Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems

Martin Vohralík

Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie (Paris 6)

Joint work with Linda El Alaoui (Un. Paris 13, France), Alexandre Ern (ENPC, Paris, France)

Vancouver, July 22, 2011

Outline

- Introduction
- A class of nonlinear problems
 - Quasi-linear elliptic problems
 - Newton and fixed-point linearizations
- A posteriori error estimates including linearization error
 - A guaranteed and robust a posteriori error estimate
 - Stopping criteria for linearizations and efficiency
 - Adaptive strategy
 - Application to the conforming finite element method
 - Numerical experiments
- A posteriori estimates including algebraic error
 - A guaranteed a posteriori estimate
 - Stopping criteria for iterative solvers
 - Numerical experiments
- 5 Concluding remarks and future work

Outline

- Introduction
- A class of nonlinear problems
 - Quasi-linear elliptic problems
 - Newton and fixed-point linearizations
- 3 A posteriori error estimates including linearization error
 - A guaranteed and robust a posteriori error estimate
 - Stopping criteria for linearizations and efficiency
 - Adaptive strategy
 - Application to the conforming finite element method
 - Numerical experiments
- A posteriori estimates including algebraic error
 - A guaranteed a posteriori estimate
 - Stopping criteria for iterative solvers
 - Numerical experiments
- 5 Concluding remarks and future work

Discretization

- let p be the weak solution of A(p) = F, A nonlinear
- let p_h be its approximate numerical solution, $A_h(p_h) = F_h$

Iterative linearization

- $A_{L,h}^{(i-1)}p_h^{(i)}=F_{L,h}^{(i-1)}$: discrete Newton or fixed-point linearization
- when do we stop?

Iterative algebraic system solution

- $A_{L,h}^{(i-1)}p_h^{(i)}=F_{L,h}^{(i-1)}$ is a linear algebraic system
- we only solve it inexactly by, e.g., some iterative method
- when do we stop?

- the approximate solution p_h^a that we have as an outcome does not solve $A_h(p_h^a) = F_h$
- how big is the overall error $\|p p_b^a\|_{\Omega}$?

Discretization

- let p be the weak solution of A(p) = F, A nonlinear
- let p_h be its approximate numerical solution, $A_h(p_h) = F_h$

Iterative linearization

- $A_{L,h}^{(i-1)}p_h^{(i)} = F_{L,h}^{(i-1)}$: discrete Newton or fixed-point linearization
- when do we stop?

Iterative algebraic system solution

- $A_{1,h}^{(i-1)}p_h^{(i)}=F_{1,h}^{(i-1)}$ is a linear algebraic system
- we only solve it inexactly by, e.g., some iterative method
- when do we stop?

- the approximate solution p_h^a that we have as an outcome does not solve $A_h(p_h^a) = F_h$
- how big is the overall error $\|p p_b^a\|_{\Omega}$?

Discretization

- let p be the weak solution of A(p) = F, A nonlinear
- let p_h be its approximate numerical solution, $A_h(p_h) = F_h$

Iterative linearization

- $A_{L,h}^{(i-1)}p_h^{(i)} = F_{L,h}^{(i-1)}$: discrete Newton or fixed-point linearization
- when do we stop?

Iterative algebraic system solution

- $A_{I,h}^{(i-1)}p_h^{(i)}=F_{I,h}^{(i-1)}$ is a linear algebraic system
- we only solve it inexactly by, e.g., some iterative method
- when do we stop?

- the approximate solution p_h^a that we have as an outcome does not solve $A_h(p_h^a) = F_h$
- how big is the overall error $\|p p_b^a\|_{\Omega}$?

Discretization

- let p be the weak solution of A(p) = F, A nonlinear
- let p_h be its approximate numerical solution, $A_h(p_h) = F_h$

Iterative linearization

- $A_{L,h}^{(i-1)}p_h^{(i)} = F_{L,h}^{(i-1)}$: discrete Newton or fixed-point linearization
- when do we stop?

Iterative algebraic system solution

- $A_{L,h}^{(i-1)}p_h^{(i)}=F_{L,h}^{(i-1)}$ is a linear algebraic system
- we only solve it inexactly by, e.g., some iterative method
- when do we stop?

- the approximate solution p_h^a that we have as an outcome does not solve $A_h(p_h^a) = F_h$
- how big is the overall error $\|p p_b^a\|_{\Omega}$?

Discretization

- let p be the weak solution of A(p) = F, A nonlinear
- let p_h be its approximate numerical solution, $A_h(p_h) = F_h$

Iterative linearization

- $A_{L,h}^{(i-1)}p_h^{(i)} = F_{L,h}^{(i-1)}$: discrete Newton or fixed-point linearization
- when do we stop?

Iterative algebraic system solution

- $A_{L,h}^{(i-1)}p_h^{(i)}=F_{L,h}^{(i-1)}$ is a linear algebraic system
- we only solve it inexactly by, e.g., some iterative method
- when do we stop?

- the approximate solution p_h^a that we have as an outcome does not solve $A_h(p_h^a) = F_h$
- how big is the overall error $\|p p_b^a\|_{\Omega}$?

Discretization

- let p be the weak solution of A(p) = F, A nonlinear
- let p_h be its approximate numerical solution, $A_h(p_h) = F_h$

Iterative linearization

- $A_{L,h}^{(i-1)}p_h^{(i)} = F_{L,h}^{(i-1)}$: discrete Newton or fixed-point linearization
- when do we stop?

Iterative algebraic system solution

- $A_{L,h}^{(i-1)}p_h^{(i)}=F_{L,h}^{(i-1)}$ is a linear algebraic system
- we only solve it inexactly by, e.g., some iterative method
- when do we stop?

- the approximate solution p_h^a that we have as an outcome does not solve $A_h(p_h^a) = F_h$
- how big is the overall error $\|p p_b^a\|_{\Omega}$?

Discretization

- let p be the weak solution of A(p) = F, A nonlinear
- let p_h be its approximate numerical solution, $A_h(p_h) = F_h$

Iterative linearization

- $A_{L,h}^{(i-1)}p_h^{(i)} = F_{L,h}^{(i-1)}$: discrete Newton or fixed-point linearization
- when do we stop?

Iterative algebraic system solution

- $A_{L,h}^{(i-1)}p_h^{(i)}=F_{L,h}^{(i-1)}$ is a linear algebraic system
- we only solve it inexactly by, e.g., some iterative method
- when do we stop?

- the approximate solution p_h^a that we have as an outcome does not solve $A_h(p_h^a) = F_h$
- how big is the overall error $\|p p_b^a\|_{\Omega}$?

Discretization

- let p be the weak solution of A(p) = F, A nonlinear
- let p_h be its approximate numerical solution, $A_h(p_h) = F_h$

Iterative linearization

- $A_{L,h}^{(i-1)}p_h^{(i)} = F_{L,h}^{(i-1)}$: discrete Newton or fixed-point linearization
- when do we stop?

Iterative algebraic system solution

- $A_{L,h}^{(i-1)}p_h^{(i)}=F_{L,h}^{(i-1)}$ is a linear algebraic system
- we only solve it inexactly by, e.g., some iterative method
- when do we stop?

- the approximate solution p_h^a that we have as an outcome does not solve $A_h(p_h^a) = F_h$
- how big is the overall error $\|p p_b^a\|_{\Omega}$?

A posteriori error estimate

- aims at estimating $\|p p_h^a\|_{\Omega}$
- but most of the existing approaches rely on $A_h(p_h^a) = F_h!$

Aims of this work

- give a guaranteed and robust upper bound on the overall error $\|p p_b^a\|_{\Omega}$
- predict the overall error distribution (local efficiency)
- distinguish the algebraic/linearization errors, due to inexact solution of linear/nonlinear problems, and the discretization error, due to mesh size and numerical scheme
- stop the iterative solvers whenever algebraic/linearization errors do not affect the overall error significantly

- optimal computable overall error bound
- adaptive mesh refinement
- important computational savings

A posteriori error estimate

- aims at estimating $\|p p_h^a\|_{\Omega}$
- but most of the existing approaches rely on $A_h(p_h^a) = F_h!$

Aims of this work

- give a guaranteed and robust upper bound on the overall error $\|p p_h^a\|_{\Omega}$
- predict the overall error distribution (local efficiency)
- distinguish the algebraic/linearization errors, due to inexact solution of linear/nonlinear problems, and the discretization error, due to mesh size and numerical scheme
- stop the iterative solvers whenever algebraic/linearization errors do not affect the overall error significantly

- optimal computable overall error bound
- adaptive mesh refinement
- important computational savings

A posteriori error estimate

- aims at estimating $\|p p_h^a\|_{\Omega}$
- but most of the existing approaches rely on $A_h(p_h^a) = F_h!$

Aims of this work

- give a guaranteed and robust upper bound on the overall error $\|p p_h^a\|_{\Omega}$
- predict the overall error distribution (local efficiency)
- distinguish the algebraic/linearization errors, due to inexact solution of linear/nonlinear problems, and the discretization error, due to mesh size and numerical scheme
- stop the iterative solvers whenever algebraic/linearization errors do not affect the overall error significantly

- optimal computable overall error bound
- adaptive mesh refinement
- important computational savings

A posteriori error estimate

- aims at estimating $\|p p_h^a\|_{\Omega}$
- but most of the existing approaches rely on $A_h(p_h^a) = F_h!$

Aims of this work

- give a guaranteed and robust upper bound on the overall error $\|p p_h^a\|_{\Omega}$
- predict the overall error distribution (local efficiency)
- distinguish the algebraic/linearization errors, due to inexact solution of linear/nonlinear problems, and the discretization error, due to mesh size and numerical scheme
- stop the iterative solvers whenever algebraic/linearization errors do not affect the overall error significantly

- optimal computable overall error bound
- adaptive mesh refinement
- important computational savings

A posteriori error estimate

- aims at estimating $\|p p_h^a\|_{\Omega}$
- but most of the existing approaches rely on $A_h(p_h^a) = F_h!$

Aims of this work

- give a guaranteed and robust upper bound on the overall error $\|p p_h^a\|_{\Omega}$
- predict the overall error distribution (local efficiency)
- distinguish the algebraic/linearization errors, due to inexact solution of linear/nonlinear problems, and the discretization error, due to mesh size and numerical scheme
- stop the iterative solvers whenever algebraic/linearization errors do not affect the overall error significantly

- optimal computable overall error bound
- adaptive mesh refinement
- important computational savings

A posteriori error estimate

- aims at estimating $\|p p_h^a\|_{\Omega}$
- but most of the existing approaches rely on $A_h(p_h^a) = F_h!$

Aims of this work

- give a guaranteed and robust upper bound on the overall error $\|p p_h^a\|_{\Omega}$
- predict the overall error distribution (local efficiency)
- distinguish the algebraic/linearization errors, due to inexact solution of linear/nonlinear problems, and the discretization error, due to mesh size and numerical scheme
- stop the iterative solvers whenever algebraic/linearization errors do not affect the overall error significantly

- optimal computable overall error bound
- adaptive mesh refinement
- important computational savings

A posteriori error estimate

- aims at estimating $\|p p_h^a\|_{\Omega}$
- but most of the existing approaches rely on $A_h(p_h^a) = F_h!$

Aims of this work

- give a guaranteed and robust upper bound on the overall error $\|p p_h^a\|_{\Omega}$
- predict the overall error distribution (local efficiency)
- distinguish the algebraic/linearization errors, due to inexact solution of linear/nonlinear problems, and the discretization error, due to mesh size and numerical scheme
- stop the iterative solvers whenever algebraic/linearization errors do not affect the overall error significantly

- optimal computable overall error bound
- adaptive mesh refinement
- important computational savings

A posteriori error estimate

- aims at estimating $\|p p_h^a\|_{\Omega}$
- but most of the existing approaches rely on $A_h(p_h^a) = F_h!$

Aims of this work

- give a guaranteed and robust upper bound on the overall error $\|p p_h^a\|_{\Omega}$
- predict the overall error distribution (local efficiency)
- distinguish the algebraic/linearization errors, due to inexact solution of linear/nonlinear problems, and the discretization error, due to mesh size and numerical scheme
- stop the iterative solvers whenever algebraic/linearization errors do not affect the overall error significantly

- optimal computable overall error bound
- adaptive mesh refinement
- important computational savings

A posteriori estimates without algebraic error

- Prager and Synge (1947)
- Babuška and Rheinboldt (1978)
- Verfürth (1996, book)
- Ainsworth and Oden (2000, book)
- Luce and Wohlmuth (2004)

A posteriori estimates accounting for algebraic error

Repin (1997)

Stopping criteria for iterative solvers

- Becker, Johnson, and Rannacher (1995)
- Maday and Patera (2000)
- Arioli (2004)
- Meidner, Rannacher, Vihnarev (2009)

- Meurant (1997)
- Strakoš and Tichý (2002)

A posteriori estimates without algebraic error

- Prager and Synge (1947)
- Babuška and Rheinboldt (1978)
- Verfürth (1996, book)
- Ainsworth and Oden (2000, book)
- Luce and Wohlmuth (2004)

A posteriori estimates accounting for algebraic error

Repin (1997)

Stopping criteria for iterative solvers

- Becker, Johnson, and Rannacher (1995)
- Maday and Patera (2000)
- Arioli (2004)
- Meidner, Rannacher, Vihnarev (2009)

- Meurant (1997)
- Strakoš and Tichý (2002)

A posteriori estimates without algebraic error

- Prager and Synge (1947)
- Babuška and Rheinboldt (1978)
- Verfürth (1996, book)
- Ainsworth and Oden (2000, book)
- Luce and Wohlmuth (2004)

A posteriori estimates accounting for algebraic error

Repin (1997)

Stopping criteria for iterative solvers

- Becker, Johnson, and Rannacher (1995)
- Maday and Patera (2000)
- Arioli (2004)
- Meidner, Rannacher, Vihnarev (2009)

- Meurant (1997)
- Strakoš and Tichý (2002)

A posteriori estimates without algebraic error

- Prager and Synge (1947)
- Babuška and Rheinboldt (1978)
- Verfürth (1996, book)
- Ainsworth and Oden (2000, book)
- Luce and Wohlmuth (2004)

A posteriori estimates accounting for algebraic error

Repin (1997)

Stopping criteria for iterative solvers

- Becker, Johnson, and Rannacher (1995)
- Maday and Patera (2000)
- Arioli (2004)
- Meidner, Rannacher, Vihnarev (2009)

- Meurant (1997)
- Strakoš and Tichý (2002)

Previous results: nonlinear problems

Continuous finite elements

- Han (1994), general framework
- Verfürth (1994), residual estimates
- Veeser (2002), convergence p-Laplacian
- Carstensen and Klose (2003), guaranteed estimates
- Chaillou and Suri (2006, 2007), distinguishing discretization and linearization errors

Other methods

 Kim (2007), guaranteed estimates for locally conservative methods

Error components equilibration

- engineering literature, since 1950's
- Ladevèze (since 1980's)
- Verfürth (2003), space and time error equilibration
- Bernardi (2006), equilibration of model errors

Previous results: nonlinear problems

Continuous finite elements

- Han (1994), general framework
- Verfürth (1994), residual estimates
- Veeser (2002), convergence p-Laplacian
- Carstensen and Klose (2003), guaranteed estimates
- Chaillou and Suri (2006, 2007), distinguishing discretization and linearization errors

Other methods

 Kim (2007), guaranteed estimates for locally conservative methods

Error components equilibration

- engineering literature, since 1950's
- Ladevèze (since 1980's)
- Verfürth (2003), space and time error equilibration
- Bernardi (2006), equilibration of model errors

Previous results: nonlinear problems

Continuous finite elements

- Han (1994), general framework
- Verfürth (1994), residual estimates
- Veeser (2002), convergence p-Laplacian
- Carstensen and Klose (2003), guaranteed estimates
- Chaillou and Suri (2006, 2007), distinguishing discretization and linearization errors

Other methods

 Kim (2007), guaranteed estimates for locally conservative methods

Error components equilibration

- engineering literature, since 1950's
- Ladevèze (since 1980's)
- Verfürth (2003), space and time error equilibration
- Bernardi (2006), equilibration of model errors

Outline

- A class of nonlinear problems
 - Quasi-linear elliptic problems
- Newton and fixed-point linearizations
- A guaranteed and robust a posteriori error estimate

 - Stopping criteria for linearizations and efficiency
 - Adaptive strategy
 - Application to the conforming finite element method
 - Numerical experiments
- - A guaranteed a posteriori estimate
 - Stopping criteria for iterative solvers
 - Numerical experiments

Outline

- A class of nonlinear problems Quasi-linear elliptic problems
 - Newton and fixed-point linearizations
- - A guaranteed and robust a posteriori error estimate
 - Stopping criteria for linearizations and efficiency
 - Adaptive strategy
 - Application to the conforming finite element method
 - Numerical experiments
- - A guaranteed a posteriori estimate
 - Stopping criteria for iterative solvers
 - Numerical experiments

Quasi-linear elliptic problem

$$-\nabla \cdot \boldsymbol{\sigma}(\nabla u) = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega,$$

where

- $\forall \xi \in \mathbb{R}^d$, $\sigma(\xi) = a(|\xi|)\xi$,
- $a(x) \sim x^{p-2}$ as $x \to +\infty$, $p \in (1, +\infty)$,
- $f \in L^q(\Omega), q := \frac{p}{p-1}$

Example

p-Laplacian:
$$a(x) = x^{p-2}$$

Nonlinear operator
$$A: V := W_0^{1,p}(\Omega) \to V'$$

Weak formulation

Find $u \in V$ such that

$$Au - f$$
 in V'

Quasi-linear elliptic problem

$$-\nabla \cdot \boldsymbol{\sigma}(\nabla u) = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega,$$

where

- $\forall \xi \in \mathbb{R}^d$, $\sigma(\xi) = a(|\xi|)\xi$,
- $a(x) \sim x^{p-2}$ as $x \to +\infty$, $p \in (1, +\infty)$,
- $f \in L^q(\Omega), q := \frac{p}{p-1}$

p-Laplacian:
$$a(x) = x^{p-2}$$

Nonlinear operator
$$A: V := W_0^{1,p}(\Omega) \to V'$$

$$Au - f$$
 in V'

Quasi-linear elliptic problem

$$-\nabla \cdot \boldsymbol{\sigma}(\nabla u) = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega,$$

where

- $\forall \xi \in \mathbb{R}^d$, $\sigma(\xi) = a(|\xi|)\xi$,
- $a(x) \sim x^{p-2}$ as $x \to +\infty$, $p \in (1, +\infty)$,
- $f \in L^q(\Omega), q := \frac{p}{p-1}$

Example

p-Laplacian:
$$a(x) = x^{p-2}$$

Nonlinear operator
$$A: V := W_0^{1,p}(\Omega) \to V'$$

 $\langle Au, v \rangle_{V',V} := (\sigma(\nabla u), \nabla v)$

$$Au - f in V'$$

Quasi-linear elliptic problem

$$-\nabla \cdot \boldsymbol{\sigma}(\nabla u) = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega,$$

where

- $\forall \xi \in \mathbb{R}^d$, $\sigma(\xi) = a(|\xi|)\xi$,
- $a(x) \sim x^{p-2}$ as $x \to +\infty$, $p \in (1, +\infty)$,
- $f \in L^q(\Omega), q := \frac{p}{p-1}$

Example

p-Laplacian:
$$a(x) = x^{p-2}$$

Nonlinear operator
$$A: V := W_0^{1,p}(\Omega) \to V'$$

 $\langle Au, v \rangle_{V',V} := (\sigma(\nabla u), \nabla v)$

$$Au - f in V'$$

Quasi-linear elliptic problem

$$-\nabla \cdot \sigma(\nabla u) = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega,$$

where

- $\forall \xi \in \mathbb{R}^d$, $\sigma(\xi) = a(|\xi|)\xi$,
- $a(x) \sim x^{p-2}$ as $x \to +\infty$, $p \in (1, +\infty)$,
- $f \in L^q(\Omega), q := \frac{p}{p-1}$

Example

p-Laplacian:
$$a(x) = x^{p-2}$$

Nonlinear operator
$$A: V := W_0^{1,p}(\Omega) \to V'$$

 $\langle Au, v \rangle_{V',V} := (\sigma(\nabla u), \nabla v)$

Weak formulation

Find $u \in V$ such that

$$Au = f$$
 in V'

Outline

- A class of nonlinear problems
 - Quasi-linear elliptic problems
 - Newton and fixed-point linearizations
- - A guaranteed and robust a posteriori error estimate
 - Stopping criteria for linearizations and efficiency
 - Adaptive strategy
 - Application to the conforming finite element method
 - Numerical experiments
- - A guaranteed a posteriori estimate
 - Stopping criteria for iterative solvers
 - Numerical experiments

Linearized flux function σ_{L,u_0}

- let $u_0 \in V$
- linearized flux function $\sigma_{\mathrm{L},u_0}:\mathbb{R}^d\to\mathbb{R}^d$ depending on ∇u_0 , $\sigma_{\mathrm{L},u_0}(\nabla u)$

Fixed-point linearization

$$\sigma_{\mathrm{L},u_0}(\boldsymbol{\xi}) := a(|\nabla u_0|)\boldsymbol{\xi}$$

Newton linearization

$$\sigma_{\mathrm{L},u_0}(\boldsymbol{\xi}) := a(|\nabla u_0|)\boldsymbol{\xi} + a'(|\nabla u_0|)\frac{1}{|\nabla u_0|}(\nabla u_0 \otimes \nabla u_0)(\boldsymbol{\xi} - \nabla u_0)$$

Linearizations at $u_0 \in V$

Linearized flux function σ_{L,u_0}

- let $u_0 \in V$
- linearized flux function $\sigma_{\mathrm{L},u_0}:\mathbb{R}^d \to \mathbb{R}^d$ depending on ∇u_0 . $\sigma_{\mathrm{L},u_0}(\nabla u)$

Fixed-point linearization

$$\sigma_{\mathrm{L},u_0}(\boldsymbol{\xi}) := a(|\nabla u_0|)\boldsymbol{\xi}$$

$$\sigma_{\mathrm{L},u_0}(\boldsymbol{\xi}) := a(|\nabla u_0|)\boldsymbol{\xi} + a'(|\nabla u_0|)\frac{1}{|\nabla u_0|}(\nabla u_0 \otimes \nabla u_0)(\boldsymbol{\xi} - \nabla u_0)$$

Linearizations at $u_0 \in V$

Linearized flux function σ_{L,u_0}

- let $u_0 \in V$
- linearized flux function $\sigma_{\mathrm{L},u_0}:\mathbb{R}^d \to \mathbb{R}^d$ depending on ∇u_0 , $\sigma_{\mathrm{L},u_0}(\nabla u)$

Fixed-point linearization

$$\sigma_{\mathrm{L},u_0}(\boldsymbol{\xi}) := a(|\nabla u_0|)\boldsymbol{\xi}$$

Newton linearization

$$\sigma_{\mathrm{L},u_0}(\boldsymbol{\xi}) := a(|\nabla u_0|)\boldsymbol{\xi} + a'(|\nabla u_0|)\frac{1}{|\nabla u_0|}(\nabla u_0 \otimes \nabla u_0)(\boldsymbol{\xi} - \nabla u_0)$$

$$\mathcal{J}_{\textit{u}}(\textit{u}_{L,\textit{h}}) := \|\textit{Au} - \textit{Au}_{L,\textit{h}}\|_{\textit{V'}} = \sup_{\textit{v} \in \textit{V} \setminus \{0\}} \frac{(\sigma(\nabla \textit{u}) - \sigma(\nabla \textit{u}_{L,\textit{h}}), \nabla \textit{v})}{\|\nabla \textit{v}\|_{\textit{p}}}$$

- $u_{1...h} \in V$
- based on the difference of the fluxes
- dual norm of the residual
- inspired from Angermann (1995), Verfürth (2005), Chaillou
- not a norm for the difference $u u_{1,h}$
- avoids any appearance of the ratio continuity constant /
- there holds $J_u(u_{1,h}) \to 0$ if and only if $||u u_{1,h}||_V \to 0$

$$\mathcal{J}_{\textit{u}}(\textit{u}_{L,\textit{h}}) := \|\textit{Au} - \textit{Au}_{L,\textit{h}}\|_{\textit{V'}} = \sup_{\textit{v} \in \textit{V} \setminus \{0\}} \frac{(\sigma(\nabla \textit{u}) - \sigma(\nabla \textit{u}_{L,\textit{h}}), \nabla \textit{v})}{\|\nabla \textit{v}\|_{\textit{p}}}$$

- $u_{\text{L},h} \in V$
- based on the difference of the fluxes
- dual norm of the residual
- inspired from Angermann (1995), Verfürth (2005), Chaillou
- not a norm for the difference $u u_{1,h}$
- avoids any appearance of the ratio continuity constant /
- there holds $J_u(u_{1,h}) \to 0$ if and only if $||u u_{1,h}||_V \to 0$

$$\mathcal{J}_{\textit{u}}(\textit{u}_{L,\textit{h}}) := \|\textit{Au} - \textit{Au}_{L,\textit{h}}\|_{\textit{V'}} = \sup_{\textit{v} \in \textit{V} \setminus \{0\}} \frac{(\sigma(\nabla \textit{u}) - \sigma(\nabla \textit{u}_{L,\textit{h}}), \nabla \textit{v})}{\|\nabla \textit{v}\|_{\textit{p}}}$$

- $u_{\text{L},h} \in V$
- based on the difference of the fluxes
- dual norm of the residual
- inspired from Angermann (1995), Verfürth (2005), Chaillou
- not a norm for the difference $u u_{1,h}$
- avoids any appearance of the ratio continuity constant /
- there holds $J_u(u_{1,h}) \to 0$ if and only if $||u u_{1,h}||_V \to 0$

$$\mathcal{J}_{\textit{u}}(\textit{u}_{L,\textit{h}}) := \|\textit{Au} - \textit{Au}_{L,\textit{h}}\|_{\textit{V'}} = \sup_{\textit{v} \in \textit{V} \setminus \{0\}} \frac{(\sigma(\nabla \textit{u}) - \sigma(\nabla \textit{u}_{L,\textit{h}}), \nabla \textit{v})}{\|\nabla \textit{v}\|_{\textit{p}}}$$

- $u_{\text{L},h} \in V$
- based on the difference of the fluxes
- dual norm of the residual
- inspired from Angermann (1995), Verfürth (2005), Chaillou
- not a norm for the difference $u u_{1,h}$
- avoids any appearance of the ratio continuity constant /
- there holds $J_u(u_{1,h}) \to 0$ if and only if $||u u_{1,h}||_V \to 0$

$$\mathcal{J}_{\textit{u}}(\textit{u}_{L,\textit{h}}) := \|\textit{Au} - \textit{Au}_{L,\textit{h}}\|_{\textit{V}'} = \sup_{\textit{v} \in \textit{V} \setminus \{0\}} \frac{(\sigma(\nabla \textit{u}) - \sigma(\nabla \textit{u}_{L,\textit{h}}), \nabla \textit{v})}{\|\nabla \textit{v}\|_{\textit{p}}}$$

- $u_{\text{L},h} \in V$
- based on the difference of the fluxes
- dual norm of the residual
- inspired from Angermann (1995), Verfürth (2005), Chaillou and Suri (2006, 2007)
- not a norm for the difference $u u_{1,h}$
- avoids any appearance of the ratio continuity constant /
- there holds $J_u(u_{1,h}) \to 0$ if and only if $||u u_{1,h}||_V \to 0$

$$\mathcal{J}_{\textit{u}}(\textit{u}_{L,\textit{h}}) := \|\textit{Au} - \textit{Au}_{L,\textit{h}}\|_{\textit{V}'} = \sup_{\textit{v} \in \textit{V} \setminus \{0\}} \frac{(\sigma(\nabla \textit{u}) - \sigma(\nabla \textit{u}_{L,\textit{h}}), \nabla \textit{v})}{\|\nabla \textit{v}\|_{\textit{p}}}$$

- $u_{\text{L},h} \in V$
- based on the difference of the fluxes
- dual norm of the residual
- inspired from Angermann (1995), Verfürth (2005), Chaillou and Suri (2006, 2007)
- not a norm for the difference $u u_{L,h}$
- avoids any appearance of the ratio continuity constant /
- there holds $J_u(u_{1,h}) \to 0$ if and only if $||u u_{1,h}||_V \to 0$

$$\mathcal{J}_{\textit{u}}(\textit{u}_{L,\textit{h}}) := \|\textit{Au} - \textit{Au}_{L,\textit{h}}\|_{\textit{V}'} = \sup_{\textit{v} \in \textit{V} \setminus \{0\}} \frac{(\sigma(\nabla \textit{u}) - \sigma(\nabla \textit{u}_{L,\textit{h}}), \nabla \textit{v})}{\|\nabla \textit{v}\|_{\textit{p}}}$$

- $u_{\text{L},h} \in V$
- based on the difference of the fluxes
- dual norm of the residual
- inspired from Angermann (1995), Verfürth (2005), Chaillou and Suri (2006, 2007)
- not a norm for the difference $u u_{L,h}$
- avoids any appearance of the ratio continuity constant / monotonicity constant
- there holds $J_u(u_{1,h}) \to 0$ if and only if $||u u_{1,h}||_V \to 0$

$$\mathcal{J}_{\textit{u}}(\textit{u}_{L,\textit{h}}) := \|\textit{Au} - \textit{Au}_{L,\textit{h}}\|_{\textit{V}'} = \sup_{\textit{v} \in \textit{V} \setminus \{0\}} \frac{(\sigma(\nabla \textit{u}) - \sigma(\nabla \textit{u}_{L,\textit{h}}), \nabla \textit{v})}{\|\nabla \textit{v}\|_{\textit{p}}}$$

- $u_{\text{L},h} \in V$
- based on the difference of the fluxes
- dual norm of the residual
- inspired from Angermann (1995), Verfürth (2005), Chaillou and Suri (2006, 2007)
- not a norm for the difference $u u_{L,h}$
- avoids any appearance of the ratio continuity constant / monotonicity constant
- there holds $J_u(u_{\Gamma,h}) \to 0$ if and only if $||u-u_{\Gamma,h}||_V \to 0$

Outline

- - Newton and fixed-point linearizations
- A posteriori error estimates including linearization error
 - A guaranteed and robust a posteriori error estimate
 - Stopping criteria for linearizations and efficiency
 - Adaptive strategy
 - Application to the conforming finite element method
 - Numerical experiments
- - A guaranteed a posteriori estimate
 - Stopping criteria for iterative solvers
 - Numerical experiments

Outline

- - Newton and fixed-point linearizations
- A posteriori error estimates including linearization error
 - A guaranteed and robust a posteriori error estimate
 - Stopping criteria for linearizations and efficiency
 - Adaptive strategy
 - Application to the conforming finite element method
 - Numerical experiments
- - A guaranteed a posteriori estimate
 - Stopping criteria for iterative solvers
 - Numerical experiments

A posteriori error estimate

Assumption A (Equilibrated flux)

Let there be a mesh \mathcal{D}_h of Ω and $\mathbf{t}_h \in \mathbf{H}^q(\operatorname{div},\Omega)$ such that

$$(\nabla \cdot \mathbf{t}_h, 1)_D = (f, 1)_D \quad \forall D \in \mathcal{D}_h^{\text{int}}.$$

- $u \in V$ be the weak solution.
- $u_{1,h} \in V$ be arbitrary,
- Assumption A hold.

$$\mathcal{J}_{u}(u_{\mathrm{L},h}) \leq \eta := \left\{ \sum_{D \in \mathcal{D}_{h}} (\eta_{\mathrm{R},D} + \eta_{\mathrm{DF},D})^{q} \right\}^{1/q} + \left\{ \sum_{D \in \mathcal{D}_{h}} \eta_{\mathrm{L},D}^{q} \right\}^{1/q}.$$

A posteriori error estimate

Assumption A (Equilibrated flux)

Let there be a mesh \mathcal{D}_h of Ω and $\mathbf{t}_h \in \mathbf{H}^q(\operatorname{div}, \Omega)$ such that

$$(\nabla \cdot \mathbf{t}_h, 1)_D = (f, 1)_D \quad \forall D \in \mathcal{D}_h^{\text{int}}.$$

Theorem (A posteriori error estimate)

Let

- $u \in V$ be the weak solution.
- $u_{L,h} \in V$ be arbitrary,
- Assumption A hold.

$$\mathcal{J}_{\textit{U}}(\textit{U}_{\text{L},\textit{h}}) \leq \eta := \left\{ \sum_{\textit{D} \in \mathcal{D}_{\textit{h}}} (\eta_{\text{R},\textit{D}} + \eta_{\text{DF},\textit{D}})^q \right\}^{1/q} + \left\{ \sum_{\textit{D} \in \mathcal{D}_{\textit{h}}} \eta_{\text{L},\textit{D}}^q \right\}^{1/q}.$$

A posteriori error estimate

Assumption A (Equilibrated flux)

Let there be a mesh \mathcal{D}_h of Ω and $\mathbf{t}_h \in \mathbf{H}^q(\operatorname{div},\Omega)$ such that

$$(\nabla \cdot \mathbf{t}_h, 1)_D = (f, 1)_D \quad \forall D \in \mathcal{D}_h^{\text{int}}.$$

Theorem (A posteriori error estimate)

Let

- $u \in V$ be the weak solution.
- $u_{L,h} \in V$ be arbitrary,
- Assumption A hold.

Then there holds

$$\mathcal{J}_{\boldsymbol{U}}(\boldsymbol{u}_{\mathrm{L},h}) \leq \eta := \left\{ \sum_{\boldsymbol{D} \in \mathcal{D}_h} (\eta_{\mathrm{R},\boldsymbol{D}} + \eta_{\mathrm{DF},\boldsymbol{D}})^q \right\}^{1/q} + \left\{ \sum_{\boldsymbol{D} \in \mathcal{D}_h} \eta_{\mathrm{L},\boldsymbol{D}}^q \right\}^{1/q}.$$

Estimators

Estimators

residual estimator

$$\eta_{\mathrm{R},D} := C_{\mathrm{P}/\mathrm{F},D,D} h_D \| f - \nabla \cdot \mathbf{t}_h \|_{q,D}$$

diffusive flux estimator

$$\eta_{\mathrm{DF},D} := \| \boldsymbol{\sigma}_{\mathrm{L}}(\nabla u_{\mathrm{L},h}) + \mathbf{t}_h \|_{q,D}$$

linearization estimator

$$\eta_{\mathrm{L},\mathrm{D}} := \| \boldsymbol{\sigma}(\nabla u_{\mathrm{L},h}) - \boldsymbol{\sigma}_{\mathrm{L}}(\nabla u_{\mathrm{L},h}) \|_{q,\mathrm{D}}$$

Outline

- - Newton and fixed-point linearizations
- A posteriori error estimates including linearization error
 - A guaranteed and robust a posteriori error estimate
 - Stopping criteria for linearizations and efficiency
 - Adaptive strategy
 - Application to the conforming finite element method
 - Numerical experiments
- - A guaranteed a posteriori estimate
 - Stopping criteria for iterative solvers
 - Numerical experiments

Balancing the discretization and linearization errors

Global linearization stopping criterion

stop the Newton (or fixed-point) linearization whenever

$$\eta_{\rm L} \leq \gamma \, \eta_{\rm D}$$

where

$$egin{aligned} \eta_{ ext{L}} &:= \left\{ \sum_{ extstyle D \in \mathcal{D}_h} \eta_{ extstyle L, extstyle D}^q
ight\}^{1/q} & ext{linearization error} \ \eta_{ extstyle D} &:= \left\{ \sum_{ extstyle D \in \mathcal{D}_h} (\eta_{ extstyle R, extstyle D} + \eta_{ extstyle D F, extstyle D})^q
ight\}^{1/q} & ext{discretization error} \end{aligned}$$

Local linearization stopping criterion

• stop the Newton (or fixed-point) linearization whenever

$$\eta_{\text{L},\text{D}} < \gamma_{\text{D}} (\eta_{\text{R},\text{D}} + \eta_{\text{DE},\text{D}}) \qquad \forall D \in \mathcal{D}_{\text{h}}$$

Balancing the discretization and linearization errors

Global linearization stopping criterion

stop the Newton (or fixed-point) linearization whenever

$$\eta_{\rm L} \leq \gamma \, \eta_{\rm D}$$

where

$$egin{aligned} \eta_{ ext{L}} &:= \left\{ \sum_{ extstyle D \in \mathcal{D}_h} \eta_{ extstyle L, extstyle D}^q
ight\}^{1/q} & ext{linearization error} \ \eta_{ extstyle D} &:= \left\{ \sum_{ extstyle D \in \mathcal{D}_h} (\eta_{ extstyle R, extstyle D} + \eta_{ extstyle D F, extstyle D})^q
ight\}^{1/q} & ext{discretization error} \end{aligned}$$

Local linearization stopping criterion

stop the Newton (or fixed-point) linearization whenever

$$\eta_{L,D} \le \gamma_D \left(\eta_{R,D} + \eta_{DF,D} \right) \qquad \forall D \in \mathcal{D}_h$$

Assumption B (Approximation property)

There holds, for all $D \in \mathcal{D}_h$,

$$\eta_{\mathrm{DF},D} \lesssim \left\{ \sum_{T \in \mathcal{S}_D} h_T^q \| f + \nabla \cdot \sigma_{\mathrm{L}}(\nabla u_{\mathrm{L},h}) \|_{q,T}^q + \sum_{F \in \mathcal{G}_D^T} h_F \| \llbracket \sigma_{\mathrm{L}}(\nabla u_{\mathrm{L},h}) \cdot \mathbf{n} \rrbracket \|_{q,F}^q \right\}^{\frac{1}{q}}.$$

$$\eta_{\mathrm{L},D} + \eta_{\mathrm{R},D} + \eta_{\mathrm{DF},D} \leq C \|\sigma(\nabla u) - \sigma(\nabla u_{\mathrm{L},h})\|_{q,D},$$
 where the constant C is independent of a and p .

Assumption B (Approximation property)

There holds, for all $D \in \mathcal{D}_h$,

$$\eta_{\mathrm{DF},D} \lesssim \left\{ \sum_{T \in \mathcal{S}_D} h_T^q \| f + \nabla \cdot \boldsymbol{\sigma}_{\mathrm{L}}(\nabla u_{\mathrm{L},h}) \|_{q,T}^q + \sum_{F \in \mathcal{G}_D^T} h_F \| [\![\boldsymbol{\sigma}_{\mathrm{L}}(\nabla u_{\mathrm{L},h}) \cdot \mathbf{n}]\!] \|_{q,F}^q \right\}^{\frac{1}{q}}.$$

Theorem (Local efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the local stopping criterion, with γ_D small enough, hold. Let Assumption B hold.

$$\eta_{\mathrm{L},D} + \eta_{\mathrm{R},D} + \eta_{\mathrm{DF},D} \leq C \|\sigma(\nabla u) - \sigma(\nabla u_{\mathrm{L},h})\|_{q,D}$$
 where the constant C is independent of a and p .

Assumption B (Approximation property)

There holds, for all $D \in \mathcal{D}_h$,

$$\eta_{\mathrm{DF},D} \lesssim \left\{ \sum_{T \in \mathcal{S}_D} h_T^q \| f + \nabla \cdot \sigma_{\mathrm{L}}(\nabla u_{\mathrm{L},h}) \|_{q,T}^q + \sum_{F \in \mathcal{G}_D^T} h_F \| \llbracket \sigma_{\mathrm{L}}(\nabla u_{\mathrm{L},h}) \cdot \mathbf{n} \rrbracket \|_{q,F}^q \right\}^{\frac{1}{q}}.$$

Theorem (Local efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the local stopping criterion, with γ_D small enough, hold. Let Assumption B hold. Then

$$\eta_{\mathrm{L},D} + \eta_{\mathrm{R},D} + \eta_{\mathrm{DF},D} \leq C \|\sigma(\nabla u) - \sigma(\nabla u_{\mathrm{L},h})\|_{q,D},$$

where the constant C is independent of a and p.

Assumption B (Approximation property)

There holds, for all $D \in \mathcal{D}_h$,

$$\eta_{\mathrm{DF},D} \lesssim \left\{ \sum_{T \in \mathcal{S}_D} h_T^q \| f + \nabla \cdot \sigma_{\mathrm{L}}(\nabla u_{\mathrm{L},h}) \|_{q,T}^q + \sum_{F \in \mathcal{G}_D^T} h_F \| \llbracket \sigma_{\mathrm{L}}(\nabla u_{\mathrm{L},h}) \cdot \mathbf{n} \rrbracket \|_{q,F}^q \right\}^{\frac{1}{q}}.$$

Theorem (Local efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the local stopping criterion, with γ_D small enough, hold. Let Assumption B hold. Then

$$\eta_{\mathrm{L},\mathrm{D}} + \eta_{\mathrm{R},\mathrm{D}} + \eta_{\mathrm{DF},\mathrm{D}} \leq C \|\sigma(\nabla u) - \sigma(\nabla u_{\mathrm{L},h})\|_{q,\mathrm{D}},$$

where the constant C is independent of a and p.

Global efficiency

Theorem (Global efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the global stopping criterion, with γ small enough, hold. Let Assumption B hold.

$$\eta \leq C \mathcal{J}_{\mathcal{U}}(u_{L,h}),$$

• robustness with respect to the nonlinearity thanks to the

Theorem (Global efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the global stopping criterion, with γ small enough, hold. Let Assumption B hold. Recall that $\mathcal{J}_{u}(u_{L,h}) \leq \eta$. Then

$$\eta \leq C \mathcal{J}_{u}(u_{L,h}),$$

• robustness with respect to the nonlinearity thanks to the

Global efficiency

Theorem (Global efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the global stopping criterion, with γ small enough, hold. Let Assumption B hold. Recall that $\mathcal{J}_{u}(u_{L,h}) \leq \eta$. Then

$$\eta \leq C \mathcal{J}_{u}(u_{L,h}),$$

where the constant C is independent of a and p.

• robustness with respect to the nonlinearity thanks to the

Global efficiency

Theorem (Global efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the global stopping criterion, with γ small enough, hold. Let Assumption B hold. Recall that $\mathcal{J}_{u}(u_{L,h}) \leq \eta$. Then

$$\eta \leq C \mathcal{J}_{u}(u_{L,h}),$$

where the constant C is independent of a and p.

 robustness with respect to the nonlinearity thanks to the choice of the dual norm

Outline

- - Newton and fixed-point linearizations
- A posteriori error estimates including linearization error
 - A guaranteed and robust a posteriori error estimate
 - Stopping criteria for linearizations and efficiency
 - Adaptive strategy
 - Application to the conforming finite element method
 - Numerical experiments
- - A guaranteed a posteriori estimate
 - Stopping criteria for iterative solvers
 - Numerical experiments

- choose an initial mesh \mathcal{T}_h^0 and an initial guess $u_{\scriptscriptstyle \rm I}^0 \,_h \in V_h(\mathcal{T}_h^0)$
- on the mesh \mathcal{T}_h^j , $j \ge 0$, for $i \ge 1$, do the iterative loop:
- evaluate the overall a posteriori error estimate n
- if the desired overall precision is reached, then stop, else

- choose an initial mesh \mathcal{T}_h^0 and an initial guess $u_{1,h}^0 \in V_h(\mathcal{T}_h^0)$
- on the mesh \mathcal{T}_h^j , $j \ge 0$, for $i \ge 1$, do the iterative loop:
 - 1) linearize the flux function at $u_{i,h}^{i-1}$
 - 2) solve the discrete linearized problem for $u_{1,h}^i$
 - 3) if the linearization stopping criterion is reached, then stop the linearization, else set $i \leftarrow (i+1)$ and go to step 1)
- evaluate the overall a posteriori error estimate n
- if the desired overall precision is reached, then stop, else

- choose an initial mesh \mathcal{T}_h^0 and an initial guess $u_{1,h}^0 \in V_h(\mathcal{T}_h^0)$
- on the mesh \mathcal{T}_h^j , $j \ge 0$, for $i \ge 1$, do the iterative loop:
 - 1) linearize the flux function at $u_{i,h}^{i-1}$
 - 2) solve the discrete linearized problem for $u_{1,h}^i$
 - 3) if the linearization stopping criterion is reached, then stop the linearization, else set $i \leftarrow (i+1)$ and go to step 1)
- evaluate the overall a posteriori error estimate η
- if the desired overall precision is reached, then stop, else

- choose an initial mesh \mathcal{T}_h^0 and an initial guess $u_{1,h}^0 \in V_h(\mathcal{T}_h^0)$
- on the mesh \mathcal{T}_h^j , $j \ge 0$, for $i \ge 1$, do the iterative loop:
 - 1) linearize the flux function at $u_{1,h}^{i-1}$
 - 2) solve the discrete linearized problem for $u_{1,h}^i$
 - 3) if the linearization stopping criterion is reached, then stop the linearization, else set $i \leftarrow (i+1)$ and go to step 1)
- evaluate the overall a posteriori error estimate η
- if the desired overall precision is reached, then stop, else refine the mesh adaptively, interpolate to it the current solution, $i \leftarrow (i+1)$, and go to the second step

Outline

- - Newton and fixed-point linearizations
- A posteriori error estimates including linearization error
 - A guaranteed and robust a posteriori error estimate
 - Stopping criteria for linearizations and efficiency
 - Adaptive strategy
 - Application to the conforming finite element method
 - Numerical experiments
- - A guaranteed a posteriori estimate
 - Stopping criteria for iterative solvers
 - Numerical experiments

Application to the conforming finite element method

- $V_h \subset V$, continuous piecewise linears
- discrete linearized problem: find $u_{L,h} \in V_h$ such that

$$(\sigma_{\mathsf{L}}(\nabla u_{\mathsf{L},h}), \nabla v_h) = (f, v_h) \quad \forall v_h \in V_h$$

verify Assumptions A and B

Application to the conforming finite element method

- $V_h \subset V$, continuous piecewise linears
- discrete linearized problem: find $u_{L,h} \in V_h$ such that

$$(\sigma_{\mathbf{L}}(\nabla u_{\mathbf{L},h}), \nabla v_h) = (f, v_h) \quad \forall v_h \in V_h$$

verify Assumptions A and B

Application to the conforming finite element method

- $V_h \subset V$, continuous piecewise linears
- discrete linearized problem: find $u_{L,h} \in V_h$ such that

$$(\sigma_{\mathbf{L}}(\nabla u_{\mathbf{L},h}), \nabla v_h) = (f, v_h) \quad \forall v_h \in V_h$$

verify Assumptions A and B

Construction of t_h

- \mathcal{D}_h : dual mesh around nodes
- S_h : simplicial submesh of both T_h and D_h (as in Luce and Wohlmuth (2004))
- definition of $\mathbf{t}_h \in \mathbf{RTN}(\mathcal{S}_h)$ by direct prescription:

$$\mathbf{t}_h \cdot \mathbf{n}_F := -\{ \boldsymbol{\sigma}_{\mathbf{L},h} \cdot \mathbf{n}_F \}$$

• definition of \mathbf{t}_h by MFE solution of local Neumann/Dirichlet problems: find $\mathbf{t}_h \in \mathbf{RTN}_{\mathrm{N}}(\mathcal{S}_D)$ and $q_h \in \mathbb{P}_0^*(\mathcal{S}_D)$ such that

$$\begin{aligned} (\mathbf{t}_h + \boldsymbol{\sigma}_{\mathrm{L},h}, \mathbf{v}_h)_D - (q_h, \nabla \cdot \mathbf{v}_h)_D &= 0 & \forall \mathbf{v}_h \in \mathbf{RTN}_{\mathrm{N},0}(\mathcal{S}_D), \\ (\nabla \cdot \mathbf{t}_h, \phi_h)_D &= (f, \phi_h)_D & \forall \phi_h \in \mathbb{P}_0^*(\mathcal{S}_D) \end{aligned}$$

The conforming finite element method

Construction of t_h

- \mathcal{D}_h : dual mesh around nodes
- S_h : simplicial submesh of both T_h and D_h (as in Luce and Wohlmuth (2004))
- definition of $\mathbf{t}_h \in \mathbf{RTN}(\mathcal{S}_h)$ by direct prescription:

$$\mathbf{t}_h \cdot \mathbf{n}_F := -\{ \boldsymbol{\sigma}_{\mathbf{L},h} \cdot \mathbf{n}_F \}$$

• definition of \mathbf{t}_h by MFE solution of local Neumann/Dirichlet problems: find $\mathbf{t}_h \in \mathbf{RTN}_{\mathbb{N}}(\mathcal{S}_D)$ and $q_h \in \mathbb{P}_0^*(\mathcal{S}_D)$ such that

$$(\mathbf{t}_h + \boldsymbol{\sigma}_{\mathrm{L},h}, \mathbf{v}_h)_D - (q_h, \nabla \cdot \mathbf{v}_h)_D = 0 \qquad \forall \mathbf{v}_h \in \mathbf{RTN}_{\mathrm{N},0}(\mathcal{S}_D),$$

$$(\nabla \cdot \mathbf{t}_h, \phi_h)_D = (f, \phi_h)_D \qquad \forall \phi_h \in \mathbb{P}_0^*(\mathcal{S}_D)$$

The conforming finite element method

Construction of t_h

- \mathcal{D}_h : dual mesh around nodes
- S_h : simplicial submesh of both T_h and D_h (as in Luce and Wohlmuth (2004))
- definition of $\mathbf{t}_h \in \mathbf{RTN}(\mathcal{S}_h)$ by direct prescription:

$$\mathbf{t}_h \cdot \mathbf{n}_F := -\{\!\{ \boldsymbol{\sigma}_{\mathrm{L},h} \cdot \mathbf{n}_F \}\!\}$$

• definition of \mathbf{t}_h by MFE solution of local Neumann/Dirichlet problems: find $\mathbf{t}_h \in \mathbf{RTN}_{\mathbb{N}}(\mathcal{S}_D)$ and $q_h \in \mathbb{P}_0^*(\mathcal{S}_D)$ such that

$$(\mathbf{t}_h + \boldsymbol{\sigma}_{\mathrm{L},h}, \mathbf{v}_h)_D - (q_h, \nabla \cdot \mathbf{v}_h)_D = 0 \qquad \forall \mathbf{v}_h \in \mathbf{RTN}_{\mathrm{N},0}(\mathcal{S}_D),$$

$$(\nabla \cdot \mathbf{t}_h, \phi_h)_D = (f, \phi_h)_D \qquad \forall \phi_h \in \mathbb{P}_0^*(\mathcal{S}_D)$$

The conforming finite element method

Construction of t_h

- \mathcal{D}_h : dual mesh around nodes
- S_h : simplicial submesh of both T_h and D_h (as in Luce and Wohlmuth (2004))
- definition of $\mathbf{t}_h \in \mathbf{RTN}(\mathcal{S}_h)$ by direct prescription:

$$\mathbf{t}_h \cdot \mathbf{n}_F := -\{\!\{ \boldsymbol{\sigma}_{\mathrm{L},h} \cdot \mathbf{n}_F \}\!\}$$

• definition of \mathbf{t}_h by MFE solution of local Neumann/Dirichlet problems: find $\mathbf{t}_h \in \mathbf{RTN}_{\mathbb{N}}(\mathcal{S}_D)$ and $q_h \in \mathbb{P}_0^*(\mathcal{S}_D)$ such that

$$(\mathbf{t}_h + \sigma_{\mathrm{L},h}, \mathbf{v}_h)_D - (q_h, \nabla \cdot \mathbf{v}_h)_D = 0 \qquad \forall \mathbf{v}_h \in \mathbf{RTN}_{\mathrm{N},0}(\mathcal{S}_D), \ (\nabla \cdot \mathbf{t}_h, \phi_h)_D = (f, \phi_h)_D \qquad \forall \phi_h \in \mathbb{P}_0^*(\mathcal{S}_D)$$

Outline

- - Newton and fixed-point linearizations
- A posteriori error estimates including linearization error
 - A guaranteed and robust a posteriori error estimate
 - Stopping criteria for linearizations and efficiency
 - Adaptive strategy
 - Application to the conforming finite element method
 - Numerical experiments
- - A guaranteed a posteriori estimate
 - Stopping criteria for iterative solvers
 - Numerical experiments

Computable upper and lower bounds on the dual norm

recall that

$$\|\mathit{Au} - \mathit{Au}_{\mathsf{L},h}\|_{\mathit{V'}} = \sup_{\mathsf{v} \in \mathit{V} \setminus \{0\}} \frac{(\sigma(\nabla \mathit{u}) - \sigma(\nabla \mathit{u}_{\mathsf{L},h}), \nabla \mathit{v})}{\|\nabla \mathit{v}\|_{\mathit{p}}}$$

• following Chaillou and Suri (2006), there exist computable upper and lower bounds for $||Au - Au_{L,h}||_{V'}$:

$$\begin{split} & \mathcal{J}_{\textit{u}}(\textit{u}_{L,h}) \leq \mathcal{J}^{\text{up}}_{\textit{u}}(\textit{u}_{L,h}) := \| \sigma(\nabla \textit{u}) - \sigma(\nabla \textit{u}_{L,h}) \|_{\textit{q}}, \\ & \mathcal{J}_{\textit{u}}(\textit{u}_{L,h}) \geq \mathcal{J}^{\text{low}}_{\textit{u}}(\textit{u}_{L,h}) := \frac{(\sigma(\nabla \textit{u}) - \sigma(\nabla \textit{u}_{L,h}), \nabla(\textit{u} - \textit{u}_{L,h}))}{\|\nabla(\textit{u} - \textit{u}_{L,h})\|_{\textit{p}}} \end{split}$$

$$\mathcal{I}^{\mathrm{up}} := rac{\eta}{\mathcal{J}_{\scriptscriptstyle U}^{\mathrm{up}}(u_{\mathrm{L},h})} \qquad ext{and} \qquad \mathcal{I}^{\mathrm{low}} := \quad rac{\eta}{\mathcal{J}_{\scriptscriptstyle U}^{\mathrm{low}}(u_{\mathrm{L},h})}$$

Computable upper and lower bounds on the dual norm

recall that

$$\|\mathit{Au} - \mathit{Au}_{\mathsf{L},h}\|_{\mathit{V'}} = \sup_{\mathsf{v} \in \mathit{V} \setminus \{0\}} \frac{(\sigma(\nabla \mathit{u}) - \sigma(\nabla \mathit{u}_{\mathsf{L},h}), \nabla \mathit{v})}{\|\nabla \mathit{v}\|_{\mathit{p}}}$$

• following Chaillou and Suri (2006), there exist computable upper and lower bounds for $||Au - Au_{L,h}||_{V'}$:

$$\begin{split} & \mathcal{J}_{\textit{u}}(\textit{u}_{L,h}) \leq \mathcal{J}^{\text{up}}_{\textit{u}}(\textit{u}_{L,h}) := \| \sigma(\nabla \textit{u}) - \sigma(\nabla \textit{u}_{L,h}) \|_{\textit{q}}, \\ & \mathcal{J}_{\textit{u}}(\textit{u}_{L,h}) \geq \mathcal{J}^{\text{low}}_{\textit{u}}(\textit{u}_{L,h}) := \frac{(\sigma(\nabla \textit{u}) - \sigma(\nabla \textit{u}_{L,h}), \nabla(\textit{u} - \textit{u}_{L,h}))}{\|\nabla(\textit{u} - \textit{u}_{L,h})\|_{\textit{p}}} \end{split}$$

$$\mathcal{I}^{\mathrm{up}} := rac{\eta}{\mathcal{J}_{\scriptscriptstyle U}^{\mathrm{up}}(u_{\mathrm{L},h})} \qquad ext{and} \qquad \mathcal{I}^{\mathrm{low}} := \quad rac{\eta}{\mathcal{J}_{\scriptscriptstyle U}^{\mathrm{low}}(u_{\mathrm{L},h})}$$

Computable upper and lower bounds on the dual norm

recall that

$$\|\mathit{Au} - \mathit{Au}_{\mathsf{L},h}\|_{\mathit{V'}} = \sup_{\mathsf{v} \in \mathit{V} \setminus \{0\}} \frac{(\sigma(\nabla \mathit{u}) - \sigma(\nabla \mathit{u}_{\mathsf{L},h}), \nabla \mathit{v})}{\|\nabla \mathit{v}\|_{\mathit{p}}}$$

• following Chaillou and Suri (2006), there exist computable upper and lower bounds for $||Au - Au_{L,h}||_{V'}$:

$$\begin{split} & \mathcal{J}_{\textit{u}}(\textit{u}_{L,\textit{h}}) \leq \mathcal{J}^{\text{up}}_{\textit{u}}(\textit{u}_{L,\textit{h}}) := \| \sigma(\nabla \textit{u}) - \sigma(\nabla \textit{u}_{L,\textit{h}}) \|_{\textit{q}}, \\ & \mathcal{J}_{\textit{u}}(\textit{u}_{L,\textit{h}}) \geq \mathcal{J}^{\text{low}}_{\textit{u}}(\textit{u}_{L,\textit{h}}) := \frac{(\sigma(\nabla \textit{u}) - \sigma(\nabla \textit{u}_{L,\textit{h}}), \nabla(\textit{u} - \textit{u}_{L,\textit{h}}))}{\|\nabla(\textit{u} - \textit{u}_{L,\textit{h}})\|_{\textit{p}}} \end{split}$$

$$\mathcal{I}^{\mathrm{up}} := rac{\eta}{\mathcal{J}_{U}^{\mathrm{up}}(u_{\mathrm{L},h})} \qquad ext{and} \qquad \mathcal{I}^{\mathrm{low}} := \quad rac{\eta}{\mathcal{J}_{U}^{\mathrm{low}}(u_{\mathrm{L},h})}$$

Computable upper and lower bounds on the dual norm

recall that

$$\|\mathit{Au} - \mathit{Au}_{\mathsf{L},h}\|_{\mathit{V'}} = \sup_{\mathit{v} \in \mathit{V} \setminus \{0\}} \frac{(\sigma(\nabla \mathit{u}) - \sigma(\nabla \mathit{u}_{\mathsf{L},h}), \nabla \mathit{v})}{\|\nabla \mathit{v}\|_{\mathit{p}}}$$

• following Chaillou and Suri (2006), there exist computable upper and lower bounds for $||Au - Au_{L,h}||_{V'}$:

$$\begin{split} & \mathcal{J}_{\textit{u}}(\textit{u}_{L,\textit{h}}) \leq \mathcal{J}^{\text{up}}_{\textit{u}}(\textit{u}_{L,\textit{h}}) := \| \sigma(\nabla \textit{u}) - \sigma(\nabla \textit{u}_{L,\textit{h}}) \|_{\textit{q}}, \\ & \mathcal{J}_{\textit{u}}(\textit{u}_{L,\textit{h}}) \geq \mathcal{J}^{\text{low}}_{\textit{u}}(\textit{u}_{L,\textit{h}}) := \frac{(\sigma(\nabla \textit{u}) - \sigma(\nabla \textit{u}_{L,\textit{h}}), \nabla(\textit{u} - \textit{u}_{L,\textit{h}}))}{\|\nabla(\textit{u} - \textit{u}_{L,\textit{h}})\|_{\textit{p}}} \end{split}$$

$$\mathcal{I}^{\mathrm{up}} := rac{\eta}{\mathcal{J}_{\mathcal{U}}^{\mathrm{up}}(u_{\mathrm{L},h})} \quad ext{ and } \quad \mathcal{I}^{\mathrm{low}} := \quad rac{\eta}{\mathcal{J}_{\mathcal{U}}^{\mathrm{low}}(u_{\mathrm{L},h})}$$

Numerical experiment I

Model problem

p-Laplacian

$$\nabla \cdot (|\nabla u|^{p-2} \nabla u) = f \quad \text{in } \Omega,$$

$$u = u_0 \quad \text{on } \partial \Omega$$

weak solution (used to impose a Dirichlet BC)

$$u_0(x,y) = -\frac{p-1}{p} \left((x - \frac{1}{2})^2 + (y - \frac{1}{2})^2 \right)^{\frac{p}{2(p-1)}} + \frac{p-1}{p} \left(\frac{1}{2} \right)^{\frac{p}{p-1}}$$

• tested values p = 1.4, 3, 10, 50

Analytical and approximate solutions

Error distribution on a uniformly refined mesh, p = 3

Estimated error distribution

Exact error distribution

Estimated and actual errors and the eff. index, p = 1.4

Estimated and actual errors

Effectivity index

Estimated and actual errors and the eff. index, p = 3

Estimated and actual errors

Effectivity index

Estimated and actual errors and the eff. index, p = 10

Estimated and actual errors

Effectivity index

Discretization and linearization componenets

Different error components

Evolution of Newton iterations

Classical versus balanced Newton, uniform refinement

Classical versus balanced Newton, adaptive ref.

Numerical experiment II

Model problem

p-Laplacian

$$\nabla \cdot (|\nabla u|^{p-2} \nabla u) = f \quad \text{in } \Omega,$$

$$u = u_0 \quad \text{on } \partial \Omega$$

weak solution (used to impose a Dirichlet BC)

$$u_0(r,\theta) = r^{\frac{7}{8}} \sin(\theta^{\frac{7}{8}})$$

• p = 4, L-shape domain, singularity in the origin (Carstensen and Klose (2003))

Analytical and approximate solutions

Analytical and approximate solutions

Error distribution on a uniformly refined mesh

Estimated error distribution

Exact error distribution

Error distribution on an adaptively refined mesh

Estimated error distribution

Exact error distribution

Estimated and actual errors and the effectivity index

Estimated and actual errors

Effectivity index

Outline

- 1 Introduction
- A class of nonlinear problems
 - Quasi-linear elliptic problems
 - Newton and fixed-point linearizations
- 3 A posteriori error estimates including linearization error
 - A guaranteed and robust a posteriori error estimate
 - Stopping criteria for linearizations and efficiency
 - Adaptive strategy
 - Application to the conforming finite element method
 - Numerical experiments
- A posteriori estimates including algebraic error
 - A guaranteed a posteriori estimate
 - Stopping criteria for iterative solvers
 - Numerical experiments
- 5 Concluding remarks and future work

A model elliptic problem

$$-\nabla \cdot (\mathbf{S} \nabla p) = f \text{ in } \Omega,$$

 $p = g \text{ on } \Gamma := \partial \Omega$

- at some point, we shall solve AX = B
- we only solve it inexactly, $\mathbb{A}X^* \approx B$
- we know the algebraic residual, $R := B AX^*$

A model elliptic problem

$$-\nabla \cdot (\mathbf{S} \nabla p) = f \text{ in } \Omega,$$

 $p = g \text{ on } \Gamma := \partial \Omega$

- at some point, we shall solve AX = B
- we only solve it inexactly, $\mathbb{A}X^* \approx B$
- we know the algebraic residual, $R := B AX^*$

A model elliptic problem

$$-\nabla \cdot (\mathbf{S} \nabla p) = f \text{ in } \Omega,$$

 $p = g \text{ on } \Gamma := \partial \Omega$

- at some point, we shall solve $\mathbb{A}X = B$
- we only solve it inexactly, $\mathbb{A}X^* \approx B$
- we know the algebraic residual, $R := B AX^*$

A model elliptic problem

$$-\nabla \cdot (\mathbf{S} \nabla p) = f \text{ in } \Omega,$$

 $p = g \text{ on } \Gamma := \partial \Omega$

- at some point, we shall solve $\mathbb{A}X = B$
- we only solve it inexactly, $\mathbb{A}X^* \approx B$
- we know the algebraic residual, $R := B AX^*$

Outline

- Introduction
- A class of nonlinear problems
 - Quasi-linear elliptic problems
 - Newton and fixed-point linearizations
- A posteriori error estimates including linearization error
 - A guaranteed and robust a posteriori error estimate
 - Stopping criteria for linearizations and efficiency
 - Adaptive strategy
 - Application to the conforming finite element method
 - Numerical experiments
- A posteriori estimates including algebraic error
 - A guaranteed a posteriori estimate
 - Stopping criteria for iterative solvers
 - Numerical experiments
- 5 Concluding remarks and future work

Theorem (Estimate including the algebraic error, FVs/MFEs)

There holds

$$|||\boldsymbol{p} - \tilde{p}_h^{\mathrm{a}}||| \leq \left\{ \sum_{K \in \mathcal{T}_h} \eta_{\mathrm{NC},K}^2 \right\}^{\frac{1}{2}} + \left\{ \sum_{K \in \mathcal{T}_h} \eta_{\mathrm{R},K}^2 \right\}^{\frac{1}{2}} + \left\{ \sum_{K \in \mathcal{T}_h} \eta_{\mathrm{AE},K}^2 \right\}^{\frac{1}{2}}.$$

Outline

- - Newton and fixed-point linearizations
- - A guaranteed and robust a posteriori error estimate
 - Stopping criteria for linearizations and efficiency
 - Adaptive strategy
 - Application to the conforming finite element method
 - Numerical experiments
- A posteriori estimates including algebraic error
 - A guaranteed a posteriori estimate
 - Stopping criteria for iterative solvers
 - Numerical experiments

Stopping criteria for iterative solvers

Global stopping criterion

stop the iterative solver whenever

$$\eta_{AE} \leq \gamma \, \eta_{NC}$$

where

$$\eta_{\mathrm{AE}} = \left\{ \sum_{K \in \mathcal{T}_h} \eta_{\mathrm{AE},K}^2 \right\}^{\frac{1}{2}}, \quad \eta_{\mathrm{NC}} = \left\{ \sum_{K \in \mathcal{T}_h} \eta_{\mathrm{NC},K}^2 \right\}^{\frac{1}{2}}$$

Local stopping criterion

stop the iterative solver whenever

$$n_{AFK} < \gamma_K n_{NCK} \quad \forall K \in T$$

Stopping criteria for iterative solvers

Global stopping criterion

stop the iterative solver whenever

$$\eta_{AE} \leq \gamma \, \eta_{NC}$$

where

$$\eta_{\mathrm{AE}} = \left\{\sum_{K \in \mathcal{T}_h} \eta_{\mathrm{AE},K}^2 \right\}^{\frac{1}{2}}, \quad \eta_{\mathrm{NC}} = \left\{\sum_{K \in \mathcal{T}_h} \eta_{\mathrm{NC},K}^2 \right\}^{\frac{1}{2}}$$

Local stopping criterion

stop the iterative solver whenever

$$\eta_{AE,K} \leq \gamma_K \, \eta_{NC,K} \qquad \forall K \in \mathcal{T}_h$$

Outline

- - Newton and fixed-point linearizations
- - A guaranteed and robust a posteriori error estimate
 - Stopping criteria for linearizations and efficiency
 - Adaptive strategy
 - Application to the conforming finite element method
 - Numerical experiments
- A posteriori estimates including algebraic error
 - A guaranteed a posteriori estimate
 - Stopping criteria for iterative solvers
 - Numerical experiments

I Nonlin. pbs Est. linearization err. Est. algebraic err. C A posteriori estimate Stopping crit. lin. solvers Num. exp.

Analytical solution and adaptively refined mesh

Error, estimate, and effectivity index

Error and algebraic and discretization estimates

Effectivity index

Outline

- - Quasi-linear elliptic problems
 - Newton and fixed-point linearizations
- - A guaranteed and robust a posteriori error estimate
 - Stopping criteria for linearizations and efficiency
 - Adaptive strategy
 - Application to the conforming finite element method
 - Numerical experiments
- - A guaranteed a posteriori estimate
 - Stopping criteria for iterative solvers
 - Numerical experiments
- Concluding remarks and future work

Concluding remarks

- linear/nonlinear systems are never solved exactly in practical large scale computations
- present estimates: certified overall error bound
- linear/nonlinear sts should be solved inexactly on purpose
 - balancing discretization and algebraic/linearization errors by stopping criteria
 - useless to make an extensive number of iterations after the algebraic/linearization error drops below the discretization one
 - important computational savings
- local efficiency: suitable for adaptive mesh refinement
- guaranteed, robust, locally computable estimates

- nonlinear case for nonconforming methods
- systems of nonlinear PDEs

Concluding remarks

- linear/nonlinear systems are never solved exactly in practical large scale computations
- present estimates: certified overall error bound
- linear/nonlinear sts should be solved inexactly on purpose
 - balancing discretization and algebraic/linearization errors by stopping criteria
 - useless to make an extensive number of iterations after the algebraic/linearization error drops below the discretization one
 - important computational savings
- local efficiency: suitable for adaptive mesh refinement
- guaranteed, robust, locally computable estimates

- nonlinear case for nonconforming methods
- systems of nonlinear PDEs

Concluding remarks

- linear/nonlinear systems are never solved exactly in practical large scale computations
- present estimates: certified overall error bound
- linear/nonlinear sts should be solved inexactly on purpose
 - balancing discretization and algebraic/linearization errors by stopping criteria
 - useless to make an extensive number of iterations after the algebraic/linearization error drops below the discretization one
 - important computational savings
- local efficiency: suitable for adaptive mesh refinement
- guaranteed, robust, locally computable estimates

- nonlinear case for nonconforming methods
- systems of nonlinear PDEs

Concluding remarks

- linear/nonlinear systems are never solved exactly in practical large scale computations
- present estimates: certified overall error bound
- linear/nonlinear sts should be solved inexactly on purpose
 - balancing discretization and algebraic/linearization errors by stopping criteria
 - useless to make an extensive number of iterations after the algebraic/linearization error drops below the discretization one
 - important computational savings
- local efficiency: suitable for adaptive mesh refinement
- guaranteed, robust, locally computable estimates

- nonlinear case for nonconforming methods
- systems of nonlinear PDEs

Concluding remarks

- linear/nonlinear systems are never solved exactly in practical large scale computations
- present estimates: certified overall error bound
- linear/nonlinear sts should be solved inexactly on purpose
 - balancing discretization and algebraic/linearization errors by stopping criteria
 - useless to make an extensive number of iterations after the algebraic/linearization error drops below the discretization one
 - important computational savings
- local efficiency: suitable for adaptive mesh refinement
- guaranteed, robust, locally computable estimates

- nonlinear case for nonconforming methods
- systems of nonlinear PDEs

Concluding remarks

- linear/nonlinear systems are never solved exactly in practical large scale computations
- present estimates: certified overall error bound
- linear/nonlinear sts should be solved inexactly on purpose
 - balancing discretization and algebraic/linearization errors by stopping criteria
 - useless to make an extensive number of iterations after the algebraic/linearization error drops below the discretization one
 - important computational savings
- local efficiency: suitable for adaptive mesh refinement
- guaranteed, robust, locally computable estimates

- nonlinear case for nonconforming methods
- systems of nonlinear PDEs

Concluding remarks

- linear/nonlinear systems are never solved exactly in practical large scale computations
- present estimates: certified overall error bound
- linear/nonlinear sts should be solved inexactly on purpose
 - balancing discretization and algebraic/linearization errors by stopping criteria
 - useless to make an extensive number of iterations after the algebraic/linearization error drops below the discretization one
 - important computational savings
- local efficiency: suitable for adaptive mesh refinement
- guaranteed, robust, locally computable estimates

- nonlinear case for nonconforming methods
- systems of nonlinear PDEs

Bibliography

Bibliography

- EL ALAOUI L., ERN. A, VOHRALÍK M., Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems, *Comput. Methods Appl. Mech. Engrg.* DOI 10.1016/j.cma.2010.03.024 (2010).
- JIRÁNEK P., STRAKOŠ Z., VOHRALÍK M., A posteriori error estimates including algebraic error and stopping criteria for iterative solvers, SIAM J. Sci. Comput. 32 (2010), 1567–1590.

Thank you for your attention!

Bibliography

Bibliography

- EL ALAOUI L., ERN. A, VOHRALÍK M., Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems, *Comput. Methods Appl. Mech. Engrg.* DOI 10.1016/j.cma.2010.03.024 (2010).
- JIRÁNEK P., STRAKOŠ Z., VOHRALÍK M., A posteriori error estimates including algebraic error and stopping criteria for iterative solvers, SIAM J. Sci. Comput. 32 (2010), 1567–1590.

Thank you for your attention!