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Numerical approximations of PDEs

Numerical methods
mathematically-based algorithms evaluated by computers
deliver approximate solutions
conception: more effort ⇒ closer to the unknown solution
example: elastic string
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A priori & a posteriori error estimates

Crucial questions
1 Does the method converge?

∥∇(u − uh)∥ → 0? For h ↘ 0? For p ↗ ∞?
2 At which speed? ∥∇(u − uh)∥ ≤ ?

3 Is the analysis optimal? Is uniform
refinement h ↘ 0 or p ↗ ∞ optimal?

Answers
1 Yes. Justification of the method. A priori.

2 C(u,p)hp in h-analysis, C(u,��p)
(h

p

)p in
hp-analysis.

3 Yes. No, much better can be achieved.

Crucial questions
1 How large is the overall error?

Obtain ∥∇(u − uh)∥≤η(uh)?

2 Where is the error localized?
3 Can we decrease it faster?

Answers
1 A posteriori error estimates.

Justification of the result.

2 Elementwise estimators.
3 Adaptivity, focusing, h & p

refined non uniformly.
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CDG Terminal 2E collapse in 2004 (opened in 2003)

no earthquake, flooding, tsunami, heavy rain, extreme temperature
deterministic, steady problem, PDE known, data known, implementation OK

probably numerical simulations done with insufficient precision,
I believe without error certification by a posteriori error estimates

Reliability study and simulation of the progressive collapse of
Roissy Charles de Gaulle Airport

Y. El Kamari a, W. Raphael a,*, A. Chateauneuf b,c

a Ecole Supérieure d’Ingénieurs de Beyrouth (ESIB), Université Saint-Joseph, CST Mar Roukos, PO Box 11-514, Riad El Solh Beirut 1107 2050,

Lebanon
b Université Blaise Pascal, Institut Pascal, BP 10448, F-63000 Clermont Ferrand, France
c LGC/CUST – UBP, Campus des Cézeaux, 63174 Aubière, France

1. Introduction

Terminal 2E, with a daring design and wide open spaces, was Charles de Gaulle Airport’s newest addition. Terminal 2E had
been inaugurated in 2003 after some delays in construction. On the 23rd of May 2004, not long after its inauguration, a part
of Terminal 2E’s ceiling collapsed early in the day, leaving four casualties. Some questioned the construction methods as
being the primary cause, which were rushed as the project was a month behind schedule due to technical problems, and
some have also considered the possibility of improper design as the cause of the accident. In the following, a deterministic
analysis and a mechanical reliability assessment will be elaborated. We will show the importance of reliability assessment
and long term strains of materials, especially for public constructions where the human and economic repercussions are
heavy to bear. The purpose of our research is to study the problem using the available data in order to examine the real
reasons of the incident, to see if it were possible to predict the structure’s failure from the beginning and to simulate the
progressive collapse of the structure.

2. General overview of Roissy’s Terminal 2E [1]

We will first describe the terminal, its different construction phases, the incidents that occurred before the accident and
the collapse itself. Then we will present in a general way the principle of finite element modeling, recommendations for good
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A B S T R A C T

Paris Charles de Gaulle Airport also known as Roissy Airport is the world’s eighth-busiest

airport in passengers served. In May 2004, the news of collapse of a portion of Terminal 2E

leaving four casualties shook the world. Luckily, no boarding had been taking place in the

collapsed area which consisted of a boarding area and three footbridges. This part of the

terminal had an innovative design consisting of a vaulted concrete tube. We chose to

model a representative part of the terminal to observe the structure’s behavior. The

purpose of our research is to explain the structure’s collapse and to see if there were

deficiencies from the design phase. Also, our new fine-grained model using Ansys Software

makes it possible to explain the progressive collapse of the structure, which was the main

challenge of our study. Moreover, a sensitivity analysis was performed in order to study

the importance of each of the variables taken into account in the model.

� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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b Université Blaise Pascal, Institut Pascal, BP 10448, F-63000 Clermont Ferrand, France
c LGC/CUST – UBP, Campus des Cézeaux, 63174 Aubière, France
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1. Introduction

Terminal 2E, with a daring design and wide open spaces, was Charles de Gaulle Airport’s newest addition. Terminal 2E had
been inaugurated in 2003 after some delays in construction. On the 23rd of May 2004, not long after its inauguration, a part
of Terminal 2E’s ceiling collapsed early in the day, leaving four casualties. Some questioned the construction methods as
being the primary cause, which were rushed as the project was a month behind schedule due to technical problems, and
some have also considered the possibility of improper design as the cause of the accident. In the following, a deterministic
analysis and a mechanical reliability assessment will be elaborated. We will show the importance of reliability assessment
and long term strains of materials, especially for public constructions where the human and economic repercussions are
heavy to bear. The purpose of our research is to study the problem using the available data in order to examine the real
reasons of the incident, to see if it were possible to predict the structure’s failure from the beginning and to simulate the
progressive collapse of the structure.

2. General overview of Roissy’s Terminal 2E [1]

We will first describe the terminal, its different construction phases, the incidents that occurred before the accident and
the collapse itself. Then we will present in a general way the principle of finite element modeling, recommendations for good
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model a representative part of the terminal to observe the structure’s behavior. The

purpose of our research is to explain the structure’s collapse and to see if there were

deficiencies from the design phase. Also, our new fine-grained model using Ansys Software

makes it possible to explain the progressive collapse of the structure, which was the main

challenge of our study. Moreover, a sensitivity analysis was performed in order to study
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A posteriori error estimates: certify the error
Poisson equation

−∆u = f in Ω,
u = 0 on ∂Ω

Guaranteed error upper bound (reliability)

∥∇(u − uh)∥︸ ︷︷ ︸
unknown error

≤ η(uh)︸ ︷︷ ︸
computable estimator

Global error lower bound (global efficiency; mathematical equivalence of the
error and estimator)

η(uh) ≤ C∥∇(u − uh)∥

Local error lower bound (local efficiency; if the estimator predicts error in an
element K , then it is in K and around)

ηK (uh) ≤ C∥∇(u − uh)∥ωK
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A posteriori error estimates: reconstructions

Theorem (Error characterization)

Let u ∈ H1
0 (Ω) be the weak solution and let uh ∈ H1(Th) be arbitrary. Then

∥∇(u − uh)∥2= min
v∈H(div,Ω)

∇·v=f

∥∇uh + v∥2 + min
v∈H1

0 (Ω)
∥∇(uh − v)∥2.

Comments
It is now enough to choose suitable σh ∈ H(div,Ω) and sh ∈ H1

0 (Ω).
A simple choice for nonconforming finite elements given in the lecture notes.
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How large is the overall error? (model pb, known smooth solution)

h p η(uh) rel. error estimate η(uh)
∥∇uh∥

∥∇(u − uh)∥ rel. error ∥∇(u−uh)∥
∥∇uh∥

Ieff = η(uh)
∥∇(u−uh)∥

h0 1 1.25 28% 1.07 24% 1.17
≈h0/2 6.07 × 10−1 14% 5.56 × 10−1 13% 1.09
≈h0/4 3.10 × 10−1 7.0% 2.92 × 10−1 6.6% 1.06
≈h0/8 1.45 × 10−1 3.3% 1.39 × 10−1 3.1% 1.04
≈h0/2 2 4.23 × 10−2 9.5 × 10−1% 4.07 × 10−2 9.2 × 10−1% 1.04
≈h0/4 3 2.62 × 10−4 5.9 × 10−3% 2.60 × 10−4 5.9 × 10−3% 1.01
≈h0/8 4 2.60 × 10−7 5.9 × 10−6% 2.58 × 10−7 5.8 × 10−6% 1.01

A. Ern, M. Vohralík, SIAM Journal on Numerical Analysis (2015)
V. Dolejší, A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2016)
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Outline

1 Numerical approximations of PDEs

2 A priori and a posteriori error analysis

3 A posteriori error estimates

4 Mesh adaptivity

5 hp finite elements: a priori error estimates

6 hp finite elements: mesh & polynomial degree adaptivity
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Problem with singular solution
consider the pure diffusion equation

−∇·S∇u = 0 in Ω = (−1,1)× (−1,1)

discontinuous and inhomogeneous S, two cases:
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analytical solution: singularity at the origin

u(r , θ) = rα(ai sin(αθ) + bi cos(αθ))

(r , θ) polar coordinates in Ω
ai , bi constants depending on Ωi
α regularity of the solution, u ∈ H1+α(Ω)
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Analytical solutions

Case 1 (α ≈ 0.54) Case 2 (α ≈ 0.13)
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Where is the error localized?
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Can we adapt the mesh to better approximate the solution?
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Does this lead to a better error decrease?
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Quality of the estimates for a singular solution
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Adaptive mesh refinement
Mesh adaptivity

Dörfler marking: subset Mℓ containing θ-fraction of the estimates∑
K∈Mℓ

ηK (uℓ)
2 ≥ θ2

∑
K∈Tℓ

ηK (uℓ)
2

refine the elements in Mℓ

Convergence on a sequence of adaptively refined meshes Tℓ
∥∇(u − uℓ)∥ → 0 for ℓ → ∞

some mesh elements may not be refined at all: h ↘ 0 uniformly

Optimal error decay rate wrt degrees of freedom
∥∇(u − uℓ)∥ ≤ C|DoFℓ|−p/d (replaces hp)

same for smooth & singular solutions: higher-order only pays-off for sm. sol.
decays to zero as fast as on a best-possible sequence of meshes
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Outline

1 Numerical approximations of PDEs

2 A priori and a posteriori error analysis

3 A posteriori error estimates

4 Mesh adaptivity

5 hp finite elements: a priori error estimates

6 hp finite elements: mesh & polynomial degree adaptivity
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h vs. hp a priori analysis

Theorem (Deny–Lions/Bramble–Hilbert)

For all K ∈ Th and v ∈ Hp+1(K ),

min
vh∈Pp(K )

∥∇(v−vh)∥K ≤
√
(p + 1)!

(hK

π

)p
|v |Hp+1(K ).

Theorem (A priori rate of convergence)

Let u|K ∈ Hp+1(K ) for all K ∈ Th. Then

∥∇(u − uh)∥ ≤ C(p)hp|u|Hp+1(Th)
.

Comments
C(p) depends unfavorably on p
for fixed p, convergence as hp for h ↘ 0

Theorem (Element hp approximation)

For all K ∈ Th and v ∈ Hp+1(K ),

min
vh∈Pp(K )

∥∇(v−vh)∥K ≤ C
(hK

p

)p
∥v∥Hp+1(K ).

Theorem (A priori rate of convergence)

Let u|K ∈ Hp+1(K ) for all K ∈ Th. Then

∥∇(u − uh)∥ ≤ C
(h

p

)p
∥u∥Hp+1(Th)

.

Comments
C does not depend on p
convergence for both h ↘ 0 & p ↗ ∞
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Outline

1 Numerical approximations of PDEs

2 A priori and a posteriori error analysis

3 A posteriori error estimates

4 Mesh adaptivity

5 hp finite elements: a priori error estimates
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Where is the error localized?

Estimated error distribution ηK (uh) Exact error distribution ∥∇(u − uh)∥K

P. Daniel, A. Ern, I. Smears, M. Vohralík, Computers & Mathematics with Applications (2018)
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Can we decrease the error efficiently? hp adaptivity, (smooth solution)

P1

P2

P3

P4

P5

Mesh Tℓ and pol. degrees pK
P. Daniel, A. Ern, I. Smears, M. Vohralík, Computers & Mathematics with Applications (2018)

M. Vohralík Numerical methods, a priori and a posteriori estimates, and hp FEs 18 / 19



NMs Error analysis A posteriori estimates h adaptivity hp FEs hp adaptivity

Can we decrease the error efficiently? hp adaptivity, (smooth solution)

P1

P2

P3

P4

P5

Mesh Tℓ and pol. degrees pK Exact solution
P. Daniel, A. Ern, I. Smears, M. Vohralík, Computers & Mathematics with Applications (2018)
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Can we decrease the error efficiently? hp adaptivity, (singular solution)

P2
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Adaptive mesh & polynomial degree refinement
Mesh & polynomial degree adaptivity

decision between h or p refinement needs to be done
much harder than just h-adaptivity

Convergence on a sequence of adaptively refined hp spaces Vℓ

∥∇(u − uℓ)∥ → 0 for ℓ → ∞
h ↘ 0 uniformly, p ↗ 0 uniformly

Optimal error decay rate wrt degrees of freedom
for d = 2, hp refinement gives

∥∇(u − uℓ)∥ ≤ C1
1

eC2DoF1/3

exponential convergence rate
for d = 2 and p = 1 fixed, adaptive mesh h refinement only gives

∥∇(u − uℓ)∥ ≤ C
1

DoF1/2
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