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Discretization, linearization, and algebraic solvers

Discretization
@ let p be the weak solution of A(p) = F, A nonlinear
@ let py, be its approximate numerical solution, Ap(pr) = Fn
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Discretization, linearization, and algebraic solvers

Discretization

@ let p be the weak solution of A(p) = F, A nonlinear

@ let py, be its approximate numerical solution, Ap(pr) = Fn
lterative linearization

° A(L’;”pf,") = FL(f;”: discrete Newton or fixed-point

linearization

@ when do we stop?

lterative algebraic system solution

o A" Vp) = ', Vis a linear algebraic system
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Discretization, linearization, and algebraic solvers

Discretization
@ let p be the weak solution of A(p) = F, A nonlinear
@ let py, be its approximate numerical solution, Ap(pr) = Fn
lterative linearization
° A(L’;,”pf,’) = FL(T): discrete Newton or fixed-point
linearization
@ when do we stop?
Iterative algebraic system solution
° A(L’;”pf,") = FL(T) is a linear algebraic system
@ we only solve it inexactly by, e.g., some iterative method
@ when do we stop?
Approximate solution
@ the approximate solution pj, that we have as an outcome
does not solve Ax(p}) = Fn
@ how big is the overall error ||p — p} | o?
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Aims and benefits of this work

A posteriori error estimate

@ aims at estimating ||p — p}|l
@ but most of the existing approaches rely on Ax(p}) = Fp!
Aims of this work

@ give a guaranteed and robust upper bound on the
overall error ||p — pi|la

@ predict the overall error distribution (local efficiency)

@ distinguish the algebraic/linearization errors, due to inexact
solution of linear/nonlinear problems, and the discretization
error, due to mesh size and numerical scheme

@ stop the iterative solvers whenever algebraic/linearization
errors do not affect the overall error significantly

Benefits
@ optimal computable overall error bound
@ adaptive mesh refinement
@ important computational savings
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Previous results: general and algebraic error

A posteriori estimates without algebraic error

@ Prager and Synge (1947)

@ Babuska and Rheinboldt (1978)
@ Verflirth (1996, book)

@ Ainsworth and Oden (2000, book)
@ Luce and Wohimuth (2004)
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Quasi-linear elliptic problem

Quasi-linear elliptic problem
—V.o(Vu)=f in Q,

u=20 on 09,
where

° V& € RY, o (¢) = a(l€])g,
@ a(x) ~ xP~2as x — +oo, p € (1, +00),
o feli(Q), q:= 32

Example

p-Laplacian: a(x) = xP~2
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Quasi-linear elliptic problem

Quasi-linear elliptic problem
—V.o(Vu)=f in Q,

u=~0 on 09,
where
e V¢ e RY, o(&) = a(J€])g,
@ a(x) ~ xP~2as x — +oo, p € (1, +00),
o feliQ),q:=5
Example
p-Laplacian: a(x) = xP~?

Nonlinear operator A: V := W, P(Q) — V/
<AU, V> v,V = (O'(VU), VV)

M. Vohralik Robust a posteriori error estimates for nonlinear problems



I Nonlin. pbs Est. linearization err. Est. algebraic err. C Quasi-lin. pbs Linearizations

Quasi-linear elliptic problem

Quasi-linear elliptic problem
—V.o(Vu)=f in Q,

u=~0 on 09,
where
e V¢ e RY, o(&) = a(J€])g,
@ a(x) ~ xP~2as x — +oo, p € (1, +00),
o feliQ),q:=5
Example
p-Laplacian: a(x) = xP~?

Nonlinear operator A: V := W, P(Q) — V/
<AU, V> v,V = (O'(VU), VV)
Weak formulation

Find u € V such that
Au=fin V'
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Linearizations at up € V

Linearized flux function o,

@ letugeV

@ linearized flux function o, : R? — R? depending on Vuy,
UL,UO(VU)
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Linearizations at up € V

Linearized flux function o,

@ letugeV

@ linearized flux function o, : R? — R? depending on Vuy,
UL,UO(VU)

Fixed-point linearization

oLu(€) = a(|Vin|)E
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Linearizations at up € V

Linearized flux function o,

@ letugeV

@ linearized flux function o, : R? — R? depending on Vuy,
UL,UO(VU)

Fixed-point linearization

oL (&) == a(|Vu|)é
Newton linearization

oL (8) = a(|Vio|)¢ + d(IVup|) o (Vo ® Vip)(€ — Vo)

’
Vo]
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Error measure

o(Vu) —o(VuLp), Vv
jU(UL‘h) = HAU — AUL.hHV’ = sup ( ( ) ( L,h), )
veVv\{0} IVVip

o upcV
@ based on the difference of the fluxes
@ dual norm of the residual

@ inspired from Angermann (1995), Verfirth (2005), Chaillou
and Suri (2006, 2007)

@ not a norm for the difference u — u p

@ avoids any appearance of the ratio continuity constant /
monotonicity constant
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Error measure

Error measure

o(Vu) —o(VuLp), Vv
veV\{0} Vv

o upcV
@ based on the difference of the fluxes
@ dual norm of the residual

@ inspired from Angermann (1995), Verfirth (2005), Chaillou
and Suri (2006, 2007)

@ not a norm for the difference u — u p

@ avoids any appearance of the ratio continuity constant /
monotonicity constant

@ there holds J,(u ») — O ifand only if |[u — v pl[y — 0
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A posteriori error estimate

Assumption A (Equilibrated flux)
Let there be a mesh Dy, of Q and t,, € HY(div, Q) such that

(Vtp,1)p=(f,1)p VDe D,
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A posteriori error estimate

Assumption A (Equilibrated flux)
Let there be a mesh Dy, of Q and t,, € HY(div, Q) such that

(Vtp,1)p=(f,1)p VDe D,

Theorem (A posteriori error estimate)
Let

@ u € V be the weak solution,

@ u p € V be arbitrary,

@ Assumption A hold.

v
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A posteriori error estimate

Assumption A (Equilibrated flux)
Let there be a mesh Dy, of Q and t,, € HY(div, Q) such that

(Vtp,1)p=(f,1)p VDe D,

Theorem (A posteriori error estimate)
Let

@ u € V be the weak solution,
@ u p € V be arbitrary,
@ Assumption A hold.

Then there holds

1/q 1/q
Ju(up) <n = { Z (mr,p + UDF,D)q} + { Z ng,D} g

DEDh DEDh

v
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Estimators

Estimators

@ residual estimator
mR,0 ‘= Cp/rp,phpllf — Vialg,n
@ diffusive flux estimator

nor,0 = |l (VUL p) +thllgp

@ linearization estimator

m.p =|o(VuLp) — o (Vurn)lgp
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Balancing the discretization and linearization errors

Global linearization stopping criterion
@ stop the Newton (or fixed-point) linearization whenever

nL < 7 Np,

where

1/q

— q i i~ ati

nL = { § nL,D} linearization error,
DeDy,

1/q
np = { Z (nR.p + nDF,D)q} discretization error
DeDy,
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Balancing the discretization and linearization errors

Global linearization stopping criterion
@ stop the Newton (or fixed-point) linearization whenever

. < v b,
where

1/q

— q i i~ ati

nL = { § nL,D} linearization error,
DeDy,

1/q
np = { Z (nR.p + nDF,D)q} discretization error
DeDy,

Local linearization stopping criterion
@ stop the Newton (or fixed-point) linearization whenever

nL,0 < vp (Mr,0 + MpF,D) VD € Dy,

M. Vohralik Robust a posteriori error estimates for nonlinear problems
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Local efficiency

Assumption B (Approximation property)

There holds, for all D € Dy,

Q=

mor0 S STHIFT-o1 (Vi n)IT 145 el (Vi) T2 £
TeSp Fegg
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Local efficiency

Assumption B (Approximation property)
There holds, for all D € Dy,

1
q
77DFD<{Z/7‘;||;‘+V ou(VuLn)lg r+)_hellon(Vuen)nllg } :

TeSp FegT

Theorem (Local efficiency)

Let the mesh T, be shape-regular and let the local stopping
criterion, with yp small enough, hold. Let Assumption B hold.

v
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Local efficiency

Assumption B (Approximation property)
There holds, for all D € Dy,

q
%F,DS{Zh 11+V-oL(VuLn)lg r+> _hellon(Vuen)nlllg } :

TeSp FegT

1

Theorem (Local efficiency)
Let the mesh T, be shape-regular and let the local stopping

criterion, with yp small enough, hold. Let Assumption B hold.

Then
n.p +1r,0 + 1Mor,p < Clle(Vu) — o(Vurp)llg,p,

where the constant C is independent of a and p.

v
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Local efficiency

Assumption B (Approximation property)
There holds, for all D € Dy,

q
%F,DS{Zh 11+V-oL(VuLn)lg r+> _hellon(Vuen)nlllg } :

TeSp FegT

1

Theorem (Local efficiency)
Let the mesh T, be shape-regular and let the local stopping

criterion, with yp small enough, hold. Let Assumption B hold.

Then
n.p +1r,0 + 1Mor,p < Clle(Vu) — o(Vurp)llg,p,

where the constant C is independent of a and p.

v

@ local efficiency, but in a different norm
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Global efficiency

Theorem (Global efficiency)

Let the mesh T, be shape-regular and let the global stopping
criterion, with v small enough, hold. Let Assumption B hold.
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Global efficiency

Theorem (Global efficiency)

Let the mesh T, be shape-regular and let the global stopping
criterion, with v small enough, hold. Let Assumption B hold.
Recall that J,(uyp) < 7.
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Global efficiency

Est. St cr. eff. Adapt. str. Appl. FE's Num. exp.

Theorem (Global efficiency)

Let the mesh T, be shape-regular and let the global stopping
criterion, with v small enough, hold. Let Assumption B hold.
Recall that J,(uin) < n. Then

n S CJU(UL,h)a

where the constant C is independent of a and p.
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Global efficiency

Est. St cr. eff. Adapt. str. Appl. FE's Num. exp.

Theorem (Global efficiency)

Let the mesh T, be shape-regular and let the global stopping
criterion, with v small enough, hold. Let Assumption B hold.
Recall that J,(uin) < n. Then

n S CJU(UL,h)a

where the constant C is independent of a and p.

@ robustness with respect to the nonlinearity thanks to the
choice of the dual norm
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Adaptive strategy
@ choose an initial mesh 72 and an initial guess
on the mesh ﬁ/ >0, fori > 1, do the

the flux function at v/~

the discrete linearized problem for v/ ,
if the linearization is , then
the linearization, else set i «— (i + 1) and go to step 1)

evaluate the

if the desired overall , then , else
the adaptively, interpolate to it the current
solution, j < (j+ 1), and go to the second step
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Adaptive strategy

Adaptive strategy

@ choose an initial mesh 7 and an initial guess
UE,h € Vn(Ty)

@ on the mesh T,{ j >0, fori > 1, do the iterative loop:

1) linearize the flux function at v/~

2) solve the discrete linearized problem for Uﬂ,h
3) if the linearization stopping criterion is reached, then stop
the linearization, else set i + (i + 1) and go to step 1)

M. Vohralik Robust a posteriori error estimates for nonlinear problems



| Nonlin. pbs Est. linearization err. Est. algebraic err. C Est. St cr. eff. Adapt. str. Appl. FE's Num. exp.

Adaptive strategy

Adaptive strategy

@ choose an initial mesh 7 and an initial guess
UE,h € Vn(Ty)
@ on the mesh 7’,{ j >0, fori > 1, do the iterative loop:

1) linearize the flux function at v/~

2) solve the discrete linearized problem for Uﬂ,h
3) if the linearization stopping criterion is reached, then stop
the linearization, else set i + (i + 1) and go to step 1)

@ evaluate the overall a posteriori error estimate 7

M. Vohralik Robust a posteriori error estimates for nonlinear problems
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Adaptive strategy

Adaptive strategy
@ choose an initial mesh 7 and an initial guess
UE,h € Vn(Ty)
@ on the mesh T,{ j >0, fori > 1, do the iterative loop:

1) linearize the flux function at u;
2) solve the discrete linearized problem for Uﬂ,h
3) if the linearization stopping criterion is reached, then stop
the linearization, else set i + (i + 1) and go to step 1)
@ evaluate the overall a posteriori error estimate 7
@ if the desired overall precision is reached, then stop, else
refine the mesh adaptively, interpolate to it the current
solution, j « (j+ 1), and go to the second step

M. Vohralik Robust a posteriori error estimates for nonlinear problems
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The conforming finite element method

Application to the conforming finite element method

@ V, C V, continuous piecewise linears
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The conforming finite element method

Application to the conforming finite element method

@ V, C V, continuous piecewise linears
@ discrete linearized problem: find u; , € Vj, such that

(oL(VuLp), Vi) = (f,vn) Vvy e Vy
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The conforming finite element method

Application to the conforming finite element method

@ V, C V, continuous piecewise linears
@ discrete linearized problem: find u; , € Vj, such that

(oL(VuLp), Vi) = (f,vn) Vvy e Vy

@ verify Assumptions A and B

M. Vohralik Robust a posteriori error estimates for nonlinear problems
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The conforming finite element method

Construction of t;,
@ Dy: dual mesh around nodes

S|

N2
%V

a

~l— =
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The conforming finite element method

Construction of t;,
@ Dy: dual mesh around nodes
@ Sp: simplicial submesh of both 73 and Dy, (as in Luce and
WohIimuth (2004))

>

NE

M. Vohralik Robust a posteriori error estimates for nonlinear problems

~l— =



I Nonlin. pbs Est. linearization err. Est. algebraicerr. C Est. St cr. eff. Adapt. str. Appl. FE's Num. exp.

The conforming finite element method

Construction of t;,
@ Dy: dual mesh around nodes
@ Sp: simplicial submesh of both 73 and Dy, (as in Luce and
WohIimuth (2004))
@ definition of t;, € RTN(S),) by direct prescription:

thyne = —{oLnrnF}

>

NE
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The conforming finite element method

Construction of t;,

@ Dy: dual mesh around nodes

@ Sp: simplicial submesh of both 73 and Dy, (as in Luce and
WohIimuth (2004))

@ definition of t;, € RTN(S),) by direct prescription:

thyne = —{oLnrnF}

@ definition of t, by MFE solution of local Neumann/Dirichlet
problems: find t, € RTNN(Sp) and g, € P3(Sp) such that
(th + orn V) — (Gh, V-Va)p =0 Wvp, € RTNy o(Sp),

v (V- thajbh p=(f,én)p  Voén € Pp(Sp)
i

M. Vohralik Robust a posteriori error estimates for nonlinear problems
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Computable upper and lower bounds on the dual norm

Computable upper and lower bounds on the dual norm
@ recall that

Vu) —o(V
HAU — AUL,h” vr = Sup (O’( U) U( UL,h)y VV)
veV\{0} Vvp
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Computable upper and lower bounds on the dual norm

Computable upper and lower bounds on the dual norm
@ recall that

vu) —o(V ,V
|Au — Aup pllv: = sup (V) = o(Vikp). V)
veV\{0} VVp

@ following Chaillou and Suri (2006), there exist computable
upper and lower bounds for ||Au — Au pl| v
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Computable upper and lower bounds on the dual norm

Computable upper and lower bounds on the dual norm
@ recall that

Vu) —o(V
HAU — AUL,h” vr = Sup (O’( U) U( UL,h)y VV)
veV\{0} Vvp

@ following Chaillou and Suri (2006), there exist computable
upper and lower bounds for ||Au — Au pl| v

Tu(Un) < TP (ULp) = lo(Vu) — o (VuLn)llg:

o (078~ o (V). V(o — )
Fulten) = JE )= I )l
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Computable upper and lower bounds on the dual norm

Computable upper and lower bounds on the dual norm
@ recall that

Vu) —o(V
HAU — AUL,h” vr = Sup (O’( U) U( UL,h)y VV)
veV\{0} Vvp

@ following Chaillou and Suri (2006), there exist computable
upper and lower bounds for ||Au — Au pl| v

Tu(Un) < TP (ULp) = lo(Vu) — o (VuLn)llg:

o (078~ o (V). V(o — )
Fulten) = JE )= I )l

@ put

1 and 7% .= U

TP = _—_1
Ju" (UL ) T (uLn)
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Numerical experiment |

Model problem

@ p-Laplacian

V-([VuP2vu)=f inQ,
u=uy onoQ

@ weak solution (used to impose a Dirichlet BC)

| ’ T | pot (1\7T
to(x, ) = —251 ((x = 52+ (v - 1) 7 + 251(})°

@ tested values p =1.4,3,10,50

Nl
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Analytical and approximate solutions

Casep=14 Case p=10
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Error distribution on a uniformly refined mesh, p = 3

LY
RSO

S

Estimated error distribution Exact error distribution
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Estimated and actual errors and the eff. index, p = 1.4

10° e § 125 ey
E —e—error up uniform K] —=— effectivity ind. up uniform
F error low uniform 3 > 12 effectivity ind. low uniform
L —=— estimate uniform || 2
o ® 1.15— -
107 E 3
2 F 3 8 11 il
@ r ] 3
s r 1 S0 -
S °
10 " = g
g 1 e -
[ ] 2
[ 1 & 0.95/%— ———a
r 7] o}
ol el il ool il il
10" 10° 10° 10 10° 10" 107 10° 10* 10°
Number of vertices Number of vertices
Estimated and actual errors Effectivity index
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Estimated and actual errors and the eff. index, p = 3

0
10° e e e ey 813 ey
F —e—error up uniform K] —=— effectivity ind. up uniform
F error low uniform 3 5125 effectivity ind. low uniform
L —=— estimate uniform || 2
3
= 2 1.2 —
10 &= E| @
g r E 8 115 4
) r ] o
s r g S 11 B
S °
10 " = g
E E 5 1.05- -
[ ] 2
[ 7 S 17/~.\"I—C—I -
r 7] o}
ol el il o B S R U TP R
10" 10° 10° 10 10° 10" 107 10° 10* 10°
Number of vertices Number of vertices
Estimated and actual errors Effectivity index
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Estimated and actual errors and the eff. index, p = 10

10°

L L e B o 0.94 T T T
—e—error up uniform w—.— effectivity ind. up unlform7

error low uniform
—&—estimate uniform

T

Dual error
=
o
T
|

|
&
Upper dual error effectivity indices

10 E _
T T R R R AT T R R
10 10" 10° 10° 10" 10° e 10° 10° 10° 10°
Number of vertices Number of vertices

Estimated and actual errors Effectivity index
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Discretization and linearization componenets

10 10
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@ @
g s s
810" B 810° - |
. —e—error —e—error
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——lin. est. i
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0 2 4 6 8 10 12 0 2 4 6 8 10 12
Number of Newton iterations Number of Newton iterations

Case p=10 Case p =50
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Different error components

10"
10” T —e—error up uniform
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Evolution of Newton iterations

Est. St cr. eff. Adapt. str. Appl. FE's Num. exp.

Number of Newton iterations
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Numerical experiment I

Model problem

@ p-Laplacian

V-([VuP2vu)=f inQ,
u=uy onof

@ weak solution (used to impose a Dirichlet BC)
U(r,0) = rs sin(6§)

@ p = 4, L-shape domain, singularity in the origin
(Carstensen and Klose (2003))
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Analytical and approximate solutions
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Error distribution on a uniformly refined mesh

Estimated error distribution Exact error distribution
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Error distribution on an adaptively refined mesh
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Estimated error distribution Exact error distribution
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Estimated and actual errors and the effectivity index
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A model elliptic problem
-V(S8Vp) = f inQ,
p = g onTl:=090Q

Algebraic problem

at some point, we shall solve AX = B
we only it

we know the !
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A model elliptic problem

A model elliptic problem

—-V(SVp) = f inQ,
p = g onl:=0Q

Algebraic problem

@ at some point, we shall solve AX =B
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A model elliptic problem

A model elliptic problem

—-V(SVp) = f inQ,
p = g onl:=0Q

Algebraic problem

@ at some point, we shall solve AX =B
@ we only solve it inexactly, AX* ~ B
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A model elliptic problem

A model elliptic problem
—-V(SVp) = f inQ,
p = g onl:=0Q

Algebraic problem

@ at some point, we shall solve AX =B
@ we only solve it inexactly, AX* ~ B
@ we know the algebraic residual, R := B — AX*

M. Vohralik Robust a posteriori error estimates for nonlinear problems
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A posteriori estimate including the algebraic error

Theorem (Estimate including the algebraic error, FVs/MFES)

There holds 1

1 1
2 2 2
|||p—f>?,|||s{2n§c,,<} +{Znﬁ,x} +{Z’7§E,K}-

KeTh KeTh KeTh
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Stopping criteria for iterative solvers

Global stopping criterion

@ stop the iterative solver whenever
NAE < 7Y IINC,

where

1 1

2 2

2 2
TIAE = E MAEK (» TINC = E TINC,K
KeTh KeTh
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Stopping criteria for iterative solvers

Global stopping criterion

@ stop the iterative solver whenever
NAE < 7Y 1INC,

where

1 1

2 2

_ 2 _ 2
TAE = E MAEK (» TINC = E TINC,K
KeTh KeTh

Local stopping criterion
@ stop the iterative solver whenever

MAE,K < VK TINC,K VK € Th
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Analytical solution and adaptively refined mesh
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Analytical solution Adaptively refined mesh
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o Introduction

@ A class of nonlinear problems
@ Quasi-linear elliptic problems
@ Newton and fixed-point linearizations

Q A posteriori error estimates including linearization error
@ A guaranteed and robust a posteriori error estimate
@ Stopping criteria for linearizations and efficiency
@ Adaptive strategy
@ Application to the conforming finite element method
@ Numerical experiments

Q A posteriori estimates including algebraic error
@ A guaranteed a posteriori estimate
@ Stopping criteria for iterative solvers
@ Numerical experiments

6 Concluding remarks and future work
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Concluding remarks

@ linear/nonlinear systems are never solved exactly in
practical large scale computations
@ present estimates: certified overall error bound
@ linear/nonlinear sts should be solved inexactly on purpose
e balancing discretization and algebraic/linearization errors
by stopping criteria
o useless to make an extensive number of iterations after the
algebraic/linearization error drops below the discretization
one
e important computational savings
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@ linear/nonlinear sts should be solved inexactly on purpose

e balancing discretization and algebraic/linearization errors
by stopping criteria

o useless to make an extensive number of iterations after the
algebraic/linearization error drops below the discretization
one

e important computational savings

@ local efficiency: suitable for adaptive mesh refinement
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Concluding remarks

@ linear/nonlinear systems are never solved exactly in
practical large scale computations
@ present estimates: certified overall error bound
@ linear/nonlinear sts should be solved inexactly on purpose
e balancing discretization and algebraic/linearization errors
by stopping criteria
o useless to make an extensive number of iterations after the
algebraic/linearization error drops below the discretization
one
e important computational savings
@ local efficiency: suitable for adaptive mesh refinement
@ guaranteed, robust, locally computable estimates

Future work

@ nonlinear case for nonconforming methods
@ systems of nonlinear PDEs
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Thank you for your attention!
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