Arithmetization-Oriented Symmetric Cryptography: Why and How?

Léo Perrin ${ }^{1}$
including joint works with

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Robin Salen, Vesselin Velichkov, and Danny Willems,

Inria, Paris
20th of October 2022

Conclusion

A whole new world is opening in symmetric cryptography, that is more "algebraic" and where \approx everything remains to be done.

Outline

1 What are Arithmetization-Oriented Hash Functions

2 How Do We Test Their Security?
3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How Do We Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions
■ Scope statement

- How do we build and select symmetric primitives?
- Examples of such Functions

2 How Do We Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

Hash Functions

In what follows, \mathbb{F}_{q} is the finite field with q elements.

Definition

Here, a hash function H maps tuples of elements of \mathbb{F}_{q} to \mathbb{F}_{q}^{d}, for some fixed d.

Hash Functions

In what follows, \mathbb{F}_{q} is the finite field with q elements.

Definition

Here, a hash function H maps tuples of elements of \mathbb{F}_{q} to \mathbb{F}_{q}^{d}, for some fixed d.
Collision resistance: it must be infeasible in practice to find tuples x and y such that

$$
H(x)=H(y) .
$$

Oneway-ness: given $y \in\left(\mathbb{F}_{q}\right)^{d}$, it must be infeasible in practice to find x such that $H(x)=y$.

Hash Functions

In what follows, \mathbb{F}_{q} is the finite field with q elements.

Definition

Here, a hash function H maps tuples of elements of \mathbb{F}_{q} to \mathbb{F}_{q}^{d}, for some fixed d.
Collision resistance: it must be infeasible in practice to find tuples x and y such that

$$
H(x)=H(y) .
$$

Oneway-ness: given $y \in\left(\mathbb{F}_{q}\right)^{d}$, it must be infeasible in practice to find x such that $H(x)=y$.

Examples

"Binary World"

- SHA-1 (broken)
- SHA-2
- SHA-3
- Whirlpool

Hash Functions

In what follows, \mathbb{F}_{q} is the finite field with q elements.

Definition

Here, a hash function H maps tuples of elements of \mathbb{F}_{q} to \mathbb{F}_{q}^{d}, for some fixed d.
Collision resistance: it must be infeasible in practice to find tuples x and y such that

$$
H(x)=H(y) .
$$

Oneway-ness: given $y \in\left(\mathbb{F}_{q}\right)^{d}$, it must be infeasible in practice to find x such that $H(x)=y$.

Examples

"Binary World"

- SHA-1 (broken)
- SHA-2
- SHA-3
- Whirlpool
"Arithmetization-oriented"
- Rescue
- MiMC-hash
- gMiMC-hash
- Poseidon

A Natural Question

What are the differences between the "binary world" and the "arithmetization-oriented" world?

A Mismatch in Domain

For SHA-X, we have
■ $q=2$

- $160 \leq d \leq 512$
- at least 10 years old
- Based on logical gates/CPU instructions

For arithmetization-oriented functions:
$\square q \in\left\{2^{n}, p\right\}$, where $p \geq 2^{n}, n \geq 64$
■ $2 \leq d \leq 4$

- at most 5 years old

■ Based on finite field arithmetic

A Mismatch in Domain

For SHA-X, we have
■ $q=2$

- $160 \leq d \leq 512$
- at least 10 years old
- Based on logical gates/CPU instructions

For arithmetization-oriented functions:
$\square q \in\left\{2^{n}, p\right\}$, where $p \geq 2^{n}, n \geq 64$
■ $2 \leq d \leq 4$

- at most 5 years old

■ Based on finite field arithmetic

A Mismatch in Domain

For SHA-X, we have
■ $q=2$

- $160 \leq d \leq 512$
- at least 10 years old
- Based on logical gates/CPU instructions

For arithmetization-oriented functions:
$\square q \in\left\{2^{n}, p\right\}$, where $p \geq 2^{n}, n \geq 64$
■ $2 \leq d \leq 4$

- at most 5 years old

■ Based on finite field arithmetic

A (Smaller) Mismatch in Properties

Binary Hash Functions

The sub-components must provide:
Security: well-known attacks should not work

Operations: $y \leftarrow R(x)$ must be fast/time constant

Efficiency: easy implementation in software/hardware

A (Smaller) Mismatch in Properties

Binary Hash Functions

The sub-components must provide:
Security: well-known attacks should not work

Operations: $y \leftarrow R(x)$ must be fast/time constant

Efficiency: easy implementation in software/hardware

Arithmetization-oriented Hash Functions

The sub-components must provide:
Security: well-known attacks should not work

Operations: verifying that $y=R(x)$ must be efficient

Efficiency: easy integration without advanced protocols

A (Smaller) Mismatch in Properties

Binary Hash Functions

The sub-components must provide:
Security: well-known attacks should not work

Operations: $y \leftarrow R(x)$ must be fast/time constant

Efficiency: easy implementation in software/hardware

Arithmetization-oriented Hash Functions

The sub-components must provide:
Security: well-known attacks should not work

Operations: verifying that $y=R(x)$ must be efficient

Efficiency: easy integration without advanced protocols

A key difference: indirect computation

$$
y \leftarrow R(x) \quad \text { vs. } \quad y==R(x) ?
$$

Take Away

Arithmetization-oriented functions differ substantially from "classical ones"!

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

- Scope statement

■ How do we build and select symmetric primitives?

- Examples of such Functions

2 How Do We Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

To Build a Hash Function (Sponge Structure)

Modern hash functions usually have a sponge structure

To Build a Hash Function (Sponge Structure)

Parameters:

Modern hash functions usually have a sponge structure

image source: https://www.iacr.org/authors/tikz/

- A rate $r>0$ (\approx throughput)
- A capacity c >0 (\approx security level)
- A public permutation f of $\mathbb{F}_{q}^{r} \times \mathbb{F}_{q}^{c}$.

Algorithm:

1 Turn the message into ($m_{0}, \ldots, m_{\ell-1}$), where $m_{i} \in \mathbb{F}_{q}^{r}$
2 Initialize $(x, y) \in \mathbb{F}_{q}^{r} \times \mathbb{F}_{q}^{c}$
3 For $i \in\{0, \ldots, \ell-1\}$:

$$
x \leftarrow x+m_{i}
$$

$$
(x, y) \leftarrow f(x, y)
$$

4 Return x

To Build a Hash Function (Round Function)

The main task is to build the permutation $f: X \mapsto Y$. How do we do this? A round function R_{i} is iterated multiple times. It is parameterized by the round number i.

To Build a Hash Function (Round Function)

The main task is to build the permutation $f: X \mapsto Y$. How do we do this?
A round function R_{i} is iterated multiple times. It is parameterized by the round number i.

How to build R_{i} ?

The description of R_{i} is what really differentiates hash functions from one another.
(will be extensively discussed later)

To Build a Hash Function (Round Function)

The main task is to build the permutation $f: X \mapsto Y$. How do we do this?
A round function R_{i} is iterated multiple times. It is parameterized by the round number i.

How to build R_{i} ?

The description of R_{i} is what really differentiates hash functions from one another.
(will be extensively discussed later)

How to choose the number r of rounds?
How many do we need to be safe from all known attacks, with some margin?
(a deep topic!)

Next step

OK, I have designed a round function R, chosen a number ℓ of rounds...

Next step

OK, I have designed a round function R, chosen a number ℓ of rounds...

Will people use my algorithm now?

Next step

OK, I have designed a round function R, chosen a number ℓ of rounds...

Will people use my algorithm now?
... No.

Cryptographic Pipeline

Fundamental Research

Cryptographic Pipeline

	Fundamental Research		
Design	Public Analysis	Deployment	
		Standardization	time

Cryptographic Pipeline

Cryptographic Pipeline

Fundamental Research		
Design	Public Analysis Academic community	Deployment Industry
Small teams		
Scope statement		
- Algorithm specification		
Design choices justifications		
- Security analysis		
Conf.,	tition NIS,	

Cryptographic Pipeline

Cryptographic Pipeline

Fundamental Research		
Design	Public Analysis Academic community	Deployment Industry
Small teams		
$\begin{aligned} & \text { Scope } \\ & \text { statement } \end{aligned}$	Try and break published algorithms	
- Algorithm specification		
Design choices justifications		
Security analysis		
Publication Sta		
Conf., competition NIST,		

Cryptographic Pipeline

Fundamental Research		
Design Small teams ■ Scope statement - Algorithm specification - Design choices justifications - Security analysis	Public Analysis Academic community	Deployment Industry
	Try and break pub-	
	lished algorithms	
Pub Conf., com		time

Cryptographic Pipeline

Cryptographic Pipeline

Cryptographic Pipeline

Fundamental Research

This process is slow, so we can have trust

Take Away

1 The adoption of new hash functions will depend on how much we trust them, and thus on their security arguments

2 These security arguments must be based on fundamental research

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

- Scope statement
- How do we build and select symmetric primitives?
- Examples of such Functions

2 How Do We Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

MiMC: Efficient Encryption and Cryptographic
 Hashing with Minimal Multiplicative
 Complexity

Martin Albrecht ${ }^{1}$, Lorenzo Grassi ${ }^{3}$, Christian Rechberger ${ }^{2,3}$, Arnab Roy ${ }^{2}$, and Tyge Tiessen ${ }^{2}$
${ }^{1}$ Royal Holloway, University of London, UK martinralbrecht@googlemail.com
${ }^{2}$ DTU Compute, Technical University of Denmark, Denmark
\{arroy, crec, tyti\}@dtu.dk
${ }^{3}$ IAIK, Graz University of Technology, Austria \{christian.rechberger, lorenzo.grassi\}@iaik.tugraz.at

Published at ASIACRYPT'16;
https://eprint.iacr.org/2016/492.pdf

- Base field: \mathbb{F}_{q}, where e.g. $q=2^{129}$
- Round function:

$$
R_{i} \begin{cases}\mathbb{F}_{q} & \rightarrow \mathbb{F}_{q} \\ x & \mapsto\left(x+c_{i}\right)^{3}\end{cases}
$$

where the round constants c_{i} have been generated randomly.

■ Number of rounds: $\ell \approx 90$

gMiMC

Published at ESORICS'19;
Albrecht, Perrin, Ramacher, Rechberger, Rotaru, Roy, Schofnegger
https://eprint.iacr.org/2019/397.pdf

- Base field: \mathbb{F}_{q}, where $q=2^{n}$ or $q=p \geq 2^{n}, n \geq 64$

■ Round function: see left

- Number of rounds: $\ell>170$

Rescue

Published at ToSC'20(3);
Aly, Ashur, Ben-Sasson, Dhooghe, Szepieniec

- Base field: \mathbb{F}_{q}, where $q=p \geq 2^{n}, n \geq 64$
- Round function: see left; $\alpha=3$ and M is a linear permutation of \mathbb{F}_{q}^{t}.
- Number of rounds: $\ell \approx 10$
https://tosc.iacr.org/index.php/ToSC/article/view/8695/8287

Verification: $P_{i}\left(x_{i}\right)==Q_{i}\left(x_{i+1}\right)$, where P_{i} is a half round, and Q_{i} is the inverse of the other half!

Poseidon

Published at USENIX'21;
Grassi, Khovratovich, Rechberger, Roy, Schofnegger
https://eprint.iacr.org/2019/458.pdf

■ Base field: \mathbb{F}_{q}, where $q=p \geq 2^{n}, n \geq 64$

- Round function: $S(x)=x^{3}$, ARC add a round constant, and M is a linear permutation of \mathbb{F}_{q}^{t}.

■ Number of rounds: $\ell=R_{f}+R_{P} \approx 50$

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How Do We Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How Do We Test Their Security?

- Principles of the Cryptanalysis of Hash FunctionsAttack Techniques

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

Generic Attacks

Let H be a hash function with an output in $\mathbb{F}_{q}{ }^{d}$.

Generic Attacks

Let H be a hash function with an output in $\mathbb{F}_{q}{ }^{d}$.

No matter how good H is...
1 ... it can be inverted in time q^{d} (on average);
2 ... we can find x and y such that $H(x)=H(y)$ in time $\sqrt{q^{d}}$ (on average). (birthday search)

Generic attacks (such as these) serve as the benchmark to assess security levels in symmetric cryptography.

Goal

What does it mean to attack a hash function?

Goal

What does it mean to attack a hash function?

Practical Attack

Actually exhibit x and y such that
$H(x)=H(y)$.
Practically broken hash functions:
■ MD4

- SHA-1

Goal

What does it mean to attack a hash function?

Practical Attack

Actually exhibit x and y such that $H(x)=H(y)$.

Practically broken hash functions:
■ MD4

- SHA-1

Theoretical Result

Aim. Describe an algorithm capable of finding (x, y) faster than the corresponding generic attack.
Target. At first, we reduce the number of rounds in the inner primitive.

Goal

What does it mean to attack a hash function?

Practical Attack

Actually exhibit x and y such that $H(x)=H(y)$.

Practically broken hash functions:
■ MD4

- SHA-1

Theoretical Result

Aim. Describe an algorithm capable of finding (x, y) faster than the corresponding generic attack.
Target. At first, we reduce the number of rounds in the inner primitive.

1 practical attacks are found after theoretical results

Goal

What does it mean to attack a hash function?

Practical Attack

Actually exhibit x and y such that $H(x)=H(y)$.

Practically broken hash functions:
■ MD4

- SHA-1

Theoretical Result

Aim. Describe an algorithm capable of finding (x, y) faster than the corresponding generic attack.
Target. At first, we reduce the number of rounds in the inner primitive.

1 practical attacks are found after theoretical results
乙 theoretical results on hash functions are found after theoretical results on its inner primitive (e.g. the permutation for sponge functions).

Milestone Towards the Goal

What does it mean to attack a permutation?

Milestone Towards the Goal

What does it mean to attack a permutation?

Does it even make sense?

The specification of a permutation is public: there is no key to protect!

■ Ideally, an attacker wants to be able to control the capacity of the output using only the rate of the input.

- The security proof of the sponge relies on the permutation "behaving like a random permutation".

Milestone Towards the Goal

What does it mean to attack a permutation?

Does it even make sense?

The specification of a permutation is public: there is no key to protect!

■ Ideally, an attacker wants to be able to control the capacity of the output using only the rate of the input.

- The security proof of the sponge relies on the permutation "behaving like a random permutation".

Examples of distinguishers

CICO. Can you find $(x, 0)$ such that $P(x, 0)=(y, 0)$ (faster than a brute-force search)?
Low Degree. The univariate (or algebraic) degree of P is lower than expected.
Differential. next slide
Others! Linear, integral...

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How Do We Test Their Security?

- Principles of the Cryptanalysis of Hash Functions
- Attack Techniques

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

Differential Attacks

Differential equation

$$
P(x+a)-P(x)=b
$$

Differential Attacks

Differential equation

$$
P(x+a)-P(x)=b
$$

- Aim: find (a, b) such that there are many solutions x.
- In practice, we find $\left(a_{i}, a_{i+1}\right)$ at each round.

Differential Attacks

Differential equation

$$
P(x+a)-P(x)=b
$$

- Aim: find (a, b) such that there are many solutions x.
- In practice, we find $\left(a_{i}, a_{i+1}\right)$ at each round.
- Successfully applied to the inner block cipher of SHA-1 (in $\{0,1\}^{*}$), thus leading to its break...
- ... A priori less applicable in \mathbb{F}_{q} (or is it? \rightarrow RESCUE)

Algebraic Attacks

Main equation system

$$
\left\{\begin{array}{l}
x_{1}=F_{0}\left(x_{0}\right) \\
\cdots \\
x_{\ell}=F_{\ell-1}\left(x_{\ell-1}\right)
\end{array}\right.
$$

Algebraic Attacks

Main equation system

$$
\left\{\begin{array}{l}
x_{1}=F_{0}\left(x_{0}\right) \\
\cdots \\
x_{\ell}=F_{\ell-1}\left(x_{\ell-1}\right)
\end{array}\right.
$$

- If the system can be solved, then we can enforce constraints on x_{0} and x_{ℓ} (e.g. CICO).

Algebraic Attacks

Main equation system

$$
\left\{\begin{array}{l}
x_{1}=F_{0}\left(x_{0}\right) \\
\ldots \\
x_{\ell}=F_{\ell-1}\left(x_{\ell-1}\right)
\end{array}\right.
$$

- If the system can be solved, then we can enforce constraints on x_{0} and x_{ℓ} (e.g. CICO).
- First, compute a Gröbner basis of the system. Then, deduce a solution in the correct field.
- Complexity is not so easy to estimate:
- We can give bounds based on the best Gröbner basis algorithms...
- ... but they don't take the shape of the system into account.

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How Do We Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

Main Reference

New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi Permutations and Jive Compression Mode

■ Clémence Bouvier, Sorbonne University, Inria

- Pierre Briaud, Sorbonne University, Inria
- Pyrros Chaidos, National and Kapodistrian University of Athens
- Léo Perrin, Inria

■ Robin Salen, Toposware

- Vesselin Velichkov, Clearmatics, University of Edinburgh
- Danny Willems, LIX, Nomadic Labs
https://eprint.iacr.org/2022/840

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How Do We Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone
■ On CCZ-Equivalence

- Scope statement
- The Flystel Structure

4 Conclusion

Definition of CCZ-Equivalence (1/2)

Definition (Affine-Equivalence)

F and G are affine equivalent if $G(x)=(B \circ F \circ A)(x)$, where A, B are affine permutations.

Definition of CCZ-Equivalence (1/2)

Definition (Affine-Equivalence)

F and G are affine equivalent if $G(x)=(B \circ F \circ A)(x)$, where A, B are affine permutations.

Definition (EA-Equivalence; EA-mapping)

F and G are E (xtended) A (ffine) equivalent if $G(x)=(B \circ F \circ A)(x)+C(x)$, where A, B, C are affine and A, B are permutations;

Definition of CCZ-Equivalence (1/2)

Definition (Affine-Equivalence)

F and G are affine equivalent if $G(x)=(B \circ F \circ A)(x)$, where A, B are affine permutations.

Definition (EA-Equivalence; EA-mapping)

F and G are E (xtended) A (ffine) equivalent if $G(x)=(B \circ F \circ A)(x)+C(x)$, where A, B, C are affine and A, B are permutations; so that

$$
\underbrace{\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}}_{\Gamma_{G}}=\left[\begin{array}{cc}
A^{-1} & 0 \\
C A^{-1} & B
\end{array}\right](\underbrace{\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}}_{\Gamma_{F}}) .
$$

Definition of CCZ-Equivalence (2/2)

Definition (CCZ-Equivalence)

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are $C($ arlet)-C(harpin)-Z(inoviev) equivalent if

$$
\Gamma_{G}=\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}=\mathcal{L}\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=\mathcal{L}\left(\Gamma_{F}\right),
$$

where $\mathcal{L}: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}^{n+m}$ is an affine permutation.

Definition of CCZ-Equivalence (2/2)

Definition (CCZ-Equivalence)

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are C (arlet)-C(harpin)-Z(inoviev) equivalent if

$$
\Gamma_{G}=\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}=\mathcal{L}\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=\mathcal{L}\left(\Gamma_{F}\right),
$$

where $\mathcal{L}: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}^{n+m}$ is an affine permutation.

Remark

In general, the CCZ-equivalence class of F is reduced to its extended-affine class...

Definition of CCZ-Equivalence (2/2)

Definition (CCZ-Equivalence)

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are $C($ arlet $)$-C(harpin)-Z(inoviev) equivalent if

$$
\Gamma_{G}=\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}=\mathcal{L}\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=\mathcal{L}\left(\Gamma_{F}\right),
$$

where $\mathcal{L}: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}^{n+m}$ is an affine permutation.

Remark

In general, the CCZ-equivalence class of F is reduced to its extended-affine class...
But not always, and CCZ-equivalence does not preserve the degree!

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How Do We Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

- On CCZ-Equivalence

■ Scope statement

- The Flystel Structure

4 Conclusion

Performance Metric

Verifying that $y==R(x)$ must be efficient...

Performance Metric

Verifying that $y==R(x)$ must be efficient...
"Efficiency" depends on the subtleties of the protocol you work with!
Verifying if $y=c(a x+b)^{10}+x$ in R1CS
$1 t_{0}=a x$
2 $t_{1}=t_{0}+b$
$3 t_{2}=t_{1} \times t_{1}$
$4 t_{3}=t_{2} \times t_{2}$
$5 t_{4}=t_{3} \times t_{3}$
6 $t_{5}=t_{2} \times t_{4}$
$7 t_{6}=c t_{5}$
$8 y=t_{6}+x$

Performance Metric

Verifying that $y==R(x)$ must be efficient...
"Efficiency" depends on the subtleties of the protocol you work with!
Verifying if $y=c(a x+b)^{10}+x$ in R1CS
$1 t_{0}=a x$
$2 t_{1}=t_{0}+b$
$3 t_{2}=t_{1} \times t_{1}$
$4 t_{3}=t_{2} \times t_{2}$
$5 t_{4}=t_{3} \times t_{3}$
$6 t_{5}=t_{2} \times t_{4}$
$7 t_{6}=c t_{5}$
$8 y=t_{6}+x$

Performance Metric

Verifying that $y==R(x)$ must be efficient...
"Efficiency" depends on the subtleties of the protocol you work with!
Verifying if $y=c(a x+b)^{10}+x$ in R1CS
$1 t_{0}=a x$
$2 t_{1}=t_{0}+b$
$3 t_{2}=t_{1} \times t_{1}$
$4 t_{3}=t_{2} \times t_{2}$
$5 t_{4}=t_{3} \times t_{3}$
$6 t_{5}=t_{2} \times t_{4}$
$7 t_{6}=c t_{5}$
$8 y=t_{6}+x$

This verification costs 4 constaints

Scope Statement

Arithmetization-oriented symmetric primitive
■ Efficient and secure

- Enable low degree verification
- Have, overall, a high degree

CCZ-equivalence to the Rescue!

Suppose that F and G are CCZ-equivalent, and that

$$
\left\{(x, G(x)) \mid x \in \mathbb{F}_{q}\right\}=\mathcal{L}\left(\left\{(x, F(x)) \mid x \in \mathbb{F}_{q}\right\}\right)
$$

[^0]
CCZ-equivalence to the Rescue!

Suppose that F and G are CCZ-equivalent, and that

$$
\left\{(x, G(x)) \mid x \in \mathbb{F}_{q}\right\}=\mathcal{L}\left(\left\{(x, F(x)) \mid x \in \mathbb{F}_{q}\right\}\right)
$$

We can test $y==F(x)$, or, equivalently, we can do the following:
$1(u, v)=\mathcal{L}(x, y)$
2 test $v==G(u)$

[^1]
CCZ-equivalence to the Rescue!

Suppose that F and G are CCZ-equivalent, and that

$$
\left\{(x, G(x)) \mid x \in \mathbb{F}_{q}\right\}=\mathcal{L}\left(\left\{(x, F(x)) \mid x \in \mathbb{F}_{q}\right\}\right)
$$

We can test $y==F(x)$, or, equivalently, we can do the following:
$1(u, v)=\mathcal{L}(x, y)$
2 test $v==G(u)$
This trick was already used implicitely in Rescue ${ }^{1}$, where $F(x)=x^{1 / d}$ and $G(x)=x^{d}$.

[^2]
Scope Statement (more precise)

Arithmetization-oriented symmetric primitive

- Efficient and secure
- Based on high degree components that are CCZ-equivalent to low degree ones!

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How Do We Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

- On CCZ-Equivalence
- Scope statement
- The Flystel Structure

4 Conclusion

The Butterfly (reminder)

The Butterfly (reminder)

A Generalization of the case $\alpha=1$: the Flystel

$$
\begin{aligned}
& q=2^{n} \\
& E(x)=x^{3}, Q(x)=\beta x^{3}
\end{aligned}
$$

A Generalization of the case $\alpha=1$: the Flystel

$$
\begin{aligned}
& q=2^{n} \\
& E(x)=x^{3}, Q(x)=\beta x^{3}
\end{aligned}
$$

q prime
$E(x)=x^{d}, Q(x)=\beta x^{2}$

Properties of the Flystel

Theorem
A Flystel with $E(x)=x^{d}$ is differentially $(d-1)$-uniform.

Properties of the Flystel

Theorem
A Flystel with $E(x)=x^{d}$ is differentially $(d-1)$-uniform.

Corollary

If $\operatorname{gcd}(q-1,3)=1$, then the open Flystel with $E(x)=x^{3}$ is an APN permutation of a field of even degree!

Anemoi

	x_{0}	x_{1}	\cdots	$x_{\ell-1}$
Y	y_{0}	y_{1}	\cdots	$y_{\ell-1}$

(a) Internal state

\uparrow	\uparrow		\uparrow
\mathcal{H}	$\hat{\mathcal{H}}$	\ldots	\mathcal{H}
\downarrow	\downarrow		\downarrow

(c) The S-box layer \mathcal{S}.

$\longleftrightarrow \mathcal{M}_{x} \longrightarrow$
$\longleftrightarrow \mathcal{M}_{y} \longrightarrow$

(b) The diffusion layer \mathcal{M}.

(d) The constant addition \mathcal{A}.

Fig. 6: The internal state of Anemoi and its basic operations.

Performances (general)

	m	Rescue,	Poseidon	Griffin	Anemoi
	2	208	198	-	$\mathbf{7 6}$
R1CS	3	216	214	$\mathbf{9 6}$	-
	4	224	232	112	$\mathbf{9 6}$
	6	216	264	-	$\mathbf{1 2 0}$
	8	256	296	176	$\mathbf{1 6 0}$
Plonk	2	312	380	-	$\mathbf{1 7 1}$
	3	432	760	$\mathbf{2 1 4}$	-
	4	560	1336	334	$\mathbf{2 1 6}$
	6	756	3024	-	$\mathbf{3 3 0}$
	8	1152	5448	969	$\mathbf{5 2 0}$
	2	156	300	-	$\mathbf{1 1 4}$
	3	162	324	$\mathbf{1 4 4}$	-
	4	168	348	168	$\mathbf{1 4 4}$
	$\mathbf{1 6 2}$	396	-	180	
	8	$\mathbf{1 9 2}$	480	264	240

(a) when $\alpha=3$.

	m	Rescue	Poseidon	Griffin	Anemoi
R1CS	2	240	216	-	$\mathbf{9 5}$
	3	252	240	$\mathbf{9 6}$	-
	4	264	264	$\mathbf{1 1 0}$	120
	6	288	315	-	$\mathbf{1 5 0}$
	8	384	363	$\mathbf{1 6 2}$	200
Plonk	2	320	344	-	$\mathbf{1 9 0}$
	3	420	624	$\mathbf{1 8 6}$	-
	4	528	1032	287	$\mathbf{2 4 0}$
	6	768	2265	-	$\mathbf{3 6 0}$
	8	1280	4003	821	$\mathbf{5 6 0}$
	2	200	360	-	$\mathbf{1 9 0}$
	3	210	405	$\mathbf{1 8 0}$	-
	4	$\mathbf{2 2 0}$	440	$\mathbf{2 2 0}$	240
	6	$\mathbf{2 4 0}$	540	-	400
	8	$\mathbf{3 2 0}$	640	360	

(b) when $\alpha=5$.

Table 4: Constraint comparison for several hash functions. We fix $s=128$.

Performances (general)

Table 2: Constraints comparison of several hash functions for Plonk with an additional custom gate to compute x^{5}. We fix $s=128$, and prime field sizes of 256 .

	m	Constraints
PoSEIDON	3	110
	2	88
	3	378
GRIFFIN	3	236
AnemoiJive	2	125

(a) With 3 wires.

	m	Constraints
PoSEIDON	3	98
	2	82
Reinforced Concrete	3	267
	2	174
GRIFFIN	3	111
AnemoiJive	2	$\mathbf{5 8}$

(b) With 4 wires.

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How Do We Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

Conclusion

■ Designing airthmetization-oriented hash functions is difficult because it is largely uncharted territory...

Conclusion

■ Designing airthmetization-oriented hash functions is difficult because it is largely uncharted territory...

- Attack and design need more sophisticated mathematics than before!

■ There is room for improvement!

Conclusion

■ Designing airthmetization-oriented hash functions is difficult because it is largely uncharted territory...

- Attack and design need more sophisticated mathematics than before!

■ There is room for improvement!

Conclusion

■ Designing airthmetization-oriented hash functions is difficult because it is largely uncharted territory...

- Attack and design need more sophisticated mathematics than before!

■ There is room for improvement!

Thank you!

[^0]: ${ }^{1}$ Aly, A. et al. Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols. ToSC 2020(3), 1-45.

[^1]: ${ }^{1}$ Aly, A. et al. Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols. ToSC 2020(3), 1-45.

[^2]: ${ }^{1}$ Aly, A. et al. Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols. ToSC 2020(3), 1-45.

