
Arithmetization-Oriented Symmetric Cryptography:
Why and How?

Léo Perrin1

including joint works with

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Robin Salen, Vesselin Velichkov, and Danny Willems,

Inria, Paris

20th of October 2022



Conclusion

A whole new world is opening in symmetric cryptography, that is more
“algebraic” and where≈ everything remains to be done.



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Outline

1 What are Arithmetization-Oriented Hash Functions

2 How DoWe Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

2 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How DoWe Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

2 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions
Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

2 How DoWe Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

2 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Hash Functions

In what follows, Fq is the finite field with q elements.

Definition

Here, a hash function Hmaps tuples of elements of Fq to Fd
q, for some fixed d.

Collision resistance: it must be infeasible in practice to find tuples x and y such that
H(x) = H(y).

Oneway-ness: given y ∈ (Fq)
d, it must be infeasible in practice to find x such that H(x) = y.

Examples

“Binary World”
SHA-1 (broken)

SHA-2
SHA-3
Whirlpool

“Arithmetization-oriented”
Rescue
MiMC-hash
gMiMC-hash
Poseidon

3 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Hash Functions

In what follows, Fq is the finite field with q elements.

Definition

Here, a hash function Hmaps tuples of elements of Fq to Fd
q, for some fixed d.

Collision resistance: it must be infeasible in practice to find tuples x and y such that
H(x) = H(y).

Oneway-ness: given y ∈ (Fq)
d, it must be infeasible in practice to find x such that H(x) = y.

Examples

“Binary World”
SHA-1 (broken)

SHA-2
SHA-3
Whirlpool

“Arithmetization-oriented”
Rescue
MiMC-hash
gMiMC-hash
Poseidon

3 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Hash Functions

In what follows, Fq is the finite field with q elements.

Definition

Here, a hash function Hmaps tuples of elements of Fq to Fd
q, for some fixed d.

Collision resistance: it must be infeasible in practice to find tuples x and y such that
H(x) = H(y).

Oneway-ness: given y ∈ (Fq)
d, it must be infeasible in practice to find x such that H(x) = y.

Examples

“Binary World”
SHA-1 (broken)

SHA-2
SHA-3
Whirlpool

“Arithmetization-oriented”
Rescue
MiMC-hash
gMiMC-hash
Poseidon

3 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Hash Functions

In what follows, Fq is the finite field with q elements.

Definition

Here, a hash function Hmaps tuples of elements of Fq to Fd
q, for some fixed d.

Collision resistance: it must be infeasible in practice to find tuples x and y such that
H(x) = H(y).

Oneway-ness: given y ∈ (Fq)
d, it must be infeasible in practice to find x such that H(x) = y.

Examples

“Binary World”
SHA-1 (broken)

SHA-2
SHA-3
Whirlpool

“Arithmetization-oriented”
Rescue
MiMC-hash
gMiMC-hash
Poseidon

3 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

A Natural Question

What are the differences between the “binary world” and the
“arithmetization-oriented” world?

4 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

A Mismatch in Domain

For SHA-X, we have
q = 2

160 ≤ d ≤ 512

at least 10 years old

Based on logical gates/CPU instructions

For arithmetization-oriented functions:

q ∈ {2n, p}, where p ≥ 2n, n ≥ 64

2 ≤ d ≤ 4

at most 5 years old

Based on finite field arithmetic

5 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

A Mismatch in Domain

For SHA-X, we have
q = 2

160 ≤ d ≤ 512

at least 10 years old

Based on logical gates/CPU instructions

For arithmetization-oriented functions:

q ∈ {2n, p}, where p ≥ 2n, n ≥ 64

2 ≤ d ≤ 4

at most 5 years old

Based on finite field arithmetic

5 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

A Mismatch in Domain

For SHA-X, we have
q = 2

160 ≤ d ≤ 512

at least 10 years old

Based on logical gates/CPU instructions

For arithmetization-oriented functions:

q ∈ {2n, p}, where p ≥ 2n, n ≥ 64

2 ≤ d ≤ 4

at most 5 years old

Based on finite field arithmetic

5 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

A (Smaller) Mismatch in Properties

Binary Hash Functions

The sub-components must provide:

Security: well-known attacks should not
work

Operations: y← R(x)must be fast/time
constant

Efficiency: easy implementation in
software/hardware

Arithmetization-oriented Hash Functions

The sub-components must provide:

Security: well-known attacks should not
work

Operations: verifying that y = R(x)must be
efficient

Efficiency: easy integration without
advanced protocols

A key difference: indirect computation

y← R(x) vs. y == R(x)?

6 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

A (Smaller) Mismatch in Properties

Binary Hash Functions

The sub-components must provide:

Security: well-known attacks should not
work

Operations: y← R(x)must be fast/time
constant

Efficiency: easy implementation in
software/hardware

Arithmetization-oriented Hash Functions

The sub-components must provide:

Security: well-known attacks should not
work

Operations: verifying that y = R(x)must be
efficient

Efficiency: easy integration without
advanced protocols

A key difference: indirect computation

y← R(x) vs. y == R(x)?

6 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

A (Smaller) Mismatch in Properties

Binary Hash Functions

The sub-components must provide:

Security: well-known attacks should not
work

Operations: y← R(x)must be fast/time
constant

Efficiency: easy implementation in
software/hardware

Arithmetization-oriented Hash Functions

The sub-components must provide:

Security: well-known attacks should not
work

Operations: verifying that y = R(x)must be
efficient

Efficiency: easy integration without
advanced protocols

A key difference: indirect computation

y← R(x) vs. y == R(x)?

6 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Take Away

Arithmetization-oriented
functions differ substantially

from “classical ones”!

7 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions
Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

2 How DoWe Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

7 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

To Build a Hash Function (Sponge Structure)

Modern hash functions usually have a
sponge structure

image source: https://www.iacr.org/authors/tikz/

Parameters:

A rate r > 0 (≈ throughput)

A capacity c > 0 (≈ security level)

A public permutation f of Fr
q × Fc

q.

Algorithm:

1 Turn the message into (m0, ...,mℓ−1),
wheremi ∈ Fr

q

2 Initialize (x, y) ∈ Fr
q × Fc

q

3 For i ∈ {0, ..., ℓ− 1}:
x← x+mi

(x, y)← f(x, y)

4 Return x

8 / 35

https://www.iacr.org/authors/tikz/


What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

To Build a Hash Function (Sponge Structure)

Modern hash functions usually have a
sponge structure

image source: https://www.iacr.org/authors/tikz/

Parameters:

A rate r > 0 (≈ throughput)

A capacity c > 0 (≈ security level)

A public permutation f of Fr
q × Fc

q.

Algorithm:

1 Turn the message into (m0, ...,mℓ−1),
wheremi ∈ Fr

q

2 Initialize (x, y) ∈ Fr
q × Fc

q

3 For i ∈ {0, ..., ℓ− 1}:
x← x+mi

(x, y)← f(x, y)

4 Return x

8 / 35

https://www.iacr.org/authors/tikz/


What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

To Build a Hash Function (Round Function)

The main task is to build the permutation f : X 7→ Y. How do we do this?

A round function Ri is iterated multiple times.
It is parameterized by the round number i.

How to build Ri?

The description of Ri is what really
differentiates hash functions from one
another.
(will be extensively discussed later)

How to choose the number r of rounds?

Howmany do we need to be safe from all
known attacks, with somemargin?
(a deep topic!)

x0 ← X

F0

x1

F1

...

Fr−1

Y← xℓ

9 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

To Build a Hash Function (Round Function)

The main task is to build the permutation f : X 7→ Y. How do we do this?

A round function Ri is iterated multiple times.
It is parameterized by the round number i.

How to build Ri?

The description of Ri is what really
differentiates hash functions from one
another.
(will be extensively discussed later)

How to choose the number r of rounds?

Howmany do we need to be safe from all
known attacks, with somemargin?
(a deep topic!)

x0 ← X

F0

x1

F1

...

Fr−1

Y← xℓ
9 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

To Build a Hash Function (Round Function)

The main task is to build the permutation f : X 7→ Y. How do we do this?

A round function Ri is iterated multiple times.
It is parameterized by the round number i.

How to build Ri?

The description of Ri is what really
differentiates hash functions from one
another.
(will be extensively discussed later)

How to choose the number r of rounds?

Howmany do we need to be safe from all
known attacks, with somemargin?
(a deep topic!)

x0 ← X

F0

x1

F1

...

Fr−1

Y← xℓ
9 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Next step

OK, I have designed a round function R, chosen a number ℓ of rounds...

Will people use my algorithm now?

... No.

10 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Next step

OK, I have designed a round function R, chosen a number ℓ of rounds...

Will people use my algorithm now?

... No.

10 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Next step

OK, I have designed a round function R, chosen a number ℓ of rounds...

Will people use my algorithm now?

... No.

10 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust

11 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust

11 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust

11 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust

11 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust

11 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust

11 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust

11 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust

11 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust

11 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust

11 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Take Away

1 The adoption of new hash functions will depend on howmuch we trust them, and
thus on their security arguments

2 These security arguments must be based on fundamental research

12 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions
Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

2 How DoWe Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

12 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

MiMC

Published at ASIACRYPT’16;

https://eprint.iacr.org/2016/492.pdf

Base field: Fq, where e.g. q = 2129

Round function:

Ri

{
Fq → Fq

x 7→ (x+ ci)3

where the round constants ci have been
generated randomly.

Number of rounds: ℓ ≈ 90

13 / 35

https://eprint.iacr.org/2016/492.pdf


What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

gMiMC

Published at ESORICS’19;
Albrecht, Perrin, Ramacher, Rechberger, Rotaru, Roy, Schofnegger

https://eprint.iacr.org/2019/397.pdf

Base field: Fq, where q = 2n or
q = p ≥ 2n, n ≥ 64

Round function: see left

Number of rounds: ℓ > 170

14 / 35

https://eprint.iacr.org/2019/397.pdf


What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Rescue

Published at ToSC’20(3);
Aly, Ashur, Ben-Sasson, Dhooghe, Szepieniec

https://tosc.iacr.org/index.php/ToSC/article/view/8695/8287

Base field: Fq, where
q = p ≥ 2n, n ≥ 64

Round function: see left; α = 3
andM is a linear permutation of
Ft
q.

Number of rounds: ℓ ≈ 10

Verification: Pi(xi) == Qi(xi+1), where Pi is a half round,
and Qi is the inverse of the other half!

15 / 35

https://tosc.iacr.org/index.php/ToSC/article/view/8695/8287


What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Poseidon

Published at USENIX’21;
Grassi, Khovratovich, Rechberger, Roy, Schofnegger

https://eprint.iacr.org/2019/458.pdf

Base field: Fq, where q = p ≥ 2n, n ≥ 64

Round function: S(x) = x3, ARC add a
round constant, andM is a linear
permutation of Ft

q.

Number of rounds: ℓ = Rf + RP ≈ 50

16 / 35

https://eprint.iacr.org/2019/458.pdf


What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How DoWe Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

16 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How DoWe Test Their Security?
Principles of the Cryptanalysis of Hash Functions
Attack Techniques

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

16 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Generic Attacks

Let H be a hash function with an output in Fq
d.

No matter how good H is...

1 ... it can be inverted in time qd (on average); (brute-force)

2 ... we can find x and y such that H(x) = H(y) in time
√

qd (on average). (birthday search)

Generic attacks (such as these) serve as the benchmark
to assess security levels in symmetric cryptography.

17 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Generic Attacks

Let H be a hash function with an output in Fq
d.

No matter how good H is...

1 ... it can be inverted in time qd (on average); (brute-force)

2 ... we can find x and y such that H(x) = H(y) in time
√

qd (on average). (birthday search)

Generic attacks (such as these) serve as the benchmark
to assess security levels in symmetric cryptography.

17 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Goal

What does itmean to attack a hash function?

Practical Attack

Actually exhibit x and y such that
H(x) = H(y).

Practically broken hash functions:

MD4

SHA-1

Theoretical Result

Aim. Describe an algorithm capable of finding
(x, y) faster than the corresponding
generic attack.

Target. At first, we reduce the number of rounds
in the inner primitive.

1 practical attacks are found after theoretical results

2 theoretical results on hash functions are found after theoretical results on its inner
primitive (e.g. the permutation for sponge functions).

18 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Goal

What does itmean to attack a hash function?

Practical Attack

Actually exhibit x and y such that
H(x) = H(y).

Practically broken hash functions:

MD4

SHA-1

Theoretical Result

Aim. Describe an algorithm capable of finding
(x, y) faster than the corresponding
generic attack.

Target. At first, we reduce the number of rounds
in the inner primitive.

1 practical attacks are found after theoretical results

2 theoretical results on hash functions are found after theoretical results on its inner
primitive (e.g. the permutation for sponge functions).

18 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Goal

What does itmean to attack a hash function?

Practical Attack

Actually exhibit x and y such that
H(x) = H(y).

Practically broken hash functions:

MD4

SHA-1

Theoretical Result

Aim. Describe an algorithm capable of finding
(x, y) faster than the corresponding
generic attack.

Target. At first, we reduce the number of rounds
in the inner primitive.

1 practical attacks are found after theoretical results

2 theoretical results on hash functions are found after theoretical results on its inner
primitive (e.g. the permutation for sponge functions).

18 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Goal

What does itmean to attack a hash function?

Practical Attack

Actually exhibit x and y such that
H(x) = H(y).

Practically broken hash functions:

MD4

SHA-1

Theoretical Result

Aim. Describe an algorithm capable of finding
(x, y) faster than the corresponding
generic attack.

Target. At first, we reduce the number of rounds
in the inner primitive.

1 practical attacks are found after theoretical results

2 theoretical results on hash functions are found after theoretical results on its inner
primitive (e.g. the permutation for sponge functions).

18 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Goal

What does itmean to attack a hash function?

Practical Attack

Actually exhibit x and y such that
H(x) = H(y).

Practically broken hash functions:

MD4

SHA-1

Theoretical Result

Aim. Describe an algorithm capable of finding
(x, y) faster than the corresponding
generic attack.

Target. At first, we reduce the number of rounds
in the inner primitive.

1 practical attacks are found after theoretical results

2 theoretical results on hash functions are found after theoretical results on its inner
primitive (e.g. the permutation for sponge functions).

18 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Milestone Towards the Goal

What does itmean to attack a permutation?

Does it even make sense?

The specification of a permutation is
public: there is no key to protect!

Ideally, an attacker wants to be able
to control the capacity of the output
using only the rate of the input.

The security proof of the sponge
relies on the permutation “behaving
like a random permutation”.

Examples of distinguishers

CICO. Can you find (x, 0) such that
P(x, 0) = (y, 0) (faster than a
brute-force search)?

Low Degree. The univariate (or algebraic) degree
of P is lower than expected.

Differential. next slide

Others! Linear, integral...

19 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Milestone Towards the Goal

What does itmean to attack a permutation?

Does it even make sense?

The specification of a permutation is
public: there is no key to protect!

Ideally, an attacker wants to be able
to control the capacity of the output
using only the rate of the input.

The security proof of the sponge
relies on the permutation “behaving
like a random permutation”.

Examples of distinguishers

CICO. Can you find (x, 0) such that
P(x, 0) = (y, 0) (faster than a
brute-force search)?

Low Degree. The univariate (or algebraic) degree
of P is lower than expected.

Differential. next slide

Others! Linear, integral...

19 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Milestone Towards the Goal

What does itmean to attack a permutation?

Does it even make sense?

The specification of a permutation is
public: there is no key to protect!

Ideally, an attacker wants to be able
to control the capacity of the output
using only the rate of the input.

The security proof of the sponge
relies on the permutation “behaving
like a random permutation”.

Examples of distinguishers

CICO. Can you find (x, 0) such that
P(x, 0) = (y, 0) (faster than a
brute-force search)?

Low Degree. The univariate (or algebraic) degree
of P is lower than expected.

Differential. next slide

Others! Linear, integral...

19 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How DoWe Test Their Security?
Principles of the Cryptanalysis of Hash Functions
Attack Techniques

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

19 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Differential Attacks

Differential equation

P(x+ a)− P(x) = b

Aim: find (a, b) such that there are many solutions
x.

In practice, we find (ai, ai+1) at each round.

Successfully applied to the inner block cipher of
SHA-1 (in {0, 1}∗), thus leading to its break...

... A priori less applicable in Fq (or is it?→ RESCUE)

x0 = x

x1

F0

...

F1

P(x)

Fℓ−1

x0 + a0 = x+ a

x1 + a1

F0

...

F1

P(x+ a) = P(x) + b

Fℓ−1

20 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Differential Attacks

Differential equation

P(x+ a)− P(x) = b

Aim: find (a, b) such that there are many solutions
x.

In practice, we find (ai, ai+1) at each round.

Successfully applied to the inner block cipher of
SHA-1 (in {0, 1}∗), thus leading to its break...

... A priori less applicable in Fq (or is it?→ RESCUE)

x0 = x

x1

F0

...

F1

P(x)

Fℓ−1

x0 + a0 = x+ a

x1 + a1

F0

...

F1

P(x+ a) = P(x) + b

Fℓ−1

20 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Differential Attacks

Differential equation

P(x+ a)− P(x) = b

Aim: find (a, b) such that there are many solutions
x.

In practice, we find (ai, ai+1) at each round.

Successfully applied to the inner block cipher of
SHA-1 (in {0, 1}∗), thus leading to its break...

... A priori less applicable in Fq (or is it?→ RESCUE)

x0 = x

x1

F0

...

F1

P(x)

Fℓ−1

x0 + a0 = x+ a

x1 + a1

F0

...

F1

P(x+ a) = P(x) + b

Fℓ−1

20 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Algebraic Attacks

x0 = x

x1

F0

...

F1

P(x) = xℓ

Fℓ−1

Main equation system


x1 = F0(x0)

...

xℓ = Fℓ−1(xℓ−1)

If the system can be solved, then we can enforce constraints on x0 and xℓ
(e.g. CICO).

First, compute a Gröbner basis of the system. Then, deduce a solution in
the correct field.

Complexity is not so easy to estimate:
We can give bounds based on the best Gröbner basis algorithms...
... but they don’t take the shape of the system into account.

21 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Algebraic Attacks

x0 = x

x1

F0

...

F1

P(x) = xℓ

Fℓ−1

Main equation system


x1 = F0(x0)

...

xℓ = Fℓ−1(xℓ−1)

If the system can be solved, then we can enforce constraints on x0 and xℓ
(e.g. CICO).

First, compute a Gröbner basis of the system. Then, deduce a solution in
the correct field.

Complexity is not so easy to estimate:
We can give bounds based on the best Gröbner basis algorithms...
... but they don’t take the shape of the system into account.

21 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Algebraic Attacks

x0 = x

x1

F0

...

F1

P(x) = xℓ

Fℓ−1

Main equation system


x1 = F0(x0)

...

xℓ = Fℓ−1(xℓ−1)

If the system can be solved, then we can enforce constraints on x0 and xℓ
(e.g. CICO).

First, compute a Gröbner basis of the system. Then, deduce a solution in
the correct field.

Complexity is not so easy to estimate:
We can give bounds based on the best Gröbner basis algorithms...
... but they don’t take the shape of the system into account.

21 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How DoWe Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

21 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Main Reference

New Design Techniques for Efficient Arithmetization-Oriented Hash
Functions: Anemoi Permutations and Jive Compression Mode

Clémence Bouvier, Sorbonne University, Inria

Pierre Briaud, Sorbonne University, Inria

Pyrros Chaidos, National and Kapodistrian University of Athens

Léo Perrin, Inria

Robin Salen, Toposware

Vesselin Velichkov, Clearmatics, University of Edinburgh

DannyWillems, LIX, Nomadic Labs

https://eprint.iacr.org/2022/840

22 / 35

https://eprint.iacr.org/2022/840


What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How DoWe Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone
On CCZ-Equivalence
Scope statement
The Flystel Structure

4 Conclusion

22 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Definition of CCZ-Equivalence (1/2)

Definition (Affine-Equivalence)

F and G are affine equivalent if G(x) = (B ◦ F ◦ A)(x), where A, B are affine permutations.

Definition (EA-Equivalence; EA-mapping)

F and G are E(xtended) A(ffine) equivalent if G(x) = (B ◦ F ◦ A)(x) + C(x), where A, B, C are
affine and A, B are permutations; so that

{
(x, G(x)),∀x ∈ Fn

2

}︸ ︷︷ ︸
ΓG

=

[
A−1 0
CA−1 B

]({
(x, F(x)),∀x ∈ Fn

2

}︸ ︷︷ ︸
ΓF

)
.

23 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Definition of CCZ-Equivalence (1/2)

Definition (Affine-Equivalence)

F and G are affine equivalent if G(x) = (B ◦ F ◦ A)(x), where A, B are affine permutations.

Definition (EA-Equivalence; EA-mapping)

F and G are E(xtended) A(ffine) equivalent if G(x) = (B ◦ F ◦ A)(x) + C(x), where A, B, C are
affine and A, B are permutations;

so that

{
(x, G(x)),∀x ∈ Fn

2

}︸ ︷︷ ︸
ΓG

=

[
A−1 0
CA−1 B

]({
(x, F(x)),∀x ∈ Fn

2

}︸ ︷︷ ︸
ΓF

)
.

23 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Definition of CCZ-Equivalence (1/2)

Definition (Affine-Equivalence)

F and G are affine equivalent if G(x) = (B ◦ F ◦ A)(x), where A, B are affine permutations.

Definition (EA-Equivalence; EA-mapping)

F and G are E(xtended) A(ffine) equivalent if G(x) = (B ◦ F ◦ A)(x) + C(x), where A, B, C are
affine and A, B are permutations; so that

{
(x, G(x)), ∀x ∈ Fn

2

}︸ ︷︷ ︸
ΓG

=

[
A−1 0
CA−1 B

]({
(x, F(x)),∀x ∈ Fn

2

}︸ ︷︷ ︸
ΓF

)
.

23 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Definition of CCZ-Equivalence (2/2)

Definition (CCZ-Equivalence)

F : Fn
2 → Fm

2 and G : Fn
2 → Fm

2 are C(arlet)-C(harpin)-Z(inoviev) equivalent if

ΓG =
{
(x, G(x)),∀x ∈ Fn

2

}
= L

({
(x, F(x)), ∀x ∈ Fn

2

})
= L(ΓF) ,

whereL : Fn+m
2 → Fn+m

2 is an affine permutation.

Remark
In general, the CCZ-equivalence class of F is reduced to its extended-affine class...
But not always, and CCZ-equivalence does not preserve the degree!

24 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Definition of CCZ-Equivalence (2/2)

Definition (CCZ-Equivalence)

F : Fn
2 → Fm

2 and G : Fn
2 → Fm

2 are C(arlet)-C(harpin)-Z(inoviev) equivalent if

ΓG =
{
(x, G(x)),∀x ∈ Fn

2

}
= L

({
(x, F(x)), ∀x ∈ Fn

2

})
= L(ΓF) ,

whereL : Fn+m
2 → Fn+m

2 is an affine permutation.

Remark
In general, the CCZ-equivalence class of F is reduced to its extended-affine class...

But not always, and CCZ-equivalence does not preserve the degree!

24 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Definition of CCZ-Equivalence (2/2)

Definition (CCZ-Equivalence)

F : Fn
2 → Fm

2 and G : Fn
2 → Fm

2 are C(arlet)-C(harpin)-Z(inoviev) equivalent if

ΓG =
{
(x, G(x)),∀x ∈ Fn

2

}
= L

({
(x, F(x)), ∀x ∈ Fn

2

})
= L(ΓF) ,

whereL : Fn+m
2 → Fn+m

2 is an affine permutation.

Remark
In general, the CCZ-equivalence class of F is reduced to its extended-affine class...
But not always, and CCZ-equivalence does not preserve the degree!

24 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How DoWe Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone
On CCZ-Equivalence
Scope statement
The Flystel Structure

4 Conclusion

24 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Performance Metric

Verifying that y == R(x)must be efficient...

“Efficiency” depends on the subtleties of the protocol you work with!

Verifying if y = c(ax+ b)10 + x in R1CS

1

2

3 t2 = t1 × t1
4 t3 = t2 × t2

5 t4 = t3 × t3
6 t5 = t2 × t4
7

8

This verification costs 4 constaints

25 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Performance Metric

Verifying that y == R(x)must be efficient...

“Efficiency” depends on the subtleties of the protocol you work with!

Verifying if y = c(ax+ b)10 + x in R1CS

1 t0 = ax

2 t1 = t0 + b

3 t2 = t1 × t1
4 t3 = t2 × t2

5 t4 = t3 × t3
6 t5 = t2 × t4
7 t6 = ct5
8 y = t6 + x

This verification costs 4 constaints

25 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Performance Metric

Verifying that y == R(x)must be efficient...

“Efficiency” depends on the subtleties of the protocol you work with!

Verifying if y = c(ax+ b)10 + x in R1CS

1 t0 = ax

2 t1 = t0 + b

3 t2 = t1 × t1
4 t3 = t2 × t2

5 t4 = t3 × t3
6 t5 = t2 × t4
7 t6 = ct5
8 y = t6 + x

This verification costs 4 constaints

25 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Performance Metric

Verifying that y == R(x)must be efficient...

“Efficiency” depends on the subtleties of the protocol you work with!

Verifying if y = c(ax+ b)10 + x in R1CS

1 t0 = ax

2 t1 = t0 + b

3 t2 = t1 × t1
4 t3 = t2 × t2

5 t4 = t3 × t3
6 t5 = t2 × t4
7 t6 = ct5
8 y = t6 + x

This verification costs 4 constaints

25 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Scope Statement

Arithmetization-oriented symmetric primitive

Efficient and secure

Enable low degree verification

Have, overall, a high degree

26 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

CCZ-equivalence to the Rescue!

Suppose that F and G are CCZ-equivalent, and that{
(x, G(x)) | x ∈ Fq

}
= L

({
(x, F(x)) | x ∈ Fq

})

We can test y == F(x), or, equivalently, we can do the following:

1 (u, v) = L(x, y)
2 test v == G(u)

This trick was already used implicitely in Rescue1, where F(x) = x1/d and G(x) = xd.

1Aly, A. et al. Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols. ToSC 2020(3), 1–45.
27 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

CCZ-equivalence to the Rescue!

Suppose that F and G are CCZ-equivalent, and that{
(x, G(x)) | x ∈ Fq

}
= L

({
(x, F(x)) | x ∈ Fq

})
We can test y == F(x), or, equivalently, we can do the following:

1 (u, v) = L(x, y)
2 test v == G(u)

This trick was already used implicitely in Rescue1, where F(x) = x1/d and G(x) = xd.

1Aly, A. et al. Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols. ToSC 2020(3), 1–45.
27 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

CCZ-equivalence to the Rescue!

Suppose that F and G are CCZ-equivalent, and that{
(x, G(x)) | x ∈ Fq

}
= L

({
(x, F(x)) | x ∈ Fq

})
We can test y == F(x), or, equivalently, we can do the following:

1 (u, v) = L(x, y)
2 test v == G(u)

This trick was already used implicitely in Rescue1, where F(x) = x1/d and G(x) = xd.

1Aly, A. et al. Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols. ToSC 2020(3), 1–45.
27 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Scope Statement (more precise)

Arithmetization-oriented symmetric primitive

Efficient and secure

Based on high degree components that are CCZ-equivalent to low degree ones!

28 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How DoWe Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone
On CCZ-Equivalence
Scope statement
The Flystel Structure

4 Conclusion

28 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

The Butterfly (reminder)

βx3

x1/3

�
α

⊕

⊕

βx3

x3

�
α

⊕

⊕

T

U

�
α

⊕

x3

βx3 ⊕

�
α

⊕

x3

βx3 ⊕

29 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

The Butterfly (reminder)

βx3

x1/3

�
α

⊕

⊕

βx3

x3

�
α

⊕

⊕

T

U

�
α

⊕

x3

βx3 ⊕

�
α

⊕

x3

βx3 ⊕

29 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

A Generalization of the case α = 1: the Flystel

x y

⊟

⊟

⊞
u v

Q

E−1

Q

y v

⊟

⊞ ⊞

y− v

x u

Q E Q

q = 2n

E(x) = x3, Q(x) = βx3

q prime

E(x) = xd, Q(x) = βx2

30 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

A Generalization of the case α = 1: the Flystel

x y

⊟

⊟

⊞
u v

Q

E−1

Q

y v

⊟

⊞ ⊞

y− v

x u

Q E Q

q = 2n

E(x) = x3, Q(x) = βx3

q prime

E(x) = xd, Q(x) = βx2

30 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Properties of the Flystel

Theorem
A Flystel with E(x) = xd is differentially (d− 1)-uniform.

Corollary

If gcd(q− 1, 3) = 1, then the open Flystel with E(x) = x3 is an APN permutation of a field of
even degree!

31 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Properties of the Flystel

Theorem
A Flystel with E(x) = xd is differentially (d− 1)-uniform.

Corollary

If gcd(q− 1, 3) = 1, then the open Flystel with E(x) = x3 is an APN permutation of a field of
even degree!

31 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Anemoi

32 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Performances (general)

33 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

On CCZ-Equivalence
Scope statement
The Flystel Structure

Performances (general)

34 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

2 How DoWe Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

34 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Conclusion

Designing airthmetization-oriented hash functions is difficult
because it is largely uncharted territory...

Attack and design need more sophisticated mathematics than before!

There is room for improvement!

Thank you!

35 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Conclusion

Designing airthmetization-oriented hash functions is difficult
because it is largely uncharted territory...

Attack and design need more sophisticated mathematics than before!

There is room for improvement!

Thank you!

35 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Conclusion

Designing airthmetization-oriented hash functions is difficult
because it is largely uncharted territory...

Attack and design need more sophisticated mathematics than before!

There is room for improvement!

Thank you!

35 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Conclusion

Designing airthmetization-oriented hash functions is difficult
because it is largely uncharted territory...

Attack and design need more sophisticated mathematics than before!

There is room for improvement!

Thank you!

35 / 35


	What are Arithmetization-Oriented Hash Functions
	Scope statement
	How do we build and select symmetric primitives?
	Examples of such Functions

	How Do We Test Their Security?
	Principles of the Cryptanalysis of Hash Functions
	Attack Techniques

	Using CCZ-Equivalence to Outperform Everyone
	On CCZ-Equivalence
	Scope statement
	The Flystel Structure

	Conclusion

