
Talisman 4.0

A finite volume–finite element tool for numerical

simulation of subsurface flow and contaminant

transport with a posteriori error control and adaptive

mesh refinement

Developer’s manual

Libor Inovecký1 & Martin Vohraĺık2

February 28, 2007

1 AZPIRO s.r.o.
Tulipánová 2805–10, 10106 Prague, Czech Republic

liburda@centrum.cz

2 Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie (Paris 6)

175 rue du Chevaleret, 75 013 Paris, France
vohralik@ann.jussieu.fr

Contents

1 Introduction 3

1.1 Directory structure . 3
1.2 Project setup . 3
1.3 Using CodeGuard for memory checking . 4

2 Class THeader 4

3 Finite volume mesh 4

3.1 Mesh-related classes . 4
3.2 Cell parameters . 4
3.3 Cell subdivisions . 5

4 Imposed conditions 5

5 Linear algebra classes 6

6 Mesh and conditions visualization classes 7

7 Other important classes 7

8 Source documentation using DoxyGen 7

9 Some rules of development 8

2

1 Introduction

This is the developer’s guide to the Talisman project and will give you basic overview of the project
and especially code structure. Talisman is written in C++, namely Borland C++ version 5.01.

1.1 Directory structure

The whole project is contained in the directory Talisman. In this directory you will find the
following sub-directories:

Doc Contains the documentation for Talisman. The source documentation is in DoxyGen/Html,
where you must open the file index.html.

Include Contains the header files wih extension .h, file wnflwapp.rh, which contains the definition
of some constants necessary for the resources, and file params.def, which contains definition
of cell parameters.

Object Contains the object files, produced during compilation.

Resource Contains the resource files, namely the icons used in the menu and file talisman.rc,
which is the resource file with the description of the menu, dialog boxes, etc.

Src Contains the source files with extension .cpp.

The directory Talisman also contains two files, file talisman.ide, which is the project file
for Borland C++, and file doxyfile.txt, which serves for the source code documentation using
DoxyGen (see Section 8 for details).

1.2 Project setup

You can open the project using Project/Open project in Borland C++ development environment.
Before you can compile the project, you must set the project directories. This is done in Op-
tions/Project/Directories. The directories relevant to Talisman are fine, since they are set relative
to the Talisman directory. However, you must set the correct (absolute) path to Borland C++
include and libraries directory.

When you debug your code, it is useful to set debugging options on in Options/Project/Com-
piler/Debugging, especially ‘Debug information in OBJs’ and in Options/Project/Linker/General
‘Include debug information’ and disable all optimisations in Options/Project/Optimizations.

On the other hand, when you build the release version of Talisman, it is good to disable all
debugging information and enable some optimizations (optimize for speed will be the preferred
option). After you switch from debug to release version or vice-versa, you must rebuild the whole
project using Project/Build all.

Additionally, for the release version, you should add the definition NDEBUG in Options/Pro-
ject/Compiler/Defines, which will disable the assert macros. In the development stage, asserts can
be very helpful, so do not forget to delete the NDEBUG definition for debugging purposes. Try to
use asserts wherever possible to avoid silly programmer’s mistakes like NULL pointer dereference,
invalid parameter values passed to functions etc.

3

1.3 Using CodeGuard for memory checking

CodeGuard is a software supplied with Borland C++ version 5.01 which serves for detection of
invalid memory access, memory leaks, and some other common mistakes. Although it is a separate
product, it integrates very well with the Borland development environment.

In order to enable CodeGuard checking, you must enable everything in Options/Project/Code-
Guard, then open the project with list of all project files and in the popup menu for talisman.exe
you choose Target expert and in section Libraries you must enable CodeGuard. With all this set
you must completely rebuild the project. Finally, you must enable CodeGuard in the runtime
using the menu option Tools/CodeGuard config. Now you are all set and you CodeGuard will
inform you of the detected memory problems in the Messages window.

2 Class THeader

The THeader class is the central class of Talisman as it groups together all the mathematical
properties of the simulation. It contains the mesh, the conditions at all time layers and some other
data. It also contains the methods for data import/export in various formats, functions that take
care of the matrix assembly, functions that handle the conditions and many more.

3 Finite volume mesh

3.1 Mesh-related classes

The mesh in Talisman consists of several horizontal layers with each layer consisting of several
columns and rows of cells. The dimension of the columns and of the rows is the same in all layers.

The classes relevant to the meshing structure are TMesh, TLayer and TCell. TMesh contains all
the layers and the dimensions of all columns and rows. TLayer contains a list of all cells that belong
to one layer and some additional parameters. TCell represents one cell of the layer. The cells can
be further divided into subcells, which is discussed below in more detail. Each cell contains a list
of its neighbours (horizontal and vertical) and a list of its subdivisions. The cell subdivisions are
also of type TCell. TCell also contains the physical properties of the media that is enclosed in
the cell.

3.2 Cell parameters

With the exception of some basic variables, the cell parameters are grouped into structures, which
are indirectly referenced with pointers, so that each group is allocated only when necessary (in
order to save memory space). As of now, the cell parameters’ groups are:

ParamGeom Contains parameters related to the geometry of the cell.

ParamFlow Contains parameters related to the fluid flow in general and to the the Dupuit and
Hantush approximation.

ParamFlowRich Contains parameters related to the fluid flow in the Richards approximation.

ParamTrans Contains parameters related to the transport of contaminants.

ParamApost Contains parameters related to the a posteriori calculations and estimates.

4

1 2 3

4 5 6

7 8 9

Figure 1: Numbering of the possible posi-
tions of subcells

.

Figure 2: Cell with position 175 is identified
with point

All these groups and parameters are defined in the file param.def, which is located in the
Include directory. The definition is done using macros. For example

DEFINE_PARAM (double, perm, MP_PERM, 1e-3)

will define variable perm (the permeability of the media) of type double, with the initial value
of 0.001 and macro MP PERM, which is used to access the variable using the TCell methods
SetValue and GetValue. These methods are mainly used to access the cell parameters from class
TTableur (see below). Otherwise you can access the variable directly. The parameters which are
not set or accessed by the user from the tableur and are used only for internal purposes of the
solver should be defined using

DEFINE_PARAM_SIMPLE (double, resupw, 0.0)

where the macro identifier for SetValue/GetValue is omitted.

3.3 Cell subdivisions

Each basic cell can be divided into 3x3 equal rectangular cells. Each cell division can be again
divided into 3x3 subcells and this process can continue up to 9 levels of subdivisions, which means
that the basic cell can be divided to 99 cells. The reason for limiting cell subdivisions to 9 levels
will become clear from the following.

The cell subdivisions on the first level are adressed by the column and row of the parent basic
cell and by an integer number between 1 and 9, which uniquely determines which of the 9 possible
cells we mean. Figure 1 shows clearly how the subdivisions are numbered.

Now, to determine the position of a subdivision on second level, we must know its position of
the cell in the parent on the first level, and the parent’s position in the basic cell. These numbers
are appended into one integer number (often referred to as “position” in the code). This process is
repeated for all levels between the subdivision and the basic cell. The last decimal digit determines
the position of the first-level parent in the basic cell, the second digit the position of the second-
level parent in the first-level parent and so on. Figure 2 gives an example of a cell and the integer
that determines its position. The basic cells have their position integer equal to 0.

Since the position is contained in parameter of type unsigned int, which is a 32-bit unsigned
integer with the maximum value of 4’294’967’295, we cannot address more than 9 levels of subdi-
visions. In more modern compilers, 64-bit integer numbers are available, so the passage to more
(precisely 19) levels of subdivisions will easily be possible.

4 Imposed conditions

The conditions are in Talisman imposed for each period separately. The class TStress holds all
the information about one time period: number, duration, number of time steps, and also the lists

5

Conditions

TStress TMCond TCell

ID list value loc. ID loc. var. ID variable

SP_WELL fwelllist SP_VAL1 MP_WELL well MP_SOUR sour

SP_RECH frechlist SP_VAL1 MP_ZRECH zrech MP_RECH rech

SP_PIEZIMP fpiezimplist SP_VAL1 MP_PIEZIMP piezimp MP_PIEZ piez

SP_CONCIMP fconcimplist SP_VAL1 MP_CONCIMP concimp MP_CONC conc

SP_CONCNEU fconcneulist SP_VAL1 MP_CONCNEU concneu MP_CONCFLUX concflux

SP_WELL fwelllist SP_VAL2 MP_WELL well MP_CONCSOUR concsour

Table 1: Imposing conditions (top to bottom): flow sources, recharge, Dirichlet BC’s for flow,
Dirichlet BC’s for transport, flux BC’s for transport, sources concentrations

of conditions imposed on this time period. Each list contains conditions of one certain type (list
of flow sources, list of recharge zones, list of flow Dirichlet boundary conditions, list of transport
flux boundary conditions, and sources concentrations actually).

The conditions themselves are of type TMCond. Certain conditions apply to individual cells;
in such case, TMCond contains the layer, column, row, and position of the corresponding cell plus
a pointer to this cell. Other conditions apply to a zone of cells. In this case, TMCond contains
the number of zone to which it is applied (in the variable that normally corresponds to the layer
number). One condition can hold up to three real values (of type double). This is useful, for
example, in order to fully define the sources of contaminants, where one needs to know the source
supply-rate and the source concentration.

The specification of the conditions by the user is done with the aid of the class TEditStress,
see Section 6 below; Talisman here shows a table given by all cells which have a localization variable
for the given condition and all time periods. One incorporates the conditions during the Talisman
execution as follows: on each time period, the function StressPeriodConditions is called. If one
needs to know the value of a condition at the end of the given period, stored values are directly
used. If, in the time adaptive mode, one needs to know a value of a condition for a time which is in
the first (period length)/TIMEINTERP part of the period, interpolation with the conditions specified
on the previous period (zero values for the first period) is used; in the rest of the time period,
again stored values are directly used. Finally, in StressPeriodConditions, the resulting values of
the conditions for the desired time are directly assigned to the corresponding cell variables. For a
detailed list of conditions actually used in Talisman and the relations between the classes TStress,
TMCond, and TCell concerning the conditions, see Table 1.

5 Linear algebra classes

TVecteur is a class that represents a real vector, TMatrice represents a sparse matrix and is stored
in the compressed row format (there is and array of the nonzero matrix values stored row by row,
and array of columns corresponding to these values and an array that stores the beginning of each
row in the values array). The matrix rows are filled in the order from the first row to the last using
the function SetLine. The function SetLine can take TVecteur as an argument (in such case the
zero values are omitted, of course). Another possibility is to use TMatriceRow as an argument,
which is a class similar to TVecteur, but holds only the non-zero elements. The elements of

6

TMatriceRow are created and accessed using the indexing operator [] just like for TVecteur.
One important convenience of these classes is that you can change the dimension without having

to reallocate the memory every time, only when the required size is larger than the currently allo-
cated capacity, the memory is reallocated. The dimension is changed using the function ChangeDim.

Another class related to the linear algebra is the class TAlgo, which contains the linear system
solver (Bi-CGStab algorithm) and some preconditioners, as well as the solver parameters (tolerance,
maximum number of iterations, etc.). If you plan to add new solver algorithm or preconditioning
routine to Talisman, this is the place to do it.

6 Mesh and conditions visualization classes

Class TTableur serves for visualization of the cell parameters and class TEditStress for visual-
ization of imposed conditions. Class TBasicTableur is their common parent and implements the
common functionalities of the two. This is the reason why TCell and TMCond are derived from one
common parent TBasicObj.

These classes are the most complicated of the graphical user interface. Normally, there should
be no need to modify these classes. If the opposite is true, be warned that many of the properties
and methods have influence on one another, so do everything very carefully and check that the
tableur works correctly after your changes. Especially if you change something in the base class
TBasicTableur, check both TTableur and TEditStress afterwards.

7 Other important classes

The main application class is WinFlowApp, which has the handlers for most commands of the
menu. WinFlowMDIClient is a class that is responsible for opening the correct tableur (func-
tion CmMeshEditor) or stress editor (CmHistorique), when you select the corresponding command
in the menu. If you will add some parameter to TCell and you will want to allow the user to
modify or visualize it in a tableur, you will have to modify one of the mentioned routines.

Most other class that were not explicitly mentioned in this document represent the various
dialogs present in Talisman. Their meaning is described in the DoxyGen documentation.

8 Source documentation using DoxyGen

The Talisman source code is documented using the free software DoxyGen. This software can be
downloaded at www.doxygen.org. It extracts special comment blocks, which begin with “//!” and
are usually placed in the header files. Therefore, the documentation is written in the header files
and in addition, DoxyGen produces documentation in the HTML format (other formats, including
LATEX, are also available).

The documentation produced by DoxyGen is by default placed in the directory Talisman\Doc
\Html and can be viewed by opening the file index.html in any web-browser. The recommended
way to use DoxyGen under MS Windows is to use the Doxywizard (shiped with the DoxyGen
installation files for Windows) to open the file Talisman\doxygen.txt, set the base directory of
the project (e.g. d:\Talisman), save the file and then run the processor.

You should try to document all files and all class members—data members and methods. For
complicated methods you should also document the parameters and return value. Here is an
example:

7

//! Calculate the column of the given position in

//! the 3x3 subdivision.

//! \param pos Position in the subdivision (1 <= pos <= 9).

//! \return Column corresponding to the position (1, 2, or 3).

static uint GetXFromPos (uint pos);

The file documentation should consist of a very brief description of what the file contains and looks
like this:

//! \file

//! Definition of class TMesh (finite volume mesh of geometry).

File documentation should be placed in both header files (.h) and source files (.cpp).

9 Some rules of development

Here are some rules that you should obey when developing new code in Talisman, in order to keep
it well organized and clear.

1. Document any new class, file or function that you add to the code as soon as you finish
writing it.

2. Try as hard as you can to limit the line length to 80 characters.

3. Align the code correctly. The blocks are always indented 2 spaces from the parent block.

4. Never (!) insert tabelator characters into the source. For someone who has set a different
width of tab character, the code will be terribly misaligned. If you use the Borland IDE, the
tabs are disabled in menu Options/Environment/Editor/Options, where you disable ’Use tab
character’.

5. Try to keep the code simple and understandable. If you do something non-trivial, add a
comment with some explanation.

6. Use CodeGuard or whatever tool you wish to prevent memory leaks and invalid memory
access.

7. Use asserts wherever they are appropriate.

8

	Introduction
	Directory structure
	Project setup
	Using CodeGuard for memory checking

	Class THeader
	Finite volume mesh
	Mesh-related classes
	Cell parameters
	Cell subdivisions

	Imposed conditions
	Linear algebra classes
	Mesh and conditions visualization classes
	Other important classes
	Source documentation using DoxyGen
	Some rules of development

