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Figure 1: A typical layered subsurface

1 Purpose of this manual

The purpose of this manual is to give a technical documentation to the Talisman code. As such, it
complements the Presentation and User guide [15] and the Developer’s manual [14]. In particular,
the description of admissible geometries, detailed form of the equations simulated in Talisman,
description of numerical schemes implemented in Talisman, of the nonlinear and linear solvers,
and a detailed form of the error estimates and adaptive refinement algorithms implemented in
Talisman is given here and in the cited references.

2 Domain and equations

We describe here in detail the domain and equations considered in Talisman.

2.1 Types of domain

A typical porous media is composed of several superposing geological layers, cf. Figure 1. Three
types of representation of these domain exist under Talisman.

• 3D The entire subsurface domain is represented, which corresponds to the left part of Fig-
ure 1.

• 2D multi-layer Only the permeable aquifers are represented, which is indicated in the right
part of Figure 1.

• 2D A vertical cut of the three-dimensional domain is considered, so that the final domain is
two-dimensional.

2.2 Flow equation

Three types of equations, corresponding to the chosen subsurface representation, are at disposition
in Talisman.
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2.2.1 Richards equation

Richards equation is recognized for describing accurately enough two-phase water–air flow in the
subsurface, see e.g. [1, 3, 8, 16]. Let (0, T ) be a time interval, 0 < T < +∞, and let Ω correspond
to the entire subsurface domain (3D case) or possibly to the 2D cut, and let ΓD ∪ ΓN = ∂Ω,
ΓD ∩ ΓN = ∅, |ΓD| 6= 0, where |ΓD| is the measure of the set ΓD. We write the Richards equation
under the form

∂θ(ψ)

∂t
−∇ · K(ψ)∇(ψ + z) = qout + qin in Ω × (0, T ) , (2.1a)

ψ(·, 0) = ψ0 in Ω , (2.1b)

ψ = ψD on ΓD × (0, T ) , (2.1c)

−K(ψ)∇(ψ + z) · n = uN on ΓN × (0, T ) . (2.1d)

Here, ψ = ψ(x, t) is the pressure head ([L]), ψ = p/ρg, where p ([ML−(d−2)T−2]) is the water
pressure, ρ ([ML−d]) is the water density, and g ([LT−2]) is the gravitational acceleration constant,
z = z(x) is the elevation, the upward vertical coordinate ([L]), θ = θ(x, ψ) is the water content
([-]), K = K(x, ψ) is the hydraulic conductivity tensor ([LT−1]), qin = qin(x, t), qin ≥ 0, denotes
the sources per unit volume ([T−1]), and qout = qout(x, t), qout ≤ 0, the sinks per unit volume
([T−1]).

The dependence of θ and K on ψ is given for example by the van Genuchten law (see [12]).
First of all,

θ(ψ) = θr +
θs − θr

(1 + |αψ|n)m if ψ ≤ 0 , (2.2)

θ(ψ) = θs if ψ ≥ 0 ,

where θr is the residual water content, θs is the saturated water content (i.e. porosity), m = 1/n,
and α = α(x) and n = n(x) are two parameters. Next, one defines first the effective saturation Se

([-]) by

Se =
θ − θr
θs − θr

(2.3)

and finally

K(ψ) = KsS
1

2

e

[
1 −

(
1 − S1/m

e

)m]2
if ψ ≤ 0 , (2.4)

K(ψ) = Ks if ψ ≥ 0 ,

where Ks is the saturated hydraulic conductivity. Finally, the velocity field v = v(x, t) ([LT−1])
is given by the Darcy law

v = −K(ψ)∇(ψ + z) . (2.5)

2.2.2 Dupuit equation

Consider a layer Ω ∈ R
3 with bottom coordinate zb = zb(x, y), top coordinate zt = zt(x, y),

and aperture e = zt − zb = e(x, y), see Figure 2. The Dupuit approximation of the Richards
equation (2.1a) in Ω consists in integrating the Richards equation over the aquifer aperture e under
the assumption that the flow is only horizontal, cf. [2, 3]. We consider in addition the effect of
water compressibility and a nonlinear discharge function. Let us denote by Ω ′ the horizontal plane
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Figure 2: One layer Ω ∈ R
3 with its horizontal plane Ω′ ∈ R
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of Ω, cf. Figure 2, and by Γ′
D and Γ′

N the Dirichlet and Neumann boundaries of Ω′, respectively.
The problem then reads

∂θ̃(h)

∂t
−∇ · K̃(h)∇h+ Q̃d(h) = q̃out + q̃in in Ω′ × (0, T ) , (2.6a)

h(·, 0) = h0 in Ω′ , (2.6b)

h = hD on Γ′
D × (0, T ) , (2.6c)

−K̃(h)∇h · n = 0 on Γ′
N × (0, T ) , (2.6d)

where h ([L]) is the piezometric head, h = z + ψ,

∂θ̃(h)

∂h
=

{
El if h ≤ zt
Ese if h ≥ zt

(2.7)

and

K̃(h) =

{
Ks(h− zb) if h ≤ zt

Kse if h ≥ zt
(2.8)

and finally

Q̃d(h) =

{
0 if h ≤ zt

Kd(h− zt) if h ≥ zt
. (2.9)

The problem (2.6a)–(2.6d) is two-dimensional, all the variables and in particular the unknown
piezometric head h are only functions of the horizontal coordinates x, y, and the gradient and
divergence operators are also only two-dimensional. The storativity El ([-]) is related to the water
content θ by El = θs − θr. The specific storativity Es ([L−1]) is given by the water compressibility
and is usually very small in comparison with El/e. The discharge Q̃d ([LT−1]) depends on the
hydraulic conductance Kd ([T−1]). In analogy with the Darcy law (2.5), we define

ṽ := −K̃(h)∇h . (2.10)

Notice that ṽ is a two-dimensional vector in Ω′ with the units of [L2T−1]. The flux of ṽ through
a segment b ∈ Ω′,

∫
b
v(x, t) · nb dγ(x) ([L3T−1]), approximates the flux of groundwater over a

vertical face in Ω, whose intersection with the horizontal plane Ω′ is the segment b.
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The Dupuit equation can be used simultaneously in each layer. Since one is probably interested
in simulating the entire 3D subsurface domain composed of individual layers (cf. the left part
of Figure 1), an empirical condition is used in Talisman in order to connect the neighboring layers.
One simply assumes that vertical exchange is given by a one-dimensional analogue of the Darcy
law under the form

vver = Kver(h)
hsup − hinf

zsup − zinf
, (2.11)

where hsup and hinf are respectively the piezometric heads in the superior and inferior layers and
zsup and zinf are the vertical coordinates of the middles of the two layers. Finally, let Kver(h)
([LT−1]) be the vertical hydraulic conductivity given by

Kver(h) =

{
Kver,s(h− zb) if h ≤ zt

Kver,se if h ≥ zt
(2.12)

in each of the two layers, where Kver,s is the saturated vertical hydraulic conductivity in each of the
two layers. Then we set Kver as a suitable (harmonic rather than arithmetic) distance-weighted
average of the two vertical hydraulic conductivities.

2.2.3 Hantush equation

Hantush equation is a further simplification of the Dupuit equation. Hantush approximation con-
sists in supposing that the flow in the semi-permeable layers is essentially vertical (which is justified
whenever the hydraulic conductivity of the semi-permeable layers is substantially lower than that
of the surrounding aquifers). Then one may only consider the 2D multi-layer representation of the
subsurface where the semi-permeable layers are not represented, as in the right part of Figure 1.
In the aquifers, the Dupuit equation is considered, and the equation (2.11) is replaced by

vver = Ksp(h)
hsup − hinf

zsup − zinf
. (2.13)

Here hsup and hinf are respectively the piezometric heads in the aquifer superior to and inferior
to the concerned semi-permeable layer, zsup is the bottom vertical coordinate of the superior
aquifer, zinf is the top vertical coordinate of the inferior aquifer, and Ksp ([LT−1]) is the hydraulic
conductivity of the semi-permeable layer, given by

Ksp(h) =

{
Ksp,s(h− zb) if h ≤ zt

Ksp,se if h ≥ zt
, (2.14)

with Ksp,s being the saturated vertical hydraulic conductivity in the semi-permeable layer (e =
zt − zb is this time the aperture of the semi-permeable layer).

2.2.4 Smoothing the Dupuit and Hantush functions

The equations (2.7), (2.8) and (2.9), as well as (2.12) and (2.14) prescribe nonlinear functions
which are not differentiable. Since the Newton method (see Section 3.5 below) needs continuously
differentiable functions, keeping the above-mentioned definition as such would lead to convergence
problems in the numerical approximation using the Newton method. Moreover, the hydraulic
conductivity definitions (2.8), (2.12), and (2.14) are only valid when h > zb +m for some positive
constant m, otherwise would lead to a negative hydraulic conductivity, whence its modification
in the sense of the van Genuchten equation (2.4) is needed. Talisman thus actually uses the
modifications given below.
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Water content

Choosing a positive constant m, in [15] referred to as “minimal water thickness”, we replace (2.7)
by (θ corresponds to θ̃/e):

e = zt − zb ,

Ec = Es(zt − zb) ,

C1 = (El −Ec)(zt −m) + (El −Ec)/(2m)((zt −m)2/2 − (zt −m)(zt +m)) ,

C2 = (El −Ec)/(2m)((zt +m)2/2) + C1 ,

α = Elm
2 ,

β = −zb − 2m ;

if (h > zt +m)

θ = (Ech+ C2 −Elzb)/e + θs −El ,

else if (h > zt −m)

θ = (Ech− (El −Ec)/(2m)(h2/2 − (zt +m)h) + C1 −Elzb)/e+ θs −El ,

else if (h > zb +m)

θ = (El(h− zb))/e+ θs −El ,

else

θ = (−α/(h + β))/e + θs −El .

Hydraulic conductivity

With the same “minimal water thickness” m, we replace (2.8) by (K corresponds to K̃/e):

e = zt − zb ,

c = Ks ,

d = Ks(zt −m− zb) ,

a = [(2m)Ks + 2(Ks(zt −m− zb) −Kse)]/(2m)3 ,

b = [−Ks − 3a(2m)2]/(4m) ;

if (h ≥ zt +m)

K = Ks ,

else if (h > zt −m)

K = (a(h− (zt −m))3 + b(h− (zt −m))2 + c(h− (zt −m)) + d)/e ,

else if (h > zb +m)

K = Ks(h− zb)/e ,

else if (h > zb)

K = Ks((h− zb)2/2/m +m/2)/e ,

else

K = Ksm/2/e .

Similar substitutions are applied in (2.12) and (2.14).
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Figure 3: Comparison of water content curves (θr = 0.1, θs = 0.3, El = 0.2, Es = 0.005) for the
van Genuchten equation (2.2) (left, α = 2, n = 3) and the smoothed Dupuit equation (2.7) (right,
zt = 0, zb = −1, m = 0.1)

Discharge

Choosing a positive constant m, in [15] referred to as “minimal discharge height”, we replace (2.9)
by (Qd corresponds to Q̃d/e):

K = Kd/(zt − zb) ;

if (h ≤ zt)

Qd = 0 ,

else if (h < zt +m)

Qd = 2K/m(h − zt)
2 −K/m2(h− zt)

3 ,

else

Qd = K(h− zt) .

2.2.5 Comparison of the van Genuchten and smoothed Dupuit functions

We give comparisons of the van Genuchten and smoothed Dupuit water content and hydraulic
conductivity functions in Figures 3 and 4.

2.3 Transport equation

In Talisman, a reactive miscible displacement with equilibrium adsorption of one contaminant in Ω
is described by (see e.g. [1, 3, 8, 16])

∂(θc)

∂t
+ ρb

∂w(c)

∂t
−∇ · (S∇c) + ∇ · (cv)

+λ (θc+ ρbw(c)) − qoutc = qincs in Ω × (0, T ) , (2.15a)

c(·, 0) = c0 in Ω , (2.15b)

c = g on ∂Ω × (0, T ) . (2.15c)
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Figure 4: Comparison of hydraulic conductivity curves (Ks = 10−3) for the van Genuchten equa-
tion (2.4) (left, θr = 0.1, θs = 0.3, α = 2, n = 3) and the smoothed Dupuit equation (2.8) (right,
zt = 0, zb = −1, m = 0.1)

In (2.15a)–(2.15c) c = c(x, t) is the unknown concentration of the dissolved contaminant ([ML−d]),
θ = θ(x, t) is the water content given by (2.1a)–(2.1d) (see Section 3.4 below for the adjustments in
the Dupuit or Hantush cases), ρb = ρb(x) is the bulk density of the porous medium ([ML−d]), and
w : R → R is the equilibrium adsorption function. We suppose that adsorption is sufficiently fast
in comparison with the speed of the displacement of the contaminant so that the concentration of
the dissolved contaminant c and the concentration ratio of the immobilized contaminant w(c) ([-])
are in equilibrium. In particular, we shall consider, for c ≥ 0, w(c) = 0 in the case of no adsorption,
w(c) = µ1c in the case of the linear isotherm, w(c) = µ1c

µ2 in the case of the Freundlich isotherm,
and w(c) = µ1µ2c/(1 + µ1c) in the case of the Langmuir isotherm. Here µ1 ([LdM−1]) and µ2 ([-])
are respectively the first and second adsorption parameters, which are supposed positive. Neumann
or Robin boundary conditions can also be considered.

We suppose that the diffusion–dispersion tensor S = S(x,v) ([L2T−1]) is given by

Sii = αT |v| + (αL − αT )
v2

i

|v|
+ σ i = 1, . . . , d ,

Sij = Sji = (αL − αT )
vivj

|v|
i, j = 1, . . . , d ,

where vi are the components of the Darcy velocity vector v (2.5) and |v| is its length, αL = αL(x)
is the longitudinal dispersivity ([L]), αT = αT (x) is the transverse dispersivity ([L]), and finally
σ = σ(x) is the molecular diffusion coefficient ([L2T−1]). We consider first-order irreversible
reactions such as radioactive decay, hydrolysis, and some forms of biodegradation, where λ is
the reaction rate constant ([T−1]). Finally, in the case of a source (qin ≥ 0), we have to specify
the concentration of the entering dissolved contaminant cs. In contrast, the concentration of the
leaving dissolved contaminant due to the sinks (qout ≤ 0) is given by the unknown concentration c.

3 Numerical schemes

We describe here the numerical schemes used in Talisman.
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Figure 5: Primal nonmatching grid Dh (dashed) and dual triangular grid Th (solid)

3.1 Space and time discretizations

We suppose a generally nonconstant time step for the time discretization. We split up the time
interval (0, T ) such that 0 = t0 < . . . < tn < . . . < tN = T and define 4tn := tn − tn−1,
n ∈ {1, 2, . . . , N}. We next describe the space discretization.

As a primal grid of Ω, we understand a partition Dh of Ω into closed polygons such that
Ω =

⋃
D∈Dh

D and such that the intersection of interiors of two different polygons is empty. We
in particular admit nonmatching grids, i.e. the case where there exist two different polygons
D,E ∈ Dh such that their intersection is not an empty set but it is not a common vertex, edge, or
side (edge if d = 2, face if d = 3) of D and E. An example of an admissible primal grid is given in
Figure 5 by the dashed line. We suppose that there exists a family of points Ph such that there is
one point VD in the interior of D associated with each D ∈ Dh.

A dual grid of Ω is a partition Th of Ω into closed simplices which satisfies the following
properties: (i) The set of points Ph is contained in the set of vertices of Th, denoted by Vh; (ii) The
vertices from Vh \ Ph lie on the boundary of Ω; (iii) Th is conforming, i.e. the intersection of two
different simplices is either an empty set or their common vertex, edge, or face; (iv) Ω =

⋃
K∈Th

K.
This definition is not unique: we have a choice in connecting the different points VD ∈ Ph and
also a choice in the definition of the vertices on the boundary. The general intention is to find a
triangulation such that the transmissibilities S

n
D,E defined below by (3.2) were non-negative, since

this implies the discrete maximum principle. An example of a dual grid to a primal nonmatching
grid is given in Figure 5 by the solid line.

In order to simplify the notation, we define still a fictitious boundary grid Dext
h . We associate

a fictitious control volume D with each vertex V ∈ Vh lying on the boundary ∂Ω. We define D in
such way that D∩Ω = ∅, D∩Ω ⊂ ∂Ω, and V ∈ D∩Ω. We finally require that the boundaries of D,
D ∈ Dext

h , halve the segments of ∂Ω between the boundary vertices, so that ∪D∈Dext

h

{D∩Ω} = ∂Ω.

We shall use the notation VD for the vertex associated with D ∈ Dext
h , as for the vertices from Ph

and control volumes from Dh.
We finally denote by N (D) the set of all neighbors of a control volume D ∈ Dh, i.e. the set of

E ∈ Dh∪Dext
h such that D∩E has a positive (d−1)-dimensional measure. In particular, using the

above definition of the set Dext
h , we can easily write the integral over ∂D as

∑
E∈N (D)

∫
∂D∩∂E dγ(x).

Similarly, for a vertex VD ∈ Ph, we denote by M(VD) the set of all vertices VE ∈ Vh such that
there exists an edge between VD and VE. In Talisman, the grids actually used are much simpler
and we refer to Figure 6 for an example.
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Figure 6: Primal (dashed) and dual (solid) grids used in Talisman

3.2 Combined finite volume–finite element scheme for transport

The combined scheme is obtained by the discretization of the diffusion term of (2.15a) by means of
the piecewise linear conforming finite element method on Th, the discretization of the other terms
of (2.15a) by means of the cell-centered finite volume method on Dh, and using a finite difference
time stepping.

Definition 3.1. (Combined finite volume–finite element scheme) The fully implicit com-
bined finite volume–finite element scheme for the problem (2.15a)–(2.15c) reads: find the values
cnD, D ∈ Dh, n ∈ {0, 1, . . . , N}, such that

c0D =
1

|D|

∫

D
c0(x) dx D ∈ Dh , (3.1a)

cnD = g(VD, tn) D ∈ Dext
h , n ∈ {1, 2, . . . , N} , (3.1b)

θn
Dc

n
D − θn−1

D cn−1
D

4tn
|D| + (ρb)D

w(cnD) − w(cn−1
D )

4tn
|D| −

∑

VE∈M(VD)

S
n
D,E(cnE − cnD)

+
∑

E∈N (D)

vn
D,E cnD,E + λ[θn

Dc
n
D + (ρb)Dw(cnD)]|D| − (qout)

n
Dc

n
D|D| = (qincs)

n
D|D|

D ∈ Dh , n ∈ {1, 2, . . . , N} . (3.1c)

In the above definition we have used

θn
D :=

1

|D|

∫

D
θ(x, tn) D ∈ Dh , n ∈ {0, 1, . . . , N} ,

(ρb)D :=
1

|D|

∫

D
ρb(x) D ∈ Dh ,

(qout)
n
D :=

1

4tn|D|

∫ tn

tn−1

∫

D
qout(x, t) dxdt D ∈ Dh , n ∈ {1, 2, . . . , N} ,

(qincs)
n
D :=

1

4tn|D|

∫ tn

tn−1

∫

D
qin(x, t)cs(x, t) dxdt D ∈ Dh , n ∈ {1, 2, . . . , N}

11



and we have denoted the flux of v between D ∈ Dh and E ∈ N (D) for n ∈ {1, 2, . . . , N} by

vn
D,E :=

1

4tn

∫ tn

tn−1

∫

∂D∩∂E
v(x, t) · nD,E dγ(x) dt ,

where nD,E is the unit normal vector of the side ∂D ∩ ∂E between D and E, outward to D. For
the notational convenience, we define vn

D,E by 0 if E 6∈ N (D). We suppose that the functions g

and θ are sufficiently smooth in order to define cnD, D ∈ Dext
h , and θn

D. We first define

S̃n(x) :=
1

4tn

∫ tn

tn−1

S(x, t) dt x ∈ Ω , n ∈ {1, 2, . . . , N} .

The transmissibility between VD and VE , D ∈ Dh, E ∈ Dh ∪ Dext
h , is then given by

S
n
D,E := −

∫

Ω
Sn∇ϕE · ∇ϕD dx n ∈ {1, 2, . . . , N} , (3.2)

where we have two choices of the definition of Sn. We can either use directly Sn = S̃n, or define a
piecewise constant tensor

Sn(y) =

(
1

|K|

∫

K
[S̃n(x)]−1 dx

)−1

y ∈ K , K ∈ Th , n ∈ {1, 2, . . . , N} .

These two choices correspond, respectively, to the arithmetic or harmonic average of the diffusion–
dispersion tensor.

Finally, we define the value cnD,E for D ∈ Dh , E ∈ N (D), and n ∈ {1, 2, . . . , N} as follows:

cnD,E :=

{
cnD + αn

D,E(cnE − cnD) if vn
D,E ≥ 0

cnE + αn
D,E(cnD − cnE) if vn

D,E < 0
.

Here αn
D,E is the coefficient of the amount of upstream weighting which is defined by

αn
D,E :=

max
{

min
{

S
n
D,E,

1
2 |v

n
D,E |

}
, 0

}

|vn
D,E |

, vn
D,E 6= 0 . (3.3)

We set αn
D,E := 0 if vn

D,E=0. We remark that usually, there can be nonzero convective and
diffusive fluxes between D and E only if D and E neighbors. This is however not the case with
the scheme (3.1a)–(3.1c): there can be nonzero convective flux between D and E only if D and
E neighbors, but there can be nonzero diffusive flux between D and E even if D and E are not
neighbors (because the transmissibility between D and E is given by the grid Th). However, as
it is proved in [13, Theorem 1.9.4], the local Péclet upstream weighting still guarantees, adding
minimal numerical diffusion, the stability of the scheme.

Other important properties of the scheme, like local mass conservation, stability, and conver-
gence are proved in [13, Appendix 1.9], [5], and some analogies can also be found in [6].

3.3 Finite volume scheme and the flow case

On rectangular grids, or when the diffusion–dispersion tensor S reduces to a scalar function, it is
not necessary to introduce the dual grid. Then a pure finite volume scheme may be used instead of
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the combined one. This modification consists in replacing the term −
∑

VE∈M(VD) S
n
D,E(cnE − cnD)

in 3.1c by −
∑

VE∈N (D) S
n
D,E(cnE − cnD) and redefining S

n
D,E given by (3.2) as

S
n
D,E := Sn |σD,E|

|bD,E|
. (3.4)

We refer for details to e.g. [4]. The flow equation (2.1a)–(2.1d) is in terms of discretization similar
to the transport one (2.15a)–(2.15c) and the finite volume or combined finite volume–finite element
schemes can likewise be used for its approximation.

3.4 Adjustments in the Dupuit/Hantush cases

In the Dupuit/Hantush cases, one supposes that the flow is only horizontal, see Section 2.2.2. In
this case, similar approximations are to be made for the contaminant transport problem (2.15a)–
(2.15c). We namely suppose that the concentration c does not vary with z and that the diffusion
and convection are only two-dimensional in the horizontal plane Ω′ of Ω. By formally integrating
the three-dimensional convection–reaction–diffusion equation in Ω over e and adding the discharge,
we replace the functions θ, qin, and qout defined in Ω by the functions θ̃, q̃in, and q̃out−Q̃d(h) defined
in Ω′. We finally use ṽ instead of v in the convection term and in the definition of the diffusion–
dispersion tensor S and consider the gradient and divergence operators only in Ω ′. Notice that we
have to replace the molecular diffusion coefficient σ by σ̃ = σe. Hence the final transport problem
is, as the flow problem, two-dimensional in the plane Ω′, with the three-dimensional units (namely,
the concentration is measured in [ML−3]).

With the assumptions of the previous paragraph, the transport scheme is constructed as follows.
We consider a (nonmatching locally refined) square grid Dh of Ω′ and its dual triangular grid Th,
as that in Figures 5 or 6. We associate with each D ∈ Dh an aperture eD, given for instance as
the mean of e over D. We seek the values cnD, D ∈ Dh, n ∈ {1, 2, . . . , N}, such that

θ̃n
Dc

n
D − θ̃n−1

D cn−1
D

4tn
|D| + (ρb)D

w(cnD) − w(cn−1
D )

4tn
|D|eD −

∑

VE∈M(VD)

S̃
n
D,E(cnE − cnD)

+
∑

E∈N (D)

ṽn
D,E cnD,E + λ[θ̃n

Dc
n
D + (ρb)Dw(cnD)eD]|D| − [q̃out − Q̃d(h)]

n
Dc

n
D|D| = (q̃incs)

n
D|D|

D ∈ Dh , n ∈ {1, 2, . . . , N} (3.5)

with appropriately prescribed initial and boundary conditions. Here θ̃n
D,D ∈ Dh, n ∈ {0, 1, . . . , N},

are the approximations of θ̃ from (2.6a), given by a flow numerical scheme. In a similar manner,
ṽn

D,E are the approximations of the flux of ṽ given by (2.10) through the interface between the
control volumes D ∈ Dh, E ∈ N (D) at time tn. Note that from (2.6a) and using either the finite
volume or combined finite volume–finite element scheme, which are both locally conservative, one
has ṽn

D,E = −ṽn
E,D. We define (ρb)D e.g. as the mean of the bulk density ρb over the cube

D×eD. The transmissibilities S̃
n
D,E are defined by (3.2), while employing ṽ and σ̃ in the definition

of the diffusion–dispersion tensor S instead of v and σ. Note finally that again for non-negative
transmissibilities, the scheme verifies the discrete maximum principle, which is in particular the
consequence of ∇ · ṽ = q̃out + q̃in − Q̃d(h) − ∂θ̃/∂t following from (2.6a) and (2.10).

3.5 Newton method for linearization

The Newton method, see e.g. [9], is used for the solution of the system of nonlinear algebraic
equations arising from (3.1a)–(3.1c) or (3.5). In particular, using the smoothing of the Dupuit and
Hantush functions discussed in Section 2.2.4 is important in this respect.
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3.6 Bi-CGStab method for the solution of sparse linear systems

The Bi-CGStab iterative method, see [11] or [10], is used for solution of the large sparse linear
systems arising in the Newton method.

4 A posteriori error estimates

Two types of a posteriori error estimators are at disposition in Talisman. The first one is of the
Zienkiewicz–Zhu type (cf. [17]) and is asymptotically exact (when the mesh size tends to zero,
the estimate on the error given by this estimator tends to the true error in the approximation),
works for all the models treated by Talisman, but does not give a guaranteed upper bound on the
error. The second one is rigorously-based, gives a guaranteed upper bound on the error in the
approximation, but is only applicable on the linear form of (3.1a)–(3.1c) or of (3.5).

4.1 Gradient estimates

Let ch,τ be a piecewise constant function in time and space (on the mesh Dh), given by the solution
values cnD, D ∈ Dh, n ∈ {0, 1, . . . , N} of (3.1a)–(3.1c) or of (3.5). Let next c̃h,τ be a piecewise
linear in time and space function given by

∑
D∈Dh

cnDϕD. Let finally c be the exact solution
of (2.15a)–(2.15c). The triangle inequality implies

(∫ T

0

∫

Ω
(c− ch,τ )

2 dxdt

) 1

2

≤

(∫ T

0

∫

Ω
(c− c̃h,τ )

2 dxdt

) 1

2

+

(∫ T

0

∫

Ω
(c̃h,τ − ch,τ )

2 dxdt

) 1

2

.

Since the approximate solution c̃h,τ is piecewise linear, one may expect that it will converge faster
to the solution c than ch,τ , whence the error will be in the limit case only given by the second term
of the above expression. One may thus use this term as an asymptotically exact a posteriori error
estimator.

4.2 Residual estimates

Residual estimates for the linear form of the scheme (3.1a)–(3.1c) are rigorously derived in [7].

5 Talisman execution diagram

We finally give in this section Talisman execution diagram. We remark that time or space adaptiv-
ity being chosen is sufficient so that one calculates both time and space a posteriori error estimates,
since we need them in the a posteriori estimate of the error. We finally notice that for permanent
models, the specified number of periods and number of steps per period is stored and temporarily
replaced by one period of unit length and one time step in this period, so that the below diagrams
were applicable.

5.1 General execution diagram

• choose parameter groups that will be necessary (ParamGeom and ParamFlow for the flow
model, ParamTrans in addition for the transport model, ParamApost in the space adaptive
mode)

• mark the given mesh (will be called fixed, whereas the adaptive will be called actual)
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• set coordinates, number mesh cells, set up contact list, set minimal surface, create triangle
mesh (if necessary)

• set correct flow sources units (originally given in [L3T−1], we need them in [T−1])

• associate zeros to parameters which will be calculated during the execution (not given by
the user): recharge and sources for flow, concentrations at sources and concentration fluxes
in addition for transport

• verify that geometrical data are correct (2D multi-layer/3D models), that the data are in
the user-specified intervals and that there are no isolated cells (not connected to the others)
and no pseudo-isolated cells (that would not be a node of any triangle) if the FV–FE scheme
is chosen

• open files for writing (horloge.txt for execution information, MaillesSuspectes.txt

for mesh cells with dubious results (no convergence), piezo.txt for flow results and binary
mesh.out for storing the original mesh before flow calculation was launched if flow, conc.txt
for transport results if transport)

• create matrix and vectors

• set up initial conditions (for transient cases, copy the unknown quantity values given by
user (piezometric head, concentration) to -prev unknowns)

• for transport coupled with permanent flow, set up flow conditions here (as they do not
change in time, just once is enough); if there is space adaptivity, these flow conditions will
be easily interpolated and extrapolated to the given mesh, since one does it in a piecewise
constant manner

for all periods

for all time steps

• execute the time adaptivity loop

• actualize execution information window, visualize, write results

• if transient and space adaptivity, derefine cells without error and update coordi-
nates, number mesh cells, set up contact list, set minimal surface, create triangle
mesh, change matrix and vectors size

end

end

• if adaptive calculation, decide whether the prescribed maximal error was attained

• close files for writing

• change back sources units

• unmark the given mesh

5.2 Time adaptivity execution diagram

• if reached the time level given by the time period and time step, go back to the main
execution

• otherwise set up the conditions (recharge, sources, and Dirichlet boundary conditions for
flow and Dirichlet boundary conditions, concentrations at sources, and concentration fluxes
for transport) on the given time level and mesh

• for transport coupled with transient flow, set flow conditions here (for permanent flow it
was already done before)

• execute the space adaptivity loop (get space error if space adaptivity)
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• if there is time or space adaptivity, evaluate the norm of the approximate solution on the
given time step; if transient case in addition, compute time a posteriori error estimate and
set up time refinement criterion

• if time adaptivity, the error is too large, and maximal refinement not yet reached, refine
time step and go back to the beginning of the time adaptivity loop

• otherwise we accept the computed result: store it as a previous value (-prev unknowns),
increase the full error (space plus time one) and the norm of the approximate solution by
the just finished time step, increase time level, and go back to the beginning of the time
adaptivity loop

5.3 Space adaptivity execution diagram

• if transport, execute Newton loop for flow to get flow field and then compute the diffusion–
dispersion tensor

• execute Newton loop

• if there is time or space adaptivity, compute space a posteriori error estimate and the norm
of the approximate solution on the given time step and set up space refinement criterion

• if space adaptivity, the error is too large, and maximal refinement not yet reached, refine
cells with error and update coordinates, number mesh cells, set up contact list, set minimal
surface, create triangle mesh, change matrix and vectors size and go back to the beginning
of the space adaptivity loop

• otherwise go back to the time adaptivity loop

5.4 Newton method execution diagram

• assemble matrix

• solve the linear system

• if linear case (transport without adsorption), go back to the space adaptivity loop

• otherwise evaluate error in the linearization; if too big and maximal number of iterations
not yet reached, go back to the beginning of the Newton loop
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