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Examples: numerical simulations of PDEs in SERENA

explosion in a steel shell

two-phase flow

hyperelasticity

contaminant transport
fracture flow
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Introduction A posteriori estimates Application to underground flows

Partial differential equations (PDEs)

describe numerous physical phenomena
fluid flow and transport in the underground, air, oceans,
rivers (weather forecast, modeling pollution, . . . )
solid structure and its deformations (construction of
buildings/cars/planes. . . )
population dynamics, behavior of financial markets
(demography, economy . . . )
. . .

include (partial) derivatives of the solution
it is almost never possible to find analytical, exact
solutions

(not even Einstein could solve PDEs with paper
and pen, except in model cases . . . )
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Example: elastic rod

a b
Ω

f↓
↓

↓ ↓ ↓ ↓
↓

u

Elastic rod subject to force f :

displacement u

Let Ω be an interval, Ω =]a,b[, a,b two real numbers, a < b.
Let f :]a,b[→ R be a given function. Find u :]a,b[→ R such that

−(u′)′ = f ,
u(a) = u(b) = 0.
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Numerical approximations of PDEs

Numerical methods

mathematically-based algorithms
evaluated with the aid of computers
deliver approximate solutions
conception: more and more computational resources⇒
closer and closer to the unknown solution

a b
Ω

u

h

uh

h

uh

h

uh

uh ∈ Pp(Th), p = 1

Numerical approximation uh and its convergence to u

Error
‖∇(u−uh)‖=

{∫ b
a |(u−uh)′|2

} 1
2

Need to solve
AhUh = Fh

M. Vohralík Can we trust results from numerical simulations? 5 / 17



Introduction A posteriori estimates Application to underground flows

Numerical approximations of PDEs

Numerical methods

mathematically-based algorithms
evaluated with the aid of computers
deliver approximate solutions
conception: more and more computational resources⇒
closer and closer to the unknown solution

a b
Ω

f↓
↓

↓ ↓ ↓ ↓
↓u

h

uh

h

uh

h

uh

uh ∈ Pp(Th), p = 1

Numerical approximation uh and its convergence to u

Error
‖∇(u−uh)‖=

{∫ b
a |(u−uh)′|2

} 1
2

Need to solve
AhUh = Fh

M. Vohralík Can we trust results from numerical simulations? 5 / 17



Introduction A posteriori estimates Application to underground flows

Numerical approximations of PDEs

Numerical methods

mathematically-based algorithms
evaluated with the aid of computers
deliver approximate solutions
conception: more and more computational resources⇒
closer and closer to the unknown solution

a b
Ω

u

h

uh

h

uh

h

uh

uh ∈ Pp(Th), p = 1

Numerical approximation uh and its convergence to u

Error
‖∇(u−uh)‖=

{∫ b
a |(u−uh)′|2

} 1
2

Need to solve
AhUh = Fh

M. Vohralík Can we trust results from numerical simulations? 5 / 17



Introduction A posteriori estimates Application to underground flows

Numerical approximations of PDEs

Numerical methods

mathematically-based algorithms
evaluated with the aid of computers
deliver approximate solutions
conception: more and more computational resources⇒
closer and closer to the unknown solution

a b
Ω

u

h

uh

h

uh

h

uh

uh ∈ Pp(Th), p = 1

Numerical approximation uh and its convergence to u

Error
‖∇(u−uh)‖=

{∫ b
a |(u−uh)′|2

} 1
2

Need to solve
AhUh = Fh

M. Vohralík Can we trust results from numerical simulations? 5 / 17



Introduction A posteriori estimates Application to underground flows

Numerical approximations of PDEs

Numerical methods

mathematically-based algorithms
evaluated with the aid of computers
deliver approximate solutions
conception: more and more computational resources⇒
closer and closer to the unknown solution

a b
Ω

u

h

uh

h

uh

h

uh

uh ∈ Pp(Th), p = 1

Numerical approximation uh and its convergence to u

Error
‖∇(u−uh)‖=

{∫ b
a |(u−uh)′|2

} 1
2

Need to solve
AhUh = Fh

M. Vohralík Can we trust results from numerical simulations? 5 / 17



Introduction A posteriori estimates Application to underground flows

Numerical approximations of PDEs

Numerical methods

mathematically-based algorithms
evaluated with the aid of computers
deliver approximate solutions
conception: more and more computational resources⇒
closer and closer to the unknown solution

a b
Ω

u

h

uh

h

uh

h

uh

uh ∈ Pp(Th), p = 1

Numerical approximation uh and its convergence to u

Error
‖∇(u−uh)‖=

{∫ b
a |(u−uh)′|2

} 1
2

Need to solve
AhUh = Fh

M. Vohralík Can we trust results from numerical simulations? 5 / 17



Introduction A posteriori estimates Application to underground flows

Numerical approximations of PDEs

Numerical methods

mathematically-based algorithms
evaluated with the aid of computers
deliver approximate solutions
conception: more and more computational resources⇒
closer and closer to the unknown solution

a b
Ω

u

h

uh

h

uh

h

uh

uh ∈ Pp(Th), p = 1

Numerical approximation uh and its convergence to u

Error
‖∇(u−uh)‖=

{∫ b
a |(u−uh)′|2

} 1
2

Need to solve
AhUh = Fh

M. Vohralík Can we trust results from numerical simulations? 5 / 17



Introduction A posteriori estimates Application to underground flows

Numerical approximations of PDEs

Numerical methods

mathematically-based algorithms
evaluated with the aid of computers
deliver approximate solutions
conception: more and more computational resources⇒
closer and closer to the unknown solution

a b
Ω

u

h

uh

h

uh

h

uh

uh ∈ Pp(Th), p = 1

Numerical approximation uh and its convergence to u

Error
‖∇(u−uh)‖=

{∫ b
a |(u−uh)′|2

} 1
2

Need to solve
AhUh = Fh

M. Vohralík Can we trust results from numerical simulations? 5 / 17



Introduction A posteriori estimates Application to underground flows

Numerical approximations of PDEs

Numerical methods

mathematically-based algorithms
evaluated with the aid of computers
deliver approximate solutions
conception: more and more computational resources⇒
closer and closer to the unknown solution

a b
Ω

u

h

uh

h

uh

h

uh

uh ∈ Pp(Th), p = 1

Numerical approximation uh and its convergence to u

Error
‖∇(u−uh)‖=

{∫ b
a |(u−uh)′|2

} 1
2

Need to solve
AhUh = Fh

M. Vohralík Can we trust results from numerical simulations? 5 / 17



Introduction A posteriori estimates Application to underground flows

3 crucial questions

Crucial questions
1 How large is the overall error?
2 Where (space, time, solver) is the error localized?
3 Can we decrease the error efficiently?

Assumptions
The physical model is correct.
We know the data.
The computer implementation and execution of our
certification methodology is safe and correct.
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CDG Terminal 2E collapse in 2004 (opened in 2003)

no earthquake, flooding, heavy rain, extreme temperature
deterministic, steady problem, PDE known, data known

probably numerical simulations done poorly,
I believe without error certification

Reliability study and simulation of the progressive collapse of
Roissy Charles de Gaulle Airport

Y. El Kamari a, W. Raphael a,*, A. Chateauneuf b,c

a Ecole Supérieure d’Ingénieurs de Beyrouth (ESIB), Université Saint-Joseph, CST Mar Roukos, PO Box 11-514, Riad El Solh Beirut 1107 2050,

Lebanon
b Université Blaise Pascal, Institut Pascal, BP 10448, F-63000 Clermont Ferrand, France
c LGC/CUST – UBP, Campus des Cézeaux, 63174 Aubière, France

1. Introduction

Terminal 2E, with a daring design and wide open spaces, was Charles de Gaulle Airport’s newest addition. Terminal 2E had
been inaugurated in 2003 after some delays in construction. On the 23rd of May 2004, not long after its inauguration, a part
of Terminal 2E’s ceiling collapsed early in the day, leaving four casualties. Some questioned the construction methods as
being the primary cause, which were rushed as the project was a month behind schedule due to technical problems, and
some have also considered the possibility of improper design as the cause of the accident. In the following, a deterministic
analysis and a mechanical reliability assessment will be elaborated. We will show the importance of reliability assessment
and long term strains of materials, especially for public constructions where the human and economic repercussions are
heavy to bear. The purpose of our research is to study the problem using the available data in order to examine the real
reasons of the incident, to see if it were possible to predict the structure’s failure from the beginning and to simulate the
progressive collapse of the structure.

2. General overview of Roissy’s Terminal 2E [1]

We will first describe the terminal, its different construction phases, the incidents that occurred before the accident and
the collapse itself. Then we will present in a general way the principle of finite element modeling, recommendations for good
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A B S T R A C T

Paris Charles de Gaulle Airport also known as Roissy Airport is the world’s eighth-busiest

airport in passengers served. In May 2004, the news of collapse of a portion of Terminal 2E

leaving four casualties shook the world. Luckily, no boarding had been taking place in the

collapsed area which consisted of a boarding area and three footbridges. This part of the

terminal had an innovative design consisting of a vaulted concrete tube. We chose to

model a representative part of the terminal to observe the structure’s behavior. The

purpose of our research is to explain the structure’s collapse and to see if there were

deficiencies from the design phase. Also, our new fine-grained model using Ansys Software

makes it possible to explain the progressive collapse of the structure, which was the main

challenge of our study. Moreover, a sensitivity analysis was performed in order to study

the importance of each of the variables taken into account in the model.

� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author. Tel.: +961 1 421354; fax: +961 4 532645.

E-mail address: wassim.raphael@usj.edu.lb (W. Raphael).
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leaving four casualties shook the world. Luckily, no boarding had been taking place in the

collapsed area which consisted of a boarding area and three footbridges. This part of the

terminal had an innovative design consisting of a vaulted concrete tube. We chose to

model a representative part of the terminal to observe the structure’s behavior. The

purpose of our research is to explain the structure’s collapse and to see if there were

deficiencies from the design phase. Also, our new fine-grained model using Ansys Software

makes it possible to explain the progressive collapse of the structure, which was the main

challenge of our study. Moreover, a sensitivity analysis was performed in order to study

the importance of each of the variables taken into account in the model.
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CDG Terminal 2E collapse in 2004 (opened in 2003)

no earthquake, flooding, heavy rain, extreme temperature
deterministic, steady problem, PDE known, data known

probably numerical simulations done poorly,
I believe without error certification

Reliability study and simulation of the progressive collapse of
Roissy Charles de Gaulle Airport

Y. El Kamari a, W. Raphael a,*, A. Chateauneuf b,c

a Ecole Supérieure d’Ingénieurs de Beyrouth (ESIB), Université Saint-Joseph, CST Mar Roukos, PO Box 11-514, Riad El Solh Beirut 1107 2050,

Lebanon
b Université Blaise Pascal, Institut Pascal, BP 10448, F-63000 Clermont Ferrand, France
c LGC/CUST – UBP, Campus des Cézeaux, 63174 Aubière, France

1. Introduction

Terminal 2E, with a daring design and wide open spaces, was Charles de Gaulle Airport’s newest addition. Terminal 2E had
been inaugurated in 2003 after some delays in construction. On the 23rd of May 2004, not long after its inauguration, a part
of Terminal 2E’s ceiling collapsed early in the day, leaving four casualties. Some questioned the construction methods as
being the primary cause, which were rushed as the project was a month behind schedule due to technical problems, and
some have also considered the possibility of improper design as the cause of the accident. In the following, a deterministic
analysis and a mechanical reliability assessment will be elaborated. We will show the importance of reliability assessment
and long term strains of materials, especially for public constructions where the human and economic repercussions are
heavy to bear. The purpose of our research is to study the problem using the available data in order to examine the real
reasons of the incident, to see if it were possible to predict the structure’s failure from the beginning and to simulate the
progressive collapse of the structure.

2. General overview of Roissy’s Terminal 2E [1]

We will first describe the terminal, its different construction phases, the incidents that occurred before the accident and
the collapse itself. Then we will present in a general way the principle of finite element modeling, recommendations for good
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A posteriori error control: the principle

Elastic membrane equation
−∆u = f in Ω,

u = 0 on ∂Ω

Guaranteed error upper bound (reliability)

‖∇(u − uh)‖︸ ︷︷ ︸
unknown error

≤ η(uh)︸ ︷︷ ︸
computable estimator

Error lower bound (efficiency)

η(uh) ≤ Ceff‖∇(u − uh)‖

Ceff independent of Ω, u, uh, h, p
computable bound on Ceff available, Ceff ≈ 5
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How large is the overall error? (model pb, known sol.)

h p η(uh) rel. error estimate η(uh)
‖∇uh‖

‖∇(u − uh)‖ rel. error ‖∇(u−uh)‖
‖∇uh‖

Ieff = η(uh)
‖∇(u−uh)‖

h0 1 1.25 28% 1.07 24% 1.17
≈h0/2 6.07× 10−1 14% 5.56× 10−1 13% 1.09
≈h0/4 3.10× 10−1 7.0% 2.92× 10−1 6.6% 1.06
≈h0/8 1.45× 10−1 3.3% 1.39× 10−1 3.1% 1.04
≈h0/2 2 4.23× 10−2 9.5× 10−1% 4.07× 10−2 9.2× 10−1% 1.04
≈h0/4 3 2.62× 10−4 5.9× 10−3% 2.60× 10−4 5.9× 10−3% 1.01
≈h0/8 4 2.60× 10−7 5.9× 10−6% 2.58× 10−7 5.8× 10−6% 1.01

A. Ern, M. Vohralík, SIAM Journal on Numerical Analysis (2015)
V. Dolejší, A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2016)

M. Vohralík Can we trust results from numerical simulations? 9 / 17
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Where (in space) is the error localized?

Estimated error distribution
ηK (uh)

Exact error distribution
‖∇(u − uh)‖K

P. Daniel, A. Ern, I. Smears, M. Vohralík, Computers & Mathematics with Applications (2018)

M. Vohralík Can we trust results from numerical simulations? 10 / 17
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Can we decrease the error efficiently? (smooth solution)

P1

P2

P3

P4

P5

Mesh Th and pol. degrees pK
P. Daniel, A. Ern, I. Smears, M. Vohralík, Computers & Mathematics with Applications (2018)
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Can we decrease the error efficiently? (smooth solution)

P1

P2

P3

P4

P5

Mesh Th and pol. degrees pK Exact solution
P. Daniel, A. Ern, I. Smears, M. Vohralík, Computers & Mathematics with Applications (2018)
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Can we decrease the error efficiently? (singular solution)
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Can we decrease the error efficiently? (singular solution)
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Nonlinear pb −∇·σ(∇u) = f : including linearization
and algebraic error: Ah(Uk ,i
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Can we certify error in a practical case
−∇·(K∇u) = f : outflow error

∣∣ ∫
y=2200 K∇(u − uh)·n

∣∣
no of unknowns 825 3300 13200

rel. error est. 46% 34% 24%

Underground reservoir,
10th SPE test case

Layer permeability

2200m

1200m

G. Mallik, M. Vohralík, S. Yousef, in preparation (2018)
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Realistic environmental problem
Incompressible two-phase flow in porous media
Find saturations sα and pressures pα, α ∈ {g,w}, such that

∂t (φsα)−∇·
(

kr,α(sw)

µα
K (∇pα + ραg∇z)

)
= qα, α ∈ {g,w},

sg + sw = 1,
pg − pw = pc(sw)

unsteady, nonlinear, and degenerate problem
coupled system of PDEs & algebraic constraints
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Space/time/nonlinear solver/linear solver adaptivity

movie

M. Vohralík, M.-F. Wheeler, Computational Geosciences (2013)
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Three-phase, three-components (black-oil) problem
(collaboration IFPEN)

Gas saturation A posteriori error estimate
M. Vohralík, S. Yousef, Computer Methods in Applied Mechanics and Engineering (2018)

A posteriori estimates
1 certify the error
2 localize it
3 decrease it efficiently via adaptivity
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Laplace eigenvalue problem −∆u = λu: inclusion
bounds on eigenvalues and adaptivity

no of unknowns 2494 3390 4508 7602 13640 18163 23494 30533
rel. error est. 48% 32% 22% 11% 6.1% 4.5% 3.2% 2.4%

First eigenvalue inclusion Adaptively refined mesh
E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík, SIAM Journal on Numerical Analysis (2018)
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