Can we trust results from numerical simulations?

Martin Vohralík project-team SERENA

Paris, July 3, 2018

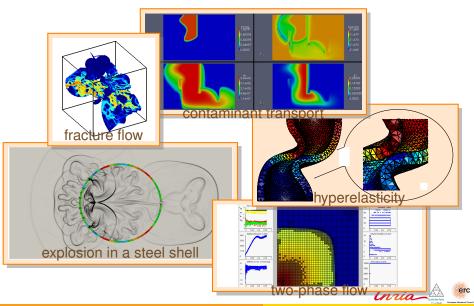
European Research Council

Outline

A posteriori error estimates and adaptivity

3 Application to underground fluid flows

Examples: numerical simulations of PDEs in SERENA



Partial differential equations (PDEs)

- fluid flow and transport in the underground, air, oceans, rivers (weather forecast, modeling pollution, ...)
- solid structure and its deformations (construction of buildings/cars/planes...)
- population dynamics, behavior of financial markets (demography, economy ...)
- . . .
- include (partial) derivatives of the solution
- it is almost never possible to find analytical, exact solutions

Partial differential equations (PDEs)

- fluid flow and transport in the underground, air, oceans, rivers (weather forecast, modeling pollution, ...)
- solid structure and its deformations (construction of buildings/cars/planes...)
- population dynamics, behavior of financial markets (demography, economy ...)
- . . .
- include (partial) derivatives of the solution
- it is almost never possible to find analytical, exact solutions

Partial differential equations (PDEs)

- fluid flow and transport in the underground, air, oceans, rivers (weather forecast, modeling pollution, ...)
- solid structure and its deformations (construction of buildings/cars/planes...)
- population dynamics, behavior of financial markets (demography, economy ...)
- . . .
- include (partial) derivatives of the solution
- it is almost never possible to find analytical, exact solutions

Partial differential equations (PDEs)

- fluid flow and transport in the underground, air, oceans, rivers (weather forecast, modeling pollution, ...)
- solid structure and its deformations (construction of buildings/cars/planes...)
- population dynamics, behavior of financial markets (demography, economy ...)
- ...
- include (partial) derivatives of the solution
- it is almost **never possible** to **find** analytical, **exact solutions**

Partial differential equations (PDEs)

- fluid flow and transport in the underground, air, oceans, rivers (weather forecast, modeling pollution, ...)
- solid structure and its deformations (construction of buildings/cars/planes...)
- population dynamics, behavior of financial markets (demography, economy ...)
- ...
- include (partial) derivatives of the solution
- it is almost **never possible** to **find** analytical, **exact solutions**

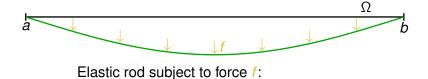
Partial differential equations (PDEs)

- fluid flow and transport in the underground, air, oceans, rivers (weather forecast, modeling pollution, ...)
- solid structure and its deformations (construction of buildings/cars/planes...)
- population dynamics, behavior of financial markets (demography, economy ...)
- ...
- include (partial) derivatives of the solution
- it is almost never possible to find analytical, exact solutions

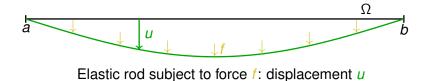
Partial differential equations (PDEs)

- fluid flow and transport in the underground, air, oceans, rivers (weather forecast, modeling pollution, ...)
- solid structure and its deformations (construction of buildings/cars/planes...)
- population dynamics, behavior of financial markets (demography, economy ...)
- ...
- include (partial) derivatives of the solution
- it is almost never possible to find analytical, exact solutions (not even Einstein could solve PDEs with paper and pen, except in model cases ...)

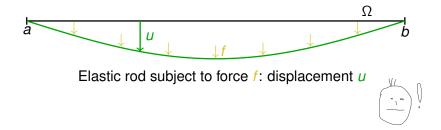
Example: elastic rod



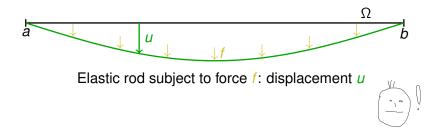
Example: elastic rod



Example: elastic rod



Example: elastic rod



Let Ω be an interval, $\Omega =]a, b[, a, b$ two real numbers, a < b. Let $f :]a, b[\rightarrow \mathbb{R}$ be a given function. Find $u :]a, b[\rightarrow \mathbb{R}$ such that

$$-(u')' = f,$$

 $u(a) = u(b) = 0.$

Numerical approximations of PDEs

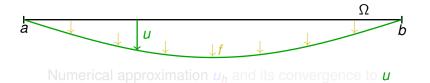
Numerical methods

- mathematically-based algorithms
- evaluated with the aid of computers
- deliver approximate solutions
- conception: more and more computational resources ⇒ closer and closer to the unknown solution

Numerical approximations of PDEs

Numerical methods

- mathematically-based algorithms
- evaluated with the aid of computers
- deliver approximate solutions
- conception: more and more computational resources ⇒
 closer and closer to the unknown solution



Numerical approximations of PDEs

Numerical methods

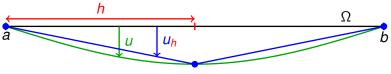
- mathematically-based algorithms
- evaluated with the aid of computers
- deliver approximate solutions
- conception: more and more computational resources ⇒
 closer and closer to the unknown solution

Numerical approximation *u_h* and its convergence to *u*

Numerical approximations of PDEs

Numerical methods

- mathematically-based algorithms
- evaluated with the aid of computers
- deliver approximate solutions
- conception: more and more computational resources ⇒
 closer and closer to the unknown solution

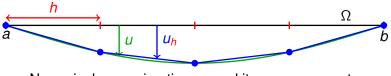


Numerical approximation u_h and its convergence to u

Numerical approximations of PDEs

Numerical methods

- mathematically-based algorithms
- evaluated with the aid of computers
- deliver approximate solutions
- conception: more and more computational resources ⇒
 closer and closer to the unknown solution

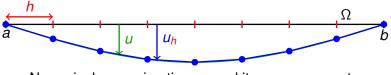


Numerical approximation u_h and its convergence to u

Numerical approximations of PDEs

Numerical methods

- mathematically-based algorithms
- evaluated with the aid of computers
- deliver approximate solutions
- conception: more and more computational resources ⇒
 closer and closer to the unknown solution

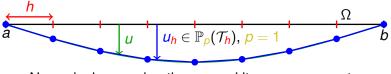


Numerical approximation u_h and its convergence to u

Numerical approximations of PDEs

Numerical methods

- mathematically-based algorithms
- evaluated with the aid of computers
- deliver approximate solutions
- conception: more and more computational resources ⇒
 closer and closer to the unknown solution



Numerical approximation u_h and its convergence to u

Numerical approximations of PDEs

Numerical methods

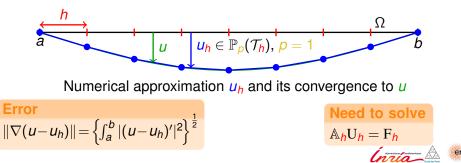
- mathematically-based algorithms
- evaluated with the aid of computers
- deliver approximate solutions
- conception: more and more computational resources ⇒ closer and closer to the unknown solution

Erre

Numerical approximations of PDEs

Numerical methods

- mathematically-based algorithms
- evaluated with the aid of computers
- deliver approximate solutions
- conception: more and more computational resources ⇒
 closer and closer to the unknown solution



Crucial questions

- How large is the overall error?
- Where (space, time, solver) is the error localized?
- Can we decrease the error efficiently?

Assumptions

- The physical model is correct.
- We know the data.
- The computer implementation and execution of our certification methodology is safe and correct.

Crucial questions

- How large is the overall error?
- Where (space, time, solver) is the error localized?
 - Can we decrease the error efficiently?

Assumptions

- The physical model is correct.
- We know the data.
- The computer implementation and execution of our certification methodology is safe and correct.

Crucial questions

- How large is the overall error?
- Where (space, time, solver) is the error localized?
- On we decrease the error efficiently?

- The physical model is correct.
- We know the data.
- The computer implementation and execution of our certification methodology is safe and correct.

Crucial questions

- How large is the overall error?
- Where (space, time, solver) is the error localized?
- Oan we decrease the error efficiently?

Assumptions

- The physical model is correct.
- We know the data.
- The computer implementation and execution of our certification methodology is safe and correct.

CDG Terminal 2E collapse in 2004 (opened in 2003)

no earthquake, flooding, heavy rain, extreme temperature
deterministic, steady problem, PDE known, data known

CDG Terminal 2E collapse in 2004 (opened in 2003)

- no earthquake, flooding, heavy rain, extreme temperature
- deterministic, steady problem, PDE known, data known

CDG Terminal 2E collapse in 2004 (opened in 2003)

- no earthquake, flooding, heavy rain, extreme temperature
- deterministic, steady problem, PDE known, data known

CDG Terminal 2E collapse in 2004 (opened in 2003)

- no earthquake, flooding, heavy rain, extreme temperature
- deterministic, steady problem, PDE known, data known

probably numerical simulations done poorly,

Case Studies in Engineering Failure Analysis 3 (2015) 88-92

Reliability study and simulation of the progressive collapse of Roissy Charles de Gaulle Airport

Y. El Kamari^a, W. Raphael^{a,*}, A. Chateauneuf^{b,c}

*Ecole Suphrisure d'Ingénieure de Brymach (ESB), Université Saint-Joseph, CST Mar Roukas, PO Bas 11-514, Riad El Saih Beirut 1107/2050

Vanierski Bale Pascel, Institut Pascel, 8P 10448, F-G3000 Clement Fernard, France 'LCC/CDST – UBP, Campus des Cézeux, 63174 Aubiler, France

M. Vohralík

CDG Terminal 2E collapse in 2004 (opened in 2003)

- no earthquake, flooding, heavy rain, extreme temperature
- deterministic, steady problem, PDE known, data known

probably **numerical simulations done poorly**, I believe **without error certification**

Case Studies in Engineering Failure Analysis 3 (2015) 88-92

Reliability study and simulation of the progressive collapse of Roissy Charles de Gaulle Airport

Y. El Kamari^a, W. Raphael^{a,*}, A. Chateauneuf^{b,c}

*Ecole Suphrisure d'Ingénieure de Brymach (ESB), Université Saint-Joseph, CST Mar Roukas, PO Bas 11-514, Riad El Saih Beirut 1107/2050

Vanierski Bale Pascel, Institut Pascel, 8P 10448, F-G3000 Clement Fernard, France 'LCC/CDST – UBP, Campus des Cézeux, 63174 Aubiler, France

M. Vohralík

Outline

2 A posteriori error estimates and adaptivity

3 Application to underground fluid flows

A posteriori error control: the principle

Elastic membrane equation

 $\begin{aligned} -\Delta u &= f \quad \text{in} \quad \Omega, \\ u &= 0 \quad \text{on} \quad \partial \Omega \end{aligned}$

Guaranteed error upper bound (reliability)

 $\underbrace{\|\nabla(u-u_h)\|}_{\text{unknown error}} \leq co$

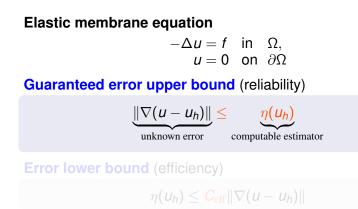
 $\eta(u_h)$

Error lower bound (efficiency)

 $\eta(u_h) \leq C_{\mathrm{eff}} \|
abla(u-u_h) \|$

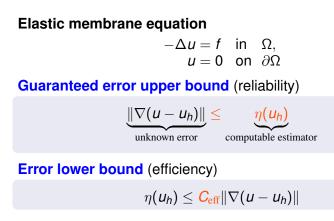
- C_{eff} independent of Ω , u, u_h , h, p
- computable bound on $C_{
 m eff}$ available, $C_{
 m eff} pprox 5$

A posteriori error control: the principle



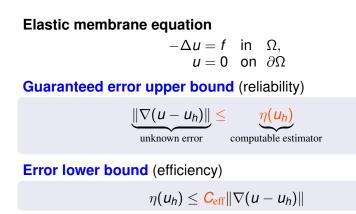
- C_{eff} independent of Ω , u, u_h , h, p
- computable bound on $C_{
 m eff}$ available, $C_{
 m eff} pprox 5$

A posteriori error control: the principle



- C_{eff} independent of Ω , u, u_h , h, p
- computable bound on $C_{
 m eff}$ available, $C_{
 m eff}pprox 5$

A posteriori error control: the principle



- C_{eff} independent of Ω , u, u_h , h, p
- computable bound on $C_{\rm eff}$ available, $C_{\rm eff} pprox 5$

How large is the overall error?

h	р	$\eta(u_h)$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(v-v_h)\ }{\ \nabla v_h\ }$	$I^{\text{eff}} = rac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h ₀	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$	2 2	4.23×10^{-4}				
$\approx h_0/4$	1-3	2.62×10^{-4}				
$\approx h_0/8$	3 4	2.60×10^{-4}				

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015) V. Dolejší, A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2016)

h	р	η(<mark>U</mark> h)	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{eff} = rac{\eta(u_h)}{\ abla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$	2	4.23×10^{-2}	9.6.301000196	4.07×10^{-2}		
$\approx h_0/4$	- 3	2.62×10^{-4}	5.90 × 10 = 206	2.60×10^{-4}		
$\approx h_0/8$	4	$2.60 imes 10^{-7}$	5.9 × 10 796	2.53×10^{-7}		

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015) V. Dolejší, A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2016)

h	р	η(<mark>U</mark> h)	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}\%$	4.07×10^{-2}	9.2 × 10 ⁻¹ %	
$\approx h_0/4$	- 3	2.62×10^{-4}	$5.9 imes10^{-3}\%$	2.60×10^{-4}	5.9 × 10 - 196	
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes10^{-6}$ %	2.58×10^{-7}	5.8 × 10 ⁻⁶ %	

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015) V. Dolejši, A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2016)

h	р	η(<mark>U</mark> h)	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h ₀	1	1.25	28%	1.07	24%	1.17
		6.07×10^{-1}		5.56×10^{-1}		
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}$ %	4.07×10^{-2}	9.2 × 10 ⁻¹ %	
$\approx h_0/4$	- 3	2.62×10^{-4}	$5.9 imes10^{-3}\%$	2.60×10^{-4}	5.9×10^{-3} %	
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes10^{-6}$ %	2.58×10^{-7}	5.8×10^{-5} %	

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015) J. Dolejší, A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2016)

h	р	η(<mark>U</mark> h)	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h ₀	1	1.25	28%	1.07	24%	1.17
		6.07×10^{-1}		5.56×10^{-1}		1.09
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}\%$	$4.07 imes 10^{-2}$	$9.2 imes 10^{-1}\%$	1.04
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 imes 10^{-3}\%$	$2.60 imes 10^{-4}$	$5.9 imes10^{-3}\%$	1.01
$\approx h_0/8$	4	$2.60 imes 10^{-7}$	$5.9 imes 10^{-6}$ %	$2.58 imes 10^{-7}$	$5.8 imes10^{-6}\%$	

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Doleiši A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2016)

h	р	η(u _h)	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h ₀	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$		6.07×10^{-1}		5.56×10^{-1}	13%	1.09
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}$ %	4.07×10^{-2}	$9.2 imes 10^{-1}\%$	1.04
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 imes10^{-3}\%$	2.60×10^{-4}	$5.9 imes10^{-3}\%$	1.01
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes10^{-6}\%$	2.58×10^{-7}	$5.8 imes 10^{-6}$ %	1.01

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015)

h	p	$\eta(u_h)$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$		$6.07 imes 10^{-1}$	14%	5.56×10^{-1}	13%	1.09
$\approx h_0/4$		3.10×10^{-1}		2.92×10^{-1}		
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}$ %	$4.07 imes 10^{-2}$	$9.2 imes 10^{-1}\%$	1.04
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 imes10^{-3}\%$	$2.60 imes 10^{-4}$	$5.9 imes10^{-3}\%$	1.01
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes10^{-6}\%$	2.58×10^{-7}	5.8 × 10 ^{−6} %	1.01

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015)

h	р	η(u _h)	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h ₀	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$		6.07×10^{-1}	14%	$5.56 imes 10^{-1}$	13%	1.09
$\approx h_0/4$		3.10×10^{-1}	7.0%	$2.92 imes 10^{-1}$	6.6%	1.06
		1.45×10^{-1}		$1.39 imes 10^{-1}$	3.1%	1.04
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}$ %	$4.07 imes 10^{-2}$	$9.2 imes 10^{-1}\%$	1.04
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 imes 10^{-3}$ %	$2.60 imes 10^{-4}$	$5.9 imes 10^{-3}$ %	1.01
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes 10^{-6}$ %	$2.58 imes 10^{-7}$	$5.8 imes 10^{-6}$ %	1.01

A. Ern, M. Vohralík, SIAM Journal on Numerical Analysis (2015)

h	p	$\eta(u_h)$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h ₀	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$		$6.07 imes 10^{-1}$	14%	$5.56 imes 10^{-1}$	13%	1.09
$\approx h_0/4$		$3.10 imes 10^{-1}$	7.0%	$2.92 imes 10^{-1}$	6.6%	1.06
$\approx h_0/8$		$1.45 imes 10^{-1}$	3.3%	$1.39 imes 10^{-1}$	3.1%	1.04
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}$ %	4.07×10^{-2}	$9.2 imes 10^{-1}\%$	1.04
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 imes10^{-3}$ %	2.60×10^{-4}	$5.9 imes 10^{-3}\%$	1.01
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes 10^{-6}$ %	2.58×10^{-7}	$5.8 imes 10^{-6}$ %	1.01

A. Ern, M. Vohralík, SIAM Journal on Numerical Analysis (2015)

h	ο η(u _h)	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1.25	28%	1.07	24%	1.17
$\approx h_0/2$	6.07×10^{-1}	14%	5.56×10^{-1}	13%	1.09
$\approx h_0/4$	3.10×10^{-1}	7.0%	2.92×10^{-1}	6.6%	1.06
$\approx h_0/8$	1.45×10^{-1}	3.3%	1.39×10^{-1}	3.1%	1.04
$\approx h_0/2$	$2 4.23 \times 10^{-2}$	$9.5 imes 10^{-1}\%$	4.07×10^{-2}	$9.2 imes 10^{-1}\%$	1.04
$\approx h_0/4$ (2.62×10^{-4}	$5.9 imes 10^{-3}$ %	2.60×10^{-4}	$5.9 imes 10^{-3}\%$	1.01
$pprox h_0/8$ 4	2.60×10^{-7}	$5.9 imes10^{-6}$ %	2.58×10^{-7}	$5.8 imes 10^{-6}\%$	1.01

A. Ern, M. Vohralík, SIAM Journal on Numerical Analysis (2015)

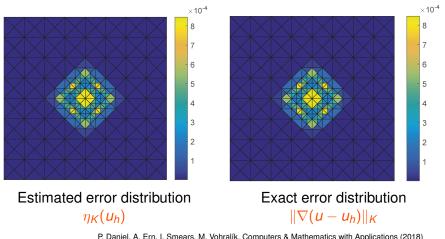
h p	η η (u _h)	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0 1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$	6.07×10^{-1}	14%	$5.56 imes 10^{-1}$	13%	1.09
$\approx h_0/4$	3.10×10^{-1}	7.0%	$2.92 imes 10^{-1}$	6.6%	1.06
$\approx h_0/8$	1.45×10^{-1}		$1.39 imes 10^{-1}$	3.1%	1.04
$\approx h_0/2$ 2	4.23×10^{-2}	$9.5 imes 10^{-1}\%$	$4.07 imes 10^{-2}$	$9.2 imes 10^{-1}\%$	1.04
$\approx h_0/4$ (2.62×10^{-4}	$5.9 imes 10^{-3}\%$	$2.60 imes 10^{-4}$	$5.9 imes 10^{-3}\%$	1.01
$pprox h_0/8$ 4	2.60×10^{-7}	$5.9 imes 10^{-6}$ %	2.58×10^{-7}	$5.8 imes 10^{-6}\%$	1.01

A. Ern, M. Vohralík, SIAM Journal on Numerical Analysis (2015)

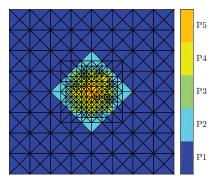
h p	η η (u _h)	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0 1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$	6.07×10^{-1}	14%	$5.56 imes 10^{-1}$	13%	1.09
$\approx h_0/4$	3.10×10^{-1}	7.0%	$2.92 imes 10^{-1}$	6.6%	1.06
$\approx h_0/8$	1.45×10^{-1}	3.3%	$1.39 imes 10^{-1}$		1.04
$\approx h_0/2$ 2	4.23 × 10 ⁻²	$9.5 imes 10^{-1}\%$	4.07×10^{-2}	$9.2 imes 10^{-1}\%$	1.04
$\approx h_0/4$ (2.62×10^{-4}		$2.60 imes 10^{-4}$		1.01
$\approx h_0/8$ 4	2.60×10^{-7}	$5.9 imes 10^{-6}\%$	2.58×10^{-7}	$5.8 imes 10^{-6}\%$	1.01

A. Ern, M. Vohralík, SIAM Journal on Numerical Analysis (2015) V. Dolejší, A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2016)

Where (in space) is the error localized?

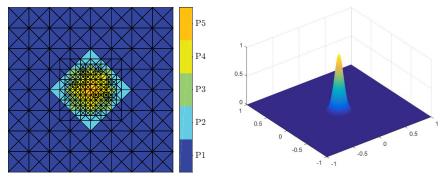


Can we decrease the error efficiently? (smooth solution)



Mesh T_h and pol. degrees p_K

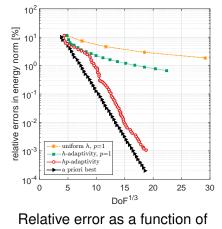
Can we decrease the error efficiently? (smooth solution)



Mesh T_h and pol. degrees p_K

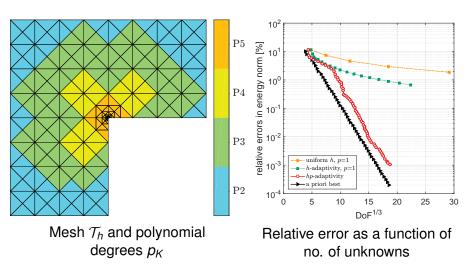
Exact solution

Can we decrease the error efficiently? (singular solution)



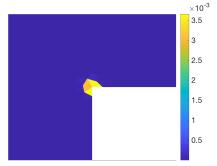
no. of unknowns

Can we decrease the error efficiently? (singular solution)

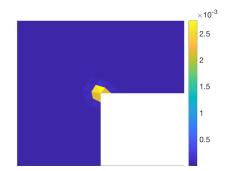


Including **algebraic** error: $\mathbb{A}_h U'_h \neq F_h$

Including **algebraic** error: $\mathbb{A}_h U'_h \neq F_h$



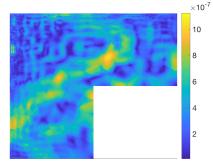
Estimated total error distribution $\eta_{\mathcal{K}}(u_{h}^{i})$



Exact total error distribution $\|\nabla (u - u_h^i)\|_{\mathcal{K}}$

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, preprint (2017)

Including **algebraic** error: $\mathbb{A}_h U'_h \neq F_h$



Estimated algebraic error distribution $\eta_{\text{alg},\mathcal{K}}(u_h^i)$

Exact algebraic error distribution $\|\nabla (u_h - u_h^i)\|_{\mathcal{K}}$

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, preprint (2017)

×10⁻⁷

8

6

4

2

Nonlinear pb $-\nabla \cdot \sigma(\nabla u) = f$: including linearization and algebraic error: $\mathcal{A}_h(\mathbf{U}_h^{k,i}) \neq \mathbf{F}_h, \ \mathbf{A}_h^{k-1}\mathbf{U}_h = \mathbf{F}_h^{k-1}$

error est. 4.6%

error est. 1.1%

A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2013

M. Vohralík

Nonlinear pb $-\nabla \cdot \sigma(\nabla u) = f$: including **linearization** and **algebraic error**: $\mathcal{A}_h(\mathbf{U}_h^{k,i}) \neq \mathbf{F}_h$. $\mathbb{A}_h^{k-1}\mathbf{U}_h^{k-1} \neq \mathbf{F}_h^{k-1}$

classical error est. | 4.6%

error est. 1.1%

A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2013)

M. Vohralík

Nonlinear pb $-\nabla \cdot \sigma(\nabla u) = f$: including **linearization** and **algebraic** error: $\mathcal{A}_h(\mathbf{U}_h^{k,i}) \neq \mathbf{F}_h$, $\mathbb{A}_h^{k-1}\mathbf{U}_h^{k,i} \neq \mathbf{F}_h^{k-1}$

error est. 1.1%

A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2013

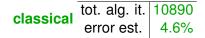
M. Vohralík

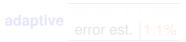
Nonlinear pb $-\nabla \cdot \sigma(\nabla u) = f$: including **linearization** and **algebraic** error: $\mathcal{A}_h(\mathbf{U}_h^{k,i}) \neq \mathbf{F}_h$, $\mathbb{A}_h^{k-1}\mathbf{U}_h^{k,i} \neq \mathbf{F}_h^{k-1}$

N. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2013)

M. Vohralík

Nonlinear pb $-\nabla \cdot \sigma(\nabla u) = f$: including **linearization** and **algebraic** error: $\mathcal{A}_h(\mathbf{U}_h^{k,i}) \neq \mathbf{F}_h$, $\mathbb{A}_h^{k-1}\mathbf{U}_h^{k,i} \neq \mathbf{F}_h^{k-1}$

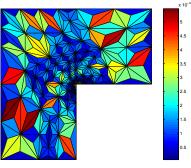




A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2013)

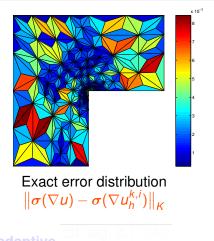
M. Vohralík

Nonlinear pb $-\nabla \cdot \boldsymbol{\sigma}(\nabla u) = f$: including **linearization** and **algebraic** error: $\mathcal{A}_h(\mathbf{U}_h^{k,i}) \neq \mathbf{F}_h$, $\mathbb{A}_h^{k-1}\mathbf{U}_h^{k,i} \neq \mathbf{F}_h^{k-1}$



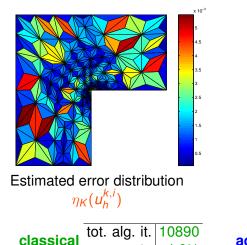
Estimated error distribution $\eta_{\mathcal{K}}(u_{h}^{k,i})$

classicaltot. alg. it.10890error est.4.6%

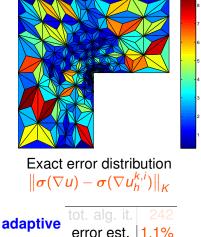


A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2013)

Nonlinear pb $-\nabla \cdot \boldsymbol{\sigma}(\nabla u) = f$: including **linearization** and **algebraic** error: $\mathcal{A}_h(\mathbf{U}_h^{k,i}) \neq \mathbf{F}_h$, $\mathbb{A}_h^{k-1}\mathbf{U}_h^{k,i} \neq \mathbf{F}_h^{k-1}$



4.6%

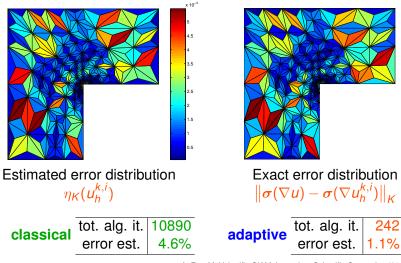


x 10⁻³

A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2013)

error est.

Nonlinear pb $-\nabla \cdot \boldsymbol{\sigma}(\nabla u) = f$: including **linearization** and **algebraic** error: $\mathcal{A}_h(\mathbf{U}_h^{k,i}) \neq \mathbf{F}_h$, $\mathbb{A}_h^{k-1}\mathbf{U}_h^{k,i} \neq \mathbf{F}_h^{k-1}$



A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2013)

x 10⁻³

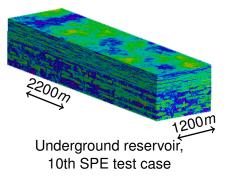
Outline

A posteriori error estimates and adaptivity

Application to underground fluid flows

Can we certify error in a practical case $-\nabla \cdot (\mathbf{K} \nabla u) = f$: outflow error

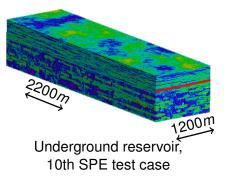
no of unknowns 825 3300 13200 rel. error est. 46% 34% 24%



G. Mallik, M. Vohralík, S. Yousef, in preparation (2018)

Can we certify error in a practical case $-\nabla \cdot (\mathbf{K} \nabla u) = f$: outflow error $\left| \int_{y=2200} \mathbf{K} \nabla (u - u_h) \cdot \mathbf{n} \right|$

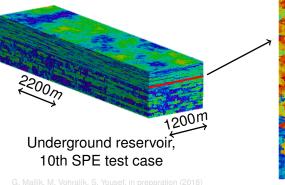
no of unknowns 825 3300 13200 rel. error est. 46% 34% 24%

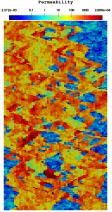


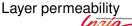
G. Mallik, M. Vohralík, S. Yousef, in preparation (2018)

M. Vohralík

Can we certify error in a practical case $-\nabla \cdot (\mathbf{K} \nabla u) = f$: outflow error $\left| \int_{\gamma=2200} \mathbf{K} \nabla (u - u_h) \cdot \mathbf{n} \right|$

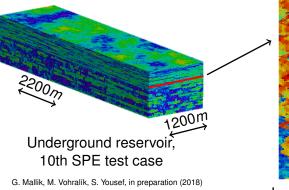


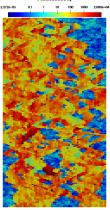


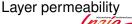


Can we certify error in a practical case $-\nabla \cdot (\mathbf{K} \nabla u) = f$: outflow error $\left| \int_{\gamma=2200} \mathbf{K} \nabla (u - u_h) \cdot \mathbf{n} \right|$

no of unknowns			
rel. error est.	46%	34%	24%







Realistic environmental problem

Incompressible two-phase flow in porous media

Find *saturations* s_{α} and *pressures* p_{α} , $\alpha \in \{g, w\}$, such that

$$\partial_t(\phi \boldsymbol{s}_{lpha}) -
abla \cdot \left(rac{k_{\mathrm{r},lpha}(\boldsymbol{s}_{\mathrm{w}})}{\mu_{lpha}} \boldsymbol{K}(
abla \boldsymbol{p}_{lpha} +
ho_{lpha} \boldsymbol{g}
abla z)
ight) = \boldsymbol{q}_{lpha}, \qquad lpha \in \{\mathrm{g},\mathrm{w}\}, \ \boldsymbol{s}_{\mathrm{g}} + \boldsymbol{s}_{\mathrm{w}} = \boldsymbol{1}, \ \boldsymbol{p}_{\mathrm{g}} - \boldsymbol{p}_{\mathrm{w}} = \boldsymbol{p}_{\mathrm{c}}(\boldsymbol{s}_{\mathrm{w}})$$

- unsteady, nonlinear, and degenerate problem
- coupled system of PDEs & algebraic constraints

Realistic environmental problem

Incompressible two-phase flow in porous media

Find *saturations* s_{α} and *pressures* p_{α} , $\alpha \in \{g, w\}$, such that

$$\partial_t(\phi \boldsymbol{s}_{lpha}) -
abla \cdot \left(rac{k_{\mathrm{r},lpha}(\boldsymbol{s}_{\mathrm{w}})}{\mu_{lpha}} \boldsymbol{K}(
abla \boldsymbol{p}_{lpha} +
ho_{lpha} \boldsymbol{g}
abla z)
ight) = \boldsymbol{q}_{lpha}, \qquad lpha \in \{\mathrm{g},\mathrm{w}\}, \ \boldsymbol{s}_{\mathrm{g}} + \boldsymbol{s}_{\mathrm{w}} = \boldsymbol{1}, \ \boldsymbol{p}_{\mathrm{g}} - \boldsymbol{p}_{\mathrm{w}} = \boldsymbol{p}_{\mathrm{c}}(\boldsymbol{s}_{\mathrm{w}})$$

- unsteady, nonlinear, and degenerate problem
- coupled system of PDEs & algebraic constraints

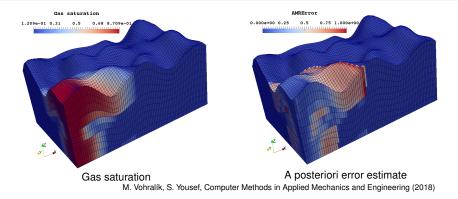
Space/time/nonlinear solver/linear solver adaptivity

movie

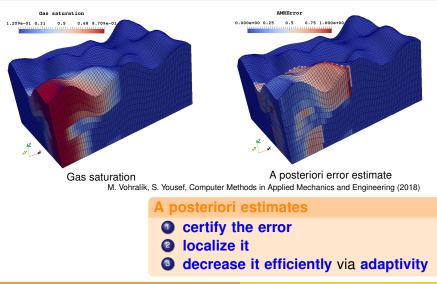
M. Vohralík, M.-F. Wheeler, Computational Geosciences (2013)

internetigan methiantigan A erc

Three-phase, three-components (black-oil) problem (collaboration IFPEN)

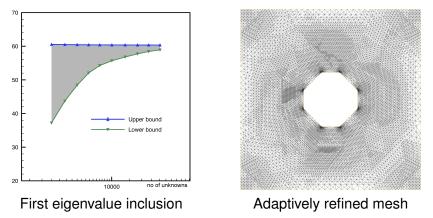


Three-phase, three-components (black-oil) problem (collaboration IFPEN)



Laplace eigenvalue problem $-\Delta u = \lambda u$: inclusion bounds on eigenvalues and adaptivity

no of unknowns249433904508760213640181632349430533rel. error est.48%32%22%11%6.1%4.5%3.2%2.4%

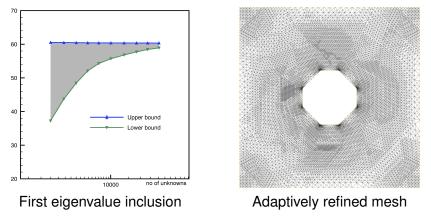


E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík, SIAM Journal on Numerical Analysis (2018)

M. Vohralík

Laplace eigenvalue problem $-\Delta u = \lambda u$: inclusion bounds on eigenvalues and adaptivity

no of unknowns								
rel. error est.	48%	32%	22%	11%	6.1%	4.5%	3.2%	2.4%



E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík, SIAM Journal on Numerical Analysis (2018)

M. Vohralík