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Collision spectrum, entropy loss, T-sponges, and cryptanalysis of
GLUON-64 (FSE’14) Khovratovich, Perrin; [Perrin and Khovratovich, 2015]

Di�erential analysis and meet-in-the-middle a�ack against
round-reduced TWINE (FSE’15) Biryukov, Derbez, Perrin ;

[Biryukov et al., 2015]

Meet-in-the-middle a�acks and structural analysis of round-reduced
PRINCE (FSE’15) Derbez, Perrin ; [Derbez and Perrin, 2015]

Design strategies for ARX with provable bounds: Sparx and LAX
(ASIACRYPT’16) Dinu, Perrin, Udovenko, Velichkov, Großschädl,

Biryukov ; [Dinu et al., 2016]

On Lightweight Symmetric Cryptography (SoK, Long Paper) (under

submission) Biryukov, Perrin; see also cryptolux.org
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Actual Results on S-Boxes

On reverse-engineering S-boxes with hidden design criteria or structure
(CRYPTO’15) Biryukov, Perrin ; [Biryukov and Perrin, 2015]

Reverse-engineering the S-box of Streebog, Kuznyechik and STRIBOBr1
(EUROCRYPT’16) Biryukov, Perrin, Udovenko ; [Biryukov et al., 2016b]

Exponential S-boxes: a link between the S-boxes of BelT and
Kuznyechik/Streebog (ToSC’16), Perrin, Udovenko;

[Perrin and Udovenko, 2017]
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Structural A�acks

Cryptanalysis of Feistel networks with secret round functions (SAC’15)

Biryukov, Leurent, Perrin ; [Biryukov et al., 2016a]

Algebraic insights into the secret Feistel network (FSE’16) Perrin,

Udovenko ; [Perrin and Udovenko, 2016]

Multiset-algebraic cryptanalysis of reduced Kuznyechik, Khazad, and
secret SPNs (ToSC’16), Biryukov, Khovratovich, Perrin;

[Biryukov et al., 2017]
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Big APN Problem

Cryptanalysis of a theorem: Decomposing the only known solution to
the big APN problem (CRYPTO’16) Perrin, Udovenko, Biryukov;

[Perrin et al., 2016]

A generalisation of Dillon’s APN permutation with the best known
di�erential and nonlinear properties for all fields of size 24k+2

(IEEE

Transactions on Information Theory’17) Canteaut, Duval, Perrin;

[Canteaut et al., 2017]
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Purposefully Hard Cryptography

A Generic Framework and Examples of Symmetrically and

Asymmetrically Hard Functions (under submission) Biryukov, Perrin ;

Katchup and Katchup-H: Proofs of Work with Di�erent Classes of

Users (under submission, a patent was filed) Biryukov, Perrin ;
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Example

S = [4,2,1,6,0,5,7,3]

The DDT of S .



8 0 0 0 0 0 0 0
0 0 0 0 2 2 2 2
0 0 0 0 2 2 2 2
0 0 4 4 0 0 0 0
0 0 0 0 2 2 2 2
0 4 4 0 0 0 0 0
0 4 0 4 0 0 0 0
0 0 0 0 2 2 2 2



The LAT of S .



4 0 0 0 0 0 0 0
0 0 2 2 0 0 2 −2
0 2 2 0 0 2 −2 0
0 2 0 2 0 −2 0 2
0 2 0 −2 0 −2 0 −2
0 −2 2 0 0 −2 −2 0
0 0 −2 2 0 0 −2 −2
0 0 0 0 −4 0 0 0


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If an n-bit S-Box is bijective, then its DDT coe�icients behave like
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Poisson distribution:
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e−1/2

2zz
.

Always even, ≥ 0
Typically between 0 and 16.

Lower is be�er.
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If an n-bit S-Box is bijective, then its LAT coe�icients behave like

independent and identically distributed random variables following this

distribution:

Pr [LAT[a,b] = 2z] =

(
2n−1

2n−2+z

)(
2n

2n−1

) .

Always even, signed.

Typically between -40 and 40.

Lower absolute value is be�er.
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Looking Only at the Maximum

δ log2 (Pr [max(D) ≤ δ ])

14 -0.006

12 -0.094

10 -1.329

8 -16.148

6 -164.466

4 -1359.530

DDT

` log2 (Pr [max(L) ≤ `])

38 -0.084

36 -0.302

34 -1.008

32 -3.160

30 -9.288

28 -25.623

26 -66.415

24 -161.900

22 -371.609

LAT

Probability that the maximum coe�icient in the DDT/LAT of an 8-bit

permutation is at most equal to a certain threshold.
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Taking Number of Maximum Values into Account
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Pr[max = 28, #28 ≤ N28]
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Application of this Analysis?

We applied this method on the S-Box of Skipjack.
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What is Skipjack? (1/2)

Type Block cipher

Bloc 64 bits

Key 80 bits

Authors NSA

Publication 1998
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Skipjack was supposed to be secret...

... but eventually published in 1998 [NIST, 1998],

It uses an 8 × 8 S-Box (F ) specified only by its LUT,

Skipjack was to be used by the Clipper Chip.
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For Skipjack’s F , max(LAT) = 28 and #28 = 3.
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F has not been picked uniformly at random.

F has not been picked among a feasibly large set of random S-Boxes.
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We have figured out that F is not random...

But what can we do to find actual structures?

Structural A�acks

A�acks against structures regardless of their details. Examples:

Integral a�acks against SPNs,

Yoyo game against Feistel Networks,

Looking at the Pollock representations of the DDT/LAT,

TU-Decomposition.
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Kuznyechik/Stribog

Stribog

Type Hash function

Publication [GOST, 2012]

Kuznyechik

Type Block cipher

Publication [GOST, 2015]

Common ground

Both are standard symmetric primitives in Russia.

Both were designed by the FSB (TC26).

Both use the same 8 × 8 S-Box, π .
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TU-Decomposition

Final Decomposition Number 1

ω

σ

ϕ �

ν1ν0

I�

α

� Multiplication in F24

α Linear permutation

I Inversion in F24

ν0,ν1,σ 4 × 4 permutations

ϕ 4 × 4 function

ω Linear permutation
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Conclusion for Kuznyechik/Stribog?

The Russian S-Box was built like a
strange Feistel...

... or was it?

Belarussian inspiration

The last standard of Belarus [Bel. St. Univ., 2011] uses an 8-bit S-box,

somewhat similar to π ...

... based on a finite field exponential!
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TU-Decomposition

Final Decomposition Number 2 (!)

ω ′

⊗−1

�

q′

logw,16

T

0 1 2 3 4 5 6 7 8 9 a b c d e f

T0 0 1 2 3 4 5 6 7 8 9 a b c d e f

T1 0 1 2 3 4 5 6 7 8 9 a b c d e f

T2 0 1 2 3 4 5 6 7 8 9 a b c d f e

T3 0 1 2 3 4 5 6 7 8 9 a b c f d e

T4 0 1 2 3 4 5 6 7 8 9 a b f c d e

T5 0 1 2 3 4 5 6 7 8 9 a f b c d e

T6 0 1 2 3 4 5 6 7 8 9 f a b c d e

T7 0 1 2 3 4 5 6 7 8 f 9 a b c d e

T8 0 1 2 3 4 5 6 7 f 8 9 a b c d e

T9 0 1 2 3 4 5 6 f 7 8 9 a b c d e

Ta 0 1 2 3 4 5 f 6 7 8 9 a b c d e

Tb 0 1 2 3 4 f 5 6 7 8 9 a b c d e

Tc 0 1 2 3 f 4 5 6 7 8 9 a b c d e

Td 0 1 2 f 3 4 5 6 7 8 9 a b c d e

Te 0 1 f 2 3 4 5 6 7 8 9 a b c d e

Tf 0 f 1 2 3 4 5 6 7 8 9 a b c d e
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What Things?

Everything is being connected to the internet.
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Security

“In IoT, the S is for Security.”

Internet-enabled devices have security flaws.

Security is an a�erthought (at best).

Security has a cost in terms of engineering...

... and computationnal resources!
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Lightweight Cryptography

Lightweight cryptography uses li�le resources.
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Lightweight Cryptography from the Industry

Stream ciphers, unless †(BC) or ‡(MAC)

A5/1

A5/2

Cmea †

Oryx

A5-GMR-1

A5-GMR-2

Dsc

SecureMem.

CryptoMem.

Hitag2

Megamos

Keeloq †

Dst40 †

iClass

Crypto-1

Css

Cryptomeria †

Csa-BC †

Csa-SC

PC-1

SecurID ‡

E0

RC4

They’re all dead (a�acks in less than 264
).
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Lightweight Block Ciphers from Academia

3-Way

RC5

Misty1

XTEA

AES

Khazad

Noekeon

Iceberg

mCrypton

HIGHT

SEA

CLEFIA

DESLX

PRESENT

MIBS

KATAN

GOST rev.

PRINTCipher

EPCBC

KLEIN

LBlock

LED

Piccolo

PICARO

PRINCE

ITUbee

TWINE

Zorro

Chaskey

PRIDE

Joltik

LEA

iScream

LBlock-s

Scream

Lilliput

RECTANGLE

Fantomas

Robin

Midori

SIMECK

RoadRunneR

FLY

Mantis

SKINNY

SPARX

Mysterion

Qarma

48 distinct block ciphers!
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Common Trade-O�s in LWC

Small internal state size.

Small key.

Simple key schedule.

No table look-ups (instead, ARX or bit-sliced S-Box).
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Block Cipher Design (1/2)

Requirement S-Box-based ARX-based

Confusion S �

Di�usion L �,≪,⊕
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Block Cipher Design (2/2)

Pdi� ≤
(∆S

2b
)# active S-Boxes

Design of an S-Box based SPN (wide trail
strategy)

Design of an ARX-cipher
(allegory)

source: Wiki Commons

Can we use ARX and have provable bounds?
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Trail Based Argument

S S ... S

L

S S ... S

L

S S ... S

a0 a1 a`
Bouding 2-round di�erential probability.

1 Consider all trails A{ B { C , where

A = (a0, ...,a` ), etc.

2 Markov assumption:

Pr [A{ B { C] = Pr [A{ B]×Pr [B { C]

3 Show that, for all A, B, C :

if Pr [A{ B] is high,

then Pr [B { C] is low.

4 Conclude that Pr [A{ B { C] can’t be

high.
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Proving Point 3: Wide Trail Argument

Wide Trail Argument

At the S-Box level, Pr [ai { bi ] ≤ p.

At the trail level, if #{i,ai , 0} is low then #{i,bi , 0} is high because

their sum is ≥ B (L).

Conclusion: best trail over 2 rounds has probability at most

pB (L) .
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Proving Point 3: Long Trail Argument

Long Trail Argument

At the S-Box level, use heuristic to show

Pr [ai { bi ] ≤ p1 ,

Pr [ai { bi { ci ] ≤ p2 � p1
2 ...

At the trail level, decompose A{ B { C into independent trails at

the S-Box level, e.g. a0 { b1 { c0, a1 { b0, ...

Bound probability using product of p1, p2, etc. depending on the

lengths of the S-Box-level trails.
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SPARX

1 Substitution-Permutation ARX.

2 Built using a wide-trail strategy...

3 ... thus, provably secure against di�erential/linear a�acks!

4 �ite e�icient on micro-controllers.

n/k 64/128 128/128 128/256

# Rounds/Step 3 4 4

# Steps 8 8 10

Best A�ack (# rounds) 15/24 22/32 24/40
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High Level View of SPARX-64/128

Impossible di�erential a�ack
on reduced round
SPARX-64/128
(AFRICACRYPT’2017)

Abdelkhalek, A., Tolba, M.,

and Youssef, A;

[Abdelkhalek et al., 2017]
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1 We can recover the majority of known S-Box structures

and derive new results about Skipjack and Kuznyechik.

2 We can design an e�icient ARX-based lightweight block

ciphers with provable security against di�erential/linear

a�acks.
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The Last S-Box

14 11 60 6d e9 10 e3 2 b 90 d 17 c5 b0 9f c5
d8 da be 22 8 f3 4 a9 fe f3 f5 fc bc 30 be 26
bb 88 85 46 f4 2e e fd 76 fe b0 11 4e de 35 bb
30 4b 30 d6 dd df df d4 90 7a d8 8c 6a 89 30 39
e9 1 da d2 85 87 d3 d4 ba 2b d4 9f 9c 38 8c 55
d3 86 bb db ec e0 46 48 bf 46 1b 1c d7 d9 1b e0
23 d4 d7 7f 16 3f 3 3 44 c3 59 10 2a da ed e9
8e d8 d1 db cb cb c3 c7 38 22 34 3d db 85 23 7c
24 d1 d8 2e fc 44 8 38 c8 c7 39 4c 5f 56 2a cf
d0 e9 d2 68 e4 e3 e9 13 e2 c 97 e4 60 29 d7 9b
d9 16 24 94 b3 e3 4c 4c 4f 39 e0 4b bc 2c d3 94
81 96 93 84 91 d0 2e d6 d2 2b 78 ef d6 9e 7b 72
ad c4 68 92 7a d2 5 2b 1e d0 dc b1 22 3f c3 c3
88 b1 8d b5 e3 4e d7 81 3 15 17 25 4e 65 88 4e
e4 3b 81 81 fa 1 1d 4 22 0 6 1 27 68 27 2e
3b 83 c7 cc 25 9b d8 d5 1c 1f e5 59 7f 3f 3f ef
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On the Bu�erfly Structure

xe

x1/e
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xe
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⊕

(a) Open (bijective) bu�erfly H
e
α .

�
α

⊕

xe

xe ⊕

�
α

⊕

xe
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High Level View of SPARX (algo)
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Details About ULW vs. IoT Crypto

Ultra-Lightweight IoT

Block size 64 bits ≥ 128 bits

Security level ≥ 80 bits ≥ 128 bits

Relevant a�acks low data complexity Same as “regular” crypto

Intended platform dedicated circuit low-end CPUs

SCA resilience important important

Functionality one per device encryption, authentication...

Connection to a central hub to a global network

Table : A summary of the di�erences between ultra-lightweight and IoT

cryptography.
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Fixing Justification of A�ack 11.5.4 (1/2)

Lemma

Let F : Fn2 → F2 be a Boolean function and let G : Fn2 → F
n
2 be a

permutation. Then:

deg(F ◦G ) = n − 1 =⇒ deg(F ) + deg(G−1) ≥ n .
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Fixing Justification of A�ack 11.5.4 (2/2)

If deg(F ◦G ) = n − 1, then ∃i ≤ n such that

⊕
x ∈Ci (F ◦G ) (x ) = 1.

Let Ii : Fn2 → F2 be such that Ii (x ) = 1⇔ x ∈ Ci :⊕
x ∈Ci

(F ◦G ) (x ) =
⊕
x ∈Fn2

F
(
G (x )

)
× Ii (x ) ,

and let y = G (x ). Then:⊕
x ∈Ci

(F ◦G ) (x ) =
⊕
y∈Fn2

F (y) × Ii
(
G−1 (y)

)
.

This sum is equal to 1 if and only if x 7→ F (x ) × Ii
(
G−1 (x )

)
has degree n.

Ii is a�ine (Ii (x ) = 1 + xi ). Thus, the sum can be equal to 1 only if

deg(F ) + deg(G−1) ≥ n .

�

8 / 14



Appendix
Back-Up Slides

Bibliography

Fixing Justification of A�ack 11.5.4 (2/2)

If deg(F ◦G ) = n − 1, then ∃i ≤ n such that

⊕
x ∈Ci (F ◦G ) (x ) = 1.

Let Ii : Fn2 → F2 be such that Ii (x ) = 1⇔ x ∈ Ci :⊕
x ∈Ci

(F ◦G ) (x ) =
⊕
x ∈Fn2

F
(
G (x )

)
× Ii (x ) ,

and let y = G (x ). Then:⊕
x ∈Ci

(F ◦G ) (x ) =
⊕
y∈Fn2

F (y) × Ii
(
G−1 (y)

)
.

This sum is equal to 1 if and only if x 7→ F (x ) × Ii
(
G−1 (x )

)
has degree n.

Ii is a�ine (Ii (x ) = 1 + xi ). Thus, the sum can be equal to 1 only if

deg(F ) + deg(G−1) ≥ n .

�

8 / 14



Appendix
Back-Up Slides

Bibliography

Fixing Justification of A�ack 11.5.4 (2/2)

If deg(F ◦G ) = n − 1, then ∃i ≤ n such that

⊕
x ∈Ci (F ◦G ) (x ) = 1.

Let Ii : Fn2 → F2 be such that Ii (x ) = 1⇔ x ∈ Ci :⊕
x ∈Ci

(F ◦G ) (x ) =
⊕
x ∈Fn2

F
(
G (x )

)
× Ii (x ) ,

and let y = G (x ). Then:⊕
x ∈Ci

(F ◦G ) (x ) =
⊕
y∈Fn2

F (y) × Ii
(
G−1 (y)

)
.

This sum is equal to 1 if and only if x 7→ F (x ) × Ii
(
G−1 (x )

)
has degree n.

Ii is a�ine (Ii (x ) = 1 + xi ). Thus, the sum can be equal to 1 only if

deg(F ) + deg(G−1) ≥ n .

�

8 / 14



Appendix
Back-Up Slides

Bibliography

Fixing Justification of A�ack 11.5.4 (2/2)

If deg(F ◦G ) = n − 1, then ∃i ≤ n such that

⊕
x ∈Ci (F ◦G ) (x ) = 1.

Let Ii : Fn2 → F2 be such that Ii (x ) = 1⇔ x ∈ Ci :⊕
x ∈Ci

(F ◦G ) (x ) =
⊕
x ∈Fn2

F
(
G (x )

)
× Ii (x ) ,

and let y = G (x ). Then:⊕
x ∈Ci

(F ◦G ) (x ) =
⊕
y∈Fn2

F (y) × Ii
(
G−1 (y)

)
.

This sum is equal to 1 if and only if x 7→ F (x ) × Ii
(
G−1 (x )

)
has degree n.

Ii is a�ine (Ii (x ) = 1 + xi ). Thus, the sum can be equal to 1 only if

deg(F ) + deg(G−1) ≥ n .

�

8 / 14



Appendix
Back-Up Slides

Bibliography

Fixing Justification of A�ack 11.5.4 (2/2)

If deg(F ◦G ) = n − 1, then ∃i ≤ n such that

⊕
x ∈Ci (F ◦G ) (x ) = 1.

Let Ii : Fn2 → F2 be such that Ii (x ) = 1⇔ x ∈ Ci :⊕
x ∈Ci

(F ◦G ) (x ) =
⊕
x ∈Fn2

F
(
G (x )

)
× Ii (x ) ,

and let y = G (x ). Then:⊕
x ∈Ci

(F ◦G ) (x ) =
⊕
y∈Fn2

F (y) × Ii
(
G−1 (y)

)
.

This sum is equal to 1 if and only if x 7→ F (x ) × Ii
(
G−1 (x )

)
has degree n.

Ii is a�ine (Ii (x ) = 1 + xi ).

Thus, the sum can be equal to 1 only if

deg(F ) + deg(G−1) ≥ n .

�

8 / 14



Appendix
Back-Up Slides

Bibliography

Fixing Justification of A�ack 11.5.4 (2/2)

If deg(F ◦G ) = n − 1, then ∃i ≤ n such that

⊕
x ∈Ci (F ◦G ) (x ) = 1.

Let Ii : Fn2 → F2 be such that Ii (x ) = 1⇔ x ∈ Ci :⊕
x ∈Ci

(F ◦G ) (x ) =
⊕
x ∈Fn2

F
(
G (x )

)
× Ii (x ) ,

and let y = G (x ). Then:⊕
x ∈Ci

(F ◦G ) (x ) =
⊕
y∈Fn2

F (y) × Ii
(
G−1 (y)

)
.

This sum is equal to 1 if and only if x 7→ F (x ) × Ii
(
G−1 (x )

)
has degree n.

Ii is a�ine (Ii (x ) = 1 + xi ). Thus, the sum can be equal to 1 only if

deg(F ) + deg(G−1) ≥ n .

�
8 / 14



Appendix
Back-Up Slides

Bibliography

Proposed Updates to the Thesis

Be�er justification for HDIM-based a�ack against SPNs.

Add S-Boxes of Skinny-64 and Skinny-128.

Add Chiasmus to the list of broken S-Boxes; add CSA-BC to the list of

unknown S-Boxes. Add CSS?

Update LWC review.

Add brief description of SPARX external cryptanalysis.
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