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Distributed Control Constrained Optimal Control Problem
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Control Constrained Optimal C Problem (P)

Solve the constrained minimization problem
Problem

min Y(y) + %Hu”% subject to  Bly, w| = (u, w)yy Yw €Y,
ueh?

where

m BB is a bilinear form that arises from the weak formulation of a PDE
over the Hilbert space Y;

m U C U is a set of admissible controls;
m 1) is some objective functional for the state y;

m « > 0 is a cost parameter for the control.

We next state assumptions that give existence and uniqueness of a solution
(u,y) to (P) ...




Variational Problems

Adaptive FE for
Optimal Control

State Space and Bilinear Form

Let Y be an L?-based Hilbert-space for the state and B: Y x Y — R be a
continuous bilinear form satisfying the inf-sup condition

Problem
inf  sup By, w]= inf sup Blv,w]=7v>0.
Y

vEY we w vE
lolly=1 flwlly=1 llwlly=1 llvlly=1
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State Space and Bilinear Form

Let Y be an L?-based Hilbert-space for the state and B: Y x Y — R be a
continuous bilinear form satisfying the inf-sup condition

Problem
inf  sup By, w]= inf sup Blv,w]=7v>0.
Y

vEY we w vE
lolly=1 flwlly=1 llwlly=1 llvlly=1

Theorem (Necas (1962))

The inf-sup condition is equivalent to solvability of the variational problems

geY: B[y, w] = (f, w) YweY

and
peEY: Blv, p] = (g, v) Vv eY

for any f,g € Y*.
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Example (Poisson Problem with Dirichlet Boundary Condition)

The variational formulation of

—Ay=u in, y=0 on 0N
Problem

utilizes on Y = Hg () the coercive and continuous bilinear form

Blv, w] = / Vo - VwdV.
Q
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Example (Poisson Problem with Dirichlet Boundary Condition)

The variational formulation of

—Ay=u in, y=0 on 0N
Problem

utilizes on Y = Hg () the coercive and continuous bilinear form

Blv, w] = / Vo - VwdV.
Q

| \

Example (Laplace Equation with Neumann Boundary Condition)

The variational formulation of

—Ay=0 inQ, @:u on 02
on

utilizes on Y = H*(Q2)/R the coercive and continuous bilinear form

Blv, w] = / Vo - VwdV.
Q
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Example (The Stokes Problem with No-Slip Boundary Condition)

The variational formulation of

—Av+Vp=u in Q,
V-v=0 in Q,
v=0 on O0f)

utilizes with Y = H} (;R?) x L&(Q) the bilinear form

B[(v,p), (w,q)] ::/Vw:VvdV—/V-wpdV—/qV-vdV.
Q Q Q

The continuous and symmetric bilinear form B satisfies an inf-sup
condition.




Examples Il1

Adaptive FE for
Optimal Control

Example (The Stokes Problem with Slip Boundary Condition)

The variational form of

—Av+Vp=Ff in Q,
Problem v P 0 in 97
v-n=0 on 012,

2D(w)—pn-Ti=u-T1;, i=1,...,d—1 on 012,
with the symmetric gradient D(v) = (Vv + V") is formulated in
Y ={we H (%RY)/R | w-n=0o0ndN} x L§(NQ),

where R is the set of rigid body motions of 2. The corresponding bilinear
form

B[(v,p), (w,q)] :zZ/QD(w):D(v)dV—/ﬂV-wpdV—/QqV-vdV

is continuous and symmetric and satisfies an inf-sup condition.
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Solution Operators

Denote by S, S*: Y* — Y the solution operator of the primal problem, i.e.,

Problem

B[Sf, w] = (f, w) YweY, (LP)

respectively adjoint problem, i.e.,

Blv, S*g] = (g, v) Vv eY. (LP*)

v
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Solution Operators

Denote by S, S™: Y* — Y the solution operator of the primal problem, i.e.,

Problem

B[Sf, w] = (f, w) YweY, (LP)

respectively adjoint problem, i.e.,

Blv, S*g] = (g, v) Vv eY. (LP*)

v

Lemma (Invertibility and Boundedness)

The solution operators S, S™: Y* — Y are one-to-one and there holds

* —1
ISllzey=vy = 15" lLev= vy =77
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Adaptive FE for
Optimal Control

Let U be another L?-based Hilbert space such that

Problem Y s [U s Y*

in the sense that v € Y implies v € U with |[v|ly < C||v|ly and v € U
implies u € Y™ by

(u, v) = (u, vV)y=xy :i= {u, v)u Vv eY.

Let ) # U C U be a convex set of admissible controls.




Control Space and Tichonov Functional
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Let U be another L?-based Hilbert space such that

Problem Y s [U s Y*

in the sense that v € Y implies v € U with |[v|ly < C||v|ly and v € U
implies u € Y™ by

(u, v) = (u, vV)y=xy :i= {u, v)u Vv eY.

Let ) # U C U be a convex set of admissible controls.

Tichonov Functional

We assume that the Tichonov functional 1: Y — R for the state is
quadratic and convex.
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Example (Distributed Control)

Typical example for distributed control is

U= L*(Q;R")

Problem

for suitable n € N. For all the above examples we have

YcUCY"
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Example (Distributed Control)

Typical example for distributed control is

U= L*(Q;R")

Problem

for suitable n € N. For all the above examples we have

YcUCY"

Example (Boundary Control)

Typical example for boundary control is
U = L*(09%R™)
for suitable n € N. For the above problems we have

Y— U< Y"

in the sense of traces.
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Box Constraints

For a,b € U with a < b let

U :={ueU|a<u<binQ}.
Problem

For n > 1 the constraint a < u < b has to be read component-wise.
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For a,b € U with a < b let

U :={ueU|a<u<binQ}.
Problem

For n > 1 the constraint a < u < b has to be read component-wise.

Norm Constraint

For n > 2 we may also consider for r > 0

U :={ucU||ul, <rinQ}.
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Box Constraints
For a,b € U with a < b let

U :={ueU|a<u<binQ}.
Problem

For n > 1 the constraint a < u < b has to be read component-wise.

Norm Constraint

For n > 2 we may also consider for r > 0

U :={ucU||ul, <rinQ}.

A locally acting control in a subset Qo C €2 is included by

a,b=0 in Q\ Qo,

or allowing for r = r(z) and r =0 in Q\ Q.
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Example (Desired L? Shape)

1
For Q4 C Q and z4 € L*(Q) set ¥(z) := Fllz = zall22(,)-

Problem Here, we have (1//(2)7 v) = (z — za)vdV.
Qq
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Example (Desired L? Shape)

1
For Q4 C Q and z4 € L*(Q) set ¥(z) := Fllz = zall22(,)-

Problem Here, we have (1//(2)7 v) = / (z — za)vdV.
Qq

Example (Desired Trace)

1
For zq € L?(99) set ¢(z) := Fllz = zdl| 22 (50)-

It holds (¥'(2), v) = / (z — za) vdA.

o2
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Example (Desired L? Shape)

1
For Q4 C Q and z4 € L*(Q) set ¥(z) := Fllz = zall22(,)-

Problem Here, we have (1//(2)7 v) = (z — za)vdV.
Qq

Example (Desired Trace)

1
For zq € L?(99) set ¢(z) := Fllz = zdl| 22 (50)-

It holds (¥'(2), v) = / (z — za) vdA.

o2

Example (Desired H' Shape)

1
For Q4 C Q and zq € H'(Qq) set (2) := §||V(z — zd)||2Lz(Qd).

Here, ('(2), v) = V(z — zqa) VodV.
Q4
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Control Constrained Optimal Control Problem (P)

Solve the constrained minimization problem

Problen min ¢(y) + S |lu? subject to Bly, w] = (u, wyy Vw € Y.
uelyad 2

or, equivalently,

o1 a
min Zo(Su) + 5 lull?.

Theorem (Existence and Uniqueness)

There exists a unique pair (§,1) € Y x U*? solving (P).

Compare for instance with [Lions] or [Tréltzsch].
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First Order Optimality System

A solution (§,4) € Y x U is characterized by

state equation: Blg, w] = (4, w)y VweY,
Problem

adjoint equation: Blv, p] = &' (3), v) Vo ey,

gradient equation: (ot + P, 4 — uyy < 0 Vue U™,

where p € Y is the adjoint state.
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First Order Optimality System

A solution (§,4) € Y x U is characterized by

state equation: Blg, w] = (4, w)y VweY,
Problem

adjoint equation: Blv, p] = &' (3), v) Vo ey,

gradient equation: (ot + P, 4 — uyy < 0 Vue U™,

where p € Y is the adjoint state.

v

The gradient equation characterizes & = II(p) as the best approximation of
1~ ad
—p in U™

Reduced First Order Optimality System

The pair (9, p) is a solution to the reduced first order system

- ) ’LU>IU Yw e Y,
Blv, p] = (¥'(9), v) Vo €Y.
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Conforming Discretization with Adaptive Finite Elements
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Adaptive Finite Element Discretization
m Let 7o be an initial, conforming triangulation of 2 and let T be the
set of all conforming refinements of 7y created by bisection.

m Let Y(7) C Y and U(7) C U be finite element spaces over T.

Adaptive
Discretization

To TeT
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Adaptive Finite Element Discretization

m Let 7o be an initial, conforming triangulation of 2 and let T be the
set of all conforming refinements of 7y created by bisection.

m Let Y(7) C Y and U(7) C U be finite element spaces over T.

Adaptive
Discretization

To TeT

Nesting of Spaces

Let 7. C T be a refinement of 7 € T. If Y(7) and U(7) are built from
piecewise polynomials then the finite element spaces are nested, i.e.,

Y(T)CY(T:) and  U(T) C U(TH).

This property is important when analyzing a sequence of discrete solutions.
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Discrete Inf-Sup Condition

We assume that there holds

sup B[V, W]= inf sup B[V, W]=~(T)>0.
WeY(T) VeY(T)
IWly=1 [V y=1

inf
VEY(T) Wev(T)
Viy=1 [[W]y=1

Adaptive
This is equivalent to solvability for any F,G € Y(T)* of the discrete

Discretization
problems
BlY, W)= (F,W) VYW eY(T),
B[V, Pl=(G, V) VYV eY(T).
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Discrete Inf-Sup Condition

We assume that there holds

inf  sup B[V,W]= inf sup B[V, W]=~(T)>0.

VeY(T) WeY(T) WeY(T) VeY(T)
Vily=1 [W(y=1 Wily=1 [[VIy=1
Adaptive
Discietizztion This is equivalent to solvability for any F, G € Y(T)* of the discrete
problems

BlY, W)= (F,W) VYW eY(T),
B[V, Pl = (G, V) vV e Y(T).

Lemma (Invertibility and Boundedness)

The discrete solution operators S7,5%: Y*(T) — Y(T) are one-to-one
and there holds

STl zcermeemy = IS Lews(m),xemyy = 7(T) ™

Stable discretization, i.e., v(7) > v > 0, are important for uniform
bounds.
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Discretized First Order Optimality System

Let (Y, P,U) € Y(T) x Y(T) x U*(T) be the solution to

B[Y, W] = (U, W)y YW € Y(T),
Adaptive B[V, P] = (@'(Y), V) vV e Y(T),
Discretization <aU n P, U _ U>U <0 VU e [Uad (T),

where U*(T) := U NU(T) is the set of discrete admissible controls.
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Discretized First Order Optimality System

Let (Y, P,U) € Y(T) x Y(T) x U*(T) be the solution to

BIY, W] = (U, W)y VW e Y(T),
Adaptive B[V, ]5] = <1/1,(Y), V> YV e Y(T),
Discretization <aU n p, U _ U>1U <0 VU e [Uad (T),

where U*(T) := U NU(T) is the set of discrete admissible controls.

Remarks

U*(T) is non-empty if, for instance, a,b € U(T) in case of box
constraints.

The problem can be solved by SSN methods; compare for instance
with [Hintermiiller, Ito, Kunisch].

The discrete control U = II7(P) is the best approximation of —éI:’
in U(7).
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Discretized Reduced First Order Optimality System

Determine (Y, P) € Y(T) x Y(T) as the solution to the discretized
reduced first order system

BlY, W] = (II(P), W)y VW e Y(T),

YV € Y(T).

5)
S

Adaptive B[V, P] = (1/’/(

Discretization
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Discretized Reduced First Order Optimality System

Determine (Y, P) € Y(T) x Y(T) as the solution to the discretized
reduced first order system

BlY, W] = (II(P), W)y VW e Y(T),
Adaptive B[V, P] = (/(Y), V) YV e Y(T).

Discretization
v
Remarks

This approach avoids to discretize the control space U.
The discrete problem can be solved assuming that II(V') can be
computed for discrete functions [Hinze].

The corresponding control U = 1'[(15) is the best approximation of
—éP in U and is in general not a discrete function.




Discrete Problem Il: Non-Discretized Control
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Discretized Reduced First Order Optimality System

Determine (Y, P) € Y(T) x Y(T) as the solution to the discretized
reduced first order system

BlY, W] = (II(P), W)y VW e Y(T),
Adaptive B[V, P] = (/(Y), V) YV e Y(T).

Discretization
v
Remarks

This approach avoids to discretize the control space U.

The discrete problem can be solved assuming that II(V') can be
computed for discrete functions [Hinze].

The corresponding control U = 1'[(15) is the best approximation of
—éP in U and is in general not a discrete function.

In this talk we focus on non-discretized control. The results of are also
valid for discretized control (up to modifications) provided that

17 =y
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Start with a conforming triangulation 7o of € and iterate

SOLVE — ESTIMATE — MARK — REFINE

Modules of the Adaptive Iteration

SOLVE: solve the discretized reduced first order optimality system
in Y(T);
ESTIMATE: compute an a posteriori error estimator build from error
indicators {E7(T) }reT:
MARK: collect in M elements of T subject to refinement;

REFINE: refine at least all elements M and output a conforming
refinement 7. of T.

Adaptive
Discretization




State of the Art in the A Posteriori Error Analysis
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Linear PDEs:
Starting in the late 1970s, an exhaustive analysis was developed for
different kinds of estimators, various problem classes, and norms yielding

reliable and efficient estimators.

Adaptive
Discretization
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Linear PDEs:

Starting in the late 1970s, an exhaustive analysis was developed for
different kinds of estimators, various problem classes, and norms yielding
reliable and efficient estimators.
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Optimal Control

Much less results. Liu and Yan started the a posteriori error analysis at the
beginning of this century for the residual estimator.

Then contributions by [Liu, Yan], [Hintermiiller, Hoppe], [Hinze, Yan,
Zhou], [Li, Liu, Yan], [Yan, Zhou], ...

Dual Weighted Residual Indicators by [Becker, Rannacher], [Giinther,
Hinze], [Vexler, Wollner], ...
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Linear PDEs:

Starting in the late 1970s, an exhaustive analysis was developed for
different kinds of estimators, various problem classes, and norms yielding
reliable and efficient estimators.

Adaptive
Discretization

Optimal Control

Much less results. Liu and Yan started the a posteriori error analysis at the
beginning of this century for the residual estimator.

Then contributions by [Liu, Yan], [Hintermiiller, Hoppe], [Hinze, Yan,
Zhou], [Li, Liu, Yan], [Yan, Zhou], ...

Dual Weighted Residual Indicators by [Becker, Rannacher], [Giinther,
Hinze], [Vexler, Wollner], ...

Main Drawback of the Analysis for Optimal Control

Well-known results for linear problems are not directly utilized.
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Linear PDEs:

Starting in the mid 1990s, the convergence analysis for linear elliptic PDEs
is more or less settled: [Dorfler] [Morin, Nochetto, S.] [Morin, S., Veeser]

Optimal decay rates in terms of degrees of freedom can be shown for
Adaptive energy minimization: [Binev, Dahmen, DeVore] [Stevenson] [Cascén,
Discretization Kreuzer, Nochetto, S.] [Kreuzer, Diening] [Kreuzer, S.]
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Linear PDEs:

Starting in the mid 1990s, the convergence analysis for linear elliptic PDEs
is more or less settled: [Dorfler] [Morin, Nochetto, S.] [Morin, S., Veeser]

Optimal decay rates in terms of degrees of freedom can be shown for
Adaptive energy minimization: [Binev, Dahmen, DeVore] [Stevenson] [Cascén,
Discretization Kreuzer, Nochetto, S.] [Kreuzer, Diening] [Kreuzer, S.]

Optimal Control:

The only preliminary convergence results are due to [Gaevskaya, Hoppe,
Iliash, Kieweg] [Hintermiiller, Hoppe].
Optimal error decay is completely open.
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Linear PDEs:

Starting in the mid 1990s, the convergence analysis for linear elliptic PDEs
is more or less settled: [Dorfler] [Morin, Nochetto, S.] [Morin, S., Veeser]

Optimal decay rates in terms of degrees of freedom can be shown for
Adaptive energy minimization: [Binev, Dahmen, DeVore] [Stevenson] [Cascén,
Discretization Kreuzer, Nochetto, S.] [Kreuzer, Diening] [Kreuzer, S.]

Optimal Control:

The only preliminary convergence results are due to [Gaevskaya, Hoppe,
Iliash, Kieweg] [Hintermiiller, Hoppe].
Optimal error decay is completely open.

Main Drawback of the Analysis for Optimal Control

Plain convergence needs an assumption on smallness of the maximal
mesh size.

Error reduction property needs an additional assumption on the
closeness of true and discrete active sets.
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Continuous and Discrete Problem

Adaptive FE for

o The continuous problem reads: solve for (4,p,4) € Y x Y x U*
B[y, w] = (4, w)u VweY,
Blv, pl = (¢'(9), v)  VveY,
(it +p, 4 — u)y <0 Vue U™,
The discrete problem reads: solve for (Y, P,U) € Y(T) x Y(T) x U
A Posteriori Error
Az BlY, W] = (U, Wy YW e Y(T),
BV, Pl=(@'(Y), V) VVeY(T),

(aU+ P, U —u)y <0 Vue U™
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A Posteriori Error
Analysis

Continuous and Discrete Problem

The continuous problem reads: solve for (4,p,4) € Y x Y x U*
B[?L w] = <ﬁ? w>U Vw e Ya
Blv, p] = (¥'(9), v) Vv €Y,
(it +p, 4 — u)y <0 Vue U™,
The discrete problem reads: solve for (Y, P,U) € Y(T) x Y(T) x U
BlY, W] = (U, Wy YW e Y(T),
BV, Pl = (@'(Y),V) ¥V eY(T),
(aU+ P, U —u)y <0 Vue U™

Main Problem in the A Posteriori Error Analysis

The discrete state Y is not the Galerkin approximation to the continuous
state § = S(@) but it is the Galerkin approximation to 7 = S(U).

Likewise, P is the Galerkin approximation to to = S*(¢'(Y')) rather than

to the continuous adjoint state p = S*(¢)'(§)).




Estimate for State and Adjoint State
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K. K

Forjj = S(), p= S*(¢'(9)), § = S(U), and p = S*(¢'(Y)) holds

IY = glly + 1P = Blly SIY —glly + 1P~ pllv + 1T — allv,
1Y = gllv + 1P = pllv S IIY = 3llv + 1P = pllv + |U — dllv,

A Posteriori Error
Analysis
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K. K

Forjj = S(), p= S*(¢'(9)), § = S(U), and p = S*(¢'(Y)) holds

IY = glly + 1P = Blly SIY —glly + 1P~ pllv + 1T — allv,
1Y = gllv + 1P = pllv S IIY = 3llv + 1P = pllv + |U — dllv,

A Posteriori Error

Analysis Proof. Use the continuous primal problem to derive

15 = 9lly = ST =)y <AHT = allv- <77 CIU —av.

Therefore,

IV = glly <Y = glly + 17 = 9lly SIY =gl + U — allw.
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Estimate for State and Adjoint State

Forjj = S(), p= S*(¢'(9)), § = S(U), and p = S*(¢'(Y)) holds

IY = glly + 1P = Blly SIY —glly + 1P~ pllv + 1T — allv,
1Y = gllv + 1P = pllv S IIY = 3llv + 1P = pllv + |U — dllv,

Proof. Use the continuous primal problem to derive
17 = dlly = 1S = @)y <7 = v <7 CIT - allv.
Therefore,

IV = glly <Y = glly + 17 = 9lly SIY =gl + U — allw.

Similarly, using the continuous adjoint problem we estimate

1P =plly S 1P = pllv + 1Y =gl S IV —gllv + 1P = pllv + 11U —allo-



Estimate for State and Adjoint State
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Forjj = S(), p= S*(¢'(9)), § = S(U), and p = S*(¢'(Y)) holds

IY = glly + 1P = Blly SIY —glly + 1P~ pllv + 1T — allv,
1Y = gllv + 1P = pllv S IIY = 3llv + 1P = pllv + |U — dllv,

A Posteriori Error

Analysis Proof. Use the continuous primal problem to derive

15 = glly = IS = @)y <y U = aflv= <77 Cl0 = allv.
Therefore,

IV = glly < IV —gllv+ 15— dlly SIY = gllv + 1T — alo.
Similarly, using the continuous adjoint problem we estimate

1P =plly S 1P = pllv + 1Y =gl S IV —gllv + 1P = pllv + 11U —allo-

For the second estimate simply exchange ¢ with 4 and p with p. O




Estimate for the Control
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There holds

1T —alle SIY — glly + 1P — olv.

A Posteriori Error
Analysis
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A Posteriori Error
Analysis

Estimate for the Control

There holds

1T —alle SIY — glly + 1P — olv.

Main Idea of the Proof. First estimate

al|lU —a|f = (aU+ P, U —a)yy+ (i +p, a— Uy + (p— P, U —
<(p-P,U -y,

by the discrete and continuous gradient equations. Then estimate

(b= P, U~y 5 (1P —ply + Y = gll) IU — allw

using the definitions of §, P, and the convexity of .

U

)u
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Analysis

Equivalence of Errors

Recall: The functions § and p are solutions of the linear problems

geY: By, w] = (U, w)u Vw e, (LP)
peEY: Blv, p] = (@' (Y),v) VYvey, (LP*)

and YV, P e Y(7) are their respective Galerkin approximations.



Adaptive FE for
Optimal Control

A Posteriori Error
Analysis

Equivalence of Errors

Recall: The functions § and p are solutions of the linear problems

geY: By, w] = (U, w)u Vw e, (LP)
peEY: Blv, p] = (@' (Y),v) VYvey, (LP*)

and YV, P e Y(7) are their respective Galerkin approximations.

Proposition (Equivalence of Errors [Kohls, Résch, S. '10])

The error of the optimal control problem is equivalent to the error in the
corresponding linear problems, i.e.,

1Y =g, P—p, U —illvxyxv = IY = gllv + [|1P = pllv-
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Recall: The functions § and p are solutions of the linear problems

geY: By, w] = (U, w)u Vw e, (LP)
peEY: Blv, p] = (@' (Y),v) VYvey, (LP*)

and YV, P e Y(7) are their respective Galerkin approximations.
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Proposition (Equivalence of Errors [Kohls, Résch, S. '10])

The error of the optimal control problem is equivalent to the error in the
corresponding linear problems, i.e.,

1Y =g, P—p, U —illvxyxv = IY = gllv + [|1P = pllv-

A posteriori error estimation for the optimal control problem reduces to
error estimates for the linear sub-problems.
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Remark (A Priori or A Posteriori Character)
The result has an a priori flavor. But it is, philosophically speaking, a
real a posteriori result in that only the continuous inf-sup constant
enters but not the discrete one.

PN It cannot be directly used for an a priori estimate since § and p
Al depend on T, i.e., g =4(7T) and p = p(7).

A priori estimates for (LP) and (LP*) only transfer to optimal control
problems having uniform bounds on higher derivatives of § and p.
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Remark (A Priori or A Posteriori Character)

The result has an a priori flavor. But it is, philosophically speaking, a
real a posteriori result in that only the continuous inf-sup constant
enters but not the discrete one.

P - It cannot be directly used for an a priori estimate since § and p
Arellzn depend on T, i.e., g =4(7T) and p = p(7).

A priori estimates for (LP) and (LP*) only transfer to optimal control
problems having uniform bounds on higher derivatives of § and p.

Remark (Discretized Control)

In case of discretized control U = Il (P) € U**(T) we have the
equivalence

1Y g, P—5, U~ allvxexv = |IY =gl + 1P = pllv + | — I(P)]v.
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Theorem (Reliability and Efficiency [Kohls, Résch, S. '10])

Let (§,p, 1) be the continuous solution and (Y, P, U) be the discrete one.
Let Er-(Y,U;T) and E5(P,'(Y); T) be reliable and efficient estimators
for (LP) respectively (LP*).

Then the sum of & and EF is a reliable and efficient estimator for the
optimal control problem, i. e.,

A Posteriori Error

Analysis ||f/_y, P—ﬁ, U—ﬁHYxYxU S

Er(Y,U;T) + E-(B,' (Y); T)

+
~*

S| — g, P—p, U — dllyxyxv + 0s¢7-
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Theorem (Reliability and Efficiency [Kohls, Résch, S. '10])

Let (§,p, 1) be the continuous solution and (Y, P, U) be the discrete one.
Let Er-(Y,U;T) and E5(P,'(Y); T) be reliable and efficient estimators
for (LP) respectively (LP*).

Then the sum of & and EF is a reliable and efficient estimator for the
optimal control problem, i. e.,

A Posteriori Error

Anive Y =g, P—p, U —allyxyxv S

Er(Y,U;T) + E-(P,y' (Y); T)

S| — g, P—p, U — dllyxyxv + 0s¢7-

| A\

Remark (Approximability of the Control)

There is no explicit contribution in the indicators that measures
U = dllu.

However, in the lower bound there pops up an oscillation term
||h7 (Pr@ — @)||u that measures how good the control can be
approximated on T .
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Estimators for Linear Problems

Estimate the negative norm of the residual by a stronger but
computable norm.
m Leads to residual estimators, which are, for instance, built form
scaled L? norms.
A Posterion Error Evaluate the residual on an enriched but finite dimensional space.

(it m Leads to hierarchical estimators.

Compute approximations to the Riesz representation of the residual in
suitable local spaces.

m Leads to local problems on enriched spaces.

Construct a suitable quantity that has better approximation properties
than the discrete solution.

m Leads to averaging techniques (ZZ-estimator).
Construct a suitable function in the setting of Prager-Synge.
m Leads to equilibrated residual estimators.
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The Poisson problem with distributed control reads

—Ag=U in{, y=0 on 0N.

A Posteriori Error
Analysis

Residual Estimator

The local indicators are given by

Er(Y,U;T)? = h%| — AY — U||2L2(T) + hr| [VY] ||2LZ(aTmQ)-
The estimator is given by

Er(Y,U;T) =) &r(Y, U )
TeT )
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Example: Primal Problem with Boundary Control

The Laplace equation with boundary control reads

—Aj=0 inQQ, Onj=U on 9.

Residual Estimator

The local indicators are given by

Er(Y,U;T) = h2T||AY||2L2(T) + hr||[VY] H2L2(3Trm)a
+hr||0nY — U”i?(BTﬁ(’)Q)
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Example: Adjoint Problem for Desired L? State

The Poisson problem with distributed control reads

—Ap=Y —z5 inQ, p=0 on 0.

Residual Estimator

The local indicators are given by

EF(P W/ (V);T)? = hzll = AP — (Y = za) | 72(r) + hr | VP [22(omne)-
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Example: Adjoint Problem for Desired H' State

The Poisson problem with distributed control reads

—Ap = 7A(}A’ —2z4) in§, p=0 onof.

Residual Estimator

Assuming z4 € H?(2) the local indicators are given by

EF(Py/ (Y);T)? = hZ|| AP = Y + 2a) | 221
+hr || [V(P = V)] 22 orne)-
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Example: Adjoint Problem for Desired H' State

The Poisson problem with distributed control reads

—Ap = 7A(Y —2z4) in§, p=0 onof.

Residual Estimator
Assuming z4 € H?(2) the local indicators are given by

Er(Py' (V) T)? = W |AP =Y + 2a)l| 721
+hr|| [V(P - V)] ||2L2(8Trm)-

In case z4 & Hz(Q) or zg not piecewise H? over T, the residual estimator
cannot be efficient. In this case it is better to use one of the other

estimators.
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Remarks

Remark (A Posteriori Error Analysis)

The approach simplifies the a posteriori error analysis drastically.
Having reliable and efficient estimators for the linear problems (LP)
and (LP*) the sum gives a reliable and efficient estimator for the
optimal control problem.




Remarks

Adaptive FE for
Optimal Control

Remark (A Posteriori Error Analysis)

The approach simplifies the a posteriori error analysis drastically.
Having reliable and efficient estimators for the linear problems (LP)
and (LP*) the sum gives a reliable and efficient estimator for the
optimal control problem.

A Posteriori Error
Analysis

Although there exists an exhaustive literature about a posteriori error
analysis for linear problems, optimal control problems may not be
included depending on the type of control and desired state.

This may require a new error analysis but only for the linear problems.




Remarks

Adaptive FE for
Optimal Control

Remark (A Posteriori Error Analysis)

The approach simplifies the a posteriori error analysis drastically.
Having reliable and efficient estimators for the linear problems (LP)
and (LP*) the sum gives a reliable and efficient estimator for the
optimal control problem.

A Posteriori Error

Analysis Although there exists an exhaustive literature about a posteriori error
analysis for linear problems, optimal control problems may not be
included depending on the type of control and desired state.

This may require a new error analysis but only for the linear problems.

For the equivalences of the errors we only used the discrete gradient
equation but neither the discrete state nor the discrete adjoint
problem.

This indicates that variational crimes such as inexact solution,
stabilized discretizations (SUPG for advection-diffusion equations),
etc. are included in this approach.
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Convergence Analysis
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Let {(Y, Py, Ux)} x>0 be the sequence of discrete solutions generated by
SOLVE — ESTIMATE — MARK — REFINE

and let (§,p,4) be the true solution.

Convergence?

Does there hold:

Convergence . VAN > SR & S _
Analysis klggo ”Yk 9, Pr —p, Uk U||Y><Y><IU =07
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Convergence Analysis

Let {(Y, Py, Ux)} x>0 be the sequence of discrete solutions generated by
SOLVE — ESTIMATE — MARK — REFINE

and let (§,p,4) be the true solution.

Convergence?
Does there hold:

lim [|Yi — 9, Po —p, Uk — @llyxyxu = 0?
k— o0

In proving this, we follow the ideas of [Morin, S. Veeser] and [S.] for
convergence of adaptive finite elements for inf-sup stable discretizations,
i.e.,

inf  sup B[V,W]= inf sup B[V, W]=~(T)>v>0.

VeEY(T) WeY(T) WeY(T) VeY(T)
Vily=1 IW]y=1 Wily=1 |VIy=1

of linear PDEs.
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Basic Ingredients

Optimal Control

Properties of refinement yield uniform convergence of the mesh-size
functions {hx }x>0:
[k = hoolloosa — 0.
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Basic Steps of the Convergence Proof [Morin, S., Veeser]

Adaptive FE for Let V be a Hilbert-space, © the true solution, and {Vj }r>0 the adaptively
generated sequence of discrete solutions in {V(7)}k>o0.

Basic Ingredients

Optimal Control

Properties of refinement yield uniform convergence of the mesh-size
functions {hx }x>0:
[k = hoolloosa — 0.

Nesting of spaces and a uniform bound on the discrete inf-sup
constant yield convergence of the discrete solutions, i.e.,

Convergence
Analysis

T Il
[V — voo|lv — 0 for some voo € Voo = UV('E)
k>0
Properties of the indicators and properties of marking then yield

%nes%{é’k(vk;T) | T e ﬁ} — 0.

Pointwise convergence of the indicators can be converted into integral
convergence, i. e.,

Ve = vllv < E(Ve; Te) — 0.
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Convergence for Optimal Control Problems

For optimal control problems Step 2 - Step 4 have to be adapted in the
convergence analysis.

Convergence of the Galerkin approximations is the tough part. Here, one
has to deal with the nonlinearity of the problem.

Generalization of Step 3 and Step 4 is straight forward.



Convergence of Discrete Solutions
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Optimal Control Propositi
Let (§oo, Poos lico) € Yoo X Yoo X U be the solution of the optimal control
problem in
—— Iy
Yoo = J ¥
k>0

Then there holds

lim ||Yi — Joc, Pr — Poo, Ur — loo|lyxyxu = 0.
Convergence k—o0 y
Analysis
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Proposition

Let (§oo, Poos lico) € Yoo X Yoo X U be the solution of the optimal control

problem in
11y

Yoo = J Y(T)

k>0

Then there holds

lim || Yk — ooy i — Poo, Uk — Goo||yxyxv = 0.
k— o0

Convergence
Analysis

Main lIdeas of the Proof. [1] Let Sy, S}, Soo, S% be the solution
operators in Y(7%) and Y, respectively. The linear theory implies

1S5l 1ISEN NSoo I 15511 < 7

*

and pointwise convergence S — So and Sj — Si.
Show next via the gradient equation
Uk — tioo|lu — 0.

Conclude form this convergence

||f/k — Joolly = 0 and ||Pk — Poo|ly = 0. O
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Theorem (Convergence [Kohls, Résch, S. '10])

Let the discrete spaces be uniformly inf-sup stable and nested. Suppose
reasonable (and standard!) properties of the estimators E1,EF and of
marking.

Convergence Then there holds

Analysis

lim ||V — 4, Py — B, Ux — dllyxyxv =0
k— o0
as well as

lim & (Ve, Un; o) + Ex (Pr, ' (Vi); Tr) = O.

k— oo
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Concluding Remarks
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For control constrained optimal control problems discretized via the
reduced first order optimality system we have presented a

a framework for the a posteriori error analysis for control constrained
optimal control problems based on results from the linear theory;

a general convergence result for adaptive methods based on
assumptions for the linear sub-problems.

Ideas transfer to a discretization of the full first order optimality system,
Remarks i.e., including a discretization of the control.

Perspectives: The challange ahead are state constrained or mixed
state-control constrained optimal control problems.

Thank you for your interest!
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