Cryptanalysis, Reverse-Engineering and Design of Symmetric Cryptographic Algorithms

Léo Perrin

SnT, University of Luxembourg

April 25, 2017 PhD Defence

Outline

- 2 On S-Box Reverse-Engineering
- 3 On Lightweight Cryptography
- 4 Conclusion

On S-Box Reverse-Engineering On Lightweight Cryptography Conclusion On Cryptography My Work

S-Box Reverse-Engineering Lightweight Cryptography Conclusion On Cryptography My Work

n S-Box Reverse-Engineering n Lightweight Cryptography Conclusion On Cryptography My Work

B-Box Reverse-Engineering Lightweight Cryptography Conclusion On Cryptography My Work

On S-Box Reverse-Engineering On Lightweight Cryptography Conclusion

On Cryptography My Work

On Cryptography My Work

On Cryptography My Work

On Cryptography My Work

Introduction On S-Box Reverse-Engineering

On Cryptography My Work

Modern Cryptography

	Before
Data encrypted	Letters/Digits
Method	By hand/
Method	machine
Cryptographers	Linguists
	inventors

Example

On Cryptography My Work

Modern Cryptography

	Before	Now
Data encrypted	Letters/Digits	0,1
Method	By hand/ machine	Computer program
 Cryptographers	Linguists inventors	Mathematicians Computer scientists
Example		<pre>void sparx_encrypt(uintic_t * x, uintic_t k[][2*R_S]) { unsigned int s, r, b; for (b=0; t>dL; s: b+1) { for (b=0; t>dL; b; b++) { x[2*b] ^ = k[N_B S + b][2*r]; x[2*b+1] ~ k[N_B S + b][2*r + 1]; A(A(2*b), x[2*b+1]); } for (b=0; t>dL; b; b++) { x[2*b] ^ = k[N_B S + b][2*b]; x[2*b] ^ = k[N_B S + b][2*b]; x[2*b] ^ = k[N_B S + b][2*b]; x[2*b+1] ~ k[N_B S + b][2*b]; x[2*b+1]; } } }</pre>

On Cryptography My Work

Symmetric Cryptography

There are many symmetric algorithms! Hash functions, MACs...

On Cryptography My Work

Symmetric Cryptography

There are many symmetric algorithms! Hash functions, MACs...

Definition (Block Cipher)

- Input: *n*-bit block x
- Parameter: k-bit key κ
- Output: *n*-bit block $E_{\kappa}(x)$
- Symmetry: E and E^{-1} use the same κ

On Cryptography My Work

Symmetric Cryptography

There are many symmetric algorithms! Hash functions, MACs...

Definition (Block Cipher)

- Input: *n*-bit block x
- Parameter: k-bit key κ
- Output: *n*-bit block $E_{\kappa}(x)$
- Symmetry: E and E^{-1} use the same κ

Properties needed:

Diffusion

Confusion

No cryptanalysis!

On S-Box Reverse-Engineering On Lightweight Cryptography Conclusion On Cryptography My Work

Symmetric cryptography is the topic of this thesis.

On S-Box Reverse-Engineering On Lightweight Cryptography Conclusion On Cryptography My Work

Symmetric cryptography is the topic of this thesis.

What did I work on?

On Cryptography My Work

Lightweight Cryptography

- Collision spectrum, entropy loss, T-sponges, and cryptanalysis of GLUON-64 (FSE'14) Khovratovich, Perrin; [Perrin and Khovratovich, 2015]
- Differential analysis and meet-in-the-middle attack against round-reduced TWINE (FSE'15) Biryukov, Derbez, Perrin; [Biryukov et al., 2015]
- Meet-in-the-middle attacks and structural analysis of round-reduced PRINCE (FSE'15) Derbez, Perrin; [Derbez and Perrin, 2015]
- Design strategies for ARX with provable bounds: Sparx and LAX (ASIACRYPT'16) Dinu, Perrin, Udovenko, Velichkov, Großschädl, Biryukov; [Dinu et al., 2016]
- On Lightweight Symmetric Cryptography (SoK, Long Paper) (under submission) Biryukov, Perrin; see also cryptolux.org

On Cryptography My Work

S-Box Reverse-Engineering (1/3)

Actual Results on S-Boxes

- On reverse-engineering S-boxes with hidden design criteria or structure (CRYPTO'15) Biryukov, Perrin; [Biryukov and Perrin, 2015]
- Reverse-engineering the S-box of Streebog, Kuznyechik and STRIBOBr1 (EUROCRYPT'16) Biryukov, Perrin, Udovenko; [Biryukov et al., 2016b]
- Exponential S-boxes: a link between the S-boxes of BelT and Kuznyechik/Streebog (ToSC'16), Perrin, Udovenko; [Perrin and Udovenko, 2017]

On Cryptography My Work

S-Box Reverse-engineering (2/3)

Structural Attacks

- Cryptanalysis of Feistel networks with secret round functions (SAC'15) Biryukov, Leurent, Perrin ; [Biryukov et al., 2016a]
- Algebraic insights into the secret Feistel network (FSE'16) Perrin, Udovenko; [Perrin and Udovenko, 2016]
- Multiset-algebraic cryptanalysis of reduced Kuznyechik, Khazad, and secret SPNs (ToSC'16), Biryukov, Khovratovich, Perrin; [Biryukov et al., 2017]

On Cryptography My Work

S-Box Reverse-engineering (3/3)

Big APN Problem

 Cryptanalysis of a theorem: Decomposing the only known solution to the big APN problem (CRYPTO'16) Perrin, Udovenko, Biryukov; [Perrin et al., 2016]

 A generalisation of Dillon's APN permutation with the best known differential and nonlinear properties for all fields of size 2^{4k+2} (IEEE Transactions on Information Theory'17) Canteaut, Duval, Perrin; [Canteaut et al., 2017]

On Cryptography My Work

Purposefully Hard Cryptography

- A Generic Framework and Examples of Symmetrically and Asymmetrically Hard Functions (under submission) Biryukov, Perrin;
- Katchup and Katchup-H: Proofs of Work with Different Classes of Users (under submission, a patent was filed) Biryukov, Perrin;

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Outline

- 2 On S-Box Reverse-Engineering
- 3 On Lightweight Cryptography

4 Conclusion

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Plan of this Section

- 2 On S-Box Reverse-Engineering
 - Mathematical Background
 - Detailed Analysis of the Two Tables
 - TU-Decomposition
- 3 On Lightweight Cryptography
- 4 Conclusion

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

S-Box?

An S-Box is a small non-linear function mapping *m* bits to *n* usually specified via its look-up table.

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

S-Box?

An S-Box is a small non-linear function mapping *m* bits to *n* usually specified via its look-up table.

- Typically, $n = m, n \in \{4, 8\}$
- Used by many block ciphers/hash functions/stream ciphers.
- Necessary for the wide trail strategy.

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Example

 π' = (252, 238, 221, 17, 207, 110, 49, 22, 251, 196, 250, 218, 35, 197, 4, 77, 233, 119, 240, 219, 147, 46, 153, 186, 23, 54, 241. 187, 20, 205, 95, 193, 249, 24, 101, 90, 226, 92, 239, 33, 129, 28, 60, 66, 139, 1, 142, 79, 5, 132, 2, 174, 227, 106, 143, 160, 6, 11, 237, 152, 127, 212, 211, 31, 235, 52, 44, 81, 234, 200, 72, 171, 242, 42, 104, 162, 253, 58, 206, 204, 181, 112, 14, 86, 8, 12, 118, 18, 191, 114, 19, 71, 156, 133, 93, 135, 21, 161, 150, 41, 16, 123, 154, 199, 243, 145, 120, 111, 157, 158, 178, 177, 50, 117, 25, 61, 255, 53, 138, 126, 109, 84, 198, 128, 195, 189, 13, 87, 223, 245, 36, 169, 62, 168, 67, 201, 215, 121, 214, 246, 124, 34, 185, 3, 224, 15, 236, 222, 122, 148, 176, 188, 220, 232, 40, 80, 78, 51, 10, 74, 167, 151, 96, 115, 30, 0, 98, 68, 26, 184, 56, 130, 100, 159, 38, 65, 173, 69, 70, 146, 39, 94, 85, 47, 140, 163, 165, 125, 105, 213, 149, 59, 7, 88, 179, 64, 134, 172, 29, 247, 48, 55, 107, 228, 136, 217, 231, 137, 225, 27, 131, 73, 76, 63, 248, 254, 141, 83, 170, 144, 202, 216, 133, 97, 32, 113, 103, 164, 45, 43, 9, 91, 203, 155, 37, 208, 190, 229, 108, 82, 89, 166, 116, 210, 230, 244, 180, 192, 209, 102, 175, 194, 57, 75, 99, 182).

Screen capture from [GOST, 2015].

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

S-Box Design

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
- SPN
- Misty
- Feistel
- Lai-Massey
- Pseudo-random
- Hill climbing
- Unknown

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

S-Box Design

- AES S-Box
 Inverse (other)
 Exponential
 Math (other)
 SPN
- Misty
- Feistel
- Lai-Massey
- Pseudo-random
- Hill climbing
- Unknown

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

S-Box Design

AES S-Box ■ Inverse (other) Exponential Math (other) SPN Misty Feistel Lai-Massey Pseudo-random ■ Hill climbing ■ Unknown

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

S-Box Reverse-Engineering

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
- SPN
- Misty
- Feistel
- Lai-Massey
- Pseudo-random
- Hill climbing
- Unknown

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

S-Box Reverse-Engineering

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
- SPN
- Misty
- Feistel
- Lai-Massey
- Pseudo-random
- Hill climbing
- Unknown

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Motivation

A malicious designer can easily hide a structure in an S-Box.

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Motivation

A malicious designer can easily hide a structure in an S-Box.

To keep an advantage in implementation (WB crypto)...

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Motivation

A malicious designer can easily hide a structure in an S-Box.

To keep an advantage in implementation (WB crypto)... ... or an advantage in cryptanalysis (backdoor).

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

The Two Tables

Let $S : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be an S-Box.

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

The Two Tables

Let $S : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be an S-Box.

Definition (DDT)

The Difference Distribution Table of S is a matrix of size $2^n \times 2^n$ such that

 $\mathsf{DDT}[a,b] = \#\{x \in \mathbb{F}_2^n \mid S (x \oplus a) \oplus S(x) = b\}.$

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

The Two Tables

Let $S : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be an S-Box.

Definition (DDT)

The Difference Distribution Table of S is a matrix of size $2^n \times 2^n$ such that

$$\mathsf{DDT}[a,b] = \#\{x \in \mathbb{F}_2^n \mid S(x \oplus a) \oplus S(x) = b\}.$$

Definition (LAT)

The Linear Approximations Table of S is a matrix of size $2^n \times 2^n$ such that

$$LAT[a,b] = \#\{x \in \mathbb{F}_2^n \mid x \cdot a = S(x) \cdot b\} - 2^{n-1}.$$

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Example

S = [4, 2, 1, 6, 0, 5, 7, 3]

The DDT of *S*.

The LAT of S.

F	8	0	0	0	0	0	0	0]	
	0	0	0	0	2	2	2	2	
	0	0	0	0	2	2	2	2	
	0	0	4	4	0	0	0	0 2 2 0 2 0 2 0 0 2	
	0	0	0	0	2	2	2	2	
	0	4	4	0	0	0	0	0	
	0	4	0	4	0	0	0	0	
L	0	0	0	0	2	2	2	2	

Г	4	0	0	0	0	0	0	
	0	0	2	2	0	0	2	-2
	0	2	2	0	0	2	-2	0
	0	2	0	2	0	-2	0	2
	0	2	0	-2	0	-2	0	
	0	-2	2	0	0	-2	-2	0
	0	0	-2	2	0	0	-2	-2
L	0	0	0	0	$^{-4}$	0	0	0

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Coefficient Distribution in the DDT

If an *n*-bit S-Box is bijective, then its DDT coefficients behave like independent and identically distributed random variables following a Poisson distribution:

$$\Pr\left[\text{DDT}[a,b] = 2z\right] = \frac{e^{-1/2}}{2^{z}z}.$$

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Coefficient Distribution in the DDT

If an *n*-bit S-Box is bijective, then its DDT coefficients behave like independent and identically distributed random variables following a Poisson distribution:

$$\Pr\left[\text{DDT}[a,b] = 2z\right] = \frac{e^{-1/2}}{2^{z}z}.$$

Always even, ≥ 0

- Typically between 0 and 16.
- Lower is better.

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Coefficient Distribution in the LAT

If an *n*-bit S-Box is bijective, then its LAT coefficients behave like independent and identically distributed random variables following this distribution:

$$\Pr\left[\text{LAT}[a,b] = 2z\right] = \frac{\binom{2^{n-1}}{2^{n-2+z}}}{\binom{2^n}{2^{n-1}}} .$$

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Coefficient Distribution in the LAT

If an *n*-bit S-Box is bijective, then its LAT coefficients behave like independent and identically distributed random variables following this distribution:

$$\Pr\left[\text{LAT}[a,b] = 2z\right] = \frac{\binom{2^{n-1}}{2^{n-2+z}}}{\binom{2^n}{2^{n-1}}} .$$

- Always even, signed.
- Typically between -40 and 40.
- Lower absolute value is better.

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Looking Only at the Maximum

δ	$\log_2\left(\Pr\left[\max(\mathcal{D}) \le \delta\right]\right)$	l	$\log_2\left(\Pr\left[\max(\mathcal{L}) \leq \ell\right]\right)$
14	-0.006	38	-0.084
		36	-0.302
12	-0.094	34	-1.008
10	-1.329	32	-3.160
10		30	-9.288
8	-16.148	28	-25.623
6	-164.466	26	-66.415
	104.400	24	-161.900
4	-1359.530	22	-371.609

DDT

LAT

Probability that the maximum coefficient in the DDT/LAT of an 8-bit permutation is at most equal to a certain threshold.

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Looking Only at the Maximum

δ	$\log_2\left(\Pr\left[\max(\mathcal{D}) \le \delta\right]\right)$	l	$\log_2\left(\Pr\left[\max(\mathcal{L}) \leq \ell\right]\right)$
14	-0.006	38	-0.084
		36	-0.302
12	-0.094	34	-1.008
10	-1.329	32	-3.160
10		30	-9.288
8	-16.148	28	-25.623
6	-164.466	26	-66.415
	-104.400	24	-161.900
4	-1359.530	22	-371.609

DDT

LAT

Probability that the maximum coefficient in the DDT/LAT of an 8-bit permutation is at most equal to a certain threshold.

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Taking Number of Maximum Values into Account

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Application of this Analysis?

We applied this method on the S-Box of Skipjack.

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

What is Skipjack? (1/2)

Type Block cipher Bloc 64 bits Key 80 bits Authors NSA Publication 1998

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

What is Skipjack? (2/2)

- Skipjack was supposed to be secret...
- ... but eventually published in 1998 [NIST, 1998],

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

What is Skipjack? (2/2)

- Skipjack was supposed to be secret...
- ... but eventually published in 1998 [NIST, 1998],
- It uses an 8×8 S-Box (F) specified only by its LUT,

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

What is Skipjack? (2/2)

- Skipjack was supposed to be secret...
- ... but eventually published in 1998 [NIST, 1998],
- It uses an 8×8 S-Box (F) specified only by its LUT,
- Skipjack was to be used by the *Clipper Chip*.

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Reverse-Engineering F

For Skipjack's F, max(LAT) = 28 and #28 = 3.

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Reverse-Engineering F

For Skipjack's F, max(LAT) = 28 and #28 = 3.

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Reverse-Engineering F

For Skipjack's F, max(LAT) = 28 and #28 = 3.

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Reverse-Engineering F

For Skipjack's F, max(LAT) = 28 and #28 = 3.

 $\Pr[\max(LAT) = 28 \text{ and } \#28 \le 3] \approx 2^{-55}$

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

What Can We Deduce?

- *F* has not been picked uniformly at random.
- *F* has not been picked among a feasibly large set of random S-Boxes.
- Its linear properties were optimized (though poorly).

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

What Can We Deduce?

- *F* has not been picked uniformly at random.
- *F* has not been picked among a feasibly large set of random S-Boxes.
- Its linear properties were optimized (though poorly).

The S-Box of Skipjack was built using a dedicated algorithm.

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Conclusion on Skipjack

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
- SPN
- Misty
- Feistel
- Lai-Massey
- Pseudo-random
- Hill climbing
- Unknown

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Conclusion on Skipjack

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
- SPN
- Misty
- Feistel
- Lai-Massey
- Pseudo-random
- Hill climbing
- Unknown

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Distinguisher vs. Decomposition

We have figured out that *F* is not random...

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Distinguisher vs. Decomposition

We have figured out that *F* is not random...

But what can we do to find actual structures?

Structural Attacks

Attacks against structures regardless of their details. Examples:

- Integral attacks against SPNs,
- Yoyo game against Feistel Networks,
- Looking at the Pollock representations of the DDT/LAT,

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Distinguisher vs. Decomposition

We have figured out that *F* is not random...

But what can we do to find actual structures?

Structural Attacks

Attacks against structures regardless of their details. Examples:

- Integral attacks against SPNs,
- Yoyo game against Feistel Networks,
- Looking at the Pollock representations of the DDT/LAT,
- TU-Decomposition.

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

TU-Decomposition in a Nutshell

1 Identify linear patterns in zeroes of LAT;

Mathematical Background Detailed Analysis of the Two Tables **TU-Decomposition**

TU-Decomposition in a Nutshell

- 1 Identify linear patterns in zeroes of LAT;
- Deduce linear layers μ, η such that π is decomposed as in right picture;

Mathematical Background Detailed Analysis of the Two Tables **TU-Decomposition**

TU-Decomposition in a Nutshell

- 1 Identify linear patterns in zeroes of LAT;
- Deduce linear layers μ, η such that π is decomposed as in right picture;
- 3 Decompose *U*,*T*;

Mathematical Background Detailed Analysis of the Two Tables **TU-Decomposition**

TU-Decomposition in a Nutshell

- 1 Identify linear patterns in zeroes of LAT;
- Deduce linear layers μ, η such that π is decomposed as in right picture;
- 3 Decompose U, T;
- 4 Put it all together.

Mathematical Background Detailed Analysis of the Two Tables **TU-Decomposition**

Kuznyechik/Stribog

Stribog

Type Hash function Publication [GOST, 2012]

Kuznyechik

Type Block cipher Publication [GOST, 2015]

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Kuznyechik/Stribog

Stribog

Type Hash function Publication [GOST, 2012]

Kuznyechik

Type Block cipher Publication [GOST, 2015]

Common ground

- Both are standard symmetric primitives in Russia.
- Both were designed by the FSB (TC26).
- Both use the same 8×8 S-Box, π .

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

The LAT of π

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

The LAT of $\eta \circ \pi \circ \mu$

Mathematical Background Detailed Analysis of the Two Tables **TU-Decomposition**

Final Decomposition Number 1

- \odot Multiplication in \mathbb{F}_{2^4}
- α Linear permutation
- I Inversion in \mathbb{F}_{2^4}
- v_0, v_1, σ 4 × 4 permutations
 - ϕ 4 × 4 function
 - ω Linear permutation

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Conclusion for Kuznyechik/Stribog?

The Russian S-Box was built like a strange Feistel...

Mathematical Background Detailed Analysis of the Two Tables **TU-Decomposition**

Conclusion for Kuznyechik/Stribog?

The Russian S-Box was built like a strange Feistel...

... or was it?

Mathematical Background Detailed Analysis of the Two Tables **TU-Decomposition**

Conclusion for Kuznyechik/Stribog?

The Russian S-Box was built like a strange Feistel...

... or was it?

Belarussian inspiration

- The last standard of Belarus [Bel. St. Univ., 2011] uses an 8-bit S-box,
- somewhat similar to π ...

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Conclusion for Kuznyechik/Stribog?

The Russian S-Box was built like a strange Feistel...

... or was it?

Belarussian inspiration

- The last standard of Belarus [Bel. St. Univ., 2011] uses an 8-bit S-box,
- somewhat similar to π ...
- ... based on a finite field exponential!

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

Final Decomposition Number 2 (!)

	0	1	2	3	4	5	6	7	8	9	а	b	с	d	e	f
T_0	0	1	2	3	4	5	6	7	8	9	а	b	с	d	e	f
T_1	0	1	2	3	4	5	6	7	8	9	а	b	с	d	e	f
T_2	0	1	2	3	4	5	6	7	8	9	а	b	с	d	f	e
T_3	0	1	2	3	4	5	6	7	8	9	а	b	с	f	d	e
T_4	0	1	2	3	4	5	6	7	8	9	а	b	f	с	d	e
T_5														с		
T_6	0	1	2	3	4	5	6	7	8	9	f	а	b	с	d	e
T_7	0	1	2	3	4	5	6	7	8	f	9	а	b	с	d	e
T_8	0	1	2	3	4	5	6	7	f	8	9	а	b	с	d	e
T_9														с		
T_a	0	1	2	3	4	5	f	6	7	8	9	а	b	с	d	e
T_b	0	1	2	3	4	f	5	6	7	8	9	а	b	с	d	e
T_c	0	1	2	3	f	4	5	6	7	8	9	а	b	с	d	e
T_d														с		
T_e	0	1	f	2	3	4	5	6	7	8	9	а	b	с	d	e
	0	f	1	2	3	4	5	6	7	8	9	а	b	с	d	e

Mathematical Background Detailed Analysis of the Two Tables **TU-Decomposition**

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
- SPN
- Misty
- Feistel
- Lai-Massey
- Pseudo-random
- Hill climbing
- Unknown

Mathematical Background Detailed Analysis of the Two Tables **TU-Decomposition**

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
- SPN
- Misty
- Feistel
- Lai-Massey
- Pseudo-random
- Hill climbing
- Unknown

Mathematical Background Detailed Analysis of the Two Tables **TU-Decomposition**

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
- SPN
- Misty
- Feistel
- Lai-Massey
- Pseudo-random
- Hill climbing
- Unknown

Mathematical Background Detailed Analysis of the Two Tables TU-Decomposition

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
- SPN
- Misty
- Feistel
- Lai-Massey
- Pseudo-random
- Hill climbing
- Unknown

Internet of Things State of the Art Our Block Cipher: SPARX

Outline

- 2 On S-Box Reverse-Engineering
- 3 On Lightweight Cryptography

4 Conclusion

Internet of Things State of the Art Our Block Cipher: SPARX

Plan of this Section

2 On S-Box Reverse-Engineering

- 3 On Lightweight Cryptography
 - Internet of Things
 - State of the Art
 - Our Block Cipher: SPARX

4 Conclusion

Internet of Things State of the Art Our Block Cipher: SPARX

What Things?

Everything is being connected to the internet.

Internet of Things State of the Art Our Block Cipher: SPARX

What Things?

Everything

Internet of Things State of the Art Our Block Cipher: SPARX

What Things?

Everything

Internet of Things State of the Art Our Block Cipher: SPARX

What Things?

Everything

Internet of Things State of the Art Our Block Cipher: SPARX

Security

"In IoT, the S is for Security."

- Internet-enabled devices have security flaws.
- Security is an afterthought (at best).
- Security has a cost in terms of engineering...
- ... and computationnal resources!

Internet of Things State of the Art Our Block Cipher: SPARX

Lightweight Cryptography

Lightweight cryptography uses little resources.

Internet of Things State of the Art Our Block Cipher: SPARX

Lightweight Cryptography from the Industry

Stream ciphers, unless †(BC) or ‡(MAC)

- A5/1
- A5/2
- Смеа †
- ORYX
- A5-GMR-1
- A5-GMR-2
- Dsc
- SecureMem.

- CryptoMem.
- Hitag2
- Megamos
- Keeloq †
- Dst40 †
- iClass
- Crypto-1
- Css

- Cryptomeria †
- Csa-BC †
- CSA-SC
- PC-1
- SecurID ‡
- **E**0
- RC4

Internet of Things State of the Art Our Block Cipher: SPARX

Lightweight Cryptography from the Industry

Stream ciphers, unless †(BC) or ‡(MAC)

- A5/1
- A5/2
- Смеа †
- ORYX
- A5-GMR-1
- A5-GMR-2
- Dsc
- SecureMem.

- CryptoMem.
- Hitag2
- Megamos
- Keeloq †
- Dst40 †
- iClass
- Crypto-1
- Css

- Cryptomeria †
- Csa-BC †
- CSA-SC
- PC-1
- SecurID ‡
- **E**0
- RC4

They're all dead (attacks in less than 2^{64}).

Internet of Things State of the Art Our Block Cipher: SPARX

Lightweight Block Ciphers from Academia

- 3-Way
- RC5
- Misty1
- XTEA
- AES
- Khazad
- Noekeon
- Iceberg
- mCrypton
- HIGHT
- SEA
- CLEFIA

- DESLX
- PRESENT
- MIBS
- KATAN
- GOST rev.
- PRINTCipher
- EPCBC
- KLEIN
- LBlock
- LED
- Piccolo
- PICARO

- PRINCE
- ITUbee
- TWINE
- Zorro
- Chaskey
- PRIDE
- Joltik
- LEA
- iScream
- LBlock-s
- Scream
- Lilliput

- RECTANGLE
- Fantomas
- Robin
- Midori
- SIMECK
- RoadRunneR
- FLY
- Mantis
- SKINNY
- SPARX
- Mysterion
- Qarma

48 distinct block ciphers!

Internet of Things State of the Art Our Block Cipher: SPARX

Common Trade-Offs in LWC

Small internal state size.

Internet of Things State of the Art Our Block Cipher: SPARX

Common Trade-Offs in LWC

- Small internal state size.
- Small key.

Internet of Things State of the Art Our Block Cipher: SPARX

Common Trade-Offs in LWC

- Small internal state size.
- Small key.
- Simple key schedule.

Internet of Things State of the Art Our Block Cipher: SPARX

Common Trade-Offs in LWC

- Small internal state size.
- Small key.
- Simple key schedule.
- No table look-ups (instead, ARX or bit-sliced S-Box).

Internet of Things State of the Art Our Block Cipher: SPARX

How did we design SPARX?

On S-Box Reverse-Engineering On Lightweight Cryptography

Internet of Things State of the Art Our Block Cipher: SPARX

Block Cipher Design (1/2)

Requirement	S-Box-based	ARX-based
Confusion	S	æ
Diffusion	L	⊞,≪,⊕

Internet of Things State of the Art Our Block Cipher: SPARX

Block Cipher Design (2/2)

$$P_{\text{diff}} \leq \left(\frac{\Delta_S}{2^b}\right)^{\# \text{ active S-Boxes}}$$

Design of an S-Box based SPN (wide trail strategy)

Internet of Things State of the Art Our Block Cipher: SPARX

Block Cipher Design (2/2)

$$P_{\text{diff}} \leq \left(\frac{\Delta_S}{2^b}\right)^{\# \text{ active S-Boxes}}$$

Design of an S-Box based SPN (wide trail strategy)

Design of an ARX-cipher (allegory) source: Wiki Commons

Internet of Things State of the Art Our Block Cipher: SPARX

Block Cipher Design (2/2)

$$P_{\text{diff}} \leq \left(\frac{\Delta_S}{2^b}\right)^{\# \text{ active S-Boxes}}$$

Design of an S-Box based SPN (wide trail strategy) Design of an ARX-cipher (allegory) source: Wiki Commons

Can we use ARX and have provable bounds?

Internet of Things State of the Art Our Block Cipher: SPARX

Trail Based Argument

Bouding 2-round differential probability.

Internet of Things State of the Art Our Block Cipher: SPARX

Trail Based Argument

Bouding 2-round differential probability.

Consider all trails $A \rightarrow B \rightarrow C$, where $A = (a_0, ..., a_{\ell})$, etc.

Internet of Things State of the Art Our Block Cipher: SPARX

Trail Based Argument

Bouding 2-round differential probability.

Consider all trails $A \rightarrow B \rightarrow C$, where $A = (a_0, ..., a_{\ell})$, etc.

Internet of Things State of the Art Our Block Cipher: SPARX

Trail Based Argument

Bouding 2-round differential probability.

- Consider all trails $A \rightarrow B \rightarrow C$, where $A = (a_0, ..., a_{\ell})$, etc.
- 2 Markov assumption: $\Pr[A \rightsquigarrow B \rightsquigarrow C] = \Pr[A \rightsquigarrow B] \times \Pr[B \rightsquigarrow C]$

Internet of Things State of the Art Our Block Cipher: SPARX

Trail Based Argument

Bouding 2-round differential probability.

- Consider all trails $A \rightarrow B \rightarrow C$, where $A = (a_0, ..., a_{\ell})$, etc.
- 2 Markov assumption: $\Pr[A \rightsquigarrow B \rightsquigarrow C] = \Pr[A \rightsquigarrow B] \times \Pr[B \rightsquigarrow C]$
- **3** Show that, for all *A*, *B*, *C*:
 - if $\Pr[A \rightsquigarrow B]$ is high,
 - then $\Pr[B \rightsquigarrow C]$ is low.

Internet of Things State of the Art Our Block Cipher: SPARX

Trail Based Argument

Bouding 2-round differential probability.

- Consider all trails $A \rightarrow B \rightarrow C$, where $A = (a_0, ..., a_{\ell})$, etc.
- 2 Markov assumption: $\Pr[A \rightsquigarrow B \rightsquigarrow C] = \Pr[A \rightsquigarrow B] \times \Pr[B \rightsquigarrow C]$
- **3** Show that, for all *A*, *B*, *C*:
 - if $\Pr[A \rightsquigarrow B]$ is high,
 - then $\Pr[B \rightsquigarrow C]$ is low.

4 Conclude that $\Pr[A \rightsquigarrow B \rightsquigarrow C]$ can't be high.

Internet of Things State of the Art Our Block Cipher: SPARX

Proving Point 3: Wide Trail Argument

Wide Trail Argument

- At the S-Box level, $\Pr[a_i \rightsquigarrow b_i] \le p$.
- At the trail level, if $\#\{i, a_i \neq 0\}$ is *low* then $\#\{i, b_i \neq 0\}$ is *high* because their sum is $\geq B(L)$.

Conclusion: best trail over 2 rounds has probability at most

 $p^{B(L)}$.

Internet of Things State of the Art Our Block Cipher: SPARX

Proving Point 3: Long Trail Argument

Long Trail Argument

At the S-Box level, use heuristic to show

 $\Pr[a_i \rightsquigarrow b_i] \le p_1 ,$ $\Pr[a_i \rightsquigarrow b_i \rightsquigarrow c_i] \le p_2 \ll p_1^2 ...$

Internet of Things State of the Art Our Block Cipher: SPARX

Proving Point 3: Long Trail Argument

Long Trail Argument

At the S-Box level, use heuristic to show

 $\Pr\left[a_i \rightsquigarrow b_i\right] \le p_1 ,$

$$\Pr\left[a_i \rightsquigarrow b_i \rightsquigarrow c_i\right] \le p_2 \ll p_1^2 \dots$$

• At the trail level, decompose $A \rightsquigarrow B \rightsquigarrow C$ into independent trails at the S-Box level, e.g. $a_0 \rightsquigarrow b_1 \rightsquigarrow c_0, a_1 \rightsquigarrow b_0, ...$

Internet of Things State of the Art Our Block Cipher: SPARX

Proving Point 3: Long Trail Argument

Long Trail Argument

At the S-Box level, use heuristic to show

 $\Pr\left[a_i \rightsquigarrow b_i\right] \le p_1 \,,$

$$\Pr\left[a_i \rightsquigarrow b_i \rightsquigarrow c_i\right] \le p_2 \ll p_1^2 \dots$$

- At the trail level, decompose $A \rightsquigarrow B \rightsquigarrow C$ into independent trails at the S-Box level, e.g. $a_0 \rightsquigarrow b_1 \rightsquigarrow c_0, a_1 \rightsquigarrow b_0, ...$
- Bound probability using product of p₁, p₂, etc. depending on the lengths of the S-Box-level trails.

Internet of Things State of the Art Our Block Cipher: SPARX

SPARX

- **Substitution-Permutation ARX**.
- 2 Built using a wide-trail strategy...
- 3 ... thus, provably secure against differential/linear attacks!
- 4 Quite efficient on micro-controllers.

n/k	64/128	128/128	128/256
# Rounds/Step	3	4	4
# Steps	8	8	10
Best Attack (# rounds)	15/24	22/32	24/40

Internet of Things State of the Art Our Block Cipher: SPARX

High Level View of SPARX-64/128

Impossible differential attack on reduced round SPARX-64/128 (AFRICACRYPT'2017) Abdelkhalek, A., Tolba, M., and Youssef, A; [Abdelkhalek et al., 2017]

Conclusion

Outline

- 2 On S-Box Reverse-Engineering
- 3 On Lightweight Cryptography

4 Conclusion

Conclusion

Plan of this Section

1 Introduction

- 2 On S-Box Reverse-Engineering
- 3 On Lightweight Cryptography

4 Conclusion

Conclusion

Conclusion

We can recover the majority of known S-Box structures and derive new results about Skipjack and Kuznyechik.

Conclusion

Conclusion

- We can recover the majority of known S-Box structures and derive new results about Skipjack and Kuznyechik.
- We can design an efficient ARX-based lightweight block ciphers with provable security against differential/linear attacks.

Conclusion

The Last S-Box

14	11	60	6d	e9	10	e3	2	b	90	d	17	c5	b0	9f	c5
d8	da	be	22	8	f3	4	a9	fe	f3	f5	fc	bc	30	be	26
bb	88	85	46	f4	2e	е	fd	76	fe	b0	11	4e	de	35	bb
30	4b	30	d6	dd	df	df	d4	90	7a	d8	8c	6a	89	30	39
e9	1	da	d2	85	87	d3	d4	ba	2b	d4	9f	9c	38	8c	55
d3	86	bb	db	ec	e0	46	48	bf	46	1b	1c	d7	d9	1b	e0
23	d4	d7	7f	16	3f	3	3	44	c3	59	10	2a	da	ed	e9
8e	d8	d1	db	cb	cb	c3	c7	38	22	34	3d	db	85	23	7c
24	d1	d8	2e	fc	44	8	38	c8	c7	39	4c	5f	56	2a	cf
d0	e9	d2	68	e4	e3	e9	13	e2	с	97	e4	60	29	d7	9b
d9	16	24	94	b3	e3	4c	4c	4f	39	e0	4b	bc	2c	d3	94
81	96	93	84	91	d0	2e	d6	d2	2b	78	ef	d6	9e	7b	72
ad	c4	68	92	7a	d2	5	2b	1e	d0	dc	b1	22	3f	c3	c3
88	b1	8d	b5	e3	4e	d7	81	3	15	17	25	4e	65	88	4e
e4	3b	81	81	fa	1	1d	4	22	0	6	1	27	68	27	2e
3b	83	c7	сс	25	9b	d8	d5	1c	1f	e5	59	7f	3f	3f	ef

Back-Up Slides Bibliography

On the Butterfly Structure

(a) Open (bijective) butterfly H^e_{α} . (b) Closed (non-bijective) butterfly V^e_{α} .

Figure : The two types of butterfly structure with coefficient α and exponent *e*.

Back-Up Slides Bibliography

Details About Skipjack

Appendix Back-Up Slides Bibliography

High Level View of SPARX (algo)

Algorithm 7.1 Sparx encryption **Inputs** plaintext $(x_0, ..., x_{w-1})$; key $(k_0, ..., k_{v-1})$ **Output** ciphertext $(y_0, ..., y_{w-1})$ Let $y_i \leftarrow x_i$ for all $i \in [0, ..., w - 1]$ for all $s \in [0, n_s - 1]$ do for all $i \in [0, w - 1]$ do for all $r \in [0, r_a - 1]$ do $y_i \leftarrow y_i \oplus k_r$ $y_i \leftarrow A(y_i)$ end for $(k_0, ..., k_{\nu-1}) \leftarrow K_{\nu}((k_0, ..., k_{\nu-1}))$ ▶ Update key state end for $(y_0, ..., y_{w-1}) \leftarrow \lambda_w ((y_0, ..., y_{w-1}))$ Linear mixing layer end for Let $y_i \leftarrow y_i \oplus k_i$ for all $i \in [0, ..., w - 1]$ Final key addition **return** $(y_0, ..., y_{w-1})$

Back-Up Slides Bibliography

Details About ULW vs. IoT Crypto

IoT	Ultra-Lightweight	
\geq 128 bits	64 bits	Block size
\geq 128 bits	\geq 80 bits	Security level
Same as "regular" crypto	low data complexity	Relevant attacks
low-end CPUs	dedicated circuit	Intended platform
important	important	SCA resilience
encryption, authentication	one per device	Functionality
to a global network	to a central hub	Connection

 Table : A summary of the differences between ultra-lightweight and IoT cryptography.

Back-Up Slides Bibliography

Hard Block Cipher

Back-Up Slides Bibliography

Katchup-H

Back-Up Slides Bibliography

Fixing Justification of Attack 11.5.4 (1/2)

Lemma

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2$ be a Boolean function and let $G : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a permutation. Then:

 $\deg(F \circ G) = n - 1 \implies \deg(F) + \deg(G^{-1}) \ge n.$

Back-Up Slides Bibliography

Fixing Justification of Attack 11.5.4 (2/2)

If deg($F \circ G$) = n - 1, then $\exists i \leq n$ such that $\bigoplus_{x \in C_i} (F \circ G)(x) = 1$.

Appendix Back-Up Slides Bibliography

Fixing Justification of Attack 11.5.4 (2/2)

If deg($F \circ G$) = n - 1, then $\exists i \leq n$ such that $\bigoplus_{x \in C_i} (F \circ G)(x) = 1$.

Let $I_i : \mathbb{F}_2^n \to \mathbb{F}_2$ be such that $I_i(x) = 1 \Leftrightarrow x \in C_i$:

$$\bigoplus_{x \in C_i} (F \circ G)(x) = \bigoplus_{x \in \mathbb{F}_2^n} F(G(x)) \times I_i(x) ,$$

Appendix Back-Up Slides Bibliography

Fixing Justification of Attack 11.5.4 (2/2)

If deg($F \circ G$) = n - 1, then $\exists i \leq n$ such that $\bigoplus_{x \in C_i} (F \circ G)(x) = 1$.

Let $I_i : \mathbb{F}_2^n \to \mathbb{F}_2$ be such that $I_i(x) = 1 \Leftrightarrow x \in C_i$:

$$\bigoplus_{x\in C_i} (F\circ G)(x) = \bigoplus_{x\in \mathbb{F}_2^n} F(G(x)) \times I_i(x) ,$$

and let y = G(x). Then:

$$\bigoplus_{x \in C_i} (F \circ G)(x) = \bigoplus_{y \in \mathbb{F}_2^n} F(y) \times I_i(G^{-1}(y)).$$

Appendix Back-Up Slid Bibliography

Fixing Justification of Attack 11.5.4 (2/2)

If deg $(F \circ G) = n - 1$, then $\exists i \leq n$ such that $\bigoplus_{x \in C_i} (F \circ G)(x) = 1$.

Let $I_i : \mathbb{F}_2^n \to \mathbb{F}_2$ be such that $I_i(x) = 1 \Leftrightarrow x \in C_i$:

$$\bigoplus_{x\in C_i} (F\circ G)(x) = \bigoplus_{x\in \mathbb{F}_2^n} F(G(x)) \times I_i(x) ,$$

and let y = G(x). Then:

$$\bigoplus_{x \in C_i} (F \circ G)(x) = \bigoplus_{y \in \mathbb{F}_2^n} F(y) \times I_i(G^{-1}(y)).$$

This sum is equal to 1 if and only if $x \mapsto F(x) \times I_i(G^{-1}(x))$ has degree *n*.

Appendix Back-Up Slid Bibliography

Fixing Justification of Attack 11.5.4 (2/2)

If deg $(F \circ G) = n - 1$, then $\exists i \leq n$ such that $\bigoplus_{x \in C_i} (F \circ G)(x) = 1$.

Let $I_i : \mathbb{F}_2^n \to \mathbb{F}_2$ be such that $I_i(x) = 1 \Leftrightarrow x \in C_i$:

$$\bigoplus_{x\in C_i} (F\circ G)(x) = \bigoplus_{x\in \mathbb{F}_2^n} F(G(x)) \times I_i(x) ,$$

and let y = G(x). Then:

$$\bigoplus_{x \in C_i} (F \circ G)(x) = \bigoplus_{y \in \mathbb{F}_2^n} F(y) \times I_i(G^{-1}(y)).$$

This sum is equal to 1 if and only if $x \mapsto F(x) \times I_i(G^{-1}(x))$ has degree *n*. I_i is affine $(I_i(x) = 1 + x_i)$.

Appendix Back-Up Slid Bibliography

Fixing Justification of Attack 11.5.4 (2/2)

If deg $(F \circ G) = n - 1$, then $\exists i \leq n$ such that $\bigoplus_{x \in C_i} (F \circ G)(x) = 1$.

Let $I_i : \mathbb{F}_2^n \to \mathbb{F}_2$ be such that $I_i(x) = 1 \Leftrightarrow x \in C_i$:

$$\bigoplus_{x\in C_i} (F\circ G)(x) = \bigoplus_{x\in \mathbb{F}_2^n} F(G(x)) \times I_i(x) ,$$

and let y = G(x). Then:

$$\bigoplus_{x \in C_i} (F \circ G)(x) = \bigoplus_{y \in \mathbb{F}_2^n} F(y) \times I_i(G^{-1}(y)).$$

This sum is equal to 1 if and only if $x \mapsto F(x) \times I_i(G^{-1}(x))$ has degree *n*. I_i is affine $(I_i(x) = 1 + x_i)$. Thus, the sum can be equal to 1 only if

 $\deg(F) + \deg(G^{-1}) \ge n .$

Proposed Updates to the Thesis

- Better justification for HDIM-based attack against SPNs.
- Add S-Boxes of Skinny-64 and Skinny-128.
- Add Chiasmus to the list of broken S-Boxes; add CSA-BC to the list of unknown S-Boxes. Add CSS?
- Update LWC review.
- Add brief description of SPARX external cryptanalysis.

Back-Up Slides Bibliography

Bibliography I

Abdelkhalek, A., Tolba, M., and Youssef, A. (2017).

Impossible differential attack on reduced round SPARX-64/128.

In Joye, M. and Nitaj, A., editors, *Progress in Cryptology – AFRICACRYPT 2017*, volume To appear of *Lecture Notes in Computer Science*, page To appear. Springer International Publishing.

Bel. St. Univ. (2011).

"Information technologies. Data protection. Cryptographic algorithms for encryption and integrity control.".

State Standard of Republic of Belarus (STB 34.101.31-2011).

http://apmi.bsu.by/assets/files/std/belt-spec27.pdf.

Biryukov, A., Derbez, P., and Perrin, L. (2015).

Differential analysis and meet-in-the-middle attack against round-reduced TWINE. In [Leander, 2015], pages 3-27.

Biryukov, A., Khovratovich, D., and Perrin, L. (2017).

Multiset-algebraic cryptanalysis of reduced Kuznyechik, Khazad, and secret SPNs. *IACR Transactions on Symmetric Cryptology*, 2016(2):226–247.

Back-Up Slides Bibliography

Bibliography II

Biryukov, A., Leurent, G., and Perrin, L. (2016a).

Cryptanalysis of Feistel networks with secret round functions.

In Dunkelman, O. and Keliher, L., editors, *Selected Areas in Cryptography – SAC 2015*, volume 9566 of *Lecture Notes in Computer Science*, pages 102–121, Cham. Springer International Publishing.

Biryukov, A. and Perrin, L. (2015).

On reverse-engineering S-boxes with hidden design criteria or structure.

In Gennaro, R. and Robshaw, M. J. B., editors, *Advances in Cryptology – CRYPTO 2015, Part I*, volume 9215 of *Lecture Notes in Computer Science*, pages 116–140. Springer, Heidelberg.

Biryukov, A., Perrin, L., and Udovenko, A. (2016b).

Reverse-engineering the S-box of streebog, kuznyechik and STRIBOBr1.

In Fischlin, M. and Coron, J.-S., editors, *Advances in Cryptology – EUROCRYPT 2016, Part I*, volume 9665 of *Lecture Notes in Computer Science*, pages 372–402. Springer, Heidelberg.

Bibliography III

Canteaut, A., Duval, S., and Perrin, L. (2017).

A generalisation of Dillon's APN permutation with the best known differential and nonlinear properties for all fields of size 2^{4k+2} .

IEEE Transactions on Information Theory, (to appear).

Derbez, P. and Perrin, L. (2015).

Meet-in-the-middle attacks and structural analysis of round-reduced PRINCE. In [Leander, 2015], pages 190–216.

Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., and Biryukov, A. (2016). Design strategies for ARX with provable bounds: Sparx and LAX.

In Cheon, J. H. and Takagi, T., editors, *Advances in Cryptology – ASIACRYPT 2016, Part I*, volume 10031 of *Lecture Notes in Computer Science*, pages 484–513. Springer, Heidelberg.

GOST (2012).

Gost r 34.11-2012: Streebog hash function.

https://www.streebog.net/.

Bibliography IV

GOST (2015).

(GOST R 34.12-2015) information technology – cryptographic data security – block ciphers.

http://tc26.ru/en/standard/gost/GOST_R_34_12_2015_ENG.pdf.

Leander, G., editor (2015).

Fast Software Encryption – FSE 2015, volume 9054 of *Lecture Notes in Computer Science*. Springer, Heidelberg.

NIST (1998).

Skipjack and KEA algorithms specifications, v2.0.

http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf.

Perrin, L. and Khovratovich, D. (2015).

Collision spectrum, entropy loss, T-sponges, and cryptanalysis of GLUON-64.

In Cid, C. and Rechberger, C., editors, *Fast Software Encryption – FSE 2014*, volume 8540 of *Lecture Notes in Computer Science*, pages 82–103. Springer, Heidelberg.

Bibliography V

Perrin, L. and Udovenko, A. (2016).

Algebraic insights into the secret feistel network.

In Peyrin, T., editor, *Fast Software Encryption – FSE 2016*, volume 9783 of *Lecture Notes in Computer Science*, pages 378–398. Springer, Heidelberg.

Perrin, L. and Udovenko, A. (2017).

Exponential S-boxes: a link between the S-boxes of BelT and Kuznyechik/Streebog.

IACR Transactions on Symmetric Cryptology, 2016(2):99–124.

Perrin, L., Udovenko, A., and Biryukov, A. (2016).

Cryptanalysis of a theorem: Decomposing the only known solution to the big APN problem.

In Robshaw, M. and Katz, J., editors, Advances in Cryptology – CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer Science, pages 93–122. Springer, Heidelberg.