A posteriori error estimates for efficiency and error control in numerical simulations

Martin Vohralík

2 Unsteady advection-diffusion-reaction equation

3 Nonlinear Laplace equation

1 Heat equation

2 Unsteady advection-diffusion-reaction equation

Heat equation

The problem

$$\begin{array}{ll} \partial_t u - \Delta u = f & \text{ in } \Omega \times (0, T), \\ u = 0 & \text{ on } \partial \Omega \times (0, T), \\ u(\cdot, 0) = u_0 & \text{ in } \Omega \end{array}$$

Model setting

- exact solution $u = e^{x+y+t-3}$ on square domain $\Omega = (0,3) \times (0,3)$, T = 1.5 or T = 3
- square meshes: 10×10 , 30×30 , 90×90
- time steps: 0.3, 0.1, 0.3333
- vertex-centered finite volumes
- additional quadrature/mass lumping estimator

Heat equation

The problem

$$\begin{array}{ll} \partial_t u - \Delta u = f & \text{ in } \Omega \times (0, T), \\ u = 0 & \text{ on } \partial \Omega \times (0, T), \\ u(\cdot, 0) = u_0 & \text{ in } \Omega \end{array}$$

Model setting

- exact solution $u = e^{x+y+t-3}$ on square domain $\Omega = (0,3) \times (0,3)$, T = 1.5 or T = 3
- square meshes: 10×10 , 30×30 , 90×90
- time steps: 0.3, 0.1, 0.3333
- vertex-centered finite volumes
- additional quadrature/mass lumping estimator

Energy norm results, T = 1.5

Energy norm results, T = 3

Dual norm results, T = 1.5

Dual norm results, T = 3

2 Unsteady advection-diffusion-reaction equation

Nonlinear Laplace equation

Unsteady advection-diffusion-reaction equation

The problem

$$u_t - \nabla \cdot (\underline{\mathbf{K}} \nabla u) + \nabla \cdot (u \mathbf{w}) + ru = f \quad \text{in } \Omega \times (0, T),$$
$$u(\cdot, 0) = u_0 \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial\Omega \times (0, T)$$

Model setting

•
$$\mathbf{K} = \nu Id$$
, ν is a parameter

• *r* = 0, *f* = 0

Exact solution

$$u(x, y, t) = \frac{1}{200\nu(t+t_0)+1}e^{-50\frac{(x-x_0-\nu_1(t+t_0))^2+(y-y_0-\nu_2(t+t_0))^2}{200\nu(t+t_0)+1}}$$

Unsteady advection-diffusion-reaction equation

The problem

$$u_t - \nabla \cdot (\underline{\mathbf{K}} \nabla u) + \nabla \cdot (u \mathbf{w}) + ru = f \quad \text{in } \Omega \times (0, T),$$
$$u(\cdot, 0) = u_0 \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial\Omega \times (0, T)$$

Model setting

- $\mathbf{K} = \nu Id$, ν is a parameter
- w = (0.8, 0.4)
- *r* = 0, *f* = 0

Exact solution

$$u(x, y, t) = \frac{1}{200\nu(t+t_0)+1}e^{-50\frac{(x-x_0-\nu_1(t+t_0))^2+(y-y_0-\nu_2(t+t_0))^2}{200\nu(t+t_0)+1}}$$

Error distributions

Estimated error distribution, $\nu = 0.001, T = 0.6$

Exact error distribution, $\nu = 0.001, T = 0.6$

Estimated and actual energy errors

Adaptive refinement approximate solutions

levels refinement

 $\nu = 0.001, T = 0.6,$ four levels refinement

Spatial and temporal estimators equilibrated

Spatial estimators η_{sp}^{n} and temporal estimators η_{tm}^{n} equilibrated, $\nu = 0.001, T = 0.6$

Overrefinement in time

Overrefinement in space

3 Nonlinear Laplace equation

Numerical experiment I

Model problem

• *p*-Laplacian

$$\nabla \cdot (|\nabla u|^{p-2} \nabla u) = f \quad \text{in } \Omega,$$
$$u = u_0 \quad \text{on } \partial \Omega$$

• weak solution (used to impose the Dirichlet BC)

$$u(x,y) = -\frac{p-1}{p} \left((x - \frac{1}{2})^2 + (y - \frac{1}{2})^2 \right)^{\frac{p}{2(p-1)}} + \frac{p-1}{p} \left(\frac{1}{2} \right)^{\frac{p}{p-1}}$$

- tested values p = 1.5 and p = 10
- nonconforming finite elements

Analytical and approximate solutions

Error and estimators as a function of CG iterations, p = 10, 6th level mesh, 6th Newton step.

Error and estimators as a function of Newton iterations, p = 10, 6th level mesh

Error and estimators, p = 10

Effectivity indices, p = 10

Error distribution, p = 10

Estimated error distribution

Exact error distribution

Newton and algebraic iterations, p = 10

Newton it. / refinement alg. it. / Newton step

alg. it. / refinement

Error and estimators as a function of CG iterations, p = 1.5, 6th level mesh, 1st Newton step.

Error and estimators as a function of Newton iterations, p = 1.5, 6th level mesh

Error and estimators, p = 1.5

Effectivity indices, p = 1.5

Newton and algebraic iterations, p = 1.5

Newton it. / refinement alg. it. / Newton step

alg. it. / refinement

Numerical experiment II

Model problem

• *p*-Laplacian

$$\nabla \cdot (|\nabla u|^{p-2} \nabla u) = f \quad \text{in } \Omega,$$
$$u = u_0 \quad \text{on } \partial \Omega$$

• weak solution (used to impose the Dirichlet BC)

$$u(r,\theta)=r^{\frac{7}{8}}\sin(\theta\frac{7}{8})$$

- p = 4, L-shape domain, singularity in the origin (Carstensen and Klose (2003))
- nonconforming finite elements

Error distribution on an adaptively refined mesh

Estimated error distribution

Exact error distribution

Estimated and actual errors and the effectivity index

Energy error and overall performance

