a feasibly large set of random S-Boxes.
- Its linear properties were optimized (though poorly).

What Can We Deduce?

- F has not been picked uniformly at random.
- F has not been picked among a feasibly large set of random S-Boxes.
- Its linear properties were optimized (though poorly).

The S-Box of Skipjack was built using a dedicated algorithm.

Conclusion on Skipjack

- AES S-Box

■ Inverse (other)

- Exponential
- Math (other)
- SPN
- Misty
- Feistel

■ Lai-Massey

- Pseudo-random
- Hill climbing

■ Unknown

Conclusion on Skipjack

■ AES S-Box
■ Inverse (other)

- Exponential
- Math (other)
- SPN
- Misty
- Feistel

■ Lai-Massey

- Pseudo-random
- Hill climbing

■ Unknown

Distinguisher vs. Decomposition

We have figured out that F is not random...

Distinguisher vs. Decomposition

We have figured out that F is not random...
But what can we do to find actual structures?

Structural Attacks

Attacks against structures regardless of their details. Examples:
■ Integral attacks against SPNs,
■ Yoyo game against Feistel Networks,
■ Looking at the Pollock representations of the DDT/LAT,

Distinguisher vs. Decomposition

We have figured out that F is not random...

But what can we do to find actual structures?

Structural Attacks

Attacks against structures regardless of their details. Examples:

- Integral attacks against SPNs,

■ Yoyo game against Feistel Networks,

- Looking at the Pollock representations of the DDT/LAT,

■ TU-Decomposition.

TU-Decomposition in a Nutshell

$\boxed{1}$ Identify linear patterns in zeroes of LAT;

TU-Decomposition in a Nutshell

1 Identify linear patterns in zeroes of LAT;

2 Deduce linear layers μ, η such that π is decomposed as in right picture;

TU-Decomposition in a Nutshell

1 Identify linear patterns in zeroes of LAT;

2 Deduce linear layers μ, η such that π is decomposed as in right picture;

3 Decompose U, T;

TU-Decomposition in a Nutshell

1 Identify linear patterns in zeroes of LAT;

2 Deduce linear layers μ, η such that π is decomposed as in right picture;

3 Decompose U, T;
4 Put it all together.

Kuznyechik/Stribog

Stribog

Type Hash function
Publication [GOST, 2012]
Kuznyechik
Type Block cipher
Publication [GOST, 2015]

Kuznyechik/Stribog

Stribog

Type Hash function
Publication [GOST, 2012]
Kuznyechik
Type Block cipher
Publication [GOST, 2015]

Common ground

- Both are standard symmetric primitives in Russia.
- Both were designed by the FSB (TC26).

■ Both use the same 8×8 S-Box, π.

The LAT of π

The LAT of $\eta \circ \pi \circ \mu$

Final Decomposition Number 1

\odot Multiplication in $\mathbb{F}_{2^{4}}$
α Linear permutation
\mathcal{I} Inversion in $\mathbb{F}_{2^{4}}$
$v_{0}, v_{1}, \sigma 4 \times 4$ permutations
$\phi 4 \times 4$ function
ω Linear permutation

Conclusion for Kuznyechik/Stribog?

The Russian S-Box was built like a strange Feistel...

Conclusion for Kuznyechik/Stribog?

The Russian S-Box was built like a strange Feistel...
 ... or was it?

Conclusion for Kuznyechik/Stribog?

The Russian S-Box was built like a strange Feistel...
 ... or was it?

Belarussian inspiration

■ The last standard of Belarus [Bel. St. Univ., 2011] uses an 8-bit S-box,
■ somewhat similar to π...

Conclusion for Kuznyechik/Stribog?

The Russian S-Box was built like a strange Feistel...
 ... or was it?

Belarussian inspiration

■ The last standard of Belarus [Bel. St. Univ., 2011] uses an 8-bit S-box,
■ somewhat similar to π...
■ ... based on a finite field exponential!

Final Decomposition Number 2 (!)

T_{0}		1	2			56		78					c		$\overline{\mathrm{e}}$	
T_{1}		1	2	3				7		9	a	b	c	d	e	
T_{2}		1	2	3				78		9	a	b	c	d	f	
T_{3}		1	2	3				7		9	a	b	c	f	d	
T_{4}		1	2	3			6	78			a	b	f	c	d	
T_{5}		1	2	3			6	78			a	f	b	c	d	
T_{6}		1	2	3				7		9	f	a	b	c	d	
T_{7}		1	2	3				78		f	9	a	b	c	d	
T_{8}		1	2	3			6	7		8	9	a	b	c	d	
T_{9}		1	2	3						8	9	a	b	c	d	
T_{a}		1	2	3	4		f	6		8	9	a	b	c	d	
T_{b}		1	2	3			5	67			9	a	b	c	d	
T_{c}		1	2	3			5	67		8	9	a	b	c		
T_{d}		1	2					67		8	9	a	b	c		
T_{e}		1			3			67		8		a	b			
T_{f}		f		2										c	d	

Conclusion on Kuznyechik/Stribog

- AES S-Box

■ Inverse (other)

- Exponential
- Math (other)
- SPN
- Misty
- Feistel

■ Lai-Massey

- Pseudo-random
- Hill climbing

■ Unknown

Conclusion on Kuznyechik/Stribog

- AES S-Box

■ Inverse (other)

- Exponential
- Math (other)
\square SPN
- Misty
- Feistel

■ Lai-Massey

- Pseudo-random
- Hill climbing

■ Unknown

Conclusion on Kuznyechik/Stribog

- AES S-Box

■ Inverse (other)

- Exponential
- Math (other)
\square SPN
- Misty
- Feistel

■ Lai-Massey

- Pseudo-random
- Hill climbing

■ Unknown

Conclusion on Kuznyechik/Stribog

- AES S-Box

■ Inverse (other)

- Exponential
- Math (other)
\square SPN
- Misty
- Feistel

■ Lai-Massey

- Pseudo-random
- Hill climbing

■ Unknown

Outline

1 Introduction

2 On S-Box Reverse-Engineering

3 On Lightweight Cryptography

4 Conclusion

Plan of this Section

1 Introduction

2 On S-Box Reverse-Engineering

3 On Lightweight Cryptography

- Internet of Things
- State of the Art

■ Our Block Cipher: SPARX

4 Conclusion

What Things?

Everything is being connected to the internet.

What Things?

Everything

What Things?

Everything

What Things?

Security

"In IoT, the S is for Security."

■ Internet-enabled devices have security flaws.

- Security is an afterthought (at best).
- Security has a cost in terms of engineering...

■ ... and computationnal resources!

Lightweight Cryptography

Lightweight cryptography uses little resources.

Lightweight Cryptography from the Industry

Stream ciphers, unless $\dagger(\mathrm{BC})$ or $\ddagger(\mathrm{MAC})$

- $\mathrm{A} 5 / 1$
- $\mathrm{A} 5 / 2$
- Cmea \dagger
- Oryx
- A5-GMR-1
- A5-GMR-2
- Dsc
- SecureMem.
- CryptoMem.

■ Hitag2

- Megamos
- Keeloq \dagger
- Dst40 †

■ iClass

- Crypto-1
- Css
- Cryptomeria \dagger
- CsA-BC †
- CsA-SC
- $\mathrm{PC}-1$
- SecurlD \ddagger
- E0
- RC4

Lightweight Cryptography from the Industry

Stream ciphers, unless $\dagger(\mathrm{BC})$ or $\ddagger(\mathrm{MAC})$

- $\mathrm{A} 5 / 1$
- $\mathrm{A} 5 / 2$
- Cmea \dagger
- Oryx
- A5-GMR-1
- A5-GMR-2
- Dsc
- SecureMem.
- CryptoMem.

■ Hitag2

- Megamos
- Keeloq \dagger
- Dst40 †

■ iClass
■ Crypto-1

- Css
- Cryptomeria \dagger
- CsA-BC †
- CsA-SC
- $\mathrm{PC}-1$
- SecurlD \ddagger
- E0
- RC4

They're all dead (attacks in less than 2^{64}).

Lightweight Block Ciphers from Academia

- 3-Way
- RC5
- DESLX
- PRESENT
- PRINCE
- ITUbee
- Fantomas
- Robin
- Midori
- AES
- Khazad
- Noekeon
- Iceberg
- mCrypton
■ HIGHT
- SEA
- CLEFIA
- MIBS
- KATAN
- GOST rev.
- PRINTCipher
- EPCBC
- KLEIN
- LBlock
- LED
- Piccolo
- PICARO
- TWINE
■ Zorro
- Chaskey
- PRIDE
■ Joltik
- LEA
- iScream
- SKINNY
- LBlock-s
- SPARX
- Scream
- Mysterion
- Lilliput
- Qarma

48 distinct block ciphers!

Common Trade-Offs in LWC

- Small internal state size.

Common Trade-Offs in LWC

- Small internal state size.
- Small key.

Common Trade-Offs in LWC

- Small internal state size.
- Small key.
- Simple key schedule.

Common Trade-Offs in LWC

- Small internal state size.
- Small key.
- Simple key schedule.
- No table look-ups (instead, ARX or bit-sliced S-Box).

How did we design SPARX?

Block Cipher Design (1/2)

$$
\text { Requirement } \quad \text { S-Box-based } \quad \text { ARX-based }
$$

Confusion $S \quad$ 田

Diffusion
L
田 \lll, \oplus

Block Cipher Design (2/2)

$$
P_{\mathrm{diff}} \leq\left(\frac{\Delta_{S}}{2^{b}}\right)^{\# \text { active S-Boxes }}
$$

Design of an S-Box based SPN (wide trail strategy)

Block Cipher Design (2/2)

$$
P_{\mathrm{diff}} \leq\left(\frac{\Delta_{S}}{2^{b}}\right)^{\# \text { active S-Boxes }}
$$

Design of an S-Box based SPN (wide trail strategy)

Design of an ARX-cipher (allegory)
source: Wiki Commons

Block Cipher Design (2/2)

$$
P_{\mathrm{diff}} \leq\left(\frac{\Delta_{S}}{2^{b}}\right)^{\# \text { active S-Boxes }}
$$

Design of an S-Box based SPN (wide trail strategy)

Design of an ARX-cipher (allegory)
source: Wiki Commons

Can we use ARX and have provable bounds?

Trail Based Argument

Bouding 2-round differential probability.

Trail Based Argument

Bouding 2-round differential probability.

1 Consider all trails $A \leadsto B \leadsto C$, where $A=\left(a_{0}, \ldots, a_{\ell}\right)$, etc.

Trail Based Argument

1 Consider all trails $A \leadsto B \leadsto C$, where $A=\left(a_{0}, \ldots, a_{\ell}\right)$, etc.

Bouding 2-round differential probability.

Trail Based Argument

Bouding 2-round differential probability.
1 Consider all trails $A \leadsto B \leadsto C$, where $A=\left(a_{0}, \ldots, a_{\ell}\right)$, etc.

2 Markov assumption:

$$
\operatorname{Pr}[A \leadsto B \leadsto C]=\operatorname{Pr}[A \leadsto B] \times \operatorname{Pr}[B \leadsto C]
$$

Trail Based Argument

Bouding 2-round differential probability.
1 Consider all trails $A \leadsto B \leadsto C$, where $A=\left(a_{0}, \ldots, a_{\ell}\right)$, etc.

2 Markov assumption:

$$
\operatorname{Pr}[A \leadsto B \leadsto C]=\operatorname{Pr}[A \leadsto B] \times \operatorname{Pr}[B \leadsto C]
$$

3 Show that, for all A, B, C :

- if $\operatorname{Pr}[A \sim B]$ is high,
- then $\operatorname{Pr}[B \sim C]$ is low.

Trail Based Argument

Bouding 2-round differential probability.
1 Consider all trails $A \leadsto B \leadsto C$, where $A=\left(a_{0}, \ldots, a_{\ell}\right)$, etc.

2 Markov assumption:

$$
\operatorname{Pr}[A \leadsto B \leadsto C]=\operatorname{Pr}[A \leadsto B] \times \operatorname{Pr}[B \leadsto C]
$$

3 Show that, for all A, B, C :
■ if $\operatorname{Pr}[A \leadsto B]$ is high,

- then $\operatorname{Pr}[B \leadsto C]$ is low.

4 Conclude that $\operatorname{Pr}[A \sim B \sim C]$ can't be high.

Proving Point 3: Wide Trail Argument

Wide Trail Argument

■ At the S-Box level, $\operatorname{Pr}\left[a_{i} \leadsto b_{i}\right] \leq p$.

■ At the trail level, if $\#\left\{i, a_{i} \neq 0\right\}$ is low then $\#\left\{i, b_{i} \neq 0\right\}$ is high because their sum is $\geq B(L)$.

Conclusion: best trail over 2 rounds has probability at most

$$
p^{B(L)}
$$

Proving Point 3: Long Trail Argument

Long Trail Argument

- At the S-Box level, use heuristic to show

$$
\begin{gathered}
\operatorname{Pr}\left[a_{i} \leadsto b_{i}\right] \leq p_{1}, \\
\operatorname{Pr}\left[a_{i} \leadsto b_{i} \leadsto c_{i}\right] \leq p_{2} \ll p_{1}^{2} \ldots
\end{gathered}
$$

Proving Point 3: Long Trail Argument

Long Trail Argument

- At the S-Box level, use heuristic to show

$$
\begin{gathered}
\operatorname{Pr}\left[a_{i} \leadsto b_{i}\right] \leq p_{1}, \\
\operatorname{Pr}\left[a_{i} \leadsto b_{i} \leadsto c_{i}\right] \leq p_{2} \ll p_{1}^{2} \ldots
\end{gathered}
$$

- At the trail level, decompose $A \leadsto B \leadsto C$ into independent trails at the S-Box level, e.g. $a_{0} \leadsto b_{1} \leadsto c_{0}, a_{1} \leadsto b_{0}, \ldots$

Proving Point 3: Long Trail Argument

Long Trail Argument

■ At the S-Box level, use heuristic to show

$$
\begin{gathered}
\operatorname{Pr}\left[a_{i} \leadsto b_{i}\right] \leq p_{1}, \\
\operatorname{Pr}\left[a_{i} \leadsto b_{i} \leadsto c_{i}\right] \leq p_{2} \ll p_{1}^{2} \ldots
\end{gathered}
$$

\square At the trail level, decompose $A \leadsto B \leadsto C$ into independent trails at the S-Box level, e.g. $a_{0} \leadsto b_{1} \leadsto c_{0}, a_{1} \leadsto b_{0}, \ldots$

■ Bound probability using product of p_{1}, p_{2}, etc. depending on the lengths of the S-Box-level trails.

SPARX

1 Substitution-Permutation ARX.
2 Built using a wide-trail strategy...
3 ... thus, provably secure against differential/linear attacks!
4 Quite efficient on micro-controllers.

n / k	$64 / 128$	$128 / 128$	$128 / 256$
\# Rounds/Step	3	4	4
\# Steps	8	8	10
Best Attack (\# rounds)	$15 / 24$	$22 / 32$	$24 / 40$

High Level View of SPARX-64/128

Impossible differential attack on reduced round SPARX-64/128
(AFRICACRYPT'2017)
Abdelkhalek, A., Tolba, M., and Youssef, A;
[Abdelkhalek et al., 2017]

Outline

1 Introduction

2 On S-Box Reverse-Engineering

3 On Lightweight Cryptography

4 Conclusion

Plan of this Section

1 Introduction

2 On S-Box Reverse-Engineering

3 On Lightweight Cryptography

4 Conclusion

Conclusion

1 We can recover the majority of known S-Box structures and derive new results about Skipjack and Kuznyechik.

Conclusion

1 We can recover the majority of known S-Box structures and derive new results about Skipjack and Kuznyechik.

2 We can design an efficient ARX-based lightweight block ciphers with provable security against differential/linear attacks.

The Last S-Box

14	11	60	6d	e9	10	e3	2	b	90	d	17	c5	b0	$9 f$	c5
d8	da	be	22	8	f3	4	a9	fe	f3	f5	fc	bc	30	be	26
bb	88	85	46	f4	2e	e	fd	76	fe	b0	11	4 e	de	35	bb
30	4b	30	d6	dd	df	df	d4	90	7a	d8	8c	6a	89	30	3
e9	1	da	d2	85	87	d3	d4	ba	2b	d4	9 f	9c	38	8 c	55
d3	86	bb	db	ec	e0	46	48	bf	46	1b	1c	d7	d9	1 b	
23	d4	d7	7 f	16	3 f	3	3	44	c3	59	10	2a	da	ed	
8 e	d8	d1	db	cb	cb	c3	c7	38	22	34	3d	db	85	23	
24	d1	d8	2e	fc	44	8	38	c8	c7	39	4c	$5 f$	56	2 a	
d0	e9	d2	68	e4	e3	e9	13	e2	C	97	e4	60	29	d7	
d9	16	24	94	b3	e3	4c	4c	4f	39	e0	4b	bc	2c	d3	
81	96	93	84	91	d0	2 e	d6	d2	2 b	78	ef	d6	9 e	7b	
ad	c4	68	92	7 a	d2	5	2b	1e	d0	dc	b1	22	3 f	c3	
88	b1	8d	b5	e3	4 e	d7	81	3	15	17	25	4 e	65	88	
e4	3b	81	81	fa	1	1d	4	22	0	6	1	27	68	27	
3 b	83	c7	cc	25	9 b	d8	d5	1c	1f	e5	59	7f	3 f	$3 f$	

On the Butterfly Structure

(a) Open (bijective) butterfly H_{α}^{e}.

(b) Closed (non-bijective) butterfly V_{α}^{e}.

Figure: The two types of butterfly structure with coefficient α and exponent e.

Details About Skipjack

High Level View of SPARX (algo)

```
Algorithm 7.1 SpARX encryption
Inputs plaintext \(\left(x_{0}, \ldots, x_{w-1}\right)\); key \(\left(k_{0}, \ldots, k_{v-1}\right)\)
Output ciphertext \(\left(y_{0}, \ldots, y_{w-1}\right)\)
    Let \(y_{i} \leftarrow x_{i}\) for all \(i \in[0, \ldots, w-1]\)
    for all \(s \in\left[0, n_{s}-1\right]\) do
        for all \(i \in[0, w-1]\) do
            for all \(r \in\left[0, r_{a}-1\right]\) do
                \(y_{i} \leftarrow y_{i} \oplus k_{r}\)
                    \(y_{i} \leftarrow A\left(y_{i}\right)\)
            end for
            \(\left(k_{0}, \ldots, k_{v-1}\right) \leftarrow K_{v}\left(\left(k_{0}, \ldots, k_{v-1}\right)\right)\)
        end for
            \(\left(y_{0}, \ldots, y_{w-1}\right) \leftarrow \lambda_{w}\left(\left(y_{0}, \ldots, y_{w-1}\right)\right)\)
                            \(\triangleright\) Linear mixing layer
    end for
    Let \(y_{i} \leftarrow y_{i} \oplus k_{i}\) for all \(i \in[0, \ldots, w-1]\)
                            \(\triangleright\) Final key addition
    return \(\left(y_{0}, \ldots, y_{w-1}\right)\)
```

\triangleright Update key state
end for

$$
\left(y_{0}, \ldots, y_{w-1}\right) \leftarrow \lambda_{w}\left(\left(y_{0}, \ldots, y_{w-1}\right)\right)
$$

\triangleright Linear mixing layer
\triangleright Final key addition

```
return \(\left(y_{0}, \ldots, y_{w-1}\right)\)
```


Details About ULW vs. IoT Crypto

	Ultra-Lightweight	loT
Block size	64 bits	≥ 128 bits
Security level	≥ 80 bits	≥ 128 bits
Relevant attacks	low data complexity	Same as "regular" crypto
Intended platform	dedicated circuit	low-end CPUs
SCA resilience	important	important
Functionality	one per device	encryption, authentication...
Connection	to a central hub	to a global network

Table : A summary of the differences between ultra-lightweight and IoT cryptography.

Hard Block Cipher

Katchup-H

Fixing Justification of Attack 11.5.4 (1/2)

Lemma

Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ be a Boolean function and let $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ be a permutation. Then:

$$
\operatorname{deg}(F \circ G)=n-1 \quad \Longrightarrow \quad \operatorname{deg}(F)+\operatorname{deg}\left(G^{-1}\right) \geq n .
$$

Fixing Justification of Attack 11.5.4 (2/2)

If $\operatorname{deg}(F \circ G)=n-1$, then $\exists i \leq n$ such that $\bigoplus_{x \in C_{i}}(F \circ G)(x)=1$.

Fixing Justification of Attack 11.5.4 (2/2)

If $\operatorname{deg}(F \circ G)=n-1$, then $\exists i \leq n$ such that $\bigoplus_{x \in C_{i}}(F \circ G)(x)=1$.
Let $I_{i}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ be such that $I_{i}(x)=1 \Leftrightarrow x \in C_{i}$:

$$
\bigoplus_{x \in C_{i}}(F \circ G)(x)=\bigoplus_{x \in \mathbb{F}_{2}^{n}} F(G(x)) \times I_{i}(x),
$$

Fixing Justification of Attack 11.5.4 (2/2)

If $\operatorname{deg}(F \circ G)=n-1$, then $\exists i \leq n$ such that $\bigoplus_{x \in C_{i}}(F \circ G)(x)=1$.
Let $I_{i}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ be such that $I_{i}(x)=1 \Leftrightarrow x \in C_{i}$:

$$
\bigoplus_{x \in C_{i}}(F \circ G)(x)=\bigoplus_{x \in \mathbb{P}_{2}^{n}} F(G(x)) \times I_{i}(x),
$$

and let $y=G(x)$. Then:

$$
\bigoplus_{x \in C_{i}}(F \circ G)(x)=\bigoplus_{y \in \mathbb{F}_{2}^{n}} F(y) \times I_{i}\left(G^{-1}(y)\right) .
$$

Fixing Justification of Attack 11.5.4 (2/2)

If $\operatorname{deg}(F \circ G)=n-1$, then $\exists i \leq n$ such that $\bigoplus_{x \in C_{i}}(F \circ G)(x)=1$.
Let $I_{i}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ be such that $I_{i}(x)=1 \Leftrightarrow x \in C_{i}$:

$$
\bigoplus_{x \in C_{i}}(F \circ G)(x)=\bigoplus_{x \in \mathbb{P}_{2}^{n}} F(G(x)) \times I_{i}(x),
$$

and let $y=G(x)$. Then:

$$
\bigoplus_{x \in C_{i}}(F \circ G)(x)=\bigoplus_{y \in \mathbb{F}_{2}^{n}} F(y) \times I_{i}\left(G^{-1}(y)\right) .
$$

This sum is equal to 1 if and only if $x \mapsto F(x) \times I_{i}\left(G^{-1}(x)\right)$ has degree n.

Fixing Justification of Attack 11.5.4 (2/2)

If $\operatorname{deg}(F \circ G)=n-1$, then $\exists i \leq n$ such that $\bigoplus_{x \in C_{i}}(F \circ G)(x)=1$.
Let $I_{i}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ be such that $I_{i}(x)=1 \Leftrightarrow x \in C_{i}$:

$$
\bigoplus_{x \in C_{i}}(F \circ G)(x)=\bigoplus_{x \in \mathbb{F}_{2}^{n}} F(G(x)) \times I_{i}(x),
$$

and let $y=G(x)$. Then:

$$
\bigoplus_{x \in C_{i}}(F \circ G)(x)=\bigoplus_{y \in \mathbb{F}_{2}^{n}} F(y) \times I_{i}\left(G^{-1}(y)\right) .
$$

This sum is equal to 1 if and only if $x \mapsto F(x) \times I_{i}\left(G^{-1}(x)\right)$ has degree n. I_{i} is affine $\left(I_{i}(x)=1+x_{i}\right)$.

Fixing Justification of Attack 11.5.4 (2/2)

If $\operatorname{deg}(F \circ G)=n-1$, then $\exists i \leq n$ such that $\bigoplus_{x \in C_{i}}(F \circ G)(x)=1$.
Let $I_{i}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ be such that $I_{i}(x)=1 \Leftrightarrow x \in C_{i}$:

$$
\bigoplus_{x \in C_{i}}(F \circ G)(x)=\bigoplus_{x \in \mathbb{P}_{2}^{n}} F(G(x)) \times I_{i}(x),
$$

and let $y=G(x)$. Then:

$$
\bigoplus_{x \in C_{i}}(F \circ G)(x)=\bigoplus_{y \in \mathbb{P}_{2}^{n}} F(y) \times I_{i}\left(G^{-1}(y)\right) .
$$

This sum is equal to 1 if and only if $x \mapsto F(x) \times I_{i}\left(G^{-1}(x)\right)$ has degree n. I_{i} is affine $\left(I_{i}(x)=1+x_{i}\right)$. Thus, the sum can be equal to 1 only if

$$
\operatorname{deg}(F)+\operatorname{deg}\left(G^{-1}\right) \geq n .
$$

Proposed Updates to the Thesis

- Better justification for HDIM-based attack against SPNs.
- Add S-Boxes of Skinny-64 and Skinny-128.
- Add Chiasmus to the list of broken S-Boxes; add CSA-BC to the list of unknown S-Boxes. Add CSS?
- Update LWC review.
- Add brief description of SPARX external cryptanalysis.

Bibliography I

Abdelkhalek, A., Tolba, M., and Youssef, A. (2017).
Impossible differential attack on reduced round SPARX-64/128.
In Joye, M. and Nitaj, A., editors, Progress in Cryptology - AFRICACRYPT 2017, volume
To appear of Lecture Notes in Computer Science, page To appear. Springer International Publishing.

Bel. St. Univ. (2011).
"Information technologies. Data protection. Cryptographic algorithms for encryption and integrity control.".
State Standard of Republic of Belarus (STB 34.101.31-2011).
http://apmi.bsu.by/assets/files/std/belt-spec27.pdf.
\#
Biryukov, A., Derbez, P., and Perrin, L. (2015).
Differential analysis and meet-in-the-middle attack against round-reduced TWINE.
In [Leander, 2015], pages 3-27.
Biryukov, A., Khovratovich, D., and Perrin, L. (2017).
Multiset-algebraic cryptanalysis of reduced Kuznyechik, Khazad, and secret SPNs.
IACR Transactions on Symmetric Cryptology, 2016(2):226-247.

Bibliography II

Biryukov, A., Leurent, G., and Perrin, L. (2016a).
Cryptanalysis of Feistel networks with secret round functions.
In Dunkelman, O. and Keliher, L., editors, Selected Areas in Cryptography - SAC 2015, volume 9566 of Lecture Notes in Computer Science, pages 102-121, Cham. Springer International Publishing.

Biryukov, A. and Perrin, L. (2015).
On reverse-engineering S-boxes with hidden design criteria or structure.
In Gennaro, R. and Robshaw, M. J. B., editors, Advances in Cryptology - CRYPTO 2015, Part I, volume 9215 of Lecture Notes in Computer Science, pages 116-140. Springer, Heidelberg.

Biryukov, A., Perrin, L., and Udovenko, A. (2016b).
Reverse-engineering the S-box of streebog, kuznyechik and STRIBOBr1.
In Fischlin, M. and Coron, J.-S., editors, Advances in Cryptology - EUROCRYPT 2016,
Part I, volume 9665 of Lecture Notes in Computer Science, pages 372-402. Springer, Heidelberg.

Bibliography III

Canteaut, A., Duval, S., and Perrin, L. (2017).
A generalisation of Dillon's APN permutation with the best known differential and nonlinear properties for all fields of size $2^{4 k+2}$.
IEEE Transactions on Information Theory, (to appear).

Derbez, P. and Perrin, L. (2015).
Meet-in-the-middle attacks and structural analysis of round-reduced PRINCE.
In [Leander, 2015], pages 190-216.

Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., and Biryukov, A. (2016). Design strategies for ARX with provable bounds: Sparx and LAX.
In Cheon, J. H. and Takagi, T., editors, Advances in Cryptology - ASIACRYPT 2016, Part I, volume 10031 of Lecture Notes in Computer Science, pages 484-513. Springer, Heidelberg.
国
GOST (2012).
Gost r 34.11-2012: Streebog hash function.
https://www.streebog.net/.

Bibliography IV

國 GOST (2015).
(GOST R 34.12-2015) information technology - cryptographic data security - block ciphers.

```
http://tc26.ru/en/standard/gost/GOST_R_34_12_2015_ENG.pdf.
```

Leander, G., editor (2015).
Fast Software Encryption - FSE 2015, volume 9054 of Lecture Notes in Computer Science. Springer, Heidelberg.

NIST (1998).
Skipjack and KEA algorithms specifications, v2.0.
http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf.
T
Perrin, L. and Khovratovich, D. (2015).
Collision spectrum, entropy loss, T-sponges, and cryptanalysis of GLUON-64.
In Cid, C. and Rechberger, C., editors, Fast Software Encryption - FSE 2014, volume 8540
of Lecture Notes in Computer Science, pages 82-103. Springer, Heidelberg.

Bibliography V

Perrin, L. and Udovenko, A. (2016).
Algebraic insights into the secret feistel network.
In Peyrin, T., editor, Fast Software Encryption - FSE 2016, volume 9783 of Lecture Notes in Computer Science, pages 378-398. Springer, Heidelberg.
圊
Perrin, L. and Udovenko, A. (2017).
Exponential S-boxes: a link between the S-boxes of BelT and Kuznyechik/Streebog. IACR Transactions on Symmetric Cryptology, 2016(2):99-124.
T
Perrin, L., Udovenko, A., and Biryukov, A. (2016).
Cryptanalysis of a theorem: Decomposing the only known solution to the big APN problem.
In Robshaw, M. and Katz, J., editors, Advances in Cryptology - CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer Science, pages 93-122. Springer, Heidelberg.

