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What an a posteriori error estimate should fulfill

Guaranteed upper bound (global error upper bound)

N
° |u~— Uh||g22><(o,7') <Y1 T D TeTn 77’77'(Uh)2
@ no undetermined constant: error control
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What an a posteriori error estimate should fulfill

Guaranteed upper bound (global error upper bound)
N

° |u~— Uh||g22><(o,7') <Y1 T D TeTn 77’77'(uh)2

@ no undetermined constant: error control
Asymptotic exactness

N
© Yonot 7" reranf(un)?/|lu— Uh”%x(O,T) — 1
@ overestimation factor goes to one with meshes size
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What an a posteriori error estimate should fulfill

Guaranteed upper bound (global error upper bound)
2 N 2
° |u~— Uh”QX(o,T) <ot T2 e nF(un)
@ no undetermined constant: error control
Asymptotic exactness
N 2 2
® > n1 ™" 2rernn(Un)®/llu = UnllG 0.1y = 1
@ overestimation factor goes to one with meshes size
Local efficiency (local error lower bound)
2 2 2
° Tn"?r'[,'(uh) < ( gffyT) ZT’closeto T ||U - uh”T’X(t”_1,t")
@ necessary for optimal space—time mesh refinement
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What an a posteriori error estimate should fulfill

Guaranteed upper bound (global error upper bound)
N

° |lu- Uh||g2)><(0,T) < Yoot ™" Y rern 1 (Un)?

@ no undetermined constant: error control
Asymptotic exactness

N

© Yonot 7" reranf(un)?/|lu— Uh”%x(O,T) — 1

@ overestimation factor goes to one with meshes size
Local efficiency (local error lower bound)

° Tn"?r';'(uh)z < ( Qf77)2 ZT’closeto T ||U - uh”%”x(t”_1,t")

@ necessary for optimal space—time mesh refinement
Robustness

® Cl; r independent of data, domain, final time, meshes, or
solution
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What an a posteriori error estimate should fulfill

Guaranteed upper bound (global error upper bound)
N

° |lu- Uh||g2)><(0,T) < Yoot ™" Y rern 1 (Un)?

@ no undetermined constant: error control
Asymptotic exactness

N

© Yonot 7" reranf(un)?/|lu— Uh”%x(O,T) — 1

@ overestimation factor goes to one with meshes size
Local efficiency (local error lower bound)

° Tn"?r';'(uh)z < ( Qf77)2 ZT’closeto T ||U - uh”%”x(t”_1,t")

@ necessary for optimal space—time mesh refinement
Robustness

® Cl; r independent of data, domain, final time, meshes, or
solution

Negligible evaluation cost
@ estimators can be evaluated locally in space and time
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Previous results

Continuous finite elements

Bieterman and Babuska (1982), introduction
Picasso (1998), no derefinement allowed

Babuska, Feistauer, and Solin (2001), continuous-in-time
discretization

Strouboulis, Babus$ka, and Datta (2003), guaranteed
estimates

Verfrth (2003), efficiency, robustness with respect to the
final time

Makridakis and Nochetto (2003), elliptic reconstruction
Bergam, Bernardi, and Mghazli (2005), efficiency (not
optimal)

Lakkis and Makridakis (2006), elliptic reconstruction
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The heat equation

The heat equation
oou—Au=f ae inQ:=Qx(0,T),
u=0 ae ondx(0,T),
u(-,0)=up a.e.inQ

Assumptions
@ Q CRY d>2,is apolygonal domain
@ T > 0 is the final simulation time
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The heat equation

The heat equation
oou—Au=f ae inQ:=Qx(0,T),
u=0 ae ondx(0,T),
u(-,0)=up a.e.inQ

Assumptions
@ Q CRY d>2,is apolygonal domain
@ T > 0 is the final simulation time

Spaces
® X :=12(0,T; H}(Q))
e X' =L20,T,H(Q))
o Yi={yeXoyeX}
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_ Continuous setting Discrete setting
The heat equation

Norms

)
o energy norm [ly[% = / IVyI2(t) at
o dual norm Iyl =yl + ol

loyllx = { / 10y 112+ )dt}
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The heat equation

Norms

.
@ energy norm ||y||% ::/ IVy|2(t)dt
@ dual norm |lylly == |lyllx + ||at}/”)/(é

o lx = { / o2 )dt}

Weak solution
Find u € Y such that, for a.e. t € (0, T) and for all v € H{(Q),

(Oru, v)(t) + (Vu, V(1) = (f,v)(1)
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Time-dependent meshes and discrete solutions

Approximate solutions
o discrete times {t"}o<pen, t° =0and tN = T
@ Ip:=(t"""t", " =t"—t""11<n<N
@ a different simplicial mesh 7" onall0 < n< N
o up eV :=Vp(T"),0<n<N
@ v} possibly nonconforming, not included in H}(S)
@ up, : Q — R continuous and piecewise affine in time

_ 1 _
Upe (1) = (1= QUi + o, o= (t—1"")
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Time-dependent meshes and discrete solutions
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Time-dependent meshes and discrete solutions
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Properties of the weak solution
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Approximate potential and approximate flux

—— exact solution \ — exactiux
— — _approximate solution — — -approximate flux

Approximate potential uf is not Approximate flux —Vuy is not
in H} () in H(div, Q)
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Potential and flux reconstructions

General form

@ potential reconstruction s is continuous and piecewise
affine in time with s” € Hj(Q) forall0 < n < N (s" are in
the correct space)
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Potential and flux reconstructions

General form

@ potential reconstruction s is continuous and piecewise
affine in time with s” € Hj(Q) forall0 < n < N (s" are in
the correct space)

@ flux reconstruction 0 is piecewise constant in time with
0], € H(div,Q) forall 1 < n < N (6|, are in the correct
space)
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Potential and flux reconstructions

General form
@ potential reconstruction s is continuous and piecewise
affine in time with s” € Hj(Q) forall0 < n < N (s" are in
the correct space)
@ flux reconstruction 0 is piecewise constant in time with
0], € H(div,Q) forall 1 < n < N (6|, are in the correct
space)
Two additional assumptions
@ s" preserves the mean values of up_on Tn+1 a2 common
refinement of 7" and 7+

(" V) = (g, )y VT e
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Potential and flux reconstructions

General form

@ potential reconstruction s is continuous and piecewise
affine in time with s” € Hj(Q) forall0 < n < N (s" are in
the correct space)

@ flux reconstruction 0 is piecewise constant in time with
0], € H(div,Q) forall 1 < n < N (6|, are in the correct
space)

Two additional assumptions

@ s" preserves the mean values of up_on Tn+1 a2 common
refinement of 7" and 7"+1

(" V) = (g, )y VT e
@ 0" satisfies a local conservation property

(f"— ol —v-0",1)r=0 VT eT"
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Potential and flux reconstructions

—— exact solution \ — exact flux

— — approximate solution . == -approximate flux

— —_postprocessed solution postprocessed flux

A postprocessed potential s} is A postprocessed flux 8" is in
in H} () H(div, Q)
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Practical construction of s and 6

Construction of s”

ST =I0R) + Y afbr,
TleTn,nH

1
n ._ _ "y _gn,n ,
aTr = (le’ 1)T/(UhT Z.av(uhr)’ 1)T



| Setting Est. & efficiency Applications Num. exp. C Potential and flux rec. A posteriori est.  Efficiency

Practical construction of s and @

Construction of s”

s":=T0(up) + Z af.br,
T’ET”’”H
1
n.o._ no_ Ty Y 1)
aT (bT/,1)T/(UhT av(uh‘r)7 )T
@ 7! the averaging interpolate on the mesh 7"
@ by standard (time-independent) bubble function supported
on T’

@ the mean value is preserved on all T/ ¢ 771
@ specificity of the parabolic case
@ independent of the numerical scheme
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Practical construction of s and @

Construction of s”

s":=T0(up) + Z af.br,
T’ET”’”H
1
n.o._ no_ Ty Y 1)
aT (bT/,1)T/(UhT av(uh‘r)7 )T
@ 7! the averaging interpolate on the mesh 7"
@ by standard (time-independent) bubble function supported
on T’

@ the mean value is preserved on all T/ ¢ 771
@ specificity of the parabolic case
@ independent of the numerical scheme

Construction of 9"

@ inspired from the elliptic case
@ depends on the numerical scheme
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A posteriori error estimate

Theorem (A posteriori error estimate)

There holds
1/2
|u—Uny <3 {Z/ Z 1R, 7 + 7pE, 7( ))zdt}
In TeTn
1/2
{Z/ Z ’]N(lT dt}
In TeTn
N 1/2
T {ZTH Z (UCJCLT)Z} + e + 3||f = fllx.
n=1 TeTn

4
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A posteriori error estimate

Theorem (A posteriori error estimate)

There holds
1/2
|u—Uny <3 {Z/ Z 1R, 7 + 7pE, 7( ))zdt}
In TeTn
1/2
{Z/ Z ’]N(lT dt}
In TeTn
N 1/2
T {ZTH Z (UCJCLT)Z} + e + 3||f = fllx.
n=1 TeTn

4

@ unified setting: no specification of the numerical scheme
@ only mean values-preserving potential reconstruction s
and locally conservative flux reconstruction 6 needed
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Estimators

Estimators
@ diffusive flux estimator
o e r(t) = IVs(t) + 677, tel,
e penalizes the fact that — V) ¢ H(div. Q)
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Estimators

Estimators
@ diffusive flux estimator
o e r(t) = IVs(t) + 677, tel,
e penalizes the fact that —Vuj ¢ H(div, Q)
@ residual estimato[
® g 7= Cphr||f" — Ois" — V-6 1
e residue evaluated for 6"
e Cp=1/7



| Setting Est. & efficiency Applications Num. exp. C Potential and flux rec. A posteriori est.

Estimators

Efficiency

Estimators
@ diffusive flux estimator
° ngm(t) =|Vs(t)+ 6", tel,
e penalizes the fact that —Vu; ¢ H(div, Q)
@ residual estimator
o 17 = Cohr||f" — 048" — V-0"||7
e residue evaluated for 6"
e Cp=1/7
@ nonconformity estimators
® ey r(8) = [V (s — up )7, tel
® nNca 7 = Cehr||0i(s — unr ) (|7
e penalize the fact that v & HJ (<)
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Estimators

Efficiency

Estimators
@ diffusive flux estimator
° nngT(z‘) =|Vs(t)+ 6", tel,
e penalizes the fact that —Vu; ¢ H(div, Q)
@ residual estimator
o 7l ;= Cohr||f" — 88" — V-0"|| 7
e residue evaluated for 6"
o Co=1/7
@ nonconformity estimators
® ey r(8) = [V (s — up )7, tel
® nNca 7 = Cehr||0i(s — unr ) (|7
e penalize the fact that v & HJ (<)
@ initial condition estimator
Q 7)c = 21/2HSO — UOH
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Estimators

Estimators
@ diffusive flux estimator
o e r(t) = |Vs(t) + 67, te
e penalizes the fact that —Vu; ¢ H(div, Q)
@ residual estimator
o 17 = Cohr||f" — 048" — V-0"||7
e residue evaluated for 6"
o Co=1/7
@ nonconformity estimators
o 1y 7(8) = V" — up )(D)ll7, L€ Iy
® nNca 7 = Cehr||0i(s — unr ) (|7
e penalize the fact that v & HJ (<)
@ initial condition estimator
Q 7)c = 21/2HSO — UOH
@ data oscillation estimator
o ||f —f|lx
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Remarks

Conforming methods

@ in conforming methods (FEs, VCFVs) ufl < H}(9Q)
@ sets” = up
@ = nonconformity estimators nge, 7 and nyc, 7 vanish
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Remarks

Conforming methods

@ in conforming methods (FEs, VCFVs) ufl < H}(9Q)

@ sets” = up

@ = nonconformity estimators nge, 7 and nyc, 7 vanish
Flux-conforming methods

@ in flux-conforming methods (MFEs, CCFVs)
—V"up_ € H(div, Q)

@ setd” :=-V'up

@ = diffusive flux estimator nfg 7 4 vanishes
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Separating the space and time errors

Separating the space and time errors
e notice that [, (. 7)? < (0 71)% + (ng 7 2)%, where

(nr,7.1)% = 27" Vs" + 6"|%

2 _
(1872 =2 [ [9() = V"I dt = Zo"|V(" = ")
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Separating the space and time errors

Separating the space and time errors
e notice that [, (. 7)? < (0 71)% + (ng 7 2)%, where

(13 7.4)? = 277 V" + 073

2

(1872 =2 [ [9() = V"I dt = Zo"|V(" = ")

@ time error estimator nfl, uses 7. 1,
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Separating the space and time errors

Separating the space and time errors
e notice that [, (. 7)? < (0 71)% + (ng 7 2)%, where

(13 7.4)? = 277 V" + 073

2 _
(1872 =2 [ [9() = V"I dt = Zo"|V(" = ")

@ time error estimator nfl, uses 7. 1,
@ space error estimator ng, uses 1. 1 1, 13 75 ¢ 7 and

]
INc2, T
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Separating the space and time errors

Separating the space and time errors

e notice that [, (. 7)? < (0 71)% + (ng 7 2)%, where
(1) = 27| V" + 0

2 _
(1872 =2 [ [9() = V"I dt = Zo"|V(" = ")

@ time error estimator nfl, uses 7. 1,
@ space error estimator ng, uses 1. 1 1, 13 75 ¢ 7 and

AN
INc2, T
@ this yields
N 1/2 N 1/2
lu — Upe|ly < {Z(ns"pf} +{Z<n{’m>2} +mc+3IIf — Fllx
n=1 n=1
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A space-time adaptive time-marching algorithm

Algorithm for achieving a given relative precision ¢

Sr {05 + 0} _ o
S lunlgy
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A space-time adaptive time-marching algorithm

Algorithm for achieving a given relative precision ¢

Sr {05 + 0} _ o
S lunlgy

@ |Initialization

@ choose an initial mesh 77°;
@ select an initial time step 7° and set n:= 1;
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A space-time adaptive time-marching algorithm

Algorithm for achieving a given relative precision ¢

S (G + 0P} _

N —_—
> n—1 HUhrH%(/n)

@ |Initialization

@ choose an initial mesh 779;
@ select an initial time step 7° and set n := 1;
@ Loopintime: while ;7' < T,

Q set7T™ = T’”andT =1,

@ solve ur := Sol(up- ", ”*,T”*),

© estimate the space and time errors by ng, and 7,

© when )], or 1, are too much above or below ellunr || za,y/ V2
or not of similar size, refine or derefine the time step 7"
and the space mesh 7" and return to step (2-2), otherwise
save approximate solution, mesh, and time step as up_, 7",
and 7" andsetn:=n+1.
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Efficiency

Theorem (Efficiency)

There holds
N + i S 11U — Unell vy + T"(Unr) + EF
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Efficiency

Theorem (Efficiency)

There holds
N + i S 11U — Unell vy + T"(Unr) + EF

Notation

0 I un )P =" > UE IR o+ D IR IR 4
2°VT 2°VT
TeTn1 TeTn
@ (&f') is space-time data oscillation term
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Efficiency

Theorem (Efficiency)

There holds
My + 1 10 = Une vy + T (Usr) + €7

Notation
0 I un)Pi=1" > (up Iy o+ Y VR IR s 4
29T 29T
TeTn1 TeTn
@ (&f') is space-time data oscillation term

Comments on 7"
@ J"is atypical jump seminorm
@ it can bounded by the energy error if the jumps in up, have
zero mean values (MFEs, FCFVs, NCFEs); it can also be
bounded in DGs, using the scheme
@ it can alternatively be added to the error measure (note
that 7"(up,) = J"(U — Upy))
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Assumptions for the lower bound proof

Main assumption: approximation property of the flux
reconstruction
1/2
IVup, +6"7 < S S W3 — drup, + Aup |3
T'exr

N IVOUR s g+ TR e

@ ||Vup_+ 6"|1is alocal lower bound for the classical
residual estimators
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Assumptions for the lower bound proof

Main assumption: approximation property of the flux
reconstruction
1/2
IVup, +6"7 < S S W3 — drup, + Aup |3
T'exr

SRLY A7 (PR (78 (RS

@ ||Vup_+ 6"|1is alocal lower bound for the classical
residual estimators

Other assumptions

@ the meshes {7"}o-,-y are shape regular uniformly in n;
@ the meshes cannot be refined or coarsened too quickly;

@ for nonconforming methods on time-varying meshes,
(hM?2 < 7" (mild inverse parabolic CFL on time step)

Alexandre Ern and Martin Vohralik A posteriori error estimation for the heat equation



| Setting Est. & efficiency Applications Num. exp. C DG CCFV MFE VCFV FCFV

Outline

e Applications to different numerical methods
@ Discontinuous Galerkin

Cell-centered finite volumes

Mixed finite elements

Vertex-centered finite volumes

Face-centered finite volumes
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General concept

Upper bound

@ for 0 < n < N, we only have to construct 8”7 € H(div, Q)
which is locally conservative, i.e., such that
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General concept

Upper bound

@ for 0 < n < N, we only have to construct 8”7 € H(div, Q)
which is locally conservative, i.e., such that

(f"— ol —V-0" 1)y =0, VTeT"

@ we construct 8” in some mixed finite element space;
example: Raviart-Thomas—Nédélec spaces

RTN/(T”) = {Vh € H(diV7 Q) ; Vh’T S RTN/(T) VT € Tn}
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General concept

Upper bound

@ for 0 < n < N, we only have to construct 8”7 € H(div, Q)
which is locally conservative, i.e., such that

(f"— ol —V-0" 1)y =0, VTeT"

@ we construct 8” in some mixed finite element space;
example: Raviart-Thomas—Nédélec spaces

RTN/(T”) = {Vh € H(diV, Q) ; Vh’T S RTN/(T) VT € Tn}

Lower bound

@ we only have to verify the flux approximation property
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General concept

Upper bound

@ for 0 < n < N, we only have to construct 8”7 € H(div, Q)
which is locally conservative, i.e., such that

1 owf —v-e"1)r=0, VTeT"
hr

@ we construct 8” in some mixed finite element space;
example: Raviart-Thomas—Nédélec spaces

RTN/(T”) = {Vh € H(diV, Q) ; Vh’T S RTN/(T) VT € Tn}
Lower bound

@ we only have to verify the flux approximation property

We achieve this by a straightforward generalization of the
elliptic case (previous works)
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Discontinuous Galerkin method

Definition (DG method)
Onlp,, 7", 1 < n< N, find uf_ € V] :=Px(T"), k > 1, such that

(Oetpy, vi)— > AV up Y, [veD e +0(ne-{V i}, [up 1)F )}
FeFn

+(VURL V) + D (aphe Tup D [vel)F = (", vi)  Vvh € V4.
Fern

v
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Discontinuous Galerkin method

Definition (DG method)
Onlp,, 7", 1 < n< N, find uf_ € V] :=Px(T"), k > 1, such that

(Oetpy, vi)— > AV up Y, [veD e +0(ne-{V i}, [up 1)F )}
FeFn

+(VURL V) + D (aphe Tup D [vel)F = (", vi)  Vvh € V4.
Fern

v

Flux 6" ¢ RTN/(7"), | € {k —1,k}
Forall T € 7", all F € F{, all gy € P,(F) (face normal comp.),

(an'nFa Qh)F = (—nF-{{V”uﬁT}} + O":h/;1 I[“ZT]]’ qh)F7

and for all ry € IP’}’_1 (T) (element components),
(07, 1n) 7 = —(V"UR, th) T + 0 3 pcn wr(NE-Th, [UR D)F-
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Cell-centered finite volume method

Definition (CCFV method)

On Ip, 7", 1 < n< N, find T € V]! := Py(7T") such that

1 Z
ﬁ(uhT UhT ,1)T+ STF_ f,1)T VTGTn.
Fer?
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Cell-centered finite volume method

Definition (CCFV method)

On Ip, 7", 1 < n< N, find T € V]! := Py(7T") such that

1 _
ﬁ(u,w—u,w N+ Y Ste=(f"1)r VTeT"
Fer]

Flux 6" € RTNy(7")
(6™n,1)F = SI ¢
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Cell-centered finite volume method

Definition (CCFV method)

On Ip, 7", 1 < n< N, find T € V]! := Py(7T") such that

1
ﬁ(uhT UhT ,1)T+ Z STF_ f,1)T VTGTn.
Fer]

Flux 6" € RTNy(7")
(0"n,1)F:=S7F

Postprocessing of the potential

@ U e V[ not suitable for energy error estimates (Vi = 0)

o ul c V], VI'is P{(T") enriched elementwise by the

parabolas "7 | x?
° —Vup. =86",
(UZT, Dr= (DZT, Dr
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Mixed finite element method

Definition (MFE method)

On Ip, 7", 1 < n< N, find o€ W) and & € V' such that
(op_,wp)— (Up.,V-Wp) =0 vwy € W},

1 _ ~ —
(V-ap_,vp)+ ﬁ(u,’; —ul vy = (" ve) Vv e V.
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Mixed finite element method

Definition (MFE method)

On Ip, 7", 1 < n< N, find o€ W) and & € V' such that
(op_,wp)— (Up.,V-Wp) =0 vwy € W},

1 _ ~ —
(Voo ve) + —(Th — up=" vi) = (" vy) Vv e V7.

7—r‘l

Flux 6" ¢ W}
0" := o} _directly
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Mixed finite element method

Definition (MFE method)

On Ip, 7", 1 < n< N, find o€ W) and & € V' such that
(op_,wp)— (Up.,V-Wp) =0 vwy € W},
up —ul " ve) = (" vh)  Vvm e V.

1
(V-0 Vi) + 5

Flux 6" ¢ W}
0" := o} _directly
Postprocessing of the potential
o ul € V], VI'is P, 1(T") enriched by bubbles (Arbogast
and Chen, 1995)

° ﬂwz(_v"ugT) = 0;777'7
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Vertex-centered finite volume method

Definition (VCFV method)

Onlp, 7", 1 < n< N, find ul_€ V' :=Py(T") N H}(Q) s. t.

(0rup,1)p — (Vup.-np,1)op = (f",1)p VD e D"".
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Vertex-centered finite volume method

Definition (VCFV method)

Onlp, 7", 1 < n< N, find ul_€ V' :=Py(T") N H}(Q) s. t.

(0rup,1)p — (Vup.-np,1)op = (f",1)p VD e D"".

e
&

@ triangulation 7", dual mesh D", simplicial submesh S"

Setting
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Vertex-centered finite volume method

Definition (VCFV method)

Onlp, 7", 1 < n< N, find ul_€ V' :=Py(T") N H}(Q) s. t.

(0rup,1)p — (Vup.-np,1)op = (f",1)p VD e D"".

Setting

@ triangulation 7", dual mesh D", simplicial submesh S"
Flux 8" € RTNy(S")

@ by prescription: 8"-ng|r:=—{Vuy_-ng} on faces F of S”

@ by solution of local Neumann problems on patches Sj
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Face-centered finite volume method

Definition (FCFV method)

On Ip, T",1 < n < N, find uf_ € V' (Crouzeix—Raviart sp.) s. t.

(8tu,',’T, 1)D = (V”uﬂT-nD, 1 )BD = (fn, 1)D VD e Di’n.
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Face-centered finite volume method

Definition (FCFV method)

On Ip, T",1 < n < N, find uf_ € V' (Crouzeix—Raviart sp.) s. t.

(8tU,’.,77_, 1)D = (V”uﬁT-nD, 1 )BD = (fn, 1)D VD e Di’n.

Setting

@ triangulation 7", dual mesh D", simplicial submesh S"
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Face-centered finite volume method

Definition (FCFV method)

On Ip, T",1 < n < N, find uf_ € V' (Crouzeix—Raviart sp.) s. t.

(8tU,’.,77_, 1)D = (V”uﬁT-nD, 1 )BD = (fn, 1)D VD e Di’n.

Setting

@ triangulation 7", dual mesh D", simplicial submesh S"
Flux 6" € RTNy(S")

@ by prescription: 8"-ng|r:=—{Vuy_-neg} on faces F of S”

@ by solution of local Neumann problems on patches Sp
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Numerical experiment

Numerical experiment
@ exact solution u = e*+¥*+1=3 on square domain
Q2=(0,3)x(0,3), T=150rT=3
@ square meshes: 10 x 10, 30 x 30, 90 x 90
@ time steps: 0.3, 0.1, 0.3333
@ vertex-centered finite volumes
@ additional quadrature/mass lumping estimator
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Energy norm results, T = 1.5

10° T ey 2,72 T T T T
£ —e—error un. 3
C —&—est. un. |
r quadr. est. un.|H 27— —
r —A—dif. fl. est. un. |4 5
k]
L £
10 E > 268 -
e E B 2
[ L ] 3
3 r i S 2.66/— -
@ L 4 5
k= c
w 0 2]
10" = 3264~ —
E 3 9]
E 3 2
C 7 i}
F - 2.62— —
L | [ R TET] B R R RTT] B R N RTT] R AR TaT!
10 IR B 2. L
10° 10° 10* 10° 10° 10° 10° 10° 10° 10
Total numer of space-time unknowns Total numer of space-time unknowns
Energy error and estimators Effectivity index
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Energy error

10 T T T e e

—&—error un.

—s—est. un.
quadr. est. un.

—A—dif. fl. est. un.

10 Ll
10° 10 10° 10°

Total numer of space-time unknowns

Energy error and estimators
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Energy error effectivity index

T T
—=— effectivity ind. un.

? 10* 10°

Total numer of space-time unknowns

Effectivity index
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Dual normresults, T = 1.5

10° L I e e e e S.86 T T T T

10

o o
P
3
I
|

Dual error

10°

Dual error effectivity index
(5
u
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I
|
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5.47— —

ot e il 5.46— \\\HH‘S I \\\HH‘A I Hum\E L

10 10" 10° 10° 10 10 10° 10 10
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Dual error and estimators Effectivity index
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Dual norm results, T =

3
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Conclusions and future work

Conclusions

@ unified framework for the heat equation (works for all
major numerical schemes)

@ directly and locally computable estimates

@ global-in-space and local-in-time efficiency and robustness
with respect to the final time as in Verflrth (2003)
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Conclusions and future work

Conclusions

@ unified framework for the heat equation (works for all
major numerical schemes)

@ directly and locally computable estimates

@ global-in-space and local-in-time efficiency and robustness
with respect to the final time as in Verflrth (2003)

Future work
@ nonlinear problems
@ extensions to other types of problems
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