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What an a posteriori error estimate should fulfill

Guaranteed upper bound (global error upper bound)

N
° |u~— Uh||g22><(o,7') <Y1 T D TeTn 77’77'(Uh)2
@ no undetermined constant: error control
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What an a posteriori error estimate should fulfill

Guaranteed upper bound (global error upper bound)
N

° |u~— Uh||g22><(o,7') <Y1 T D TeTn 77’77'(uh)2

@ no undetermined constant: error control
Asymptotic exactness

N
© Yonot 7" reranf(un)?/|lu— Uh”%x(O,T) — 1
@ overestimation factor goes to one with meshes size
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What an a posteriori error estimate should fulfill

Guaranteed upper bound (global error upper bound)
2 N 2
° |u~— Uh”QX(o,T) <ot T2 e nF(un)
@ no undetermined constant: error control
Asymptotic exactness
N 2 2
® > n1 ™" 2rernn(Un)®/llu = UnllG 0.1y = 1
@ overestimation factor goes to one with meshes size
Local efficiency (local error lower bound)
2 2 2
° Tn"?r'[,'(uh) < ( gffyT) ZT’closeto T ||U - uh”T’X(t”_1,t")
@ necessary for optimal space—time mesh refinement
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What an a posteriori error estimate should fulfill

Guaranteed upper bound (global error upper bound)
N

° |lu- Uh||g2)><(0,T) < Yoot ™" Y rern 1 (Un)?

@ no undetermined constant: error control
Asymptotic exactness

N

© Yonot 7" reranf(un)?/|lu— Uh”%x(O,T) — 1

@ overestimation factor goes to one with meshes size
Local efficiency (local error lower bound)

° Tn"?r';'(uh)z < ( Qf77)2 ZT’closeto T ||U - uh”%”x(t”_1,t")

@ necessary for optimal space—time mesh refinement
Robustness

® Cl; r independent of data, domain, final time, meshes, or
solution
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What an a posteriori error estimate should fulfill

Guaranteed upper bound (global error upper bound)
N

° |lu- Uh||g2)><(0,T) < Yoot ™" Y rern 1 (Un)?

@ no undetermined constant: error control
Asymptotic exactness

N

© Yonot 7" reranf(un)?/|lu— Uh”%x(O,T) — 1

@ overestimation factor goes to one with meshes size
Local efficiency (local error lower bound)

° Tn"?r';'(uh)z < ( Qf77)2 ZT’closeto T ||U - uh”%”x(t”_1,t")

@ necessary for optimal space—time mesh refinement
Robustness

® Cl; r independent of data, domain, final time, meshes, or
solution

Negligible evaluation cost
@ estimators can be evaluated locally in space and time
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Previous results

Continuous finite elements

Bieterman and Babuska (1982), introduction
Picasso (1998), no derefinement allowed

Babuska, Feistauer, and Solin (2001), continuous-in-time
discretization

Strouboulis, Babus$ka, and Datta (2003), guaranteed
estimates

Verfrth (2003), efficiency, robustness with respect to the
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Makridakis and Nochetto (2003), elliptic reconstruction
Bergam, Bernardi, and Mghazli (2005), efficiency (not
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Lakkis and Makridakis (2006), elliptic reconstruction
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The heat equation

The heat equation
oou—Au=f ae inQ:=Qx(0,T),
u=0 ae ondx(0,T),
u(-,0)=up a.e.inQ

Assumptions
@ Q CRY d>2,is apolygonal domain
@ T > 0 is the final simulation time
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The heat equation

The heat equation
oou—Au=f ae inQ:=Qx(0,T),
u=0 ae ondx(0,T),
u(-,0)=up a.e.inQ

Assumptions
@ Q CRY d>2,is apolygonal domain
@ T > 0 is the final simulation time

Spaces
® X :=12(0,T; H}(Q))
e X' =L20,T,H(Q))
o Yi={yeXoyeX}
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_ Continuous setting Discrete setting
The heat equation

Norms

)
o energy norm [ly[% = / IVyI2(t) at
o dual norm Iyl =yl + ol

loyllx = { / 10y 112+ )dt}
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The heat equation

Norms

.
@ energy norm ||y||% ::/ IVy|2(t)dt
@ dual norm |lylly == |lyllx + ||at}/”)/(é

o lx = { / o2 )dt}

Weak solution
Find u € Y such that, for a.e. t € (0, T) and for all v € H{(Q),

(Oru, v)(t) + (Vu, V(1) = (f,v)(1)
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Time-dependent meshes and discrete solutions

Approximate solutions
o discrete times {t"}o<pen, t° =0and tN = T
@ Ip:=(t"""t", " =t"—t""11<n<N
@ a different simplicial mesh 7" onall0 < n< N
o up eV :=Vp(T"),0<n<N
@ v} possibly nonconforming, not included in H}(S)
@ up, : Q — R continuous and piecewise affine in time

_ 1 _
Upe (1) = (1= QUi + o, o= (t—1"")
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Time-dependent meshes and discrete solutions
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Time-dependent meshes and discrete solutions
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Properties of the weak solution
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Approximate potential and approximate flux

—— exact solution \ — exactiux
— — _approximate solution — — -approximate flux

Approximate potential uf is not Approximate flux —Vuy is not
in H} () in H(div, Q)
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Potential and flux reconstructions

General form

@ potential reconstruction s is continuous and piecewise
affine in time with s” € Hj(Q) forall0 < n < N (s" are in
the correct space)
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Potential and flux reconstructions

General form

@ potential reconstruction s is continuous and piecewise
affine in time with s” € Hj(Q) forall0 < n < N (s" are in
the correct space)

@ flux reconstruction 0 is piecewise constant in time with
0], € H(div,Q) forall 1 < n < N (6|, are in the correct
space)
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Potential and flux reconstructions

General form
@ potential reconstruction s is continuous and piecewise
affine in time with s” € Hj(Q) forall0 < n < N (s" are in
the correct space)
@ flux reconstruction 0 is piecewise constant in time with
0], € H(div,Q) forall 1 < n < N (6|, are in the correct
space)
Two additional assumptions
@ s" preserves the mean values of up_on Tn+1 a2 common
refinement of 7" and 7+

(" V) = (g, )y VT e
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Potential and flux reconstructions

General form

@ potential reconstruction s is continuous and piecewise
affine in time with s” € Hj(Q) forall0 < n < N (s" are in
the correct space)

@ flux reconstruction 0 is piecewise constant in time with
0], € H(div,Q) forall 1 < n < N (6|, are in the correct
space)

Two additional assumptions

@ s" preserves the mean values of up_on Tn+1 a2 common
refinement of 7" and 7"+1

(" V) = (g, )y VT e
@ 0" satisfies a local conservation property

(f"— ol —v-0",1)r=0 VT eT"
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Potential and flux reconstructions

—— exact solution \ — exact flux

— — approximate solution . == -approximate flux

— —_postprocessed solution postprocessed flux

A postprocessed potential s} is A postprocessed flux 8" is in
in H} () H(div, Q)
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Practical construction of s and 6

Construction of s”

ST =I0R) + Y afbr,
TleTn,nH

1
n ._ _ "y _gn,n ,
aTr = (le’ 1)T/(UhT Z.av(uhr)’ 1)T



| Setting Est. & efficiency Applications Num. exp. C Potential and flux rec. A posteriori est.  Efficiency

Practical construction of s and @

Construction of s”

s":=T0(up) + Z af.br,
T’ET”’”H
1
n.o._ no_ Ty Y 1)
aT (bT/,1)T/(UhT av(uh‘r)7 )T
@ 7! the averaging interpolate on the mesh 7"
@ by standard (time-independent) bubble function supported
on T’

@ the mean value is preserved on all T/ ¢ 771
@ specificity of the parabolic case
@ independent of the numerical scheme
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Practical construction of s and @

Construction of s”

s":=T0(up) + Z af.br,
T’ET”’”H
1
n.o._ no_ Ty Y 1)
aT (bT/,1)T/(UhT av(uh‘r)7 )T
@ 7! the averaging interpolate on the mesh 7"
@ by standard (time-independent) bubble function supported
on T’

@ the mean value is preserved on all T/ ¢ 771
@ specificity of the parabolic case
@ independent of the numerical scheme

Construction of 9"

@ inspired from the elliptic case
@ depends on the numerical scheme
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A posteriori error estimate

Theorem (A posteriori error estimate)

There holds
1/2
|u—Uny <3 {Z/ Z 1R, 7 + 7pE, 7( ))zdt}
In TeTn
1/2
{Z/ Z ’]N(lT dt}
In TeTn
N 1/2
T {ZTH Z (UCJCLT)Z} + e + 3||f = fllx.
n=1 TeTn

4
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A posteriori error estimate

Theorem (A posteriori error estimate)

There holds
1/2
|u—Uny <3 {Z/ Z 1R, 7 + 7pE, 7( ))zdt}
In TeTn
1/2
{Z/ Z ’]N(lT dt}
In TeTn
N 1/2
T {ZTH Z (UCJCLT)Z} + e + 3||f = fllx.
n=1 TeTn

4

@ unified setting: no specification of the numerical scheme
@ only mean values-preserving potential reconstruction s
and locally conservative flux reconstruction 6 needed
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Estimators

Estimators
@ diffusive flux estimator
o e r(t) = IVs(t) + 677, tel,
e penalizes the fact that — V) ¢ H(div. Q)
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Estimators

Estimators
@ diffusive flux estimator
o e r(t) = IVs(t) + 677, tel,
e penalizes the fact that —Vuj ¢ H(div, Q)
@ residual estimato[
® g 7= Cphr||f" — Ois" — V-6 1
e residue evaluated for 6"
e Cp=1/7



| Setting Est. & efficiency Applications Num. exp. C Potential and flux rec. A posteriori est.

Estimators

Efficiency

Estimators
@ diffusive flux estimator
° ngm(t) =|Vs(t)+ 6", tel,
e penalizes the fact that —Vu; ¢ H(div, Q)
@ residual estimator
o 17 = Cohr||f" — 048" — V-0"||7
e residue evaluated for 6"
e Cp=1/7
@ nonconformity estimators
® ey r(8) = [V (s — up )7, tel
® nNca 7 = Cehr||0i(s — unr ) (|7
e penalize the fact that v & HJ (<)
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Estimators

Efficiency

Estimators
@ diffusive flux estimator
° nngT(z‘) =|Vs(t)+ 6", tel,
e penalizes the fact that —Vu; ¢ H(div, Q)
@ residual estimator
o 7l ;= Cohr||f" — 88" — V-0"|| 7
e residue evaluated for 6"
o Co=1/7
@ nonconformity estimators
® ey r(8) = [V (s — up )7, tel
® nNca 7 = Cehr||0i(s — unr ) (|7
e penalize the fact that v & HJ (<)
@ initial condition estimator
Q 7)c = 21/2HSO — UOH
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Estimators

Estimators
@ diffusive flux estimator
o e r(t) = |Vs(t) + 67, te
e penalizes the fact that —Vu; ¢ H(div, Q)
@ residual estimator
o 17 = Cohr||f" — 048" — V-0"||7
e residue evaluated for 6"
o Co=1/7
@ nonconformity estimators
o 1y 7(8) = V" — up )(D)ll7, L€ Iy
® nNca 7 = Cehr||0i(s — unr ) (|7
e penalize the fact that v & HJ (<)
@ initial condition estimator
Q 7)c = 21/2HSO — UOH
@ data oscillation estimator
o ||f —f|lx
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Remarks

Conforming methods

@ in conforming methods (FEs, VCFVs) ufl < H}(9Q)
@ sets” = up
@ = nonconformity estimators nge, 7 and nyc, 7 vanish
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Remarks

Conforming methods

@ in conforming methods (FEs, VCFVs) ufl < H}(9Q)

@ sets” = up

@ = nonconformity estimators nge, 7 and nyc, 7 vanish
Flux-conforming methods

@ in flux-conforming methods (MFEs, CCFVs)
—V"up_ € H(div, Q)

@ setd” :=-V'up

@ = diffusive flux estimator nfg 7 4 vanishes
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Separating the space and time errors

Separating the space and time errors
e notice that [, (. 7)? < (0 71)% + (ng 7 2)%, where

(nr,7.1)% = 27" Vs" + 6"|%

2 _
(1872 =2 [ [9() = V"I dt = Zo"|V(" = ")
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Separating the space and time errors

Separating the space and time errors
e notice that [, (. 7)? < (0 71)% + (ng 7 2)%, where

(13 7.4)? = 277 V" + 073

2

(1872 =2 [ [9() = V"I dt = Zo"|V(" = ")

@ time error estimator nfl, uses 7. 1,
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Separating the space and time errors

Separating the space and time errors
e notice that [, (. 7)? < (0 71)% + (ng 7 2)%, where

(13 7.4)? = 277 V" + 073

2 _
(1872 =2 [ [9() = V"I dt = Zo"|V(" = ")

@ time error estimator nfl, uses 7. 1,
@ space error estimator ng, uses 1. 1 1, 13 75 ¢ 7 and

]
INc2, T
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Separating the space and time errors

Separating the space and time errors

e notice that [, (. 7)? < (0 71)% + (ng 7 2)%, where
(1) = 27| V" + 0

2 _
(1872 =2 [ [9() = V"I dt = Zo"|V(" = ")

@ time error estimator nfl, uses 7. 1,
@ space error estimator ng, uses 1. 1 1, 13 75 ¢ 7 and

AN
INc2, T
@ this yields
N 1/2 N 1/2
lu — Upe|ly < {Z(ns"pf} +{Z<n{’m>2} +mc+3IIf — Fllx
n=1 n=1
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A space-time adaptive time-marching algorithm

Algorithm for achieving a given relative precision ¢

Sr {05 + 0} _ o
S lunlgy
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A space-time adaptive time-marching algorithm

Algorithm for achieving a given relative precision ¢

Sr {05 + 0} _ o
S lunlgy

@ |Initialization

@ choose an initial mesh 77°;
@ select an initial time step 7° and set n:= 1;
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A space-time adaptive time-marching algorithm

Algorithm for achieving a given relative precision ¢

S (G + 0P} _

N —_—
> n—1 HUhrH%(/n)

@ |Initialization

@ choose an initial mesh 779;
@ select an initial time step 7° and set n := 1;
@ Loopintime: while ;7' < T,

Q set7T™ = T’”andT =1,

@ solve ur := Sol(up- ", ”*,T”*),

© estimate the space and time errors by ng, and 7,

© when )], or 1, are too much above or below ellunr || za,y/ V2
or not of similar size, refine or derefine the time step 7"
and the space mesh 7" and return to step (2-2), otherwise
save approximate solution, mesh, and time step as up_, 7",
and 7" andsetn:=n+1.
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Efficiency

Theorem (Efficiency)

There holds
N + i S 11U — Unell vy + T"(Unr) + EF
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Efficiency

Theorem (Efficiency)

There holds
N + i S 11U — Unell vy + T"(Unr) + EF

Notation

0 I un )P =" > UE IR o+ D IR IR 4
2°VT 2°VT
TeTn1 TeTn
@ (&f') is space-time data oscillation term
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Efficiency

Theorem (Efficiency)

There holds
My + 1 10 = Une vy + T (Usr) + €7

Notation
0 I un)Pi=1" > (up Iy o+ Y VR IR s 4
29T 29T
TeTn1 TeTn
@ (&f') is space-time data oscillation term

Comments on 7"
@ J"is atypical jump seminorm
@ it can bounded by the energy error if the jumps in up, have
zero mean values (MFEs, FCFVs, NCFEs); it can also be
bounded in DGs, using the scheme
@ it can alternatively be added to the error measure (note
that 7"(up,) = J"(U — Upy))
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Assumptions for the lower bound proof

Main assumption: approximation property of the flux
reconstruction
1/2
IVup, +6"7 < S S W3 — drup, + Aup |3
T'exr

N IVOUR s g+ TR e

@ ||Vup_+ 6"|1is alocal lower bound for the classical
residual estimators
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Assumptions for the lower bound proof

Main assumption: approximation property of the flux
reconstruction
1/2
IVup, +6"7 < S S W3 — drup, + Aup |3
T'exr

SRLY A7 (PR (78 (RS

@ ||Vup_+ 6"|1is alocal lower bound for the classical
residual estimators

Other assumptions

@ the meshes {7"}o-,-y are shape regular uniformly in n;
@ the meshes cannot be refined or coarsened too quickly;

@ for nonconforming methods on time-varying meshes,
(hM?2 < 7" (mild inverse parabolic CFL on time step)

Alexandre Ern and Martin Vohralik A posteriori error estimation for the heat equation



| Setting Est. & efficiency Applications Num. exp. C DG CCFV MFE VCFV FCFV

Outline

e Applications to different numerical methods
@ Discontinuous Galerkin

Cell-centered finite volumes

Mixed finite elements

Vertex-centered finite volumes

Face-centered finite volumes
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General concept

Upper bound

@ for 0 < n < N, we only have to construct 8”7 € H(div, Q)
which is locally conservative, i.e., such that
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General concept

Upper bound

@ for 0 < n < N, we only have to construct 8”7 € H(div, Q)
which is locally conservative, i.e., such that

(f"— ol —V-0" 1)y =0, VTeT"

@ we construct 8” in some mixed finite element space;
example: Raviart-Thomas—Nédélec spaces

RTN/(T”) = {Vh € H(diV7 Q) ; Vh’T S RTN/(T) VT € Tn}
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General concept

Upper bound

@ for 0 < n < N, we only have to construct 8”7 € H(div, Q)
which is locally conservative, i.e., such that

(f"— ol —V-0" 1)y =0, VTeT"

@ we construct 8” in some mixed finite element space;
example: Raviart-Thomas—Nédélec spaces

RTN/(T”) = {Vh € H(diV, Q) ; Vh’T S RTN/(T) VT € Tn}

Lower bound

@ we only have to verify the flux approximation property
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General concept

Upper bound

@ for 0 < n < N, we only have to construct 8”7 € H(div, Q)
which is locally conservative, i.e., such that

1 owf —v-e"1)r=0, VTeT"
hr

@ we construct 8” in some mixed finite element space;
example: Raviart-Thomas—Nédélec spaces

RTN/(T”) = {Vh € H(diV, Q) ; Vh’T S RTN/(T) VT € Tn}
Lower bound

@ we only have to verify the flux approximation property

We achieve this by a straightforward generalization of the
elliptic case (previous works)
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Discontinuous Galerkin method

Definition (DG method)
Onlp,, 7", 1 < n< N, find uf_ € V] :=Px(T"), k > 1, such that

(Oetpy, vi)— > AV up Y, [veD e +0(ne-{V i}, [up 1)F )}
FeFn

+(VURL V) + D (aphe Tup D [vel)F = (", vi)  Vvh € V4.
Fern

v
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Discontinuous Galerkin method

Definition (DG method)
Onlp,, 7", 1 < n< N, find uf_ € V] :=Px(T"), k > 1, such that

(Oetpy, vi)— > AV up Y, [veD e +0(ne-{V i}, [up 1)F )}
FeFn

+(VURL V) + D (aphe Tup D [vel)F = (", vi)  Vvh € V4.
Fern

v

Flux 6" ¢ RTN/(7"), | € {k —1,k}
Forall T € 7", all F € F{, all gy € P,(F) (face normal comp.),

(an'nFa Qh)F = (—nF-{{V”uﬁT}} + O":h/;1 I[“ZT]]’ qh)F7

and for all ry € IP’}’_1 (T) (element components),
(07, 1n) 7 = —(V"UR, th) T + 0 3 pcn wr(NE-Th, [UR D)F-
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Cell-centered finite volume method

Definition (CCFV method)

On Ip, 7", 1 < n< N, find T € V]! := Py(7T") such that

1 Z
ﬁ(uhT UhT ,1)T+ STF_ f,1)T VTGTn.
Fer?
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Cell-centered finite volume method

Definition (CCFV method)

On Ip, 7", 1 < n< N, find T € V]! := Py(7T") such that

1 _
ﬁ(u,w—u,w N+ Y Ste=(f"1)r VTeT"
Fer]

Flux 6" € RTNy(7")
(6™n,1)F = SI ¢
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Cell-centered finite volume method

Definition (CCFV method)

On Ip, 7", 1 < n< N, find T € V]! := Py(7T") such that

1
ﬁ(uhT UhT ,1)T+ Z STF_ f,1)T VTGTn.
Fer]

Flux 6" € RTNy(7")
(0"n,1)F:=S7F

Postprocessing of the potential

@ U e V[ not suitable for energy error estimates (Vi = 0)

o ul c V], VI'is P{(T") enriched elementwise by the

parabolas "7 | x?
° —Vup. =86",
(UZT, Dr= (DZT, Dr
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Mixed finite element method

Definition (MFE method)

On Ip, 7", 1 < n< N, find o€ W) and & € V' such that
(op_,wp)— (Up.,V-Wp) =0 vwy € W},

1 _ ~ —
(V-ap_,vp)+ ﬁ(u,’; —ul vy = (" ve) Vv e V.
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Mixed finite element method

Definition (MFE method)

On Ip, 7", 1 < n< N, find o€ W) and & € V' such that
(op_,wp)— (Up.,V-Wp) =0 vwy € W},

1 _ ~ —
(Voo ve) + —(Th — up=" vi) = (" vy) Vv e V7.

7—r‘l

Flux 6" ¢ W}
0" := o} _directly
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Mixed finite element method

Definition (MFE method)

On Ip, 7", 1 < n< N, find o€ W) and & € V' such that
(op_,wp)— (Up.,V-Wp) =0 vwy € W},
up —ul " ve) = (" vh)  Vvm e V.

1
(V-0 Vi) + 5

Flux 6" ¢ W}
0" := o} _directly
Postprocessing of the potential
o ul € V], VI'is P, 1(T") enriched by bubbles (Arbogast
and Chen, 1995)

° ﬂwz(_v"ugT) = 0;777'7
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Vertex-centered finite volume method

Definition (VCFV method)

Onlp, 7", 1 < n< N, find ul_€ V' :=Py(T") N H}(Q) s. t.

(0rup,1)p — (Vup.-np,1)op = (f",1)p VD e D"".
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Vertex-centered finite volume method

Definition (VCFV method)

Onlp, 7", 1 < n< N, find ul_€ V' :=Py(T") N H}(Q) s. t.

(0rup,1)p — (Vup.-np,1)op = (f",1)p VD e D"".

e
&

@ triangulation 7", dual mesh D", simplicial submesh S"

Setting
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Vertex-centered finite volume method

Definition (VCFV method)

Onlp, 7", 1 < n< N, find ul_€ V' :=Py(T") N H}(Q) s. t.

(0rup,1)p — (Vup.-np,1)op = (f",1)p VD e D"".

Setting

@ triangulation 7", dual mesh D", simplicial submesh S"
Flux 8" € RTNy(S")

@ by prescription: 8"-ng|r:=—{Vuy_-ng} on faces F of S”

@ by solution of local Neumann problems on patches Sj
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Face-centered finite volume method

Definition (FCFV method)

On Ip, T",1 < n < N, find uf_ € V' (Crouzeix—Raviart sp.) s. t.

(8tu,',’T, 1)D = (V”uﬂT-nD, 1 )BD = (fn, 1)D VD e Di’n.
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Face-centered finite volume method

Definition (FCFV method)

On Ip, T",1 < n < N, find uf_ € V' (Crouzeix—Raviart sp.) s. t.

(8tU,’.,77_, 1)D = (V”uﬁT-nD, 1 )BD = (fn, 1)D VD e Di’n.

Setting

@ triangulation 7", dual mesh D", simplicial submesh S"
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Face-centered finite volume method

Definition (FCFV method)

On Ip, T",1 < n < N, find uf_ € V' (Crouzeix—Raviart sp.) s. t.

(8tU,’.,77_, 1)D = (V”uﬁT-nD, 1 )BD = (fn, 1)D VD e Di’n.

Setting

@ triangulation 7", dual mesh D", simplicial submesh S"
Flux 6" € RTNy(S")

@ by prescription: 8"-ng|r:=—{Vuy_-neg} on faces F of S”

@ by solution of local Neumann problems on patches Sp
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Numerical experiment

Numerical experiment
@ exact solution u = e*+¥*+1=3 on square domain
Q2=(0,3)x(0,3), T=150rT=3
@ square meshes: 10 x 10, 30 x 30, 90 x 90
@ time steps: 0.3, 0.1, 0.3333
@ vertex-centered finite volumes
@ additional quadrature/mass lumping estimator
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Energy norm results, T = 1.5

10° T ey 2,72 T T T T
£ —e—error un. 3
C —&—est. un. |
r quadr. est. un.|H 27— —
r —A—dif. fl. est. un. |4 5
k]
L £
10 E > 268 -
e E B 2
[ L ] 3
3 r i S 2.66/— -
@ L 4 5
k= c
w 0 2]
10" = 3264~ —
E 3 9]
E 3 2
C 7 i}
F - 2.62— —
L | [ R TET] B R R RTT] B R N RTT] R AR TaT!
10 IR B 2. L
10° 10° 10* 10° 10° 10° 10° 10° 10° 10
Total numer of space-time unknowns Total numer of space-time unknowns
Energy error and estimators Effectivity index
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Energy error

10 T T T e e

—&—error un.

—s—est. un.
quadr. est. un.

—A—dif. fl. est. un.

10 Ll
10° 10 10° 10°

Total numer of space-time unknowns

Energy error and estimators
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Energy error effectivity index

T T
—=— effectivity ind. un.

? 10* 10°

Total numer of space-time unknowns

Effectivity index
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Dual normresults, T = 1.5

10° L I e e e e S.86 T T T T

10

o o
P
3
I
|

Dual error

10°

Dual error effectivity index
(5
u
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I
|
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5.47— —

ot e il 5.46— \\\HH‘S I \\\HH‘A I Hum\E L

10 10" 10° 10° 10 10 10° 10 10
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Dual error and estimators Effectivity index
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Dual norm results, T =

3
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Conclusions and future work

Conclusions

@ unified framework for the heat equation (works for all
major numerical schemes)

@ directly and locally computable estimates

@ global-in-space and local-in-time efficiency and robustness
with respect to the final time as in Verflrth (2003)
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Conclusions and future work

Conclusions

@ unified framework for the heat equation (works for all
major numerical schemes)

@ directly and locally computable estimates

@ global-in-space and local-in-time efficiency and robustness
with respect to the final time as in Verflrth (2003)

Future work
@ nonlinear problems
@ extensions to other types of problems
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