Arithmetization-Oriented Symmetric Cryptography: Why and How?

Léo Perrin¹

including joint works with

Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Robin Salen, Vesselin Velichkov, and Danny Willems,

Inria, Paris

20th of October 2022

Conclusion

A whole new world is opening in symmetric cryptography, that is more "algebraic" and where \approx everything remains to be done.

Outline

1 What are Arithmetization-Oriented Hash Functions

- 2 How Do We Test Their Security?
- 3 Using CCZ-Equivalence to Outperform Everyone
- Conclusion 4

What are Arithmetization-Oriented Hash Functions

Scope statement How do we build and select symmetric primitives?

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

3 Using CCZ-Equivalence to Outperform Everyone

What are Arithmetization-Oriented Hash Functions

Scope statement

How do we build and select symmetric primitives?

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions

- Scope statement
- How do we build and select symmetric primitives?
- Examples of such Functions

Scope statement How do we build and select symmetric primitives? Examples of such Functions

Hash Functions

In what follows, \mathbb{F}_q is the finite field with q elements.

Definition

Here, a hash function H maps tuples of elements of \mathbb{F}_q to \mathbb{F}_q^d , for some fixed d.

Scope statement How do we build and select symmetric primitives? Examples of such Functions

Hash Functions

In what follows, \mathbb{F}_q is the finite field with q elements.

Definition

Here, a hash function H maps tuples of elements of \mathbb{F}_q to \mathbb{F}_q^d , for some fixed d.

Collision resistance: it must be infeasible in practice to find tuples x and y such that H(x) = H(y). Oneway-ness: given $y \in (\mathbb{F}_q)^d$, it must be infeasible in practice to find x such that H(x) = y.

Scope statement How do we build and select symmetric primitives? Examples of such Functions

Hash Functions

In what follows, \mathbb{F}_q is the finite field with q elements.

Definition

Here, a hash function H maps tuples of elements of \mathbb{F}_q to \mathbb{F}_q^d , for some fixed d.

Collision resistance: it must be infeasible in practice to find tuples x and y such that H(x) = H(y). Oneway-ness: given $y \in (\mathbb{F}_q)^d$, it must be infeasible in practice to find x such that H(x) = y.

Examples

"Binary World"

- SHA-1 (broken)
- SHA-2
- SHA-3
- Whirlpool

Scope statement How do we build and select symmetric primitives? Examples of such Functions

Hash Functions

In what follows, \mathbb{F}_q is the finite field with q elements.

Definition

Here, a hash function H maps tuples of elements of \mathbb{F}_q to \mathbb{F}_q^d , for some fixed d.

Collision resistance: it must be infeasible in practice to find tuples x and y such that H(x) = H(y). Oneway-ness: given $y \in (\mathbb{F}_q)^d$, it must be infeasible in practice to find x such that H(x) = y.

Examples

"Binary World"

- SHA-1 (broken)
- SHA-2
- SHA-3
- Whirlpool

"Arithmetization-oriented"

- Rescue
- MiMC-hash
- gMiMC-hash
- Poseidon

What are Arithmetization-Oriented Hash Functions

How Do We Test Their Security? Using CCZ-Equivalence to Outperform Everyone Conclusion Scope statement

How do we build and select symmetric primitives? Examples of such Functions

A Natural Question

What are the differences between the "binary world" and the "arithmetization-oriented" world? What are Arithmetization-Oriented Hash Functions

A Mismatch in Domain

For SHA-X, we have

- q = 2
- 160 ≤ *d* ≤ 512
- at least 10 years old
- Based on logical gates/CPU instructions

For arithmetization-oriented functions:

- $q \in \{2^n, p\}, \text{ where } p \ge 2^n, n \ge 64$
- 2 < *d* < 4
- at most 5 years old
- Based on finite field arithmetic

Scope statement

How do we build and select symmetric primitives?

A Mismatch in Domain

For SHA-X, we have

- **q** = 2
- 160 ≤ *d* ≤ 512
- at least 10 years old
- Based on logical gates/CPU instructions

For arithmetization-oriented functions:

- $q \in \{2^n, p\}$, where $p \ge 2^n, n \ge 64$
- 2 ≤ *d* ≤ 4

Scope statement

at most 5 years old

How do we build and select symmetric primitives?

Based on finite field arithmetic

A Mismatch in Domain

For SHA-X, we have

- **q** = 2
- 160 ≤ *d* ≤ 512
- at least 10 years old
- Based on logical gates/CPU instructions

For arithmetization-oriented functions:

- $q \in \{2^n, p\}$, where $p \ge 2^n$, $n \ge 64$
- 2 ≤ *d* ≤ 4
- at most 5 years old
- Based on finite field arithmetic

Scope statement

How do we build and select symmetric primitives?

Examples of such Function

Scope statement How do we build and select symmetric primitives?

Examples of such Functions

A (Smaller) Mismatch in Properties

Binary Hash Functions

The sub-components must provide:

Security: well-known attacks should not work

Operations: $y \leftarrow R(x)$ must be fast/time constant

Efficiency: easy implementation in software/hardware

Scope statement How do we build and select symmetric primitives? Examples of such Functions

A (Smaller) Mismatch in Properties

Binary Hash Functions

The sub-components must provide:

Security: well-known attacks should not work

- Operations: $y \leftarrow R(x)$ must be fast/time constant
 - Efficiency: easy implementation in software/hardware

Arithmetization-oriented Hash Functions The sub-components must provide: Security: well-known attacks should not work Operations: verifying that y = R(x) must be efficient Efficiency: easy integration without advanced protocols

Scope statement How do we build and select symmetric primitives? Examples of such Functions

A (Smaller) Mismatch in Properties

Binary Hash Functions

The sub-components must provide:

Security: well-known attacks should not work

Operations: $y \leftarrow R(x)$ must be fast/time constant

Efficiency: easy implementation in software/hardware

Arithmetization-oriented Hash Functions The sub-components must provide: Security: well-known attacks should not work Operations: verifying that y = R(x) must be efficient Efficiency: easy integration without advanced protocols

A key difference: indirect computation

$$y \leftarrow R(x)$$
 vs. $y == R(x)?$

What are Arithmetization-Oriented Hash Functions

How Do We Test Their Security? Using CCZ-Equivalence to Outperform Everyone Conclusion Scope statement How do we build and select symmetric primitives? Examples of such Eurotions

Take Away

Arithmetization-oriented functions differ substantially from "classical ones"!

Scope statement How do we build and select symmetric primitives? Examples of such Functions

Plan of this Section

- Scope statement
- How do we build and select symmetric primitives?
- Examples of such Functions
- 2 How Do We Test Their Security?
- 3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

Scope statement How do we build and select symmetric primitives? Examples of such Functions

To Build a Hash Function (Sponge Structure)

Modern hash functions usually have a sponge structure

Scope statement How do we build and select symmetric primitives? Examples of such Functions

To Build a Hash Function (Sponge Structure)

Modern hash functions usually have a sponge structure

image source: https://www.iacr.org/authors/tikz/

Parameters:

- A rate r > 0 (≈ throughput)
- A capacity c > 0 (pprox security level)
- A public permutation f of $\mathbb{F}_q^r \times \mathbb{F}_q^c$.

Algorithm:

1 Turn the message into $(m_0, ..., m_{\ell-1})$, where $m_i \in \mathbb{F}_q^r$ 2 Initialize $(x, y) \in \mathbb{F}_q^r \times \mathbb{F}_q^c$ 3 For $i \in \{0, ..., \ell - 1\}$: $x \leftarrow x + m_i$ $(x, y) \leftarrow f(x, y)$

4 Return 🗴

Scope statement How do we build and select symmetric primitives? Examples of such Functions

To Build a Hash Function (Round Function)

The main task is to build the permutation $f: X \mapsto Y$. How do we do this?

A round function *R_i* is iterated multiple times.

It is parameterized by the round number *i*.

Scope statement How do we build and select symmetric primitives? Examples of such Functions

To Build a Hash Function (Round Function)

The main task is to build the permutation $f : X \mapsto Y$. How do we do this?

A round function *R_i* is iterated multiple times.

It is parameterized by the round number *i*.

How to build **R**_i?

The description of *R_i* is what really differentiates hash functions from one another.

(will be extensively discussed later)

Scope statement How do we build and select symmetric primitives? Examples of such Functions

To Build a Hash Function (Round Function)

The main task is to build the permutation $f : X \mapsto Y$. How do we do this?

A **round function** *R_i* is iterated multiple times.

It is parameterized by the round number *i*.

How to build **R**_i?

The description of *R_i* is what really differentiates hash functions from one another.

(will be extensively discussed later)

How to choose the number *r* of rounds?

How many do we need to be safe from all known attacks, with some margin? (a deep topic!)

What are Arithmetization-Oriented Hash Functions How Do We Test Their Security?

Scope statement How do we build and select symmetric primitives? Examples of such Functions

Next step

OK, I have designed a round function R, chosen a number ℓ of rounds...

Scope statement How do we build and select symmetric primitives? Examples of such Functions

Next step

OK, I have designed a round function *R*, chosen a number ℓ of rounds...

Will people use my algorithm now?

Scope statement How do we build and select symmetric primitives? Examples of such Functions

Next step

OK, I have designed a round function R, chosen a number ℓ of rounds...

Will people use my algorithm now?

... No.

What are Arithmetization-Oriented Hash Functions

How Do We Test Their Security? Jsing CCZ-Equivalence to Outperform Everyone Conclusion Scope statement How do we build and select symmetric primitives? Examples of such Functions

Cryptographic Pipeline

Fundamental Research

Scope statement How do we build and select symmetric primitives? Examples of such Functions

Fundamental Research			
Design	Pu	iblic Analysis	Deployment
	Publication	Standardiza	tion >

Scope statement How do we build and select symmetric primitives? Examples of such Functions

Scope statement How do we build and select symmetric primitives? Examples of such Functions

	Fundamental R	esearch	
Design	Public Anal	ysis	Deployment
Small teams	Academic com	munity	Industry
Scope			
statement			
Algorithm			
specification			
Design choices			
justifications			
Security			
analysis			Υ.
Public	ation	Standardizatio	time
Publica			11
Conf., com	petition	INIS I, ISU, IETF.	

Scope statement How do we build and select symmetric primitives? Examples of such Functions

Scope statement How do we build and select symmetric primitives? Examples of such Functions

	Fundamental Research	
Design Small teams	Public Analysis Academic community	Deployment Industry
 Scope statement Algorithm specification 	Try and break pub- lished algorithms	
 Design choices justifications 		
 Security analysis 		,
Publica Conf., com	ation Star petition NIS	tin tin T, ISO, IETF

Scope statement How do we build and select symmetric primitives? Examples of such Functions

	Fundamental Research	
Design	Public Analysis	Deployment
Small teams	Academic community	Industry
 Scope statement Algorithm specification 	Try and break pub- lished algorithms	
 Design choices justifications 		
 Security analysis 		,
Public Conf., cor	cation Standard npetition NIST, ISO	ization), IETF

Scope statement How do we build and select symmetric primitives? Examples of such Functions

	Fundamental Research	
Design .	Public Analysis	Deployment
Small teams	Academic community	Industry
 Scope statement Algorithm 	Try and break pub- lished	
specification	argontinns	
 Design choices justifications 	Unbroken algorithms are	
Security	eventually <mark>trusted</mark>	
analysis		ς.
Public	ation Standardiz	tim
Cont., con	npetition NIST, ISO, I	1E1F

Scope statement How do we build and select symmetric primitives? Examples of such Functions

Cryptographic Pipeline

	Fundamental Research	
Design Small teams	Public Analysis Academic community	Deployment Industry
 Scope statement Algorithm specification Design choices justifications Security analysis 	Try and break pub- lished algorithms Unbroken algorithms are eventually trusted	Implements algorithms in actual products unless a new attack is found

Publication

Conf., competition

Standardization NIST, ISO, IETF... What are Arithmetization-Oriented Hash Functions How Do We Test Their Security?

Scope statement How do we build and select symmetric primitives? Examples of such Functions

Cryptographic Pipeline

Fundamental Research

This process is **slow**, so we can have **trust**
Scope statement How do we build and select symmetric primitives? Examples of such Functions

Take Away

- The adoption of new hash functions will depend on how much we trust them, and thus on their security arguments
- **2** These security arguments must be based on fundamental research

Scope statement How do we build and select symmetric primitives? Examples of such Functions

Plan of this Section

What are Arithmetization-Oriented Hash Functions

- Scope statement
- How do we build and select symmetric primitives?
- Examples of such Functions
- 2 How Do We Test Their Security?
- 3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

Scope statement How do we build and select symmetric primitives? Examples of such Functions

MiMC

MiMC: Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity

Martin Albrecht¹, Lorenzo Grassi³, Christian Rechberger^{2,3}, Arnab Roy², and Tyge Tiessen²

> Royal Holloway, University of London, UK martinralbrecht@googlemail.com
> DTU Compute, Technical University of Denmark, Denmark {arroy.crec.tyti}@dtu.dk
> IAIK, Graz University of Technology, Austria {christian.rechberger,lorenzo.grassi}@iaik.tugraz.at

> > Published at ASIACRYPT'16;

https://eprint.iacr.org/2016/492.pdf

Base field: \mathbb{F}_q , where e.g. $q = 2^{129}$

Round function:

 $R_i \begin{cases} \mathbb{F}_q & \to \mathbb{F}_q \\ x & \mapsto (x+c_i)^3 \end{cases}$

where the *round constants c*_{*i*} have been generated randomly.

Number of rounds: $\ell \approx 90$

What are Arithmetization-Oriented Hash Functions

How Do We Test Their Security? Using CCZ-Equivalence to Outperform Everyone Conclusion Scope statement How do we build and select symmetric primitives? Examples of such Functions

gMiMC

Published at ESORICS'19; Albrecht, Perrin, Ramacher, Rechberger, Rotaru, Roy, Schofnegger

https://eprint.iacr.org/2019/397.pdf

- Base field: \mathbb{F}_q , where $q = 2^n$ or $q = p \ge 2^n$, $n \ge 64$
- Round function: see left
- Number of rounds: $\ell > 170$

What are Arithmetization-Oriented Hash Functions

How Do We Test Their Security? Using CCZ-Equivalence to Outperform Everyone Conclusion Scope statement How do we build and select symmetric primitives? Examples of such Functions

Rescue

Published at ToSC'20(3); Aly, Ashur, Ben-Sasson, Dhooghe, Szepieniec

https://tosc.iacr.org/index.php/ToSC/article/view/8695/8287

- Base field: \mathbb{F}_q , where $q = p \ge 2^n$, $n \ge 64$

Number of rounds: $\ell \approx 10$

Verification: $P_i(x_i) == Q_i(x_{i+1})$, where P_i is a half round, and Q_i is the inverse of the other half! What are Arithmetization-Oriented Hash Functions

How Do We Test Their Security? Using CCZ-Equivalence to Outperform Everyone Conclusion Scope statement How do we build and select symmetric primitives? Examples of such Functions

Poseidon

Published at USENIX'21; Grassi, Khovratovich, Rechberger, Roy, Schofnegger

https://eprint.iacr.org/2019/458.pdf

- Base field: \mathbb{F}_q , where $q = p \ge 2^n$, $n \ge 64$
- Round function: S(x) = x³, ARC add a round constant, and M is a linear permutation of F^t_q.

Number of rounds: $\ell = R_f + R_P \approx 50$

Principles of the Cryptanalysis of Hash Functions Attack Techniques

Plan of this Section

What are Arithmetization-Oriented Hash Functions

2 How Do We Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

Principles of the Cryptanalysis of Hash Functions Attack Techniques

Plan of this Section

2 How Do We Test Their Security?

Principles of the Cryptanalysis of Hash Functions

Attack Techniques

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

Principles of the Cryptanalysis of Hash Functions Attack Techniques

Generic Attacks

Let *H* be a hash function with an output in \mathbb{F}_{q}^{d} .

Principles of the Cryptanalysis of Hash Functions Attack Techniques

Generic Attacks

Let *H* be a hash function with an output in \mathbb{F}_q^d .

No matter how good H is...

1 ... it can be inverted in time q^d (on average);

(brute-force)

2 ... we can find x and y such that H(x) = H(y) in time $\sqrt{q^d}$ (on average). (birthday search)

Generic attacks (such as these) serve as the benchmark to assess security levels in symmetric cryptography.

Principles of the Cryptanalysis of Hash Functions Attack Techniques

Goal

What does it mean to attack a hash function?

Principles of the Cryptanalysis of Hash Functions Attack Techniques

Goal

What does it *mean* to attack a hash function?

Practical Attack

Actually exhibit x and y such that H(x) = H(y).

Practically broken hash functions:

MD4

SHA-1

Principles of the Cryptanalysis of Hash Functions Attack Techniques

Goal

What does it mean to attack a hash function?

Practical Attack

Actually exhibit x and y such that H(x) = H(y).

Practically broken hash functions:

- MD4
- SHA-1

Theoretical Result

Aim. Describe an algorithm capable of finding (x, y) faster than the corresponding generic attack.

Target. At first, we reduce the number of rounds in the inner primitive.

Principles of the Cryptanalysis of Hash Functions Attack Techniques

Goal

What does it mean to attack a hash function?

Practical Attack

Actually exhibit x and y such that H(x) = H(y).

Practically broken hash functions:

- MD4
- SHA-1

Theoretical Result

Aim. Describe an algorithm capable of finding (x, y) faster than the corresponding generic attack.

Target. At first, we reduce the number of rounds in the inner primitive.

practical attacks are found after theoretical results

Principles of the Cryptanalysis of Hash Functions Attack Techniques

Goal

What does it mean to attack a hash function?

Practical Attack

Actually exhibit x and y such that H(x) = H(y).

Practically broken hash functions:

- MD4
- SHA-1

Theoretical Result

Aim. Describe an algorithm capable of finding (x, y) faster than the corresponding generic attack.

Target. At first, we reduce the number of rounds in the inner primitive.

- 1 practical attacks are found after theoretical results
- theoretical results on hash functions are found after theoretical results on its inner primitive (e.g. the permutation for sponge functions).

Principles of the Cryptanalysis of Hash Functions Attack Techniques

Milestone Towards the Goal

What does it mean to attack a permutation?

Principles of the Cryptanalysis of Hash Functions Attack Techniques

Milestone Towards the Goal

What does it mean to attack a permutation?

Does it even make sense?

The specification of a permutation is public: there is no **key** to protect!

- Ideally, an attacker wants to be able to control the capacity of the output using only the rate of the input.
- The security proof of the sponge relies on the permutation "behaving like a random permutation".

Principles of the Cryptanalysis of Hash Functions Attack Techniques

Milestone Towards the Goal

What does it mean to attack a permutation?

Does it even make sense?

The specification of a permutation is public: there is no **key** to protect!

- Ideally, an attacker wants to be able to control the capacity of the output using only the rate of the input.
- The security proof of the sponge relies on the permutation "behaving like a random permutation".

Examples of distinguishers

- CICO. Can you find (x, 0) such that P(x, 0) = (y, 0) (faster than a brute-force search)?
- Low Degree. The univariate (or algebraic) degree of *P* is lower than expected.
- Differential. next slide
 - Others! Linear, integral...

Principles of the Cryptanalysis of Hash Functions Attack Techniques

Plan of this Section

2 How Do We Test Their Security? Principles of the Cryptanalysis of Hash Functions Attack Techniques

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

Principles of the Cryptanalysis of Hash Functions Attack Techniques

Differential Attacks

Differential equation

$$P(x+a)-P(x) = b$$

Principles of the Cryptanalysis of Hash Functions Attack Techniques

Differential Attacks

Differential equation

$$P(x+a)-P(x) = b$$

- Aim: find (a, b) such that there are many solutions x.
- In practice, we find (a_i, a_{i+1}) at each round.

Principles of the Cryptanalysis of Hash Functions Attack Techniques

Differential Attacks

Differential equation

$$P(x+a)-P(x) = b$$

- Aim: find (a, b) such that there are many solutions x.
- In practice, we find (a_i, a_{i+1}) at each round.
- Successfully applied to the inner block cipher of SHA-1 (in {0,1}*), thus leading to its break...
- ... A priori less applicable in \mathbb{F}_q (or is it? \rightarrow RESCUE)

Principles of the Cryptanalysis of Hash Functions Attack Techniques

Algebraic Attacks

 $x_0 = x$ F_0 \mathbf{v}_1 *F*₁ $F_{\ell-1} \downarrow P(x) = x_{\ell}$

Main equation system

$$\begin{cases} x_1 = F_0(x_0) \\ \dots \\ x_{\ell} = F_{\ell-1}(x_{\ell-1}) \end{cases}$$

Principles of the Cryptanalysis of Hash Functions Attack Techniques

Algebraic Attacks

Main equation system $x_0 = x$ F₀ \mathbf{v}_1 F_1 (e.g. CICO). $F_{\ell-1}$ $\downarrow P(x) = x_{\ell}$

$$\begin{cases} x_1 = F_0(x_0) \\ \dots \\ x_{\ell} = F_{\ell-1}(x_{\ell-1}) \end{cases}$$

 If the system can be solved, then we can enforce constraints on x₀ and x_l (e.g. CICO).

Principles of the Cryptanalysis of Hash Functions Attack Techniques

Algebraic Attacks

 $x_0 = x$ F₀ \mathbf{v}_1 F_1 $F_{\ell-1}$ $\mathbf{Y}_{P(x)=x_{\ell}}$

Main equation system

$$\begin{cases} x_1 = F_0(x_0) \\ \dots \\ x_{\ell} = F_{\ell-1}(x_{\ell-1}) \end{cases}$$

- If the system can be solved, then we can enforce constraints on x₀ and x_l (e.g. CICO).
- First, compute a Gröbner basis of the system. Then, deduce a solution in the correct field.
- Complexity is not so easy to estimate:
 - We can give bounds based on the best Gröbner basis algorithms...
 - ... but they don't take the shape of the system into account.

On CCZ-Equivalence Scope statement The Flystel Structure

Plan of this Section

2 How Do We Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

On CCZ-Equivalence Scope statement The Flystel Structure

Main Reference

New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: **Anemoi** Permutations and **Jive** Compression Mode

- Clémence Bouvier, Sorbonne University, Inria
- Pierre Briaud, Sorbonne University, Inria
- Pyrros Chaidos, National and Kapodistrian University of Athens
- Léo Perrin, Inria
- **Robin Salen**, Toposware
- Vesselin Velichkov, Clearmatics, University of Edinburgh
- Danny Willems, LIX, Nomadic Labs

https://eprint.iacr.org/2022/840

On CCZ-Equivalence Scope statement The Flystel Structure

Plan of this Section

- 1 What are Arithmetization-Oriented Hash Functions
- 2 How Do We Test Their Security?
- 3 Using CCZ-Equivalence to Outperform Everyone
 - On CCZ-Equivalence
 - Scope statement
 - The Flystel Structure

4 Conclusion

On CCZ-Equivalence Scope statement The Flystel Structure

Definition of CCZ-Equivalence (1/2)

Definition (Affine-Equivalence)

F and G are affine equivalent if $G(x) = (B \circ F \circ A)(x)$, where A, B are affine permutations.

On CCZ-Equivalence Scope statement The Flystel Structure

Definition of CCZ-Equivalence (1/2)

Definition (Affine-Equivalence)

F and G are affine equivalent if $G(x) = (B \circ F \circ A)(x)$, where A, B are affine permutations.

Definition (EA-Equivalence; EA-mapping)

F and G are E(xtended) A(ffine) equivalent if $G(x) = (B \circ F \circ A)(x) + C(x)$, where A, B, C are affine and A, B are permutations;

On CCZ-Equivalence Scope statement The Flystel Structure

Definition of CCZ-Equivalence (1/2)

Definition (Affine-Equivalence)

F and G are affine equivalent if $G(x) = (B \circ F \circ A)(x)$, where A, B are affine permutations.

Definition (EA-Equivalence; EA-mapping)

F and *G* are *E*(*xtended*) *A*(*ffine*) *equivalent* if $G(x) = (B \circ F \circ A)(x) + C(x)$, where *A*, *B*, *C* are affine and *A*, *B* are permutations; so that

$$\underbrace{\{(x,G(x)),\forall x\in\mathbb{F}_2^n\}}_{\Gamma_G}=\left[\begin{array}{cc}A^{-1}&0\\CA^{-1}&B\end{array}\right]\left(\underbrace{\{(x,F(x)),\forall x\in\mathbb{F}_2^n\}}_{\Gamma_F}\right).$$

On CCZ-Equivalence Scope statement The Flystel Structure

Definition of CCZ-Equivalence (2/2)

Definition (CCZ-Equivalence)

 $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ and $G: \mathbb{F}_2^n \to \mathbb{F}_2^m$ are C(arlet)-C(harpin)-Z(inoviev) equivalent if

$$\Gamma_{G} = \left\{ (x, G(x)), \forall x \in \mathbb{F}_{2}^{n} \right\} = \mathcal{L} \left(\left\{ (x, F(x)), \forall x \in \mathbb{F}_{2}^{n} \right\} \right) = \mathcal{L}(\Gamma_{F}),$$

where $\mathcal{L}: \mathbb{F}_2^{n+m} \to \mathbb{F}_2^{n+m}$ is an affine permutation.

On CCZ-Equivalence Scope statement The Flystel Structure

Definition of CCZ-Equivalence (2/2)

Definition (CCZ-Equivalence)

 $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ and $G: \mathbb{F}_2^n \to \mathbb{F}_2^m$ are C(arlet)-C(harpin)-Z(inoviev) equivalent if

$$\Gamma_{\mathsf{G}} = \left\{ (x, \mathsf{G}(x)), \forall x \in \mathbb{F}_2^n \right\} = \mathcal{L}\left(\left\{ (x, \mathsf{F}(x)), \forall x \in \mathbb{F}_2^n \right\} \right) = \mathcal{L}(\Gamma_{\mathsf{F}}),$$

where $\mathcal{L}: \mathbb{F}_2^{n+m} \to \mathbb{F}_2^{n+m}$ is an affine permutation.

Remark

In general, the CCZ-equivalence class of F is reduced to its extended-affine class...

On CCZ-Equivalence Scope statement The Flystel Structure

Definition of CCZ-Equivalence (2/2)

Definition (CCZ-Equivalence)

 $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ and $G: \mathbb{F}_2^n \to \mathbb{F}_2^m$ are C(arlet)-C(harpin)-Z(inoviev) equivalent if

$$\Gamma_{\mathsf{G}} = \left\{ (x, \mathsf{G}(x)), \forall x \in \mathbb{F}_2^n \right\} = \mathcal{L}\left(\left\{ (x, \mathsf{F}(x)), \forall x \in \mathbb{F}_2^n \right\} \right) = \mathcal{L}(\Gamma_{\mathsf{F}}),$$

where $\mathcal{L}: \mathbb{F}_2^{n+m} \to \mathbb{F}_2^{n+m}$ is an affine permutation.

Remark

In general, the CCZ-equivalence class of *F* is reduced to its extended-affine class... But not always, and CCZ-equivalence does **not** preserve the degree!

On CCZ-Equivalence Scope statement The Flystel Structure

Plan of this Section

- 1 What are Arithmetization-Oriented Hash Functions
- 2 How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone

- On CCZ-Equivalence
- Scope statement
- The Flystel Structure

4 Conclusion

On CCZ-Equivalence Scope statement The Flystel Structure

Performance Metric

Verifying that y == R(x) must be efficient...
On CCZ-Equivalence Scope statement The Flystel Structure

Performance Metric

Verifying that y == R(x) must be efficient...

"Efficiency" depends on the subtleties of the protocol you work with!

Verifying if $y = c(ax + b)^{10} + x$ in R1CS

1
$$t_0 = ax$$
5
 $t_4 = t_3 \times t_3$

2
 $t_1 = t_0 + b$
6
 $t_5 = t_2 \times t_4$

3
 $t_2 = t_1 \times t_1$
7
 $t_6 = ct_5$

4
 $t_3 = t_2 \times t_2$
8
 $y = t_6 + x$

On CCZ-Equivalence Scope statement The Flystel Structure

Performance Metric

Verifying that y == R(x) must be efficient...

"Efficiency" depends on the subtleties of the protocol you work with!

Verifying if $y = c(ax + b)^{10} + x$ in R1CS

On CCZ-Equivalence Scope statement The Flystel Structure

Performance Metric

Verifying that y == R(x) must be efficient...

"Efficiency" depends on the subtleties of the protocol you work with!

Verifying if $y = c(ax + b)^{10} + x$ in R1CS

This verification costs <mark>4 constaints</mark>

5
$$t_4 = t_3 \times t_3$$

$$\begin{array}{c} \mathbf{6} \quad t_5 = t_2 \times t_4 \end{array}$$

7
$$t_6 = ct_5$$

8
$$y = t_6 + x_6$$

On CCZ-Equivalence Scope statement The Flystel Structure

Scope Statement

Arithmetization-oriented symmetric primitive

- Efficient and secure
- Enable low degree verification
- Have, overall, a high degree

On CCZ-Equivalence Scope statement The Flystel Structure

CCZ-equivalence to the Rescue!

Suppose that F and G are CCZ-equivalent, and that

$$\left\{\left(x, G(x)\right) \mid x \in \mathbb{F}_{q}\right\} = \mathcal{L}\left(\left\{\left(x, F(x)\right) \mid x \in \mathbb{F}_{q}\right\}\right)$$

¹Aly, A. et al. Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols. ToSC 2020(3), 1–45.

On CCZ-Equivalence Scope statement The Flystel Structure

CCZ-equivalence to the Rescue!

Suppose that F and G are CCZ-equivalent, and that

$$\left\{\left(x, G(x)\right) \mid x \in \mathbb{F}_q\right\} = \mathcal{L}\left(\left\{\left(x, F(x)\right) \mid x \in \mathbb{F}_q\right\}\right)$$

We can test y == F(x), or, equivalently, we can do the following: 1 $(u, v) = \mathcal{L}(x, y)$ 2 test v == G(u)

¹Aly, A. et al. Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols. ToSC 2020(3), 1–45.

On CCZ-Equivalence Scope statement The Flystel Structure

CCZ-equivalence to the Rescue!

Suppose that F and G are CCZ-equivalent, and that

$$\left\{\left(x, G(x)\right) \mid x \in \mathbb{F}_{q}\right\} = \mathcal{L}\left(\left\{\left(x, F(x)\right) \mid x \in \mathbb{F}_{q}\right\}\right)$$

We can test y == F(x), or, equivalently, we can do the following: 1 $(u, v) = \mathcal{L}(x, y)$ 2 test v == G(u)

This trick was already used implicitely in Rescue¹, where $F(x) = x^{1/d}$ and $G(x) = x^d$.

¹Aly, A. et al. Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols. ToSC 2020(3), 1–45.

On CCZ-Equivalence Scope statement The Flystel Structure

Scope Statement (more precise)

Arithmetization-oriented symmetric primitive

- Efficient and secure
- Based on high degree components that are CCZ-equivalent to low degree ones!

On CCZ-Equivalence Scope statement The Flystel Structure

Plan of this Section

- 1 What are Arithmetization-Oriented Hash Functions
- 2 How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone

- On CCZ-Equivalence
- Scope statement
- The Flystel Structure

4 Conclusion

On CCZ-Equivalence Scope statement The Flystel Structure

The Butterfly (reminder)

On CCZ-Equivalence Scope statement The Flystel Structure

The Butterfly (reminder)

On CCZ-Equivalence Scope statement The Flystel Structure

A Generalization of the case lpha= 1: the Flystel

 $q = 2^n$ $E(x) = x^3, Q(x) = \beta x^3$

On CCZ-Equivalence Scope statement The Flystel Structure

A Generalization of the case lpha= 1: the Flystel

 $q = 2^n$ $E(x) = x^3, Q(x) = \beta x^3$

q prime

 $E(x) = x^d, Q(x) = \beta x^2$

On CCZ-Equivalence Scope statement The Flystel Structure

Properties of the Flystel

Theorem

A Flystel with $E(x) = x^d$ is differentially (d - 1)-uniform.

On CCZ-Equivalence Scope statement The Flystel Structure

Properties of the Flystel

Theorem

A Flystel with $E(x) = x^d$ is differentially (d - 1)-uniform.

Corollary

If gcd(q - 1, 3) = 1, then the open Flystel with $E(x) = x^3$ is an APN permutation of a field of even degree!

On CCZ-Equivalence Scope statement The Flystel Structure

Anemoi

Fig. 6: The internal state of Anemoi and its basic operations.

On CCZ-Equivalence Scope statement The Flystel Structure

Performances (general)

	m	Rescue '	Poseidon	GRIFFIN	Anemoi			m	Rescue'	Poseidon	GRIFFIN	Anemoi
R1CS	2	208	198	-	76	R1CS	2	240	216	-	95	
	3	216	214	96	-		3	252	240	96	-	
	4	224	232	112	96		4	264	264	110	120	
	6	216	264	-	120		6	288	315	-	150	
	8	256	296	176	160		8	384	363	162	200	
Plonk	2	312	380	-	171	Plonk	2	320	344	-	190	
	3	432	760	214	-		3	420	624	186	-	
	4	560	1336	334	216		4	528	1032	287	240	
	6	756	3024	-	330		6	768	2265	-	360	
	8	1152	5448	969	520		8	1280	4003	821	560	
AIR	2	156	300	-	114			2	200	360	-	190
	3	162	324	144	-	AIR	3	210	405	180	-	
	4	168	348	168	144		4	220	440	220	240	
	6	162	396	-	180		6	240	540	-	300	
	8	192	480	264	240		8	320	640	360	400	
(a) when $\alpha = 3$.						(b) when $\alpha = 5$.						

Table 4: Constraint comparison for several hash functions. We fix s = 128.

On CCZ-Equivalence Scope statement The Flystel Structure

Performances (general)

Table 2: Constraints comparison of several hash functions for *Plonk* with an additional custom gate to compute x^5 . We fix s = 128, and prime field sizes of 256.

	m	$\operatorname{Constraints}$
Poseidon	3	110
1 Oblibbit	2	88
Reinforced Concrete	3	378
Reinforced concrete	2	236
GRIFFIN	3	125
AnemoiJive	2	79

(a) With 3 wires.

	m	$\operatorname{Constraints}$
Poseidon	3	98 82
Reinforced Concrete	$\frac{3}{2}$	$\frac{267}{174}$
Griffin	3	111
AnemoiJive	2	58

(b) With 4 wires.

Plan of this Section

2 How Do We Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

Conclusion

Designing airthmetization-oriented hash functions is difficult because it is largely uncharted territory...

Conclusion

Designing airthmetization-oriented hash functions is difficult because it is largely uncharted territory...

Attack and design need more sophisticated mathematics than before!

There is room for improvement!

Conclusion

Designing airthmetization-oriented hash functions is difficult because it is largely uncharted territory...

Attack and design need more sophisticated mathematics than before!

There is room for improvement!

Conclusion

Designing airthmetization-oriented hash functions is difficult because it is largely uncharted territory...

Attack and design need more sophisticated mathematics than before!

There is room for improvement!

Thank you!