Mathematical modeling, numerical simulation, and a posteriori error estimates

Martin Vohralík

INRIA Paris-Rocquencourt

Pardubice, December 17, 2013

Outline

Research and education in France, INRIA

Introduction

- Some properties of PDEs and of numerical methods
- A posteriori error estimates

Outline

Research and education in France, INRIA

Introduction

- Some properties of PDEs and of numerical methods
- A posteriori error estimates

Research in France: CNRS

National Centre for Scientific Research

- Institutes of Chemistry, Ecology and Environment, Physics, Nuclear and Particle Physics, Biological Sciences, Humanities and Social Sciences, Computer Sciences, Engineering and Systems Sciences, Mathematical Sciences, Earth Sciences and Astronomy
- 26.000 permanent employees
 - research scientists (chargés de recherche)
 - research directors (directeurs de recherche)
 - engineers, technicians
 - administrative staff
- 6.000 temporary workers
- www.cnrs.fr

Research in France: INRIA

INRIA, Institute for Research in Computer Science and Control

- theoretical and applied research in computer science
- 1.300 research scientists & research directors
- 1000 Ph.D. students, 500 post-docs
- 8 research centers
- organization by project-teams
- www.inria.fr

Higher education in France

Public universities

- 81 universities
- no entrance examination

Grandes écoles

- highly selective admission based on national ranking in competitive written and oral exams
- two years of dedicated preparatory classes
- small number of students

Private universities

• a few smaller institutions

Higher education in France

Public universities

- 81 universities
- no entrance examination

Grandes écoles

- highly selective admission based on national ranking in competitive written and oral exams
- two years of dedicated preparatory classes
- small number of students

Private universities

• a few smaller institutions

Higher education in France

Public universities

- 81 universities
- no entrance examination

Grandes écoles

- highly selective admission based on national ranking in competitive written and oral exams
- two years of dedicated preparatory classes
- small number of students

Private universities

a few smaller institutions

Exchange opportunities

Exchange opportunities

- ERASMUS
- european programs
- Institut Français Prague
- Research in Paris, research scholarships

• . . .

Outline

Introduction

- Some properties of PDEs and of numerical methods
- 4 posteriori error estimates

Partial differential equations

Example of a partial differential equation (PDE) Let $\Omega \subset \mathbb{R}^d$, d = 1, 2, 3. Find $u : \Omega \to \mathbb{R}$ such that $-\nabla \cdot (\underline{K} \nabla u) = f$ in Ω , u = 0 on $\partial \Omega$,

where

- $\mathbf{\underline{K}} : \Omega \to \mathbb{R}^{d \times d}$ is a diffusion tensor,
- $f: \Omega \to \mathbb{R}$ is a source term.

Form in 1D Let Ω be an interval, $\Omega =]a, b[$, a, b two real numbers, a < b. Let $k :]a, b[\rightarrow \mathbb{R}$ and $f :]a, b[\rightarrow \mathbb{R}$ be two given functions. Find $u :]a, b[\rightarrow \mathbb{R}$ such that

$$-(ku')' = f,$$

$$u(a) = u(b) = 0.$$

Partial differential equations

Example of a partial differential equation (PDE) Let $\Omega \subset \mathbb{R}^d$, d = 1, 2, 3. Find $u : \Omega \to \mathbb{R}$ such that $-\nabla \cdot (\underline{K} \nabla u) = f$ in Ω , u = 0 on $\partial \Omega$,

where

- $\mathbf{\underline{K}} : \Omega \to \mathbb{R}^{d \times d}$ is a diffusion tensor,
- $f: \Omega \to \mathbb{R}$ is a source term.

Form in 1D Let Ω be an interval, $\Omega =]a, b[$, a, b two real numbers, a < b. Let $k :]a, b[\rightarrow \mathbb{R}$ and $f :]a, b[\rightarrow \mathbb{R}$ be two given functions. Find $u :]a, b[\rightarrow \mathbb{R}$ such that

$$-(ku')' = f,$$

$$u(a) = u(b) = 0.$$

Partial differential equations

Example of a partial differential equation (PDE) Let $\Omega \subset \mathbb{R}^d$, d = 1, 2, 3. Find $u : \Omega \to \mathbb{R}$ such that $-\nabla \cdot (\underline{K} \nabla u) = f$ in Ω , u = 0 on $\partial \Omega$,

where

<u>K</u>: Ω → ℝ^{d×d} is a diffusion tensor,
 f: Ω → ℝ is a source term.

Form in 1D Let Ω be an interval, $\Omega =]a, b[, a, b \text{ two real numbers}, a < b.$ Let $k :]a, b[\rightarrow \mathbb{R} \text{ and } f :]a, b[\rightarrow \mathbb{R} \text{ be two given functions}. Find <math>u :]a, b[\rightarrow \mathbb{R} \text{ such that}]$

$$-(ku')' = f,$$

 $u(a) = u(b) = 0.$

Partial differential equations

Example of a partial differential equation (PDE) Let $\Omega \subset \mathbb{R}^d$, d = 1, 2, 3. Find $u : \Omega \to \mathbb{R}$ such that $-\nabla \cdot (\underline{K} \nabla u) = f$ in Ω , u = 0 on $\partial \Omega$,

where

<u>K</u>: Ω → ℝ^{d×d} is a diffusion tensor,
 f: Ω → ℝ is a source term.

Form in 1D Let Ω be an interval, $\Omega =]a, b[, a, b \text{ two real numbers}, a < b.$ Let $k :]a, b[\rightarrow \mathbb{R} \text{ and } f :]a, b[\rightarrow \mathbb{R} \text{ be two given functions}. Find <math>u :]a, b[\rightarrow \mathbb{R} \text{ such that}]$

$$-(ku')' = f,$$

$$u(a) = u(b) = 0.$$

Partial differential equations

Example of a partial differential equation (PDE) Let $\Omega \subset \mathbb{R}^d$, d = 1, 2, 3. Find $u : \Omega \to \mathbb{R}$ such that $-\nabla \cdot (\underline{K} \nabla u) = f$ in Ω , u = 0 on $\partial \Omega$,

where

<u>K</u>: Ω → ℝ^{d×d} is a diffusion tensor,
 f: Ω → ℝ is a source term.

Form in 1D Let Ω be an interval, $\Omega =]a, b[, a, b \text{ two real numbers, } a < b$. Let $k :]a, b[\rightarrow \mathbb{R} \text{ and } f :]a, b[\rightarrow \mathbb{R} \text{ be two given functions. Find } u :]a, b[\rightarrow \mathbb{R} \text{ such that}]$

$$-(ku')' = f,$$

$$u(a) = u(b) = 0.$$

Partial differential equations

Example of a partial differential equation (PDE) Let $\Omega \subset \mathbb{R}^d$, d = 1, 2, 3. Find $u : \Omega \to \mathbb{R}$ such that $-\nabla \cdot (\underline{K} \nabla u) = f$ in Ω , u = 0 on $\partial \Omega$,

where

<u>K</u>: Ω → ℝ^{d×d} is a diffusion tensor,
 f: Ω → ℝ is a source term.

Form in 1D

Let Ω be an interval, $\Omega =]a, b[, a, b$ two real numbers, a < b. Let $k :]a, b[\rightarrow \mathbb{R}$ and $f :]a, b[\rightarrow \mathbb{R}$ be two given functions. Find $u :]a, b[\rightarrow \mathbb{R}$ such that

$$-(ku')' = t,$$

 $u(a) = u(b) = 0.$

Partial differential equations

Example of a partial differential equation (PDE) Let $\Omega \subset \mathbb{R}^d$, d = 1, 2, 3. Find $u : \Omega \to \mathbb{R}$ such that $-\nabla \cdot (\underline{K} \nabla u) = f$ in Ω , u = 0 on $\partial \Omega$,

where

<u>K</u>: Ω → ℝ^{d×d} is a diffusion tensor,
 f: Ω → ℝ is a source term.

Form in 1D

Let Ω be an interval, $\Omega =]a, b[, a, b \text{ two real numbers}, a < b.$ Let $k :]a, b[\rightarrow \mathbb{R} \text{ and } f :]a, b[\rightarrow \mathbb{R} \text{ be two given functions}. Find <math>u :]a, b[\rightarrow \mathbb{R} \text{ such that}]$

$$-(ku')'=f,$$

$$u(a)=u(b)=0.$$

Partial differential equations

Example of a partial differential equation (PDE) Let $\Omega \subset \mathbb{R}^d$, d = 1, 2, 3. Find $u : \Omega \to \mathbb{R}$ such that $-\nabla \cdot (\underline{K} \nabla u) = f$ in Ω , u = 0 on $\partial \Omega$,

where

<u>K</u>: Ω → ℝ^{d×d} is a diffusion tensor,
 f: Ω → ℝ is a source term.

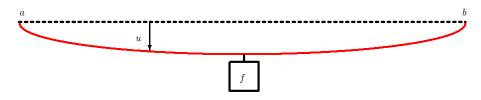
Form in 1D

Let Ω be an interval, $\Omega =]a, b[, a, b$ two real numbers, a < b. Let $k :]a, b[\to \mathbb{R}$ and $f :]a, b[\to \mathbb{R}$ be two given functions. Find $u :]a, b[\to \mathbb{R}$ such that

$$-(ku')' = f,$$

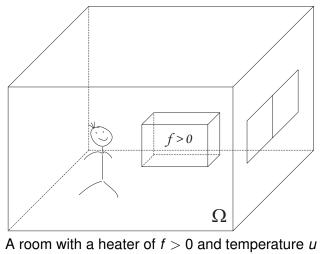
$$u(a) = u(b) = 0.$$

Example: elastic string

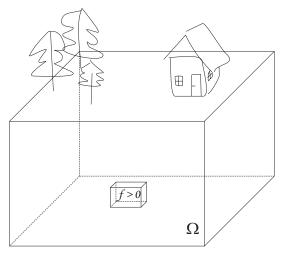


Elastic string with displacement u and weight f

Example: heat flow



Example: underground water flow



Underground with a water well of f > 0 and pressure head u

- PDEs describe a huge number of environmental and physical phenomena
- it is almost never possible to find analytical, *exact solutions* (not even Einstein could solve PDEs ...)
- still we need to approximate their solutions as precisely as possible so as to build bridges and dams, construct cars and planes, forecast the weather, drill oil and natural gas, depollute soils and oceans, concept medications, devise advanced health care techniques, predict population dynamics, steer economic and financial markets ...

- PDEs describe a huge number of environmental and physical phenomena
- it is almost never possible to find analytical, *exact solutions* (not even Einstein could solve PDEs ...)
- still we need to approximate their solutions as precisely as possible so as to build bridges and dams, construct cars and planes, forecast the weather, drill oil and natural gas, depollute soils and oceans, concept medications, devise advanced health care techniques, predict population dynamics, steer economic and financial markets ...

- PDEs describe a huge number of environmental and physical phenomena
- it is almost never possible to find analytical, *exact solutions* (not even Einstein could solve PDEs ...)
- still we need to approximate their solutions as precisely as possible so as to build bridges and dams, construct cars and planes, forecast the weather, drill oil and natural gas, depollute soils and oceans, concept medications, devise advanced health care techniques, predict population dynamics, steer economic and financial markets ...

- PDEs describe a huge number of environmental and physical phenomena
- it is almost never possible to find analytical, *exact solutions* (not even Einstein could solve PDEs ...)
- still we need to approximate their solutions as precisely as possible so as to build bridges and dams, construct cars and planes, forecast the weather, drill oil and natural gas, depollute soils and oceans, concept medications, devise advanced health care techniques, predict population dynamics, steer economic and financial markets ...

Numerical approximations of PDEs

Numerical methods

- mathematically-based algorithms
- evaluated with the aid of computers
- deliver approximate solutions

Crucial questions

- How large is the overall error between the exact and approximate solutions?
- Where in space and in time is the error localized?

Numerical approximations of PDEs

Numerical methods

- mathematically-based algorithms
- evaluated with the aid of computers
- deliver approximate solutions

Crucial questions

- How large is the overall error between the exact and approximate solutions?
- Where in space and in time is the error localized?

Numerical approximations of PDEs

Numerical methods

- mathematically-based algorithms
- evaluated with the aid of computers
- deliver approximate solutions

Crucial questions

- How large is the overall error between the exact and approximate solutions?
- Where in space and in time is the error localized?

Outline

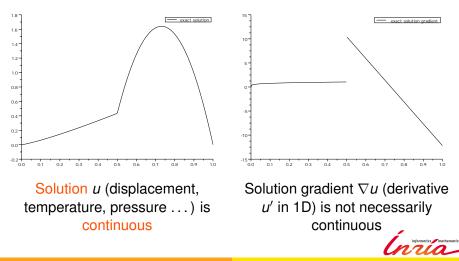
Research and education in France, INRIA

2 Introduction

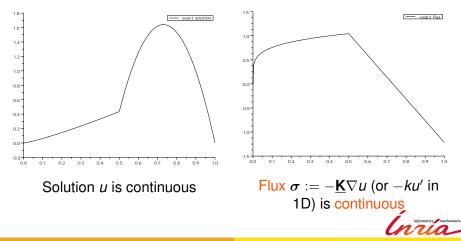
- Some properties of PDEs and of numerical methods
- A posteriori error estimates

5 Outlook

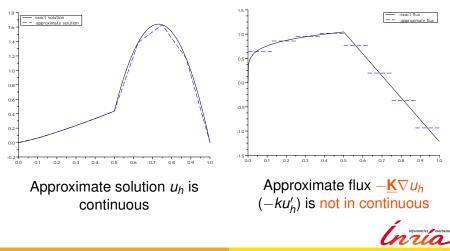
Properties of the exact solution



Properties of the exact solution



Approximate solution and approximate flux



Outline

- Research and education in France, INRIA
- 2 Introduction
- 3 Some properties of PDEs and of numerical methods
- A posteriori error estimates

A posteriori error estimates

A posteriori error estimate

An a posteriori error estimate is an inequality of the form

$$|||\boldsymbol{u}-\boldsymbol{u}_h||| \leq \left\{\sum_{K\in\mathcal{T}_h}\eta_K^2\right\}^{1/2},$$

where

- *u* is the unknown exact solution;
- *u_h* is the known numerical approximation;
- $||| \cdot |||$ is some suitable norm;
- T_h is the computational mesh of the numerical method;
- η_K = η_K(u_h) is a quantity linked to the mesh element K, computable from u_h, called an *element estimator*.

Magic

We do not know u but we can estimate the error between u and u_h !!!

A posteriori error estimates

A posteriori error estimate

An a posteriori error estimate is an inequality of the form

$$\||\boldsymbol{u}-\boldsymbol{u}_h\|| \leq \left\{\sum_{K\in\mathcal{T}_h}\eta_K^2\right\}^{1/2}$$

where

• *u* is the unknown exact solution;

- *u_h* is the known numerical approximation;
- $||| \cdot |||$ is some suitable norm;
- T_h is the computational mesh of the numerical method;
- η_K = η_K(u_h) is a quantity linked to the mesh element K, computable from u_h, called an *element estimator*.

Magic

We do not know u but we can estimate the error between u and u_h !!!

A posteriori error estimates

A posteriori error estimate

An a posteriori error estimate is an inequality of the form

$$|||\boldsymbol{u}-\boldsymbol{u}_{h}||| \leq \left\{\sum_{K\in\mathcal{T}_{h}}\eta_{K}^{2}\right\}^{1/2}$$

where

- *u* is the unknown exact solution;
- *u_h* is the known numerical approximation;
- $||| \cdot |||$ is some suitable norm;
- T_h is the computational mesh of the numerical method;
- η_K = η_K(u_h) is a quantity linked to the mesh element K, computable from u_h, called an *element estimator*.

Magic

We do not know u but we can estimate the error between u and u_h !!!

A posteriori error estimates

A posteriori error estimate

An a posteriori error estimate is an inequality of the form

$$|||\boldsymbol{u}-\boldsymbol{u}_h||| \leq \left\{\sum_{\boldsymbol{K}\in\mathcal{T}_h}\eta_{\boldsymbol{K}}^2\right\}^{1/2}$$

where

- *u* is the unknown exact solution;
- *u_h* is the known numerical approximation;
- $||| \cdot |||$ is some suitable norm;
- T_h is the computational mesh of the numerical method;
- η_K = η_K(u_h) is a quantity linked to the mesh element K, computable from u_h, called an *element estimator*.

Magic

A posteriori error estimates

A posteriori error estimate

An a posteriori error estimate is an inequality of the form

$$\||\boldsymbol{u}-\boldsymbol{u}_h\|| \leq \left\{\sum_{\boldsymbol{K}\in\mathcal{T}_h}\eta_{\boldsymbol{K}}^2\right\}^{1/2}$$

where

- *u* is the unknown exact solution;
- *u_h* is the known numerical approximation;
- ||| · ||| is some suitable norm;
- T_h is the computational mesh of the numerical method;
- η_K = η_K(u_h) is a quantity linked to the mesh element K, computable from u_h, called an *element estimator*.

Magic

A posteriori error estimates

A posteriori error estimate

An a posteriori error estimate is an inequality of the form

$$|||\boldsymbol{u}-\boldsymbol{u}_{\boldsymbol{h}}||| \leq \left\{\sum_{K\in\mathcal{T}_{\boldsymbol{h}}}\eta_{K}^{2}\right\}^{1/2},$$

where

- *u* is the unknown exact solution;
- *u_h* is the known numerical approximation;
- ||| · ||| is some suitable norm;
- T_h is the computational mesh of the numerical method;
- $\eta_K = \eta_K(u_h)$ is a quantity linked to the mesh element K, computable from u_h , called an *element estimator*.

Magic

A posteriori error estimates

A posteriori error estimate

An a posteriori error estimate is an inequality of the form

$$|||\boldsymbol{u}-\boldsymbol{u}_h||| \leq \left\{\sum_{\boldsymbol{K}\in\mathcal{T}_h}\eta_{\boldsymbol{K}}^2\right\}^{1/2}$$

where

- *u* is the unknown exact solution;
- *u_h* is the known numerical approximation;
- ||| · ||| is some suitable norm;
- T_h is the computational mesh of the numerical method;
- $\eta_K = \eta_K(u_h)$ is a quantity linked to the mesh element *K*, computable from u_h , called an *element estimator*.

Magic

A posteriori error estimates

A posteriori error estimate

An a posteriori error estimate is an inequality of the form

$$|||\boldsymbol{u}-\boldsymbol{u}_{h}||| \leq \left\{\sum_{\boldsymbol{K}\in\mathcal{T}_{h}}\eta_{\boldsymbol{K}}^{2}\right\}^{1/2}$$

where

- *u* is the unknown exact solution;
- *u_h* is the known numerical approximation;
- ||| · ||| is some suitable norm;
- T_h is the computational mesh of the numerical method;
- $\eta_K = \eta_K(u_h)$ is a quantity linked to the mesh element *K*, computable from u_h , called an *element estimator*.

Magic

Construction of $\eta_{\mathcal{K}}(u_h)$

- recall that the exact flux $\sigma = -\mathbf{\underline{K}}\nabla u$ is continuous
- recall that the approximate flux $-\underline{\mathbf{K}}\nabla u_h$ is not continuous
- main idea: build a discrete, approximate flux reconstruction σ_h which would be continuous as the exact flux σ is
- use σ_h in order to devise $\eta_K(u_h)$

Construction of $\eta_{\mathcal{K}}(u_h)$

- recall that the exact flux $\sigma = -\mathbf{\underline{K}} \nabla u$ is continuous
- recall that the approximate flux $-\underline{\mathbf{K}}\nabla u_h$ is not continuous
- main idea: build a discrete, approximate flux reconstruction σ_h which would be continuous as the exact flux σ is

• use σ_h in order to devise $\eta_K(u_h)$

Construction of $\eta_{\mathcal{K}}(u_h)$

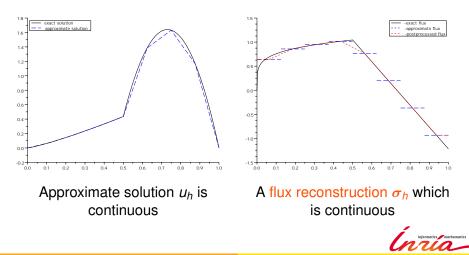
- recall that the exact flux $\sigma = -\mathbf{\underline{K}} \nabla u$ is continuous
- recall that the approximate flux $-\underline{\mathbf{K}}\nabla u_h$ is not continuous
- main idea: build a discrete, approximate flux reconstruction σ_h which would be continuous as the exact flux σ is

• use σ_h in order to devise $\eta_K(u_h)$

Construction of $\eta_{\mathcal{K}}(u_h)$

- recall that the exact flux $\sigma = -\mathbf{\underline{K}} \nabla u$ is continuous
- recall that the approximate flux $-\underline{\mathbf{K}}\nabla u_h$ is not continuous
- main idea: build a discrete, approximate flux reconstruction σ_h which would be continuous as the exact flux σ is
- use σ_h in order to devise $\eta_K(u_h)$

Approximate solution and postprocessed flux



Numerical experiment in 1D

Model problem

$$-u'' = \pi^2 sin(\pi x) \text{ in }]0,1[, u = 0 \text{ in } 0,1]$$

Exact solution

$$u(x) = \sin(\pi x)$$

Discretization by the finite element method

N given, h = 1/(N + 1), $x_k = kh$, $k = 0, ..., N + 1 \Rightarrow$ piecewise affine u_h **Choice of** σ_h

$$\begin{aligned} \sigma_h(x_{k+\frac{1}{2}}) &= -u'_h(x_{k+\frac{1}{2}}) & k = 0, \dots, N, \\ \sigma_h(x_k) &= -(u'_h|_{]x_{k-1}, x_k[} + u'_h|_{]x_k, x_{k+1}[})/2 & k = 1, \dots, N, \\ \sigma_h(x_0) &= -u'_h|_{]x_0, x_1[}, \\ \sigma_h(x_{N+1}) &= -u'_h|_{]x_{N, x_{N+1}[}} \end{aligned}$$

Numerical experiment in 1D

Model problem

$$-u'' = \pi^2 sin(\pi x) \text{ in }]0,1[, u = 0 \text{ in } 0,1]$$

Exact solution

$$u(x) = sin(\pi x)$$

Discretization by the finite element method

N given, h = 1/(N + 1), $x_k = kh$, $k = 0, ..., N + 1 \Rightarrow$ piecewise affine u_h **Choice of** σ_h

$$\begin{aligned} \sigma_h(x_{k+\frac{1}{2}}) &= -u'_h(x_{k+\frac{1}{2}}) & k = 0, \dots, N, \\ \sigma_h(x_k) &= -(u'_h|_{]x_{k-1}, x_k} [+u'_h|_{]x_k, x_{k+1}} [)/2 & k = 1, \dots, N, \\ \sigma_h(x_0) &= -u'_h|_{]x_0, x_1} [, \\ \sigma_h(x_{N+1}) &= -u'_h|_{]x_{N, x_{N+1}}} [\end{aligned}$$

Numerical experiment in 1D

Model problem

$$-u'' = \pi^2 sin(\pi x) \text{ in }]0,1[, u = 0 \text{ in } 0,1]$$

Exact solution

$$u(x) = sin(\pi x)$$

Discretization by the finite element method *N* given, h = 1/(N + 1), $x_k = kh$, $k = 0, ..., N + 1 \Rightarrow$ piecewise affine u_h

Choice of σ_h

$$\begin{aligned} \sigma_h(x_{k+\frac{1}{2}}) &= -u'_h(x_{k+\frac{1}{2}}) & k = 0, \dots, N, \\ \sigma_h(x_k) &= -(u'_h|_{]x_{k-1}, x_k[} + u'_h|_{]x_k, x_{k+1}[})/2 & k = 1, \dots, N, \\ \sigma_h(x_0) &= -u'_h|_{]x_0, x_1[}, \\ \sigma_h(x_{N+1}) &= -u'_h|_{]x_N, x_{N+1}[} \end{aligned}$$

Modeling, simulation, and a posteriori estimates

Numerical experiment in 1D

Model problem

$$-u'' = \pi^2 sin(\pi x) \text{ in }]0,1[, u = 0 \text{ in } 0,1]$$

Exact solution

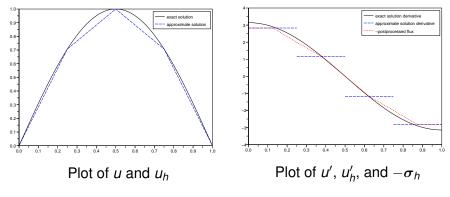
$$u(x) = sin(\pi x)$$

Discretization by the finite element method

N given, h = 1/(N + 1), $x_k = kh$, $k = 0, ..., N + 1 \Rightarrow$ piecewise affine u_h Choice of σ_h

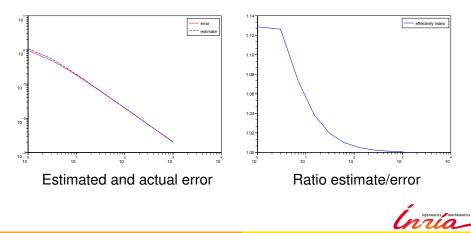
$$\begin{aligned} \sigma_h(x_{k+\frac{1}{2}}) &= -u'_h(x_{k+\frac{1}{2}}) & k = 0, \dots, N, \\ \sigma_h(x_k) &= -(u'_h|_{]x_{k-1}, x_k[} + u'_h|_{]x_k, x_{k+1}[})/2 & k = 1, \dots, N, \\ \sigma_h(x_0) &= -u'_h|_{]x_0, x_1[}, \\ \sigma_h(x_{N+1}) &= -u'_h|_{]x_N, x_{N+1}[} \end{aligned}$$

Exact and approximate solution and fluxes



Martin Vohralík Modeling, simulation, and a posteriori estimates

Estimate and its efficiency



Martin Vohralík Modeling, simulation, and a posteriori estimates

Numerical experiment in 2D

Model nonlinear problem

p-Laplacian

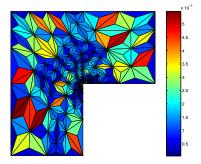
$$\nabla \cdot (|\nabla u|^{p-2} \nabla u) = f \quad \text{in } \Omega,$$
$$u = u_0 \quad \text{on } \partial \Omega$$

weak solution (used to impose the Dirichlet BC)

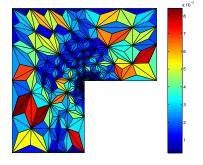
$$u(r,\theta)=r^{\frac{7}{8}}\sin(\theta^{\frac{7}{8}})$$

- p = 4, L-shape domain, singularity at the origin
- the nonconforming finite element method used

Error distribution on an adaptively refined mesh



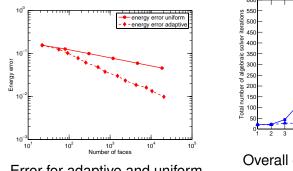
Estimated error distribution



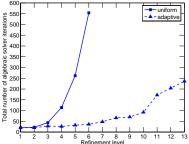
Exact error distribution

Martin Vohralík Modeling, simulation, and a posteriori estimates

Adaptive versus uniform performance



Error for adaptive and uniform mesh refinement



Overall cost for fully adaptive and classical nonadaptive approaches

Adaptive mesh refinement-steady case

movie

Martin Vohralík Modeling, simulation, and a posteriori estimates

Adaptive mesh refinement-unsteady case

movie

Martin Vohralík Modeling, simulation, and a posteriori estimates

Outline

- Research and education in France, INRIA
- 2 Introduction
- Some properties of PDEs and of numerical methods
- 4 posteriori error estimates

- control of the error between the unknown exact solution and know numerical approximation: a given precision can be attained at the end of the simulation
- efficiency: as small as possible amount of computational work is needed
- achieved via a posteriori error estimates and adaptivity

- control of the error between the unknown exact solution and know numerical approximation: a given precision can be attained at the end of the simulation
- efficiency: as small as possible amount of computational work is needed
- achieved via a posteriori error estimates and adaptivity

- control of the error between the unknown exact solution and know numerical approximation: a given precision can be attained at the end of the simulation
- efficiency: as small as possible amount of computational work is needed
- achieved via a posteriori error estimates and adaptivity

- control of the error between the unknown exact solution and know numerical approximation: a given precision can be attained at the end of the simulation
- efficiency: as small as possible amount of computational work is needed
- achieved via a posteriori error estimates and adaptivity

