Numerical methods, a priori and a posteriori error estimates, and hp finite elements

Martin Vohralík

Inria Paris & Ecole des Ponts

Prague, April 17, 2024

Outline

- A priori and a posteriori error analysis
- 3 A posteriori error estimates
- Mesh adaptivity
- bp finite elements: a priori error estimates
- 6 *hp* finite elements: mesh & polynomial degree adaptivity

Outline

- A priori and a posteriori error analysis
- 3 A posteriori error estimates
- 4 Mesh adaptivity
- bp finite elements: a priori error estimates
- 6 *hp* finite elements: mesh & polynomial degree adaptivity

Numerical approximations of PDEs

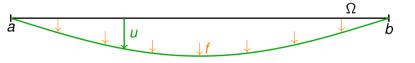
Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- conception: more effort \Rightarrow closer to the unknown solution
- example: elastic string

Numerical approximations of PDEs

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- $\bullet\,$ conception: more effort \Rightarrow closer to the unknown solution
- example: elastic string



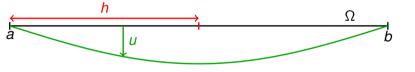
Numerical approximation *u_h* and its convergence to *u*

Numerical methods, a priori and a posteriori estimates, and hp FEs 3 / 19

Numerical approximations of PDEs

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- $\bullet\,$ conception: more effort \Rightarrow closer to the unknown solution
- example: elastic string

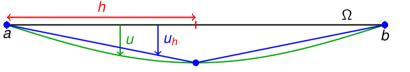


Numerical approximation u_h and its convergence to u

Numerical approximations of PDEs

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- $\bullet\,$ conception: more effort \Rightarrow closer to the unknown solution
- example: elastic string



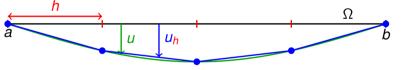
Numerical approximation u_h and its convergence to u

Numerical methods, a priori and a posteriori estimates, and hp FEs 3 / 1

Numerical approximations of PDEs

Numerical methods

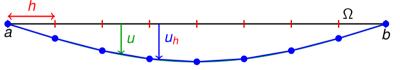
- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- $\bullet\,$ conception: more effort \Rightarrow closer to the unknown solution
- example: elastic string



Numerical approximations of PDEs

Numerical methods

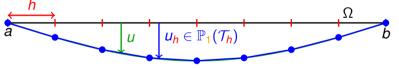
- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- $\bullet\,$ conception: more effort \Rightarrow closer to the unknown solution
- example: elastic string



Numerical approximations of PDEs

Numerical methods

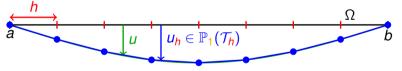
- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- $\bullet\,$ conception: more effort \Rightarrow closer to the unknown solution
- example: elastic string



Numerical approximations of PDEs

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- $\bullet\,$ conception: more effort \Rightarrow closer to the unknown solution
- example: elastic string

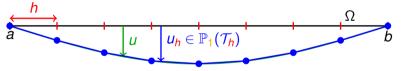


Error
$$\|\nabla(u-u_h)\| = \left\{\int_a^b |(u-u_h)'|^2\right\}^{\frac{1}{2}}$$

Numerical approximations of PDEs

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- $\bullet\,$ conception: more effort $\Rightarrow\,$ closer to the unknown solution
- example: elastic string



Numerical approximation u_h and its convergence to u

Error
$$\|\nabla(u-u_h)\| = \left\{\int_a^b |(u-u_h)'|^2\right\}^{\frac{1}{2}}$$

Polynomial degree p $u_h \in \mathbb{P}_p(\mathcal{T}_h)$

Ínría Esecerer

Numerical methods, a priori and a posteriori estimates, and hp FEs 3 / 7

Outline

- 2 A priori and a posteriori error analysis
- 3 A posteriori error estimates
- 4 Mesh adaptivity
- bp finite elements: a priori error estimates
- 6 *hp* finite elements: mesh & polynomial degree adaptivity

A priori

error estimates

Crucial questions

Does the method converge? ||∇(u - u_h)|| → 0? For h > 0? For p > ∞?
At which speed? ||∇(u - u_h)|| ≤ ?
Is the analysis optimal? Is uniform refinement h > 0 or p > ∞ optimal?

Numerical methods, a priori and a posteriori estimates, and hp FEs 4 / 19

A priori

error estimates

Crucial questions

- Does the method **converge**? $\|\nabla(u-u_h)\| \rightarrow 0$? For $h \searrow 0$? For $p \nearrow \infty$?
- **2** At which **speed**? $\|\nabla(u u_h)\| \leq ?$
- Is the analysis optimal? Is uniform refinement h ↘ 0 or p ↗ ∞ optimal?

A priori

error estimates

Crucial questions

- Does the method **converge**? $\|\nabla(u-u_h)\| \to 0$? For $h \searrow 0$? For $p \nearrow \infty$?
- 2 At which speed? $\|\nabla(u u_h)\| \leq ?$
- Solution Is the analysis optimal? Is uniform refinement $h \searrow 0$ or $p \nearrow \infty$ optimal?

A priori dia postariori error estimates

Crucial questions

- Does the method **converge**? $\|\nabla(u-u_h)\| \to 0$? For $h \searrow 0$? For $p \nearrow \infty$?
- **2** At which **speed**? $\|\nabla(u u_h)\| \leq ?$
- Solution Is the analysis optimal? Is uniform refinement $h \searrow 0$ or $p \nearrow \infty$ optimal?

Answers

Yes. Justification of the method. A priori.

A priori & a posteriori error estimates

Crucial questions

- Does the method **converge**? $\|\nabla(u-u_h)\| \rightarrow 0$? For $h \searrow 0$? For $p \nearrow \infty$?
- **2** At which **speed**? $\|\nabla(u u_h)\| \leq ?$
- Solution Is the analysis optimal? Is uniform refinement $h \searrow 0$ or $p \nearrow \infty$ optimal?

Answers

- **9** Yes. Justification of the method. A priori.
- C(u, p) h^p in *h*-analysis, $C(u, p)(\frac{h}{p})^p$ in *hp*-analysis.

A priori & a posteriori error estimates

Crucial questions

- Does the method **converge**? $\|\nabla(u-u_h)\| \rightarrow 0$? For $h \searrow 0$? For $p \nearrow \infty$?
- **2** At which **speed**? $\|\nabla(u u_h)\| \leq ?$
- Solution Is the analysis optimal? Is uniform refinement $h \searrow 0$ or $p \nearrow \infty$ optimal?

Answers

- Yes. Justification of the method. A priori.
- C(u, p) h^p in *h*-analysis, $C(u, p) \left(\frac{h}{p}\right)^p$ in *hp*-analysis.
- Yes. No, much better can be achieved.

A priori & a posteriori error estimates

Crucial questions

- Does the method **converge**? $\|\nabla(u-u_h)\| \to 0$? For $h \searrow 0$? For $p \nearrow \infty$?
- **2** At which **speed**? $\|\nabla(u u_h)\| \leq ?$
- Solution Is the analysis optimal? Is uniform refinement $h \searrow 0$ or $p \nearrow \infty$ optimal?

Answers

- Yes. Justification of the method. A priori.
- C(u, p) h^p in *h*-analysis, $C(u, p)(\frac{h}{p})^p$ in *hp*-analysis.
- **9** Yes. No, much better can be achieved.

Crucial questions

• How large is the overall error? Obtain $\|\nabla(u - u_h)\| \le \eta(u_h)$?

Numerical methods, a priori and a posteriori estimates, and hp FEs 4 / 19

A priori & a posteriori error estimates

Crucial questions

- Does the method **converge**? $\|\nabla(u-u_h)\| \rightarrow 0$? For $h \searrow 0$? For $p \nearrow \infty$?
- **2** At which **speed**? $\|\nabla(u u_h)\| \leq ?$
- Solution Is the analysis optimal? Is uniform refinement $h \searrow 0$ or $p \nearrow \infty$ optimal?

Crucial questions

• How large is the overall error? Obtain $\|\nabla(u - u_h)\| \le \eta(u_h)$?

Where is the error localized?

Answers

- Yes. Justification of the method. A priori.
- C(u, p) h^p in *h*-analysis, $C(u, p) \left(\frac{h}{p}\right)^p$ in *hp*-analysis.
- Yes. No, much better can be achieved.

A priori & a posteriori error estimates

Crucial questions

- Does the method **converge**? $\|\nabla(u-u_h)\| \to 0$? For $h \searrow 0$? For $p \nearrow \infty$?
- **2** At which **speed**? $\|\nabla(u u_h)\| \leq ?$
- Solution Is the analysis optimal? Is uniform refinement $h \searrow 0$ or $p \nearrow \infty$ optimal?

Crucial questions

- How large is the overall error? Obtain $\|\nabla(u - u_h)\| \le \eta(u_h)$?
- Where is the error localized?
- Oan we decrease it faster?

Answers

- **9** Yes. Justification of the method. A priori.
- C(u, p) h^p in *h*-analysis, $C(u, p) \left(\frac{h}{p}\right)^p$ in *hp*-analysis.
- **Yes.** No, much better can be achieved.

A priori & a posteriori error estimates

Crucial questions

- Does the method **converge**? $\|\nabla(u-u_h)\| \to 0$? For $h \searrow 0$? For $p \nearrow \infty$?
- **2** At which **speed**? $\|\nabla(u u_h)\| \leq ?$
- Solution Is the analysis optimal? Is uniform refinement $h \searrow 0$ or $p \nearrow \infty$ optimal?

Answers

- **9** Yes. Justification of the method. A priori.
- C(u, p) h^p in *h*-analysis, $C(u, p) \left(\frac{h}{p}\right)^p$ in *hp*-analysis.
- Yes. No, much better can be achieved.

Crucial questions

- How large is the overall error? Obtain $\|\nabla(u - u_h)\| \le \eta(u_h)$?
- Where is the error localized?
- Oan we decrease it faster?

Answers

• A posteriori error estimates. Justification of the result.

A priori & a posteriori error estimates

Crucial questions

- Does the method **converge**? $\|\nabla(u-u_h)\| \to 0$? For $h \searrow 0$? For $p \nearrow \infty$?
- **2** At which **speed**? $\|\nabla(u u_h)\| \leq ?$
- Solution Is the analysis optimal? Is uniform refinement $h \searrow 0$ or $p \nearrow \infty$ optimal?

Answers

- Yes. Justification of the method. A priori.
- C(u, p) h^p in *h*-analysis, $C(u, p) \left(\frac{h}{p}\right)^p$ in *hp*-analysis.
- **Yes.** No, much better can be achieved.

Crucial questions

- How large is the overall error? Obtain $\|\nabla(u - u_h)\| \le \eta(u_h)$?
- Where is the error localized?
- Oan we decrease it faster?

Answers

- A posteriori error estimates. Justification of the result.
- 2 Elementwise estimators.

A priori & a posteriori error estimates

Crucial questions

- Does the method **converge**? $\|\nabla(u-u_h)\| \to 0$? For $h \searrow 0$? For $p \nearrow \infty$?
- **2** At which **speed**? $\|\nabla(u u_h)\| \leq ?$
- Solution Is the analysis optimal? Is uniform refinement $h \searrow 0$ or $p \nearrow \infty$ optimal?

Answers

- **9** Yes. Justification of the method. A priori.
- C(u, p) h^p in *h*-analysis, $C(u, p)(\frac{h}{p})^p$ in *hp*-analysis.
- Yes. No, much better can be achieved.

Crucial questions

- How large is the overall error? Obtain $\|\nabla(u - u_h)\| \le \eta(u_h)$?
- Where is the error localized?
- Oan we decrease it faster?

Answers

- A posteriori error estimates. Justification of the result.
- 2 Elementwise estimators.
- Adaptivity, focusing, h & p refined non uniformly.

CDG Terminal 2E collapse in 2004 (opened in 2003)

no earthquake, flooding, tsunami, heavy rain, extreme temperature
deterministic, steady problem, PDE known, data known, implementation OK

CDG Terminal 2E collapse in 2004 (opened in 2003)

- no earthquake, flooding, tsunami, heavy rain, extreme temperature
- deterministic, steady problem, PDE known, data known, implementation OK

CDG Terminal 2E collapse in 2004 (opened in 2003)

- no earthquake, flooding, tsunami, heavy rain, extreme temperature
- deterministic, steady problem, PDE known, data known, implementation OK

CDG Terminal 2E collapse in 2004 (opened in 2003)

no earthquake, flooding, tsunami, heavy rain, extreme temperature

• deterministic, steady problem, PDE known, data known, implementation OK

probably numerical simulations done with insufficient precision,

Reliability study and simulation of the progressive collapse of Roissy Charles de Gaulle Airport

Y. El Kamari^a, W. Raphael^{a,a}, A. Chateauneuf^{b,c} ⁴Ecole Suphiever d'Engletieves de Reynoch (ESER), Université Saint-Joseph, CST Mar Rookos, PO Bas 11-514, Riad El Subi Beises 11072852

Numerical methods, a priori and a posteriori estimates, and hp FEs 5 / 1

CDG Terminal 2E collapse in 2004 (opened in 2003)

no earthquake, flooding, tsunami, heavy rain, extreme temperature

• deterministic, steady problem, PDE known, data known, implementation OK

probably **numerical simulations done with insufficient precision**, I believe **without error certification** by a posteriori error estimates

Reliability study and simulation of the progressive collapse of Roissy Charles de Gaulle Airport

Y. El Kamari^a, W. Raphael^{a,*}, A. Chateauneuf^{b,c} "Ecole Suphismer d'agénérese de Reynouch (SRE), Université Sater-Joseph, CST Mar Roskov, PO Box 11-514, Red El Solt Brinse 11072052

M. Vohralík

Numerical methods, a priori and a posteriori estimates, and hp FEs 5 / 19

Outline

- A priori and a posteriori error analysis
- 3 A posteriori error estimates
- 4 Mesh adaptivity
- bp finite elements: a priori error estimates
- 6 *hp* finite elements: mesh & polynomial degree adaptivity

A posteriori error estimates: certify the error

Poisson equation

 $\begin{aligned} -\Delta u &= f \quad \text{in} \quad \Omega, \\ u &= 0 \quad \text{on} \quad \partial \Omega \end{aligned}$

Guaranteed error upper bound (reliability)

 $\frac{\|\nabla(u - u_h)\|}{\text{unknown error}} \leq \underbrace{\eta(u_h)}_{\text{computable estima}}$

Global error lower bound (global efficiency; mathematical equivalence of the error and estimator)

 $\eta(\boldsymbol{u}_h) \leq C \|\nabla(\boldsymbol{u} - \boldsymbol{u}_h)\|$

Local error lower bound (local efficiency; if the estimator predicts error in an element K, then it is in K and around)

 $\eta_K(u_h) \leq C \|
abla(u-u_h)\|_\omega$

A posteriori error estimates: certify the error

Poisson equation

 $\begin{aligned} -\Delta u &= f \quad \text{in} \quad \Omega, \\ u &= 0 \quad \text{on} \quad \partial \Omega \end{aligned}$

Guaranteed error upper bound (reliability)

Global error lower bound (global efficiency; mathematical equivalence of the error and estimator)

$$\eta(u_h) \leq \boldsymbol{C} \|\nabla(\boldsymbol{u} - \boldsymbol{u}_h)\|$$

Local error lower bound (local efficiency; if the estimator predicts error in an element K, then it is in K and around)

$$\eta_{K}(u_{h}) \leq C \|\nabla(u-u_{h})\|_{\omega_{K}}$$

A posteriori error estimates: certify the error

Poisson equation

 $\begin{aligned} -\Delta u &= f \quad \text{in} \quad \Omega, \\ u &= 0 \quad \text{on} \quad \partial \Omega \end{aligned}$

Guaranteed error upper bound (reliability)

Global error lower bound (global efficiency; mathematical equivalence of the error and estimator)

 $\eta(u_h) \leq \frac{C}{\|\nabla(u-u_h)\|}$

Local error lower bound (local efficiency; if the estimator predicts error in an element K, then it is in K and around)

$$\eta_{\mathsf{K}}(u_h) \leq C \|\nabla(u-u_h)\|_{\omega_{\mathsf{K}}}$$

A posteriori error estimates: certify the error

Poisson equation

 $\begin{aligned} -\Delta u &= f \quad \text{in} \quad \Omega, \\ u &= 0 \quad \text{on} \quad \partial \Omega \end{aligned}$

Guaranteed error upper bound (reliability)

Global error lower bound (global efficiency; mathematical equivalence of the error and estimator)

$$\eta(u_h) \leq \frac{C}{\|\nabla(u-u_h)\|}$$

Local error lower bound (local efficiency; if the estimator predicts error in an element K, then it is in K and around)

 $\eta_{\mathsf{K}}(u_h) \leq C \|
abla(u-u_h)\|_{\omega_{\mathsf{K}}}$

A posteriori error estimates: reconstructions

Theorem (Error characterization)

Let $u \in H_0^1(\Omega)$ be the weak solution and let $u_h \in H^1(\mathcal{T}_h)$ be arbitrary. Then

$$\|\nabla(u-u_h)\|^2 = \min_{\substack{\boldsymbol{v}\in\boldsymbol{H}(\mathrm{div},\Omega)\\\nabla\cdot\boldsymbol{v}=f}} \|\nabla u_h + \boldsymbol{v}\|^2 + \min_{\substack{v\in H_0^1(\Omega)}} \|\nabla(u_h-v)\|^2.$$

Comments

- It is now enough to choose suitable $\sigma_h \in H(\operatorname{div}, \Omega)$ and $s_h \in H_0^1(\Omega)$.
- A simple choice for nonconforming finite elements given in the lecture notes.

A posteriori error estimates: reconstructions

Theorem (Error characterization)

Let $u \in H_0^1(\Omega)$ be the weak solution and let $u_h \in H^1(\mathcal{T}_h)$ be arbitrary. Then

$$\|\nabla(u-u_h)\|^2 = \min_{\substack{\boldsymbol{v}\in\boldsymbol{H}(\mathrm{div},\Omega)\\\nabla\cdot\boldsymbol{v}=f}} \|\nabla u_h + \boldsymbol{v}\|^2 + \min_{\substack{v\in H_0^1(\Omega)}} \|\nabla(u_h-v)\|^2.$$

Comments

- It is now enough to choose suitable $\sigma_h \in H(\operatorname{div}, \Omega)$ and $s_h \in H_0^1(\Omega)$.
- A simple choice for nonconforming finite elements given in the lecture notes.

How large is the overall error?

h	р	$\eta(\textit{\textbf{u}_{h}})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_b)}{\ \nabla(u-u_b)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$	2	4.23×10^{-2}				
$\approx h_0/4$	- 3	2.62×10^{-1}				
$\approx h_0/8$	3 4	2.60×10^{-7}				

A. Em, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Dolejší, A. Em, M. Vohralik, SIAM Journal on Scientific Computing (2016)

Ínsia_

h	р	η(<mark>U</mark> h)	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$	2	4.23×10^{-2}	9.5 x 107196	4.07×10^{-2}		
$\approx h_0/4$	- 3	2.62×10^{-4}	5.9 × 10 ⁻³ 96	2.60×10^{-4}		
$\approx h_0/8$	4	2.60×10^{-7}	5.9 × 10 ⁻¹ 96	$2.58 \times 107'$		

A. Em, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Dolejší, A. Em, M. Vohralik, SIAM Journal on Scientific Computing (2016)

Ínnia -

h	р	$\eta({m u_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}$ %	4.07×10^{-2}	9.2×10^{-1} %	
$\approx h_0/4$	- 3	2.62×10^{-4}	$5.9 imes 10^{-3}$ %	2.60×10^{-4}	5.9 × 10 ⁻³ %	
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes 10^{-6}$ %	2.58×10^{-7}	5.8×10^{-9} %	

A. Em, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Dolejší, A. Em, M. Vohralik, SIAM Journal on Scientific Computing (2016)

Ínaía

h	р	$\eta(u_h)$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}\%$	4.07×10^{-2}	9.2×10^{-1} %	
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 imes 10^{-3}$ %	2.60×10^{-4}	5.9 × 10 ⁻³ 96	
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes 10^{-6}$ %	2.58×10^{-7}	5.8 × 10 ⁻¹⁴ %	

A. Em, M. Vohrelik, SIAM Journal on Numerical Analysis (2015) Dolejši, A. Em, M. Vohrelik, SIAM Journal on Scientific Computing (2016)

Ínaía

h	р	$\eta(u_h)$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
		$6.07 imes 10^{-1}$		$5.56 imes 10^{-1}$		1.09
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}$ %	4.07×10^{-2}	9.2×10^{-1} %	1.0.4
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 imes 10^{-3}$ %	2.60×10^{-4}	5.9×10^{-3} %	
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes 10^{-6}$ %	2.58×10^{-7}	$5.8 imes 10^{-6}$ %	1.01

A. Em, M. Vohreilik, SIAM Journal on Numerical Analysis (2015) Dolejši, A. Em, M. Vohreilik, SIAM Journal on Scientific Computing (2016).

Ínaía

h p	η(<mark>U</mark> h)	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$\int^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0 1	1.25	28%	1.07	24%	1.17
$pprox h_0/2$	$6.07 imes 10^{-1}$		$5.56 imes 10^{-1}$	13%	1.09
$\approx h_0/2/2$	4.23×10^{-2}	$9.5 imes 10^{-1}$ %	4.07×10^{-2}	$9.2 imes 10^{-1}$ %	1.04
$\approx h_0/4$ 3	2.62×10^{-4}	$5.9 imes 10^{-3}$ %	2.60×10^{-4}	$5.9 imes 10^{-3}$ %	1.01
$\approx h_0/8$ 4	2.60×10^{-7}	$5.9 imes 10^{-6}$ %	2.58×10^{-7}	$5.8 imes 10^{-6}\%$	1.01

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Dolejší, A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2016)

Ínaía

h	р	$\eta({m u_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$pprox h_0/2$		$6.07 imes 10^{-1}$	14%	$5.56 imes 10^{-1}$	13%	1.09
$\approx h_0/4$		$3.10 imes 10^{-1}$		$2.92 imes 10^{-1}$	6.6%	1.06
$\approx h_0/2$	2	$4.23 imes 10^{-2}$	$9.5 imes10^{-1}\%$	$4.07 imes 10^{-2}$	$9.2 imes 10^{-1}$ %	1.04
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 imes 10^{-3}$ %	2.60×10^{-4}	$5.9 imes 10^{-3}$ %	1.01
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes 10^{-6}$ %	2.58×10^{-7}	$5.8 imes 10^{-6}$ %	1.01

A. Em, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Dolejší, A. Em, M. Vohralik, SIAM Journal on Scientific Computing (2016)

Ínaía

h	р	$\eta(\textit{\textbf{u}_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$pprox h_0/2$		$6.07 imes 10^{-1}$	14%	5.56×10^{-1}	13%	1.09
$\approx h_0/4$		$3.10 imes10^{-1}$	7.0%	2.92×10^{-1}	6.6%	1.06
$\approx h_0/8$		$1.45 imes 10^{-1}$		$1.39 imes 10^{-1}$	3.1%	1.04
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes10^{-1}\%$	4.07×10^{-2}	$9.2 imes 10^{-1}\%$	1.04
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 imes10^{-3}\%$	2.60×10^{-4}	$5.9 imes 10^{-3}$ %	1.01
$pprox h_0/8$	4	2.60×10^{-7}	$5.9 imes10^{-6}\%$	2.58×10^{-7}	$5.8 imes 10^{-6}$ %	1.01

A. Em, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Dolejší, A. Em, M. Vohralik, SIAM Journal on Scientific Computing (2016)

Ínaía

h	р	η(<mark>U</mark> h)	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = rac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$pprox h_0/2$		$6.07 imes 10^{-1}$	14%	5.56×10^{-1}	13%	1.09
$\approx h_0/4$		$3.10 imes 10^{-1}$	7.0%	2.92×10^{-1}	6.6%	1.06
$\approx h_0/8$		$1.45 imes10^{-1}$	3.3%	1.39×10^{-1}	3.1%	1.04
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}$ %	4.07×10^{-2}	$9.2 imes 10^{-1}$ %	1.04
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 imes10^{-3}\%$	2.60×10^{-4}	$5.9 imes10^{-3}\%$	1.01
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes 10^{-6}$ %	2.58×10^{-7}	$5.8 imes 10^{-6}\%$	1.01

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015)

V. Dolejší, A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2016).

Innia

h	р	$\eta(u_h)$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$		$6.07 imes 10^{-1}$	14%	5.56×10^{-1}	13%	1.09
$\approx h_0/4$		$3.10 imes 10^{-1}$	7.0%	2.92×10^{-1}	6.6%	1.06
$\approx h_0/8$		$1.45 imes10^{-1}$	3.3%	1.39×10^{-1}	3.1%	1.04
$\approx h_0/2$	2	$4.23 imes10^{-2}$	$9.5 imes 10^{-1}$ %	4.07×10^{-2}	$9.2 imes10^{-1}\%$	1.04
\approx $h_0/4$	3	2.62×10^{-4}	$5.9 imes 10^{-3} \%$	2.60×10^{-4}	$5.9 imes 10^{-3}$ %	1.01
$pprox h_0/8$	4	2.60×10^{-7}	$5.9 imes 10^{-6}$ %	2.58×10^{-7}	$5.8 imes 10^{-6}\%$	1.01

A. Ern, M. Vohralík, SIAM Journal on Numerical Analysis (2015)

V. Dolejší, A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2016)

Innin

h	р	η(<mark>U</mark> h)	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$pprox h_0/2$		$6.07 imes10^{-1}$	14%	5.56×10^{-1}	13%	1.09
$\approx h_0/4$		$3.10 imes10^{-1}$	7.0%	2.92×10^{-1}	6.6%	1.06
$\approx h_0/8$		$1.45 imes10^{-1}$	3.3%	1.39×10^{-1}	3.1%	1.04
$\approx h_0/2$	2	$4.23 imes 10^{-2}$	$9.5 imes 10^{-1}\%$	$4.07 imes 10^{-2}$	$9.2 imes10^{-1}\%$	1.04
$\approx h_0/4$	3	$2.62 imes 10^{-4}$	$5.9 imes 10^{-3}$ %	$2.60 imes 10^{-4}$	$5.9 imes10^{-3}$ %	1.01
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes10^{-6}\%$	2.58×10^{-7}	$5.8 imes 10^{-6}\%$	1.01

A. Ern, M. Vohralík, SIAM Journal on Numerical Analysis (2015) / Dolejší, A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2016)

Ínaía

h	<mark>ο</mark> η(u _h)	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1 1.25	28%	1.07	24%	1.17
$pprox h_0/2$	$6.07 imes 10^{-1}$	14%	$5.56 imes 10^{-1}$	13%	1.09
$\approx h_0/4$	$3.10 imes 10^{-1}$	7.0%	$2.92 imes 10^{-1}$	6.6%	1.06
$\approx h_0/8$	$1.45 imes 10^{-1}$		$1.39 imes 10^{-1}$	3.1%	1.04
$\approx h_0/2$	$2 4.23 \times 10^{-2}$		$4.07 imes 10^{-2}$	$9.2 imes10^{-1}\%$	1.04
$\approx h_0/4$	2.62×10^{-4}		$2.60 imes10^{-4}$		1.01
$pprox h_0/8$	4 2.60 \times 10 ⁻⁷	$5.9 imes 10^{-6}$ %	$2.58 imes 10^{-7}$	$5.8 imes10^{-6}$ %	1.01

A. Ern, M. Vohralík, SIAM Journal on Numerical Analysis (2015) V. Dolejší, A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2016)

Ínnin

Outline

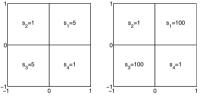
- A priori and a posteriori error analysis
- 3 A posteriori error estimates
- Mesh adaptivity
- bp finite elements: a priori error estimates
- 6 *hp* finite elements: mesh & polynomial degree adaptivity

Problem with singular solution

• consider the pure diffusion equation

$$-\nabla \cdot \boldsymbol{S} \nabla u = 0$$
 in $\Omega = (-1, 1) \times (-1, 1)$

• discontinuous and inhomogeneous S, two cases:



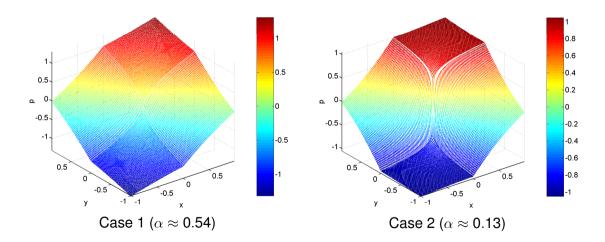
• analytical solution: singularity at the origin

 $u(r,\theta) = r^{\alpha}(a_i \sin(\alpha \theta) + b_i \cos(\alpha \theta))$

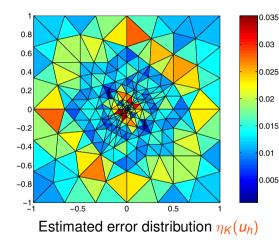
- (r, θ) polar coordinates in Ω
- a_i, b_i constants depending on Ω_i
- α regularity of the solution, $u \in H^{1+\alpha}(\Omega)$

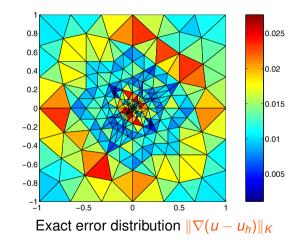
M. Vohralík

Analytical solutions

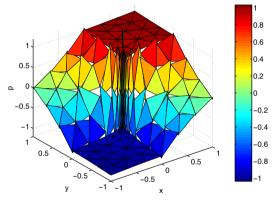


Where is the error localized?

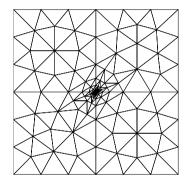




Can we adapt the mesh to better approximate the solution?

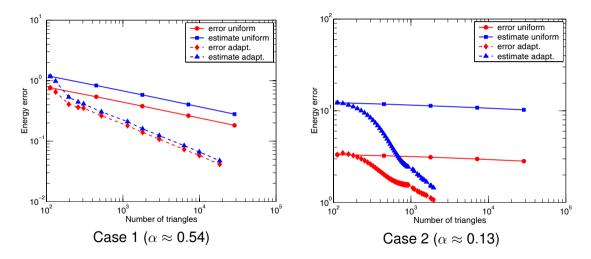


Nonconforming finite elements

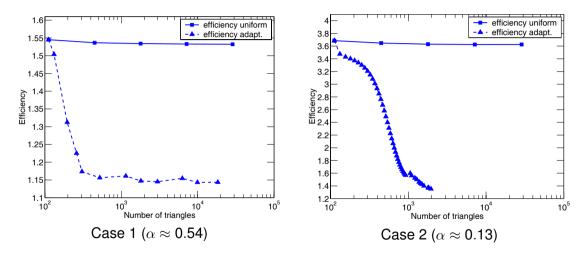


Adaptively refined mesh

Does this lead to a better error decrease?



Quality of the estimates for a singular solution



Adaptive mesh refinement

Mesh adaptivity

• Dörfler marking: subset \mathcal{M}_{ℓ} containing θ -fraction of the estimates

$$\sum_{\mathsf{K}\in\mathcal{M}_\ell}\eta_\mathsf{K}(u_\ell)^2\geq \frac{\theta^2}{\mathsf{K}\in\mathcal{T}_\ell}\eta_\mathsf{K}(u_\ell)^2$$

• refine the elements in \mathcal{M}_ℓ

Convergence on a sequence of adaptively refined meshes \mathcal{T}_{ℓ} • $\|\nabla(u - u_{\ell})\| \to 0$ for $\ell \to \infty$

some mesh elements may not be refined at all: h > 0 uniformly

Optimal error decay rate wrt degrees of freedom

- $\|\nabla(u u_\ell)\| \le C |\mathsf{DoF}_\ell|^{-p/d}$ (replaces h^p)
 - same for smooth & singular solutions: higher-order only pays-off for sm. sol.
 - decays to zero as fast as on a best-possible sequence of meshes

Adaptive mesh refinement

Mesh adaptivity

• Dörfler marking: subset \mathcal{M}_{ℓ} containing θ -fraction of the estimates

$$\sum_{K\in\mathcal{M}_\ell}\eta_K(u_\ell)^2\geq rac{ heta^2}{\kappa\in\mathcal{T}_\ell}\eta_K(u_\ell)^2$$

• refine the elements in \mathcal{M}_{ℓ}

Convergence on a sequence of adaptively refined meshes \mathcal{T}_{ℓ}

• $\|
abla(u-u_\ell)\| o 0$ for $\ell o \infty$

some mesh elements may not be refined at all: h > 0 uniformly

Optimal error decay rate wrt degrees of freedom

- $\|\nabla(u u_\ell)\| \le C |\mathsf{DoF}_\ell|^{-p/d}$ (replaces h^p)
- same for smooth & singular solutions: higher-order only pays-off for sm. sol.
- decays to zero as fast as on a best-possible sequence of meshes

Adaptive mesh refinement

Mesh adaptivity

• Dörfler marking: subset \mathcal{M}_{ℓ} containing θ -fraction of the estimates

$$\sum_{K\in\mathcal{M}_\ell}\eta_K(u_\ell)^2\geq rac{ heta^2}{\kappa\in\mathcal{T}_\ell}\eta_K(u_\ell)^2$$

 $\bullet\,$ refine the elements in \mathcal{M}_ℓ

Convergence on a sequence of adaptively refined meshes \mathcal{T}_{ℓ}

• $\|
abla(u-u_\ell)\| o 0$ for $\ell o \infty$

some mesh elements may not be refined at all: h > 0 uniformly

Optimal error decay rate wrt degrees of freedom

- $\|\nabla(u u_{\ell})\| \le C |\mathsf{DoF}_{\ell}|^{-p/d}$ (replaces h^p)
- same for smooth & singular solutions: higher-order only pays-off for sm. sol.
- decays to zero as fast as on a best-possible sequence of meshes

Outline

- A priori and a posteriori error analysis
- 3 A posteriori error estimates
- 4 Mesh adaptivity
- bp finite elements: a priori error estimates
- 6 hp finite elements: mesh & polynomial degree adaptivity

h vs. w a priori analysis

Theorem (Deny–Lions/Bramble–Hilbert)

For all $K \in \mathcal{T}_h$ and $v \in H^{p+1}(K)$,

$$\min_{\mathcal{V}_h \in \mathcal{P}_p(K)} \|\nabla(\mathbf{v} - \mathbf{v}_h)\|_{\mathcal{K}} \leq \sqrt{(p+1)!} \left(\frac{h_{\mathcal{K}}}{\pi}\right)^p |\mathbf{v}|_{H^{p+1}(\mathcal{K})}.$$

h vs. hp a priori analysis

Theorem (Deny–Lions/Bramble–Hilbert)

For all $K \in \mathcal{T}_h$ and $v \in H^{p+1}(K)$,

$$\min_{\nu_h \in \mathcal{P}_{\rho}(K)} \|\nabla(\mathbf{v} - \mathbf{v}_h)\|_{K} \leq \sqrt{(\rho+1)!} \left(\frac{h_K}{\pi}\right)^{\rho} |\mathbf{v}|_{H^{\rho+1}(K)}.$$

Theorem (A priori rate of convergence)

Let $u|_{K} \in H^{p+1}(K)$ for all $K \in \mathcal{T}_{h}$. Then

 $\|\nabla(u-u_h)\| \leq C(\rho)h^{\rho}|u|_{H^{\rho+1}(\mathcal{T}_h)}.$

h vs. hp a priori analysis

Theorem (Deny-Lions/Bramble-Hilbert)

For all $K \in \mathcal{T}_h$ and $v \in H^{p+1}(K)$,

$$\min_{\boldsymbol{v}_h \in \mathcal{P}_p(K)} \|\nabla(\boldsymbol{v} - \boldsymbol{v}_h)\|_{K} \leq \sqrt{(p+1)!} \left(\frac{\boldsymbol{h}_K}{\pi}\right)^p |\boldsymbol{v}|_{H^{p+1}(K)}.$$

Theorem (A priori rate of convergence)

Let $u|_{K} \in H^{p+1}(K)$ for all $K \in \mathcal{T}_{h}$. Then

 $\|\nabla(u-u_h)\| \leq C(p)h^{p}|u|_{H^{p+1}(\mathcal{T}_h)}.$

Comments

- C(p) depends unfavorably on p
- for fixed p, convergence as h^p for $h \searrow 0$

h vs. *hp* a priori analysis

Theorem (Deny–Lions/Bramble–Hilbert)Theorem (Element hp approximation)For all $K \in \mathcal{T}_h$ and $v \in H^{p+1}(K)$,For all $K \in \mathcal{T}_h$ and $v \in H^{p+1}(K)$, $\min_{v_h \in \mathcal{P}_p(K)} \|\nabla(v-v_h)\|_K \le \sqrt{(p+1)!} \left(\frac{h_K}{\pi}\right)^p \|v\|_{H^{p+1}(K)}$.For all $K \in \mathcal{T}_h$ and $v \in H^{p+1}(K)$,

Theorem (A priori rate of convergence)

Let $u|_{K} \in H^{p+1}(K)$ for all $K \in \mathcal{T}_{h}$. Then

 $\|\nabla(u-u_h)\| \leq C(\rho)h^{\rho}|u|_{H^{\rho+1}(\mathcal{T}_h)}.$

Comments

- C(p) depends unfavorably on p
- for fixed p, convergence as h^p for $h \searrow 0$

h vs. *hp* a priori analysis

Theorem (Deny–Lions/Bramble–Hilbert)	Theorem (Element <i>hp</i> approximation)
For all $K \in \mathcal{T}_h$ and $v \in H^{p+1}(K)$,	For all $K \in \mathcal{T}_h$ and $v \in H^{p+1}(K)$,
$\min_{\boldsymbol{v}_h \in \mathcal{P}_p(K)} \ \nabla(\boldsymbol{v} - \boldsymbol{v}_h)\ _K \leq \sqrt{(p+1)!} \left(\frac{\boldsymbol{h}_K}{\pi}\right)^p \boldsymbol{v} _{H^{p+1}(K)}.$	$\min_{\boldsymbol{v}_h\in\mathcal{P}_p(K)}\ \nabla(\boldsymbol{v}-\boldsymbol{v}_h)\ _{K}\leq C\Big(\frac{h_K}{\rho}\Big)^{\rho}\ \boldsymbol{v}\ _{H^{\rho+1}(K)}.$
	Theorem (A priori rate of convergence)
Theorem (A priori rate of convergence)	Let $u _K \in H^{p+1}(K)$ for all $K \in \mathcal{T}_h$. Then
Let $u _{K} \in H^{p+1}(K)$ for all $K \in \mathcal{T}_{h}$. Then	
$\ abla(u-u_h)\ \leq C(ho)h^{ ho} u _{H^{ ho+1}(\mathcal{T}_h)}.$	$\ abla(u-u_h)\ \leq C\Big(rac{h}{ ho}\Big)^{ ho}\ u\ _{H^{ ho+1}(\mathcal{T}_h)}.$
Comments	
• $C(p)$ depends unfavorably on p	

• for fixed p, convergence as h^p for $h \searrow 0$

h vs. *hp* a priori analysis

Theorem (Deny–Lions/Bramble–Hilbert)

For all $K \in \mathcal{T}_h$ and $v \in H^{p+1}(K)$,

$$\min_{\in \mathcal{P}_{\rho}(K)} \|\nabla(\mathbf{v} - \mathbf{v}_{h})\|_{K} \leq \sqrt{(p+1)!} \left(\frac{h_{K}}{\pi}\right)^{\rho} |\mathbf{v}|_{H^{\rho+1}(K)}.$$

Theorem (Element hp approximation)

For all
$$K \in \mathcal{T}_h$$
 and $v \in H^{p+1}(K)$,

$$\min_{oldsymbol{v}_h\in\mathcal{P}_{oldsymbol{
ho}}(K)} \|
abla(oldsymbol{v}\!-\!oldsymbol{v}_h)\|_K \leq C \Big(rac{h_K}{oldsymbol{
ho}}\Big)^{oldsymbol{
ho}} \|oldsymbol{v}\|_{H^{p+1}(K)}.$$

Theorem (A priori rate of convergence)

Let $u|_{K} \in H^{p+1}(K)$ for all $K \in \mathcal{T}_{h}$. Then

 $\|\nabla(u-u_h)\| \leq C(\rho)h^{\rho}|u|_{H^{\rho+1}(\mathcal{T}_h)}.$

Comments

V

- C(p) depends unfavorably on p
- for fixed p, convergence as h^p for $h \searrow 0$

Theorem (A priori rate of convergence)

Let
$$u|_{\mathcal{K}}\in H^{p+1}(\mathcal{K})$$
 for all $\mathcal{K}\in\mathcal{T}_h.$ Then

$$\|\nabla(u-u_h)\| \leq C\Big(rac{h}{\rho}\Big)^{
ho} \|u\|_{H^{
ho+1}(\mathcal{T}_h)}.$$

Comments

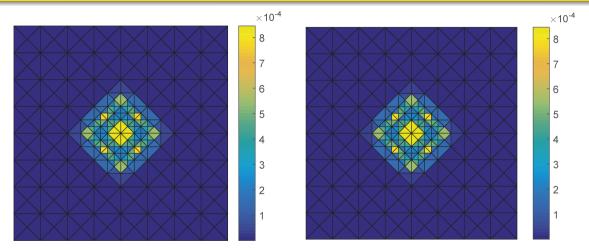
- C does not depend on p
- convergence for both $h \searrow 0 \& p \nearrow \infty$

M. Vohralík

Outline

- A priori and a posteriori error analysis
- 3 A posteriori error estimates
- 4 Mesh adaptivity
- bp finite elements: a priori error estimates
- 6 hp finite elements: mesh & polynomial degree adaptivity

Where is the error localized?



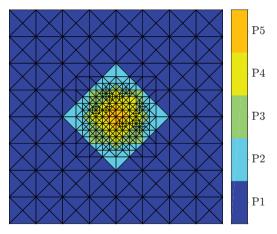
Estimated error distribution $\eta_{\mathcal{K}}(u_h)$

Exact error distribution $\|\nabla(u - u_h)\|_{\mathcal{K}}$

P. Daniel, A. Ern, I. Smears, M. Vohralík, Computers & Mathematics with Applications (2018)

M. Vohralík

Can we decrease the error efficiently? *hp* adaptivity, (**smooth** solution)

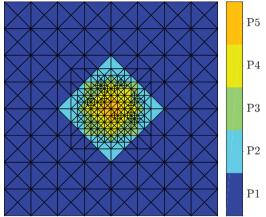


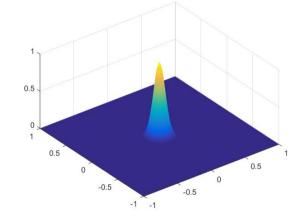
Mesh \mathcal{T}_{ℓ} and pol. degrees p_{K}

P. Daniel, A. Ern, I. Smears, M. Vohralík, Computers & Mathematics with Applications (2018)

M. Vohralík

Can we decrease the error efficiently? *hp* adaptivity, (**smooth** solution)



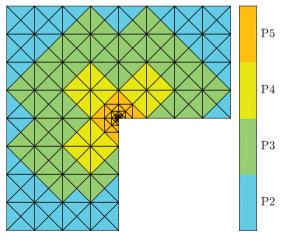


Mesh \mathcal{T}_{ℓ} and pol. degrees p_{K}

Exact solution

P. Daniel, A. Ern, I. Smears, M. Vohralík, Computers & Mathematics with Applications (2018)

Can we decrease the error efficiently? hp adaptivity, (singular solution)

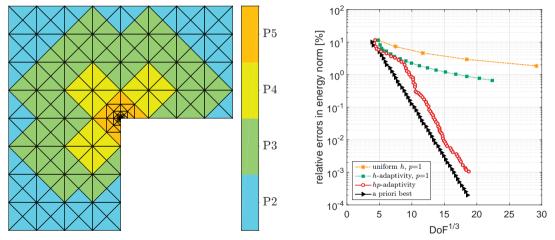


Mesh \mathcal{T}_{ℓ} and polynomial degrees p_{K}

P. Daniel, A. Ern, I. Smears, M. Vohralík, Computers & Mathematics with Applications (2018)

M. Vohralík

Can we decrease the error efficiently? hp adaptivity, (singular solution)



Mesh \mathcal{T}_{ℓ} and polynomial degrees p_{K}

Relative error as a function of DoF

P. Daniel, A. Ern, I. Smears, M. Vohralík, Computers & Mathematics with Applications (2018)

Adaptive mesh & polynomial degree refinement

Mesh & polynomial degree adaptivity

- decision between h or p refinement needs to be done
- much harder than just *h*-adaptivity

Convergence on a sequence of adaptively refined hp spaces V_ℓ

$$\|
abla(u-u_\ell)\| o {f 0}$$
 for $\ell o c$

• $h \searrow 0$ uniformly, $p \nearrow 0$ uniformly

Optimal error decay rate wrt degrees of freedom

• for d = 2, *hp* refinement gives

$$\|\nabla(u-u_\ell)\| \leq C_1 \frac{1}{e^{C_2 \mathsf{DoF}^{1/3}}}$$

exponential convergence rate

for d = 2 and p = 1 fixed, adaptive mesh h refinement only gives

$$\|\nabla(u-u_\ell)\| \le C \frac{1}{\mathsf{DoF}^{1/2}}$$

Adaptive mesh & polynomial degree refinement

Mesh & polynomial degree adaptivity

- decision between h or p refinement needs to be done
- much harder than just *h*-adaptivity

Convergence on a sequence of adaptively refined hp spaces V_{ℓ}

- $\|
 abla(u-u_\ell)\| o 0$ for $\ell o \infty$
- $h \searrow 0$ uniformly, $p \nearrow 0$ uniformly

Optimal error decay rate wrt degrees of freedom

• for d = 2, *hp* refinement gives

$$\|\nabla(u-u_\ell)\| \leq C_1 \frac{1}{e^{C_2 \mathsf{DoF}^{1/3}}}$$

• exponential convergence rate

• for d = 2 and p = 1 fixed, adaptive mesh *h* refinement only gives

$$\|\nabla(u-u_\ell)\| \le C \frac{1}{\mathsf{DoF}^{1/2}}$$

Adaptive mesh & polynomial degree refinement

Mesh & polynomial degree adaptivity

- decision between h or p refinement needs to be done
- much harder than just h-adaptivity

Convergence on a sequence of adaptively refined hp spaces V_{ℓ}

- $\|
 abla(u-u_\ell)\| o 0$ for $\ell o \infty$
- $h \searrow 0$ uniformly, $p \nearrow 0$ uniformly

Optimal error decay rate wrt degrees of freedom

• for d = 2, *hp* refinement gives

$$\|\nabla(u-u_\ell)\| \leq C_1 \frac{1}{\frac{e^{C_2 \mathsf{DoF}^{1/3}}}}$$

- exponential convergence rate
- for d = 2 and p = 1 fixed, adaptive mesh *h* refinement only gives

$$\|\nabla(u-u_\ell)\| \leq C \frac{1}{\mathsf{DoF}^{1/2}}$$