

Equilibrated error estimator for contact problems

Barbara Wohlmuth and Alexander Weiss

wohlmuth@ians.uni-stuttgart.de http://www.ians.uni-stuttgart.de/nmh

Workshop on: A posteriori estimates for adaptive mesh refinement and error control

> October 13, 2008 Paris

Outline

1. Equilibration techniques for error control

- Equilibrated fluxes for Laplace operator
- One-sided obstacle problem
- Two-sided obstacle problem

2. A posteriori error estimates for contact problems

- H(div)-conforming approximations for symmetric tensors
- Local definition of the estimator
- Efficiency and reliability

3. AFEM strategy for one-body problems

- Modified error estimator
- Edge residuals

NMH

• (Energy based error decay)

Prager-Synge theorem (Laplace operator)

Prager, Synge: Approximations in elasticity based on the concept of function space. Quart. Appl. Math. 5, (1947). 241–269.

Let u_h be a conforming finite element solution then

$$\|\nabla u - \nabla u_h\|_0 \le \|\nabla u_h - \mathbf{j}\|_0 + C \|\mathsf{div}\mathbf{j} - f\|_{-1}$$

for all $H(\operatorname{div})$ -conforming vector fields $\mathbf j$

Idea: Construct a suitable H(div)-conforming finite element approximation j_h

Remark: This result can also be regarded as a hypercycle method \implies asymptotically exact for postprocessed solution $p_h := \frac{1}{2}(j_h + a\nabla u_h)$

How to construct suitable H(div)-approximations?

Idea: Use standard mixed finite elements, e.g., RT or BDM, such that

 $\mathsf{div} j_h = P_h f,$

where P_h is locally defined and reproduces constants

But: Solution of a global mixed finite element problem to **expensive** Need to recover j_h locally from the conforming fe solution u_h

Possibility one: Define j_h on a dual finite volume mesh and use a macro-element based Raviart–Thomas space of lowest order (jww Robert Luce,04)

One macro-element associated with each vertex

Simplicial triangulation and finite volume boxes

 \mathcal{B}_h : Finite volume boxes on Ω and $\mathcal{T}_h \prec \mathcal{K}_h$: Simplicial triangulations on Ω

Definition of the Raviart-Thomas space S_h :

 $S_h := \{ j \in H(\operatorname{div}; \Omega); \quad j_{|_{K}} \in RT_0(K); K \in \mathcal{K}_h \ , \quad \operatorname{div} j_{|_B} \in P_0(B); B \in \mathcal{B}_h \} \subset RT_h$

Local basis of S_h : $S_h = \sum_{\substack{e \in \mathcal{E}_h \\ e \subset \partial B}} \operatorname{span} \{w_e\} \oplus \sum_{\substack{B \in \mathcal{B}_h \\ \operatorname{meas}(\partial \Omega \cap \partial B) \neq 0}} \operatorname{span} \{w_B\}$

Flux approximation in S_h

NMH

Definition of w_B

 $w_B := \beta_B \operatorname{curl} \phi_B,$ $\beta_B^{-2} := (\operatorname{curl} \phi_B, \operatorname{curl} \phi_B)_0$

Definition of w_e

 $w_e n_{\hat{e}|_{\hat{e}}} := \frac{1}{h_e} \delta_{e\hat{e}},$ $(w_e, w_B)_0 = 0$

Case I: B is interior box

Case II: B is boundary box

$$\begin{aligned} \mathbf{j}_{h} &:= \sum_{\substack{e \in \mathcal{E}_{B} \\ e \subset \Omega}} \alpha_{e} w_{e} + \sum_{\substack{e \in \mathcal{E}_{B} \\ e \subset \partial \Omega}} \alpha_{e} w_{e} \\ \alpha_{e} &:= \int_{e} a \nabla u_{h} n_{e} \ d\sigma \ e \ \text{in } \Omega \\ \alpha_{e} &:= \alpha_{e} + \frac{1}{2} \left(\int_{\Omega} -f \phi_{B} \ dx - \int_{\partial B} a \nabla u_{h} n \ d\sigma \right) \end{aligned}$$

Lemma: div $j_{h|_B} = \frac{1}{|B|} \int_{\Omega} f \phi_B \ dx =: P_Q f_{|_B}$

✓ < ► ► 0 1 2 3 4 5 6 7</p>

1 Equilibration techniques

Local error contributions (Laplace operator)

Triangulation, error in u_h , estimator and error for postprocessed solution (same scale)

Characteristic properties of the construction

- Easy and simply construction for low order elements (\checkmark)
- Generalization to high order elements not straightforward (X)
- Generalization to symmetric tensors not straightforward (X)

Observation: Each edge of \mathcal{T}_h is decomposed into two subedges with constant flux \implies this motivates alternative approach in terms of **equilibrated fluxes**

Linear equilibrated fluxes per edge are decoupled by biorthogonality

Obstacle problem

• **Discrete primal formulation:** Find $u_h \in \mathcal{K}_h$ such that

$$a(\mathbf{u}_h, v - \mathbf{u}_h) \le f(v - \mathbf{u}_h), \quad v \in \mathcal{K}_h,$$

where \mathcal{K}_h is the discrete set of admissible elements, i.e.,

$$\mathcal{K}_h := \{ v \in X_h, \int_{\Omega} v \mu_p \ dx \ge \int_{\Omega} \psi \mu_p \ dx \}$$

and $\{\mu_p\}_p$ forms a set of biorthogonal basis functions wrt $\{\phi_p\}_p$

• Discrete hybrid formulation: $(u_h, \lambda_h) \in (X_h, M_h^+)$, $M_h^+ := \{\sum_p \alpha_p \mu_p, \alpha_p \ge 0\}$ $a(u_h, v_h) + b(\lambda_h, v_h) = f(v_h), \quad v_h \in X_h,$

$$b(\mu_h - \lambda_h, u_h) \leq \langle \psi, \mu_h - \lambda_h \rangle, \quad \mu_h \in M_h^+.$$

 $a(\cdot,\cdot)$ bilinear form, $b(\cdot,\cdot):=\langle\cdot,\cdot\rangle$ duality pairing between H^{-1} and H^1_0

 λ_h can be seen as an additional source term for the a posteriori analysis

Sinus-shaped obstacle

Problem Setting:

Obstacle: $\psi = 3 \|x - (0.5, 0.5)\| - \sin(10\pi \|x - (0.5, 0.5)\|)$ Rhs: f = 0

Zero Dirichlet boundary conditions

Solution of contact problem (cut)

Obstacle

Grid and active set on different refinement levels

Non-smooth obstacle

Adaptive meshes and active sets

Solution is not in $H(div) \implies Overestimation and no correct asymptotic$

Adaptive meshes and active sets

✓ < ► ► 0 1 2 3 4 5 6 7</p>

Obstacle problem between two membranes

Non-matching adaptive meshes

Obstacle problem between two membranes

Problem Setting (unconstrained): $u_m = 0.5$ $u_s = e^{-1000(||x - (0.45, 0.57)||^2 - 0.1^2)^2}$ $K_m = 3Id, K_s = Id$ Dirichlet boundary conditions

Solution without restriction

Solution of contact problem (cut)

Non-matching meshes and active sets

Contact problem with Coulomb friction

Linear Elasticity:

$$-\operatorname{div} \boldsymbol{\sigma} = \mathbf{f} \quad \text{in } \Omega,$$
$$\mathbf{u} = 0 \quad \text{on } \Gamma_D, \quad \boldsymbol{\sigma} \mathbf{n} = \mathbf{p} \quad \text{on } \Gamma_N$$

Non-penetration:

$$[\mathbf{u}]_n - g \le 0,$$

$$\sigma_{\mathbf{n}} := \sigma_{\mathbf{n}}(\mathbf{u}_m) = \sigma_{\mathbf{n}}(\mathbf{u}_s) \le 0,$$

$$\sigma_{\mathbf{n}}([\mathbf{u}]_n - g) = 0$$

Coulomb friction:

$$\begin{aligned} |\boldsymbol{\sigma}_{t}| - \mathfrak{F}|\boldsymbol{\sigma}_{n}| &\leq 0, \\ [\mathbf{u}]_{t} + \alpha^{2}\boldsymbol{\sigma}_{t} &= 0, \\ [\mathbf{u}]_{t}(|\boldsymbol{\sigma}_{t}| - \mathfrak{F}|\boldsymbol{\sigma}_{n}|) &= 0 \end{aligned}$$

jump:
$$[\mathbf{u}] := (\mathbf{u}_s - P_m^s \mathbf{u}_m)$$

 $[\mathbf{u}]_n := [\mathbf{u}] \cdot \mathbf{n}, \ [\mathbf{u}]_{\mathbf{t}} := [\mathbf{u}] - [\mathbf{u}]_n \mathbf{n}$

stress: $\sigma_{\mathbf{n}} := \boldsymbol{\sigma} \mathbf{n} \cdot \mathbf{n}, \ \boldsymbol{\sigma}_{\mathbf{t}} := \boldsymbol{\sigma} \mathbf{n} - \sigma_n \mathbf{n}$

 \implies Discretization in terms of mortar finite elements and dual Lagrange multipliers

Discretization on non-matching meshes

- Constraints are weakly satisfied in terms of Lagrange multipliers: Displacement u: primal variable Contact stress λ := -σn: dual variable
- Discrete hybrid formulation: $(\mathbf{u}_h, \boldsymbol{\lambda}_h) \in (X_h, M_h(\boldsymbol{\lambda}_h))$

 $\begin{array}{rcl} a(\mathbf{u}_{h},\mathbf{v}_{h})+b(\boldsymbol{\lambda}_{h},\mathbf{v}_{h})&=&f(\mathbf{v}_{h}), &\mathbf{v}_{h}\in X_{h},\\ b(\boldsymbol{\mu}_{h}-\boldsymbol{\lambda}_{h},\mathbf{u}_{h})&\leq&\langle g,(\boldsymbol{\mu}_{h}-\boldsymbol{\lambda}_{h})_{n}\rangle, &\boldsymbol{\mu}_{h}\in M_{h}(\boldsymbol{\lambda}_{h}).\\ a(\mathbf{u}_{h},\cdot) \text{ elasticity linear form, }b(\cdot,\cdot):=\langle [\cdot],\cdot\rangle \text{ contact bilinear form}\\ (X_{h},M_{h}) \text{ stable pair of mortar finite elements, }W_{h} \text{ trace space of }X_{h}\\ M_{h}(\boldsymbol{\lambda}_{h}):=\{\boldsymbol{\mu}\in M_{h};\langle \mathbf{v},\boldsymbol{\mu}\rangle\leq\langle |\mathbf{v}_{t}|_{h},\mathfrak{F}(\boldsymbol{\lambda}_{h})_{n}\rangle, \,\mathbf{v}\in W_{h},\mathbf{v}_{n}\leq 0\}\\ \text{Local static elimination of }\boldsymbol{\lambda}_{h} \text{ possible due to biorthogonality}\end{array}$

Coulomb friction: quasi variational inequality
 No friction (𝔅 = 0)/Tresca friction (|(λ_h)_n|_h → g_f): variational inequality

A posteriori error estimator for contact

Observation: Discrete displacement satisfies a variational equality for given Lagrange multiplier λ_h

Idea: Find a H(div)-conforming approximation σ_h for the stress such that

• the divergence satisfies

(CD) $\operatorname{div} \boldsymbol{\sigma}_h = - \boldsymbol{\Pi}_1 \mathbf{f},$

where Π_1 is the L^2 -projection onto piecewise affine functions.

the surface traction satisfies

(CS) $(\boldsymbol{\sigma}_h \mathbf{n}^l)_{|_{\Gamma_N^l}} = \mathbf{0}$, and $(\boldsymbol{\sigma}_h \mathbf{n}^l)_{|_{\Gamma_C^l}} = -\mathbf{n}^l \cdot \mathbf{n}^s \mathbf{\Pi}_l^* \boldsymbol{\lambda}_h$, $l \in \{m, s\}$ where $\mathbf{\Pi}_l^*$ is the dual mortar projection onto the Lagrange multiplier space.

Definition of the error estimator

$$\eta^2 := \sum_T \eta_T^2 , \qquad \eta_T^2 := \|\mathcal{C}^{-1/2}(\sigma_h - \sigma(\mathbf{u}_h))\|_{0;T}^2$$

Remark: The error estimator is elementwise defined.

How to obtain a suitable σ_h ?

Idea: A posteriori error estimator based on equilibrated fluxes [Ainsworth-Oden 99, Ladeveze/Leguillon 83, Stein et al 97-01]

Let \mathbf{u}_h be the mortar finite element solution of the variational inequality, i.e.,

$$a(\mathbf{u}_h, \mathbf{v}_h) = (\mathbf{f}, \mathbf{v}_h)_{0;\Omega_i} - b(\boldsymbol{\lambda}_h, \mathbf{v}_h), \quad \mathbf{v}_h \in X_h^i, \quad i \in \{s, m\}$$

 $\Longrightarrow oldsymbol{\lambda}_h$ plays role of Neumann boundary condition

Equilibrated fluxes Then there exists a $\mathbf{g}_e \in [P_1(e)]^2$ such that $\mathbf{g}_e = -\mathbf{n}^l \cdot \mathbf{n}^s \mathbf{\Pi}_1 \mathbf{\Pi}_l^* \boldsymbol{\lambda}_h$ on Γ_C^l $\int_{\partial T} (\mathbf{n}_T \cdot \mathbf{n}_e) \mathbf{g}_e \cdot \mathbf{v} \, ds = \Delta_T(\mathbf{v}) := a_T(\mathbf{u}_h, \mathbf{v}) + b_T(\boldsymbol{\lambda}_h, \mathbf{v}) - (\mathbf{f}, \mathbf{v})_{0;T}, \quad \mathbf{v} \in [P_1(T)]^2$

Moreover, g_e can be locally computed by rewriting

$$\mathbf{g}_e = \boldsymbol{\mu}_{e,p_1} \psi_{p_1} + \boldsymbol{\mu}_{e,p_2} \psi_{p_2},$$

where $\int_e \psi_{p_j} \phi_{p_i} ds = \delta_{ij}$. Then the moments μ_{e,p_i} are given by $\mu_{e,p_i} := \int_e \mathbf{g}_e \phi_{p_i} ds$.

✓ < ► ► 0 1 2 3 4 5 6 7</p>

Local postprocess to compute the moments

For each vertex p a local system has to be solved for the moments

Singular system (interior vertex), but compatible rhs: $\sum_i \Delta_{T_i}(\phi_p) = 0$

$$\begin{pmatrix} -\mathsf{Id} & \mathsf{Id} & & \\ & \ddots & \ddots & & \\ & & -\mathsf{Id} & \mathsf{Id} \\ \mathsf{Id} & & & -\mathsf{Id} \end{pmatrix} \begin{pmatrix} \boldsymbol{\mu}_{e_1,\boldsymbol{p}} \\ \boldsymbol{\mu}_{e_2,\boldsymbol{p}} \\ \vdots \\ \boldsymbol{\mu}_{e_N,\boldsymbol{p}} \end{pmatrix} = \begin{pmatrix} \Delta_{T_1}(\boldsymbol{\phi}_{\boldsymbol{p}}) \\ \Delta_{T_2}(\boldsymbol{\phi}_{\boldsymbol{p}}) \\ \vdots \\ \Delta_{T_N}(\boldsymbol{\phi}_{\boldsymbol{p}}) \end{pmatrix}$$

Set e.g. $\mu_{e_1,p} = \mathbf{0} \implies$ lower tridiagonal matrix \mathbf{g}_e is conservative, i.e., $\int_{\partial T} (\mathbf{n}_T \cdot \mathbf{n}_e) \mathbf{g}_e \ ds = \int_T \mathbf{f} \ dx$

Alternative choice

Better approximation of the flux:

$$\min_{\mathbf{g}_e} \sum_e h_e \|\mathbf{g}_e - \{\boldsymbol{\sigma}(\mathbf{u}_h)\}\mathbf{n}_e\|_{0;e}^2$$

→ **minimization problem** (Lagrange multipliers on elements)

New local system (interior vertex):

Similar systems for boundary nodes depending on boundary cond. (D-D, D-N, N-N) g_e is uniquely defined [Ainsworth-Oden, Ladeveze, Stein et al]

Arnold–Winther [02] elements

The Arnold–Winther element is locally defined on each T by the 24-dimensional space

 $X_T := \left\{ \boldsymbol{\tau}_h \in [P_3(T)]^{2 \times 2}, \ (\boldsymbol{\tau}_h)_{12} = (\boldsymbol{\tau}_h)_{21}, \ \operatorname{div} \boldsymbol{\tau}_h \in [P_1(T)]^2 \right\} ,$

and a global finite element space $X_h := X_s \times X_m$ which is on each body H(div)-conforming can be obtained using

- the **nodal values** (3 dof) at each node *p*,
- the zero and first order moments of $au_h n_e$ (4 dof) on each edge e,
- the mean value (3 dof) on each element T

as degrees of freedom on each of the two bodies.

Norm equivalence

$$\|\boldsymbol{\tau}\|_{0}^{2} \equiv \sum_{\substack{p \\ =:m_{p}(\boldsymbol{\tau})}} |T| \|\boldsymbol{\tau}(p)\|^{2} + \sum_{\substack{e \\ e \\ =:m_{e}(\boldsymbol{\tau})}} \|\int_{e} \boldsymbol{\tau} \mathbf{n}_{e} ds\|^{2} + \|\int_{e} \boldsymbol{\tau} \mathbf{n}_{e} \phi_{e} ds\|^{2} + \frac{1}{|T|} \|\int_{T} \boldsymbol{\tau} dx\|^{2}$$

Definition of $\boldsymbol{\sigma}_h$

$$\boldsymbol{\sigma}_{h}(p) := \frac{1}{N_{T}^{p}} \sum_{T \in \mathcal{T}_{p}} \boldsymbol{\sigma}(\mathbf{u}_{h})|_{T}(p) + \boldsymbol{\alpha}(p), \qquad (1)$$

$$\int_{e} \boldsymbol{\sigma}_{h} \mathbf{n}_{e} \cdot q ds := \int_{e} \mathbf{g}_{e} \cdot \mathbf{q} ds, \qquad \mathbf{q} \in [P_{1}(e)]^{2}, \qquad (2)$$

$$\int_{T} \boldsymbol{\sigma}_{h} : \nabla \mathbf{v} ds := a_{T}(\mathbf{u}_{h}, \mathbf{v}), \qquad \mathbf{v} \in [P_{1}(T)]^{2}. \qquad (3)$$

 $oldsymbol{lpha}(p)$ depends on the type of the node, e.g. $oldsymbol{lpha}(p) = oldsymbol{0}$ if p is an interior node

Lemma:

i) Let $\sigma_h \in X_h$ be defined such that (2) and (3) hold. Then, div $\sigma_h = -\Pi_1 \mathbf{f}$.

ii) Let $\boldsymbol{\sigma}_h \in X_h$ be defined such that (1) and (2) hold. Then, $(\boldsymbol{\sigma}_h \mathbf{n}^l)_{|_{\Gamma_N^l}} = 0$, and $(\boldsymbol{\sigma}_h \mathbf{n}^l)_{|_{\Gamma_C^l}} = -\mathbf{n}^l \cdot \mathbf{n}^s \mathbf{\Pi}_l^* \boldsymbol{\lambda}_h.$

Reliability of the error estimator

Theorem: Under suitable regularity assumptions the error estimator η yields a global upper bound for the discretization error

$$a(\mathbf{u}-\mathbf{u}_h,\mathbf{u}-\mathbf{u}_h)^{\frac{1}{2}} \leq \eta + \mathcal{O}(h^{\frac{3}{2}})$$

The definition of the error estimator yields

$$\|\mathbf{u} - \mathbf{u}_h\|_a^2 \le \eta \|\mathbf{u} - \mathbf{u}_h\|_a + \underbrace{\sum_{l \in \{m,s\}} \int_{\Omega^l} (\boldsymbol{\sigma}(\mathbf{u}) - \boldsymbol{\sigma}_h) (\boldsymbol{\epsilon}(\mathbf{u}) - \boldsymbol{\epsilon}(\mathbf{u}_h)) dx}_{=:I}$$

To bound *I* one has to exploit:

- the properties (CD) and (CS) of ${m \sigma}_h$
- the a priori results for $b(\mathbf{u} \mathbf{u}_h, \boldsymbol{\lambda}_h \boldsymbol{\lambda})$
- the approximation property of Π_l^* , i.e., $\int_{\Gamma_C^m} (\lambda_h \Pi_m^* \lambda_h) \cdot (\mathbf{u}^m \mathbf{u}_h^m) ds$

Remark: There is no constant in the upper bound No additional terms enter due to the contact

Efficiency of the error estimator

Theorem: Under suitable regularity assumptions the error estimator η_T yields a local lower bound for the discretization error

$$\eta_T \leq Ca_{\omega_T}(\mathbf{u} - \mathbf{u}_h, \mathbf{u} - \mathbf{u}_h)^{\frac{1}{2}} + \mathcal{O}(h^{\frac{3}{2}})$$

Proof is based on the norm equivalence and $C^{-1/2}(\boldsymbol{\sigma}_h - \boldsymbol{\sigma}(\mathbf{u}_h)) \in X_T$:

•
$$m_i(\mathcal{C}^{-1/2}(\boldsymbol{\sigma}_h - \boldsymbol{\sigma}(\mathbf{u}_h))) = 0$$

•
$$m_e(\mathcal{C}^{-1/2}(\boldsymbol{\sigma}_h - \boldsymbol{\sigma}(\mathbf{u}_h))) \leq C \sum_e h_e(\|\mathbf{g}_e - \boldsymbol{\sigma}(\mathbf{u}_h)\mathbf{n}_e\|_e^2 + \|\mathbf{\Pi}_l^*\lambda_h - \boldsymbol{\sigma}(\mathbf{u}_h)\mathbf{n}_m\|_e^2)$$

• $m_p(\mathcal{C}^{-1/2}(\boldsymbol{\sigma}_h - \boldsymbol{\sigma}(\mathbf{u}_h))) \le C \sum_e h_e \|[\boldsymbol{\sigma}(\mathbf{u}_h)\mathbf{n}_e]\|_e^2$

These terms can be found in the analysis of

- the residual based error estimator for a variational equality
- the equilibrated error estimator for a variational equality
- the a priori estimates for the variational inequality

Influence of the material parameters E_i

Poisson number: $\nu_1 = \nu_2 = 0.3$, Coulomb friction coefficient: $\mathcal{F} = 0.4$;

Solution after 4 refinement steps; top: deformed mesh, bottom: effective stress

Adaptivity preserves optimality

Why is the high order term non standard?

Observation: Higer order term $\mathcal{O}(h^{\frac{3}{2}})$ depends not only on given data **but** also on unknown solution

- Primal nonconformity: Non-matching meshes
 ⇒ weak but no strong non-penetration
- Dual nonconformity: Biorthogonality

 —> LM is weakly but not in a strong sense non-negative

Remedy: Postprocessing of the discrete LM λ_h

Operator on the Lagrange multiplier

Observation: Discrete Lagrange multiplier λ_h is not non-negative

Orthogonality between the normal components of \mathbf{u}_h and $\boldsymbol{\lambda}_h$ (left) and $P_{\mathbf{u}_h} \boldsymbol{\lambda}_h$ (right)

$$P_{\mathbf{u}_{h}}\boldsymbol{\mu}_{h} := \begin{cases} \mathbf{0} & e \in \mathcal{E}_{h}^{s} \\ \boldsymbol{\mu}_{h} & e \in \mathcal{E}_{h}^{i} \text{ and if } (\boldsymbol{\mu}_{h})_{n} \geq 0 \text{ on } e \\ (\alpha_{e}^{1}\phi_{e}^{1} + \alpha_{e}^{2}\phi_{e}^{2})\mathbf{n} & e \in \mathcal{E}_{h}^{i} \text{ and otherwise} \\ (\alpha_{e}^{1}w_{e}^{1}\phi_{e}^{1} + \alpha_{e}^{2}w_{e}^{2}\phi_{e}^{2})\mathbf{n} & e \in \mathcal{E}_{h}^{b} \end{cases}$$

where ϕ_e^1, ϕ_e^2 are the local nodal Lagrange basis functions, and

$$w_e^i := \left\{ \begin{array}{ll} \frac{\max(\operatorname{supp} \psi_{p_{ge}(i)})}{\max(e)} & \text{if supp } \psi_{p_{ge}(i)} \subset \operatorname{supp}_h \mathbf{u}_h, \\ 1 & \text{otherwise} \end{array} \right.$$

Modified error estimator

In addition to $\eta,$ we define the quantity

$$\eta_C^2 := \sum_{e \in \mathcal{E}_h^C} \eta_e^2, \quad \eta_e^2 := \frac{h_e}{\sqrt{2\mu}} \|\boldsymbol{\lambda}_h - P_{\mathbf{u}_h} \boldsymbol{\lambda}_h\|_{0;e}^2$$

Assumption: For each edge $e \subset \text{supp } \lambda_h \cap \text{supp } \mathbf{u}_h$, we assume that there exists an adjacent edge \hat{e} such that $\hat{e} \subset \Gamma_C \setminus \text{supp } \mathbf{u}_h$.

This assumption excludes isolated points such as

A posteriori error estimator for a one-body problem

As it is standard for a posteriori estimates, we define a higher order term which only depends on the given data

$$\xi^2 := \sum_{T \in \mathcal{T}_h} \xi_T^2, \quad \xi_T^2 := \frac{h_T^2}{2\mu} \|\mathbf{f} - \mathbf{\Pi}_1 \mathbf{f}\|_{0;T}^2.$$

Theorem: Under the Assumption, there exist constants $C_1, C_2 < \infty$ independent of the mesh-size such that

$$\|\mathbf{u}-\mathbf{u}_h\|_a \le \eta + C_1\eta_C + C_2\xi .$$

Theorem: Under the Assumption, there exists a constant $C < \infty$ independent of the mesh-size such that $\beta(h) \leq C$ and

$$\|\mathbf{u} - \mathbf{u}_h\|_a \le (1 + C_1\beta(h))\eta + C_2\xi)$$
.

Remark: The numerical results show that $\beta(h)$ tends asymptotically to zero and the upper bound $1 + C_1\beta(h)$ tends to one.

Hertz-problem

Square on triangle

✓ ▲ ► ► 0 1 2 3 4 5 6 7

A posteriori estimator for the Lagrange multiplier

Standard a priori estimate:

$$\|\boldsymbol{\lambda} - \boldsymbol{\lambda}_h\|_{-\frac{1}{2};\Gamma_C} \leq C \Big(\inf_{\substack{\boldsymbol{\mu}_h \in \mathbf{M}_h \\ \mathcal{O}(h^{\frac{3}{2}})}} \|\boldsymbol{\lambda} - \boldsymbol{\mu}_h\|_{-\frac{1}{2};\Gamma_C} + \|\mathbf{u} - \mathbf{u}_h\|_a \Big) .$$

But: λ is not a given data **Data oscillation term:**

$$\tilde{\xi}^2 := \sum_{T \in \mathcal{T}_h} \tilde{\xi}_T^2, \quad \tilde{\xi}_T^2 := \frac{h_T^2}{2\mu} \|\mathbf{f} - \mathbf{Q}^* \mathbf{f}\|_{0;T}^2$$

 $\tilde{\xi} = 0$ if **f** is constant on Ω , \mathbf{Q}^* Scott–Zhang type operator

Theorem: There exists a constant $C < \infty$ independent of the mesh-size such that

$$\|\boldsymbol{\lambda} - \boldsymbol{\lambda}_h\|_{-\frac{1}{2};\Gamma_C} \leq C\left(\|\mathbf{u} - \mathbf{u}_h\|_a + \tilde{\xi}\right).$$

✓ ▲ ► ► 0 1 2 3 4 5 6 7

Conclusion

- Equiibration techniques can be generalized to elasticity
- Error bound for the LM in terms of the primal bound
- Variational inequality does not bring in extra terms
- Sign controlling terms are of higher order
- Non-matching meshes are problematic (theory)

AFEM based strategies

AFEM for standard fe estimates: guaranteed error decay

- $\rm W.$ Dörfler, SIAM J. Numer. Anal., 33 (1996), pp. 1106–1124 .
- P. BINEV, W. DAHMEN, R. DEVORE, Numer. Math., 97 (2004), pp. 219–268

AFEM for obstacle problems:

No Galerkin orthogonality but minimization property on convex set

D. BRAESS, C. CARSTENSEN, R. HOPPE, Numer. Math., 107 (2007), pp. 455-471

These results can be applied for one-body contact problems

In the case of a two-body contact problem on non-matching meshes:

- Convex sets are non-nested, i.e., $K_l \not\subset K_{l+1} \not\subset K$
- Higher order term cannot be controlled by given data
- No classical inverse estimate for the discrete trace, i.e.,

$$\|[v_h]\|_{\frac{1}{2};\Gamma_C}^2 \not\leq C\frac{1}{h} \|[v_h]\|_{0;\Gamma_C}^2 \quad \mathbf{BUT} \quad \|[v_h]\|_{\frac{1}{2};\Gamma_C}^2 \leq C\frac{|\ln \epsilon| + 1}{h} \|[v_h]\|_{0;\Gamma_C}^2$$

 ϵ minimal relative shift

Strong monotonicity in the energy

Corollary: There exists a constant independent of the mesh-size such that

$$J(\mathbf{u}_h) - J(\mathbf{u}) \le C(\eta^2 + \xi^2) ,$$

where the energy $J(\mathbf{v})$ is given by $J(\mathbf{v}) := \frac{1}{2}a(\mathbf{v}, \mathbf{v}) - f(\mathbf{v})$.

The variational inequality is equivalent to a constrained minimization problem, i.e., $J(\mathbf{u}) \leq J(\mathbf{v})$, $\mathbf{v} \in K$, and in terms of $K_l \subset K_{l+1}$, we have

$$0 \le \delta_{l+1} \le \delta_l := J(\mathbf{u}_l) - J(\mathbf{u}) \,.$$

Theorem: There exist constants $\rho_1, \rho_2 < 1$ and $c_{\xi}, C_{\xi} < \infty$ such that

$$\delta_{l+1} \leq \rho_1 \delta_l + c_{\xi} \hat{\xi}_l^2,$$

$$\delta_{l+1} + C_{\xi} \hat{\xi}_{l+1}^2 \leq \rho_2 (\delta_l + C_{\xi} \hat{\xi}_l^2).$$

Remark: We observe that $\hat{\xi}_l = 0$ for a constant **f**. In that case, the energy term δ_l is a strictly decreasing function with respect to the refinement level l.

AFEM strategy for example 3

◀ ◀ ▶ ▶ 0 1 2 3 4 5 6 7

Comparison of different refinement strategies

3

4

2

0

6

- 7

5

Comparison of different error estimators

Example 2:

