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Conclusion

A whole new world is opening in symmetric cryptography, that is more
“algebraic” and where≈ everything remains to be done.
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Hash Functions

In what follows, Fq is the finite field with q elements.

Definition

Here, a hash function Hmaps tuples of elements of Fq to Fd
q, for some fixed d.

Collision resistance: it must be infeasible in practice to find tuples x and y such that
H(x) = H(y).

Oneway-ness: given y ∈ (Fq)
d, it must be infeasible in practice to find x such that H(x) = y.

Examples

“Binary World”
SHA-1 (broken)

SHA-2
SHA-3
Whirlpool

“Arithmetization-oriented”
Rescue
MiMC-hash
gMiMC-hash
Poseidon
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A Natural Question

What are the differences between the “binary world” and the
“arithmetization-oriented” world?
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A Mismatch in Domain

For SHA-X, we have
q = 2

160 ≤ d ≤ 512

at least 10 years old

Based on logical gates/CPU instructions

For arithmetization-oriented functions:

q ∈ {2n, p}, where p ≥ 2n, n ≥ 64

2 ≤ d ≤ 4

at most 5 years old

Based on finite field arithmetic
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A (Smaller) Mismatch in Properties

Binary Hash Functions

The sub-components must provide:

Security: well-known attacks should not
work

Operations: y← R(x)must be fast/time
constant

Efficiency: easy implementation in
software/hardware

Arithmetization-oriented Hash Functions

The sub-components must provide:

Security: well-known attacks should not
work

Operations: verifying that y = R(x)must be
efficient

Efficiency: easy integration without
advanced protocols

A key difference: indirect computation

y← R(x) vs. y == R(x)?
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Take Away

Arithmetization-oriented
functions differ substantially

from “classical ones”!
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To Build a Hash Function (Sponge Structure)

Modern hash functions usually have a
sponge structure

image source: https://www.iacr.org/authors/tikz/

Parameters:

A rate r > 0 (≈ throughput)

A capacity c > 0 (≈ security level)

A public permutation f of Fr
q × Fc

q.

Algorithm:

1 Turn the message into (m0, ...,mℓ−1),
wheremi ∈ Fr

q

2 Initialize (x, y) ∈ Fr
q × Fc

q

3 For i ∈ {0, ..., ℓ− 1}:
x← x+mi

(x, y)← f(x, y)

4 Return x
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To Build a Hash Function (Round Function)

The main task is to build the permutation f : X 7→ Y. How do we do this?

A round function Ri is iterated multiple times.
It is parameterized by the round number i.

How to build Ri?

The description of Ri is what really
differentiates hash functions from one
another.
(will be extensively discussed later)

How to choose the number r of rounds?

Howmany do we need to be safe from all
known attacks, with somemargin?
(a deep topic!)

x0 ← X

F0

x1

F1

...

Fr−1

Y← xℓ
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Next step

OK, I have designed a round function R, chosen a number ℓ of rounds...

Will people use my algorithm now?

... No.
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Cryptographic Pipeline

Fundamental Research

time

Design Public Analysis Deployment

Publication Standardization

Small teams Academic community Industry

Conf., competition NIST, ISO, IETF...

Scope
statement

Algorithm
specification

Design choices
justifications

Security
analysis

Try and break pub-
lished
algorithms

Unbroken
algorithms are
eventually trusted

Implements
algorithms in
actual products...
...unless a new
attack is found

This process is slow, so we can have trust
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Take Away

1 The adoption of new hash functions will depend on howmuch we trust them, and
thus on their security arguments

2 These security arguments must be based on fundamental research

12 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

Plan of this Section

1 What are Arithmetization-Oriented Hash Functions
Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

2 How DoWe Test Their Security?

3 Using CCZ-Equivalence to Outperform Everyone

4 Conclusion

12 / 35



What are Arithmetization-Oriented Hash Functions
How Do We Test Their Security?

Using CCZ-Equivalence to Outperform Everyone
Conclusion

Scope statement
How do we build and select symmetric primitives?
Examples of such Functions

MiMC

Published at ASIACRYPT’16;

https://eprint.iacr.org/2016/492.pdf

Base field: Fq, where e.g. q = 2129

Round function:

Ri

{
Fq → Fq

x 7→ (x+ ci)3

where the round constants ci have been
generated randomly.

Number of rounds: ℓ ≈ 90
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gMiMC

Published at ESORICS’19;
Albrecht, Perrin, Ramacher, Rechberger, Rotaru, Roy, Schofnegger

https://eprint.iacr.org/2019/397.pdf

Base field: Fq, where q = 2n or
q = p ≥ 2n, n ≥ 64

Round function: see left

Number of rounds: ℓ > 170
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Rescue

Published at ToSC’20(3);
Aly, Ashur, Ben-Sasson, Dhooghe, Szepieniec

https://tosc.iacr.org/index.php/ToSC/article/view/8695/8287

Base field: Fq, where
q = p ≥ 2n, n ≥ 64

Round function: see left; α = 3
andM is a linear permutation of
Ft
q.

Number of rounds: ℓ ≈ 10

Verification: Pi(xi) == Qi(xi+1), where Pi is a half round,
and Qi is the inverse of the other half!
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Poseidon

Published at USENIX’21;
Grassi, Khovratovich, Rechberger, Roy, Schofnegger

https://eprint.iacr.org/2019/458.pdf

Base field: Fq, where q = p ≥ 2n, n ≥ 64

Round function: S(x) = x3, ARC add a
round constant, andM is a linear
permutation of Ft

q.

Number of rounds: ℓ = Rf + RP ≈ 50
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Generic Attacks

Let H be a hash function with an output in Fq
d.

No matter how good H is...

1 ... it can be inverted in time qd (on average); (brute-force)

2 ... we can find x and y such that H(x) = H(y) in time
√

qd (on average). (birthday search)

Generic attacks (such as these) serve as the benchmark
to assess security levels in symmetric cryptography.
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Principles of the Cryptanalysis of Hash Functions
Attack Techniques

Goal

What does itmean to attack a hash function?

Practical Attack

Actually exhibit x and y such that
H(x) = H(y).

Practically broken hash functions:

MD4

SHA-1

Theoretical Result

Aim. Describe an algorithm capable of finding
(x, y) faster than the corresponding
generic attack.

Target. At first, we reduce the number of rounds
in the inner primitive.

1 practical attacks are found after theoretical results

2 theoretical results on hash functions are found after theoretical results on its inner
primitive (e.g. the permutation for sponge functions).
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Milestone Towards the Goal

What does itmean to attack a permutation?

Does it even make sense?

The specification of a permutation is
public: there is no key to protect!

Ideally, an attacker wants to be able
to control the capacity of the output
using only the rate of the input.

The security proof of the sponge
relies on the permutation “behaving
like a random permutation”.

Examples of distinguishers

CICO. Can you find (x, 0) such that
P(x, 0) = (y, 0) (faster than a
brute-force search)?

Low Degree. The univariate (or algebraic) degree
of P is lower than expected.

Differential. next slide

Others! Linear, integral...
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Differential Attacks

Differential equation

P(x+ a)− P(x) = b

Aim: find (a, b) such that there are many solutions
x.

In practice, we find (ai, ai+1) at each round.

Successfully applied to the inner block cipher of
SHA-1 (in {0, 1}∗), thus leading to its break...

... A priori less applicable in Fq (or is it?→ RESCUE)

x0 = x

x1

F0

...

F1

P(x)

Fℓ−1

x0 + a0 = x+ a

x1 + a1

F0

...

F1

P(x+ a) = P(x) + b

Fℓ−1
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Algebraic Attacks

x0 = x

x1

F0

...

F1

P(x) = xℓ

Fℓ−1

Main equation system


x1 = F0(x0)

...

xℓ = Fℓ−1(xℓ−1)

If the system can be solved, then we can enforce constraints on x0 and xℓ
(e.g. CICO).

First, compute a Gröbner basis of the system. Then, deduce a solution in
the correct field.

Complexity is not so easy to estimate:
We can give bounds based on the best Gröbner basis algorithms...
... but they don’t take the shape of the system into account.
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Definition of CCZ-Equivalence (1/2)

Definition (Affine-Equivalence)

F and G are affine equivalent if G(x) = (B ◦ F ◦ A)(x), where A, B are affine permutations.

Definition (EA-Equivalence; EA-mapping)

F and G are E(xtended) A(ffine) equivalent if G(x) = (B ◦ F ◦ A)(x) + C(x), where A, B, C are
affine and A, B are permutations; so that

{
(x, G(x)),∀x ∈ Fn

2

}︸ ︷︷ ︸
ΓG

=

[
A−1 0
CA−1 B

]({
(x, F(x)),∀x ∈ Fn

2

}︸ ︷︷ ︸
ΓF

)
.
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Definition of CCZ-Equivalence (2/2)

Definition (CCZ-Equivalence)

F : Fn
2 → Fm

2 and G : Fn
2 → Fm

2 are C(arlet)-C(harpin)-Z(inoviev) equivalent if

ΓG =
{
(x, G(x)),∀x ∈ Fn

2

}
= L

({
(x, F(x)), ∀x ∈ Fn

2

})
= L(ΓF) ,

whereL : Fn+m
2 → Fn+m

2 is an affine permutation.

Remark
In general, the CCZ-equivalence class of F is reduced to its extended-affine class...
But not always, and CCZ-equivalence does not preserve the degree!
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Performance Metric

Verifying that y == R(x)must be efficient...

“Efficiency” depends on the subtleties of the protocol you work with!

Verifying if y = c(ax+ b)10 + x in R1CS

1

2

3 t2 = t1 × t1
4 t3 = t2 × t2

5 t4 = t3 × t3
6 t5 = t2 × t4
7

8

This verification costs 4 constaints
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Scope Statement

Arithmetization-oriented symmetric primitive

Efficient and secure

Enable low degree verification

Have, overall, a high degree
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CCZ-equivalence to the Rescue!

Suppose that F and G are CCZ-equivalent, and that{
(x, G(x)) | x ∈ Fq

}
= L

({
(x, F(x)) | x ∈ Fq

})

We can test y == F(x), or, equivalently, we can do the following:

1 (u, v) = L(x, y)
2 test v == G(u)

This trick was already used implicitely in Rescue1, where F(x) = x1/d and G(x) = xd.

1Aly, A. et al. Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols. ToSC 2020(3), 1–45.
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Scope Statement (more precise)

Arithmetization-oriented symmetric primitive

Efficient and secure

Based on high degree components that are CCZ-equivalent to low degree ones!
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The Butterfly (reminder)

βx3

x1/3

�
α

⊕

⊕

βx3

x3

�
α

⊕

⊕

T

U

�
α

⊕

x3

βx3 ⊕
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⊕

x3
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A Generalization of the case α = 1: the Flystel

x y

⊟

⊟

⊞
u v

Q

E−1

Q

y v

⊟

⊞ ⊞

y− v

x u

Q E Q

q = 2n

E(x) = x3, Q(x) = βx3

q prime

E(x) = xd, Q(x) = βx2
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Properties of the Flystel

Theorem
A Flystel with E(x) = xd is differentially (d− 1)-uniform.

Corollary

If gcd(q− 1, 3) = 1, then the open Flystel with E(x) = x3 is an APN permutation of a field of
even degree!
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Conclusion

Designing airthmetization-oriented hash functions is difficult
because it is largely uncharted territory...

Attack and design need more sophisticated mathematics than before!

There is room for improvement!

Thank you!
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