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Model problem and different weak formulations

A model second-order
elliptic problem

−∇·(S∇p) = g in Ω,

p = 0 on ∂Ω

Decomposition to two first-order
systems

u = −S∇p in Ω,

∇·u = g in Ω,

p = 0 on ∂Ω

Primal weak formulation
Find p ∈ H1

0 (Ω) such that

(S∇p,∇ϕ) =(g, ϕ)

∀ϕ ∈ H1
0 (Ω)

Dual mixed weak formulation
Find p ∈ L2(Ω) & u ∈ H(div,Ω) s. that

(S−1u,v)− (p,∇·v) = 0 ∀v ∈ H(div,Ω),

(∇·u, φ) = (g, φ) ∀φ ∈ L2(Ω)
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Mixed finite elements
Mixed finite element method
Find ph ∈ Φh ⊂ L2(Ω) and uh ∈ Vh ⊂ H(div,Ω) such that

(S−1uh,vh)− (ph,∇·vh) = 0 ∀vh ∈ Vh,

(∇·uh, φh) = (g, φh) ∀φh ∈ Φh

Φh, Vh: Raviart–Thomas–Nédélec MFE spaces
high precision

Matrix form (
A Bt

B 0

)(
U
P

)
=

(
F
G

)

indefinite, saddle-point-type
both fluxes U and potentials P involved⇒ expensive
U = A−1(F − BtP): only global flux expression

Main goal
Rewrite equivalently as

SP = H
Martin Vohralík and Barbara Wohlmuth Reduction of MFEs to one unknown per element
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Extension to unsteady nonlinear problems
Unsteady nonlinear advection–diffusion–reaction problem

∂p
∂t

+∇ · u + F (p) = q in Ω,

u = −S∇ϕ(p) + ψ(p)w in Ω,

p = p0 in Ω for t = 0, p = 0 on ∂Ω× (0,T ).

Mixed approximation
Define p0

h by p0. On each tn, find un
h ∈ Vh & pn

h ∈ Φh such that

(S−1un
h,vh)− (∇ · vh, ϕ(pn

h))− (ψ(pn
h)w,S−1vh) = 0 ∀vh ∈ Vh,

(pn
h − pn−1

h
τn

, φh

)
+ (∇ · un

h, φh) + (F (pn
h), φh) = (q, φh) ∀φh ∈ Φh.

Properties
works⇔ the steady linear diffusion case
assemblage and inversion of local condensation matrices
only once; linearization and time steps – only ph as in FVs

Martin Vohralík and Barbara Wohlmuth Reduction of MFEs to one unknown per element
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Stokes flow with implicit constitutive laws
Stokes flow with implicit constitutive laws

−∇·s +∇p = f in Ω,

∇·u = 0 in Ω,

u = 0 on ∂Ω,

g(s,d(u)) = o in Ω.

Nomenclature
u: velocity, p: pressure, s: shear stress
d(u) := 1

2(∇u + (∇u)t ) symmetric velocity gradient
f: volume forces, µ: viscosity, τ∗: yield stress
g(·, ·): nonlinear implicit constitutive law

g(s,d(u)) = 2µ(τ∗ + (|s| − τ∗)+)d(u)− (|s| − τ∗)+s:
Bingham fluid
g(s,d(u)) = 2µ|d(u)|r−2(τ∗ + (|s|− τ∗)+)d(u)− (|s|− τ∗)+s,
r ∈(1,∞): Herschel–Bulkley fluid
g(s,d(u)) = s−2µ|d(u)|r−2d(u), r ∈(1,∞): power law fluid
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Velocity (explicit law) formulation

Weak formulation
For f ∈ [Ls(Ω)]d , find u ∈ V0 such that

(s(d(u)),∇v) = (f,v) ∀v ∈ V0.

Function spaces

V := [W 1,r
0 (Ω)]d

V0 := {v ∈ V; ∇·v = 0}
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Velocity–pressure (explicit law) formulation

Weak formulation
Find (u,p) ∈ V×Q such that

(s(d(u)),∇v)− (∇·v,p) = (f,v) ∀v ∈ V,
(∇·u,q) = 0 ∀q ∈ Q.

Function spaces

Q := Ls
0(Ω) := {q ∈ Ls(Ω); (q,1) = 0}; 1

r + 1
s = 1

inf–sup condition

inf
q∈Q

sup
v∈V

(q,∇·v)

‖∇v‖r ‖q‖s
= β > 0
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Velocity–pressure–stress implicit law formulation

Weak formulation
Find (u,p, s) ∈ V×Q ×T such that

(s,∇v)− (∇·v,p) = (f,v) ∀v ∈ V,
(∇·u,q) = 0 ∀q ∈ Q,

(g(s,d(u)), t) = 0 ∀t ∈ T.

Function spaces

T := [Ls
sym(Ω)]d×d

Second inf–sup condition

inf
v∈V

sup
t∈T

(t,∇v)

‖∇v‖r ‖t‖s
= γ > 0
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Motivations

Motivations of the present work

reduce the unknowns back to one per element in various
situations
exemplify local flux expressions
present a unified framework in which MFEs with one
unknown/element can be derived/studied/used
show closeness in building principles of MFE and
FD/FV/MFD/MPFA, even on general polygonal meshes
give hints for the numerical treatment of implicit
constitutive laws
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Previous results

Links to nonconforming finite elements

Arnold & Brezzi 1985, Marini 1985, Arbogast & Chen
1995, Chen 1996

Links to finite volumes

Younès, Mose, Ackerer, & Chavent 1999–2004

Links to mimetic finite differences and and multi-point
flux-approximations (using approximate numerical
integration)

Klausen & Winther, 2006
Wheeler & Yotov, 2006
Aavatsmark, Eigestad, Klausen, Wheeler, & Yotov, 2007
Droniou, Eymard, Gallouët, & Herbin, 2010
Bause Hoffmann, & Knabner, 2010
. . . Brezzi, da Veiga, Lipnikov, Manzini, Shashkov . . .
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Local flux expression from the Lagrange multipliers

Mixed finite element method
Find ph ∈ Φh and uh ∈ Vh such that

(S−1uh,vh)− (ph,∇·vh) = 0 ∀vh ∈ Vh,

(∇·uh, φh) = (g, φh) ∀φh ∈ Φh

Nonconforming finite element method
Find λ̃h ∈ Ψ̃h such that

(S∇λ̃h,∇ψ̃h) = (g, ψ̃h) ∀ψ̃h ∈ Ψ̃h

Local flux expression from the Lagrange multipliers
There holds (Marini 1985)

uh|K = −SK∇λ̃h|K +
gK

d
(x− xK ) ∀K ∈ Th

xK : barycenter of K
gK : mean value of the source term g over K
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Find λ̃h ∈ Ψ̃h such that

(S∇λ̃h,∇ψ̃h) = (g, ψ̃h) ∀ψ̃h ∈ Ψ̃h

Local flux expression from the Lagrange multipliers
There holds (Marini 1985)

uh|K = −SK∇λ̃h|K +
gK

d
(x− xK ) ∀K ∈ Th

xK : barycenter of K
gK : mean value of the source term g over K
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Different representations of the MFE solution
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A new element value in K ∈ Th

zK : a new point related to K (not necessarily inside K )
new element value: p̄K = λ̃h(zK )
λ̃h expressed in the three points xσ, xγ , and zK (d = 2)
Lagrange basis functions ϕ̃σ, ϕ̃γ , and ϕ̃K

uh|K = −SK∇
( ∑

σ∈EV ,K

λσϕ̃σ + p̄K ϕ̃K

)
+

gK

d
(x− xK )

•zK

K

L

σ

γ

xγ

xσ
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Definition of a local problem
Definition of a local problem

consider a patch TV of the elements around a vertex V
given the new element values p̄K and λσ, σ ∈ E int

V , in the
patch, express the fluxes uh in the patch
MFEs impose the continuity of uh on the interior sides (E int

V )
of the patch ∑

K∈TV ;σ∈EK

〈uh·nK ,1〉σ = 0 ∀σ ∈ E int
V

local problem: given P̄V={p̄K}K∈TV , find Λint
V ={λγ}γ∈E int

V
s.t.

MV Λint
V = G̃V − JV P̄V

the same building principle as that of MPFA methods

σ4
σ5

σ1

σ2

σ3

γ4

γ5

γ1

γ2

γ3

K1

K2

K3

K4

K5

V

TV = {Ki}5i=1

E int
V = {σi}5i=1

Eext
V = {γi}5i=1

EV = E int
V ∪ Eext

V
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S-circumcenter as the evaluation point

S-circumcenter as the point zK

circumcenter when SK = IsK
the approach of Younès, Mose, Ackerer, & Chavent, 1999
MV gets diagonal
no local linear system needs to be solved
two-point flux expression (on arbitrary triangular grids and
full-matrix piecewise constant S)
impossible in 3D (except particular cases)
MV can explode (modifications necessary):

K

L

•zK = zL
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Barycenter as the evaluation point

Barycenter as the point zK

this is the approach of Vohralík, 2004/2006
MV is not diagonal (unless barycenter = circumcenter)
a local linear system needs to be solved
multi-point flux expression
works generally in d space dimensions
MV can get singular (modifications necessary):

V 
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Changing adaptively the evaluation point

Changing adaptively the evaluation point

change zK according to the local geometry and diffusion
tensor
ensure the well-posedness of the local problems
influence the properties of the local matrices MV

influence the properties of the final matrix (like basis and
preconditioning choice)
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Examples of the different evaluation points

Examples of the different evaluation points zK

S =

(
0.7236 0.3804
0.3804 0.4764

)

•
zK (barycenter)

•zK (circumcenter)

• zK (S-circumcenter)

Martin Vohralík and Barbara Wohlmuth Reduction of MFEs to one unknown per element



I Implicit laws Reduction Num. ex. Polygonal meshes C Local problems and MPFA Global problems

Examples of the local matrices

Examples of the local matrices MV

1 2 3 4 5 6
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S-circumcenter barycenter/opt. evaluation point
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Outline

1 Primal and dual formulations, mixed finite elements

2 Stokes flow with implicit constitutive laws, motivations

3 MFEs reduced to one unknown per element
Local problems definition and a link to the MPFA method
Global problems definition

4 Numerical experiments

5 General polygonal meshes

6 Conclusions and future work
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Expressing the Lagrange multipliers Λ or the fluxes U

Expressing the Lagrange multipliers Λ or the fluxes U

local problems give Λint
V = (MV )−1(G̃V − JV P̄V )

for every vertex V , we have one expression for Λint
V

run through all vertices and combine the (weighted)
inverses of the local condensation matrices
this gives

Λ = M̃invG̃ −MinvP̄

similarly

U = ÕinvG −OinvP̄
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Prescribing the final system by a flux equilibrium

Prescribing the final system by a flux equilibrium

recall U = ÕinvG −OinvP̄
put this into BU = G
this gives

S̄P̄ = H̄

with

S̄ = −BOinv, H̄ = G − BÕinvG

zK = S-circumcenter gives the FV method (Younès, Mose,
Ackerer, & Chavent, 1999)
zK = barycenter gives the CMFE method (Vohralík,
2004/2006) (fully equivalent to the MPFA-O method when
g = 0 (Hoffmann, 2008))
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Prescribing the final system by a potential relation

Prescribing the final system by a potential relation

recall Λ = M̃invG̃ −MinvP̄
put this into NΛ = P̄ (p̄K are punctual values of λ̃h)
this gives

S̄P̄ = H̄

with

S̄ = NMinv + I, H̄ = NM̃invG̃

using zK = S-circumcenter, we name it the MFEC method
using zK = barycenter, we name it the MFEB method
using zK = the optimal evaluation point, we name it the
MFEO method
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Model problem

Model problem

Ω = (0,1)× (0,1)

inhomogeneous Dirichlet boundary condition given by
p(x , y) = 0.1y + 0.9
K ∈ Th:

S|K =

(
cos(θK ) − sin(θK )
sin(θK ) cos(θK )

)(
sK 0
0 νsK

)(
cos(θK ) sin(θK )
− sin(θK ) cos(θK )

)

homogeneous isotropic case, sK = 1 for all K ∈ Th, ν = 1
anisotropic case, sK = 1 for all K ∈ Th,
θK ∈

{
π
5 ,

3π
4 ,

π
2 ,

3π
5 ,

π
3

}
, ν = 0.2

inhomogeneous case, sK ∈ {10,1,0.1,0.01,0.001}, ν = 1

Martin Vohralík and Barbara Wohlmuth Reduction of MFEs to one unknown per element



I Implicit laws Reduction Num. ex. Polygonal meshes C

Model problem

Model problem

Ω = (0,1)× (0,1)

inhomogeneous Dirichlet boundary condition given by
p(x , y) = 0.1y + 0.9
K ∈ Th:

S|K =

(
cos(θK ) − sin(θK )
sin(θK ) cos(θK )

)(
sK 0
0 νsK

)(
cos(θK ) sin(θK )
− sin(θK ) cos(θK )

)

homogeneous isotropic case, sK = 1 for all K ∈ Th, ν = 1
anisotropic case, sK = 1 for all K ∈ Th,
θK ∈

{
π
5 ,

3π
4 ,

π
2 ,

3π
5 ,

π
3

}
, ν = 0.2

inhomogeneous case, sK ∈ {10,1,0.1,0.01,0.001}, ν = 1

Martin Vohralík and Barbara Wohlmuth Reduction of MFEs to one unknown per element



I Implicit laws Reduction Num. ex. Polygonal meshes C

Model problem

Model problem

Ω = (0,1)× (0,1)

inhomogeneous Dirichlet boundary condition given by
p(x , y) = 0.1y + 0.9
K ∈ Th:

S|K =

(
cos(θK ) − sin(θK )
sin(θK ) cos(θK )

)(
sK 0
0 νsK

)(
cos(θK ) sin(θK )
− sin(θK ) cos(θK )

)

homogeneous isotropic case, sK = 1 for all K ∈ Th, ν = 1
anisotropic case, sK = 1 for all K ∈ Th,
θK ∈

{
π
5 ,

3π
4 ,

π
2 ,

3π
5 ,

π
3

}
, ν = 0.2

inhomogeneous case, sK ∈ {10,1,0.1,0.01,0.001}, ν = 1

Martin Vohralík and Barbara Wohlmuth Reduction of MFEs to one unknown per element



I Implicit laws Reduction Num. ex. Polygonal meshes C

Model problem

Model problem

Ω = (0,1)× (0,1)

inhomogeneous Dirichlet boundary condition given by
p(x , y) = 0.1y + 0.9
K ∈ Th:

S|K =

(
cos(θK ) − sin(θK )
sin(θK ) cos(θK )

)(
sK 0
0 νsK

)(
cos(θK ) sin(θK )
− sin(θK ) cos(θK )

)

homogeneous isotropic case, sK = 1 for all K ∈ Th, ν = 1
anisotropic case, sK = 1 for all K ∈ Th,
θK ∈

{
π
5 ,

3π
4 ,

π
2 ,

3π
5 ,

π
3

}
, ν = 0.2

inhomogeneous case, sK ∈ {10,1,0.1,0.01,0.001}, ν = 1

Martin Vohralík and Barbara Wohlmuth Reduction of MFEs to one unknown per element



I Implicit laws Reduction Num. ex. Polygonal meshes C

Initial mesh

Initial mesh and the distribution of the inhomogeneities
and anisotropies
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Matrices of the different methods
System matrix sparsity patterns
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Results, homogeneous isotropic case

CG/ PCG/
DS Bi-CGStab PBi-CGStab

IC/
Meth. Un. Mat. St. Nonz. CN CNS CPU CPU Iter. CPU ILU Iter.

MFEB 13824 NPD 14 177652 7564 7580 0.27 4.86 324.5 0.81 0.36 9.0
MFEC 13824 NNS 4 55040 11256 11056 0.09 2.23 372.0 0.42 0.19 6.5
MFEO 13824 NPD 14 177652 7531 7558 0.28 4.08 270.0 0.80 0.41 7.5
CMFE 13824 NPD 14 177652 7397 7380 0.27 4.70 312.0 0.83 0.39 8.5
FV 13824 SPD 4 55040 65722 8898 0.07 3.09 1098.0 0.42 0.17 17.0
NCFE 20608 SPD 5 102528 14064 9944 0.14 2.92 620.0 1.11 0.56 19.0
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Results, anisotropic case

CG/ PCG/
DS Bi-CGStab PBi-CGStab

IC/
Meth. Un. Mat. St. Nonz. CN CNS CPU CPU Iter. CPU ILU Iter.

MFEB 13824 NPD 14 177652 14489 11203 0.28 6.61 448.0 0.98 0.59 6.5
MFEC 13824 NID 4 55040 2401279 416769 0.08 — — 0.45 0.20 7.0
MFEO 13824 NPD 14 177652 13401 10767 0.27 6.51 440.5 0.95 0.41 10.0
CMFE 13824 NPD 14 177652 9276 7758 0.28 5.27 350.5 0.84 0.38 9.0
FV 13824 SID 4 55040 247055 239934 0.09 — — 0.45 0.20 7.0
NCFE 20608 SPD 5 102528 25393 16969 0.18 4.03 850.0 1.12 0.41 30.0
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Results, inhomogeneous case

CG/ PCG/
DS Bi-CGStab PBi-CGStab

IC/
Meth. Un. Mat. St. Nonz. CN CNS CPU CPU Iter. CPU ILU Iter.

MFEB 13824 NPD 14 177652 819248 740706 0.28 13.33 897.5 1.05 0.62 6.5
MFEC 13824 NNS 4 55040 903789 763849 0.09 5.34 947.5 0.47 0.20 7.5
MFEO 13824 NPD 14 177652 820367 739957 0.28 12.45 790.5 1.05 0.56 8.0
CMFE 13824 NPD 14 177652 2500730 478974 0.28 102.27 6842.5 1.01 0.41 10.5
FV 13824 SPD 4 55040 16387758 497974 0.07 39.41 14101.0 0.44 0.17 16.0
NCFE 20608 SPD 5 102528 4797335 670623 0.18 52.42 11226.0 1.22 0.64 16.0
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General polygonal meshes

A general polygonal mesh T̂H

ΩT̂H

nonconvex and non star-shaped elements in T̂H

T̂H can be nonmatching
maximal number of sides of K ∈ T̂H is not limited
T̂H is not necessarily shape-regular
assumption: existence of a simplicial submesh Th
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MFEs on general polygonal meshes
MFEs on Th

(
A Bt

B 0

)(
U
P

)
=

(
F
G

)

MFEs on T̂H
(

Â B̂t

B̂ 0

)(
Û
P̂

)
=

(
F̂
Ĝ

)

Û: flux unknowns related to the sides of T̂H only
P̂: potential unknowns related to the elements of T̂H only
indefinite, saddle point system, well-posed
derived by static condensation from MFEs on Th (inverses
of loc. matrices corresponding to local Neumann problems)
works for arbitrary order
equivalent to formulation on Th (a priori and a posteriori
error estimates, discrete maximum principle, . . . )
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Û: flux unknowns related to the sides of T̂H only
P̂: potential unknowns related to the elements of T̂H only
indefinite, saddle point system, well-posed
derived by static condensation from MFEs on Th (inverses
of loc. matrices corresponding to local Neumann problems)
works for arbitrary order
equivalent to formulation on Th (a priori and a posteriori
error estimates, discrete maximum principle, . . . )

Martin Vohralík and Barbara Wohlmuth Reduction of MFEs to one unknown per element



I Implicit laws Reduction Num. ex. Polygonal meshes C

MFEs on general polygonal meshes
MFEs on Th

(
A Bt

B 0

)(
U
P

)
=

(
F
G

)

MFEs on T̂H
(
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Û
P̂

)
=

(
F̂
Ĝ
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Conclusions and future work

Conclusions
mixed finite elements: one method with

saddle point / symmetric pos. definite / nonsymmetric pos.
definite / symmetric indefinite / nonsymmetric indef. matrix
U and P unknowns / Λ unknowns / P unknowns
narrow stencil and two-point flux expressions / wider stencil
and multi-point flux expressions
discrete maximum principle for values in some points but
not in some others

no free parameter to choose, no stabilization, the best
method if your criterion is min. complementary energy
paradigm: decompose into a system in order to better
understand, describe, & analyze and reduce back in order
to solve cheaply

Work in progress
extensions to all order MFE schemes
optimal multigrid solvers
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