A posteriori error estimation based on potential and flux reconstruction for the heat equation: a unified framework

Alexandre Ern and Martin Vohralík

Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie (Paris 6)

Pittsburgh, July 14, 2010

- Introduction
- Setting
 - Continuous setting
 - Discrete setting
- A posteriori error estimates and their efficiency
 - Potential and flux reconstructions
 - A posteriori error estimates
 - Efficiency
- Applications to different numerical methods
 - Discontinuous Galerkin
 - Cell-centered finite volumes
 - Mixed finite elements
 - Vertex-centered finite volumes
 - Face-centered finite volumes
- Numerical experiments
- Conclusions and future work

- Introduction
- 2 Setting
 - Continuous setting
 - Discrete setting
- 3 A posteriori error estimates and their efficiency
 - Potential and flux reconstructions
 - A posteriori error estimates
 - Efficiency
- Applications to different numerical methods
 - Discontinuous Galerkin
 - Cell-centered finite volumes
 - Mixed finite elements
 - Vertex-centered finite volumes
 - Face-centered finite volumes
- 5 Numerical experiments
- Conclusions and future work

Guaranteed upper bound (global error upper bound)

- $||u u_h||_{\Omega \times (0,T)}^2 \le \sum_{n=1}^N \tau^n \sum_{T \in \mathcal{T}^n} \eta_T^n (u_h)^2$
- no undetermined constant: error control

Asymptotic exactness

•
$$\sum_{n=1}^{N} \tau^n \sum_{T \in \mathcal{T}^n} \eta_T^n (u_h)^2 / \|u - u_h\|_{\Omega \times (0,T)}^2 \to 1$$

overestimation factor goes to one with meshes size

Local efficiency (local error lower bound)

•
$$\tau^n \eta_T^n(u_h)^2 \le (C_{\text{eff},T}^n)^2 \sum_{T' \text{ close to } T} \|u - u_h\|_{T' \times (t^{n-1},t^n)}^2$$

necessary for optimal space—time mesh refinement

Robustness

 Cⁿ_{eff, T} independent of data, domain, final time, meshes, or solution

Negligible evaluation cost

Guaranteed upper bound (global error upper bound)

- $||u u_h||_{\Omega \times (0,T)}^2 \le \sum_{n=1}^N \tau^n \sum_{T \in \mathcal{T}^n} \eta_T^n (u_h)^2$
- no undetermined constant: error control

Asymptotic exactness

- $\sum_{n=1}^{N} \tau^n \sum_{T \in \mathcal{T}^n} \eta_T^n(u_h)^2 / \|u u_h\|_{\Omega \times (0,T)}^2 \to 1$
- overestimation factor goes to one with meshes size

Local efficiency (local error lower bound)

- $\tau^n \eta_T^n(u_h)^2 \le (C_{\text{eff},T}^n)^2 \sum_{T' \text{ close to } T} \|u u_h\|_{T' \times (t^{n-1},t^n)}^2$
- necessary for optimal space—time mesh refinement

Robustness

 Cⁿ_{eff, T} independent of data, domain, final time, meshes, or solution

Negligible evaluation cost

Guaranteed upper bound (global error upper bound)

- $||u u_h||_{\Omega \times (0,T)}^2 \le \sum_{n=1}^N \tau^n \sum_{T \in \mathcal{T}^n} \eta_T^n (u_h)^2$
- no undetermined constant: error control

Asymptotic exactness

- $\sum_{n=1}^N au^n \sum_{T \in \mathcal{T}^n} \eta_T^n(u_h)^2 / \|u u_h\|_{\Omega \times (0,T)}^2 o 1$
- overestimation factor goes to one with meshes size

Local efficiency (local error lower bound)

- $\tau^n \eta_T^n (u_h)^2 \le (C_{\text{eff},T}^n)^2 \sum_{T' \text{ close to } T} \|u u_h\|_{T' \times (t^{n-1},t^n)}^2$
- necessary for optimal space—time mesh refinement

Robustness

 Cⁿ_{eff, T} independent of data, domain, final time, meshes, or solution

Negligible evaluation cost

Guaranteed upper bound (global error upper bound)

- $||u u_h||_{\Omega \times (0,T)}^2 \le \sum_{n=1}^N \tau^n \sum_{T \in \mathcal{T}^n} \eta_T^n (u_h)^2$
- no undetermined constant: error control

Asymptotic exactness

- $\sum_{n=1}^N au^n \sum_{T \in \mathcal{T}^n} \eta_T^n(u_h)^2 / \|u u_h\|_{\Omega \times (0,T)}^2 o 1$
- overestimation factor goes to one with meshes size

Local efficiency (local error lower bound)

- $\tau^n \eta_T^n(u_h)^2 \le (C_{\text{eff},T}^n)^2 \sum_{T' \text{ close to } T} \|u u_h\|_{T' \times (t^{n-1},t^n)}^2$
- necessary for optimal space—time mesh refinement

Robustness

 Cⁿ_{eff, T} independent of data, domain, final time, meshes, or solution

Negligible evaluation cost

Guaranteed upper bound (global error upper bound)

- $||u u_h||_{\Omega \times (0,T)}^2 \le \sum_{n=1}^N \tau^n \sum_{T \in \mathcal{T}^n} \eta_T^n (u_h)^2$
- no undetermined constant: error control

Asymptotic exactness

- $\sum_{n=1}^N au^n \sum_{T \in \mathcal{T}^n} \eta_T^n(u_h)^2 / \|u u_h\|_{\Omega \times (0,T)}^2 o 1$
- overestimation factor goes to one with meshes size

Local efficiency (local error lower bound)

- $\tau^n \eta_T^n (u_h)^2 \le (C_{\text{eff},T}^n)^2 \sum_{T' \text{ close to } T} \|u u_h\|_{T' \times (t^{n-1},t^n)}^2$
- necessary for optimal space—time mesh refinement

Robustness

 Cⁿ_{eff, T} independent of data, domain, final time, meshes, or solution

Negligible evaluation cost

Continuous finite elements

- Bieterman and Babuška (1982), introduction
- Picasso (1998), no derefinement allowed
- Babuška, Feistauer, and Šolín (2001), continuous-in-time discretization
- Strouboulis, Babuška, and Datta (2003), guaranteed estimates
- Verfürth (2003), efficiency, robustness with respect to the final time
- Makridakis and Nochetto (2003), elliptic reconstruction
- Bergam, Bernardi, and Mghazli (2005), efficiency (not optimal)
- Lakkis and Makridakis (2006), elliptic reconstruction

Finite volumes

- Ohlberger (2001), non energy norm estimates
- Amara, Nadau, and Trujillo (2004), energy-norm estimates

Discontinuous Galerkin finite elements

- Sun and Wheeler (2005, 2006), non energy norm estimates
- Georgoulis and Lakkis (2009)

Nonconforming finite elements

Nicaise and Soualem (2005)

Mixed finite elements

Finite volumes

- Ohlberger (2001), non energy norm estimates
- Amara, Nadau, and Trujillo (2004), energy-norm estimates

Discontinuous Galerkin finite elements

- Sun and Wheeler (2005, 2006), non energy norm estimates
- Georgoulis and Lakkis (2009)

Nonconforming finite elements

Nicaise and Soualem (2005)

Mixed finite elements

Finite volumes

- Ohlberger (2001), non energy norm estimates
- Amara, Nadau, and Trujillo (2004), energy-norm estimates

Discontinuous Galerkin finite elements

- Sun and Wheeler (2005, 2006), non energy norm estimates
- Georgoulis and Lakkis (2009)

Nonconforming finite elements

Nicaise and Soualem (2005)

Mixed finite elements

Finite volumes

- Ohlberger (2001), non energy norm estimates
- Amara, Nadau, and Trujillo (2004), energy-norm estimates

Discontinuous Galerkin finite elements

- Sun and Wheeler (2005, 2006), non energy norm estimates
- Georgoulis and Lakkis (2009)

Nonconforming finite elements

Nicaise and Soualem (2005)

Mixed finite elements

- Setting
 - Continuous setting
 - Discrete setting
- - Potential and flux reconstructions
 - A posteriori error estimates
 - Efficiency
- - Discontinuous Galerkin
 - Cell-centered finite volumes
 - Mixed finite elements
 - Vertex-centered finite volumes
 - Face-centered finite volumes

- Setting
 - Continuous setting
- - Potential and flux reconstructions
 - A posteriori error estimates
 - Efficiency
- - Discontinuous Galerkin
 - Cell-centered finite volumes
 - Mixed finite elements
 - Vertex-centered finite volumes
 - Face-centered finite volumes

The heat equation

$$egin{aligned} \partial_t u - \Delta u &= f & ext{ a.e. in } Q := \Omega imes (0, T), \ u &= 0 & ext{ a.e. on } \partial\Omega imes (0, T), \ u(\cdot, 0) &= u_0 & ext{ a.e. in } \Omega \end{aligned}$$

Assumptions

- $\Omega \subset \mathbb{R}^d$, d > 2, is a polygonal domain
- \bullet T > 0 is the final simulation time

- $X := L^2(0, T; H_0^1(\Omega))$
- $X' = L^2(0, T, H^{-1}(\Omega))$
- $Y := \{ v \in X : \partial_t v \in X' \}$

The heat equation

$$\partial_t u - \Delta u = f$$
 a.e. in $Q := \Omega \times (0, T)$, $u = 0$ a.e. on $\partial \Omega \times (0, T)$, $u(\cdot, 0) = u_0$ a.e. in Ω

Assumptions

- $\Omega \subset \mathbb{R}^d$, d > 2, is a polygonal domain
- \bullet T > 0 is the final simulation time

- $X := L^2(0, T; H_0^1(\Omega))$
- $X' = L^2(0, T, H^{-1}(\Omega))$
- $Y := \{ v \in X : \partial_t v \in X' \}$

The heat equation

$$\partial_t u - \Delta u = f$$
 a.e. in $Q := \Omega \times (0, T)$, $u = 0$ a.e. on $\partial \Omega \times (0, T)$, $u(\cdot, 0) = u_0$ a.e. in Ω

Assumptions

- $\Omega \subset \mathbb{R}^d$, d > 2, is a polygonal domain
- \bullet T > 0 is the final simulation time

Spaces

- $X := L^2(0, T; H_0^1(\Omega))$
- $X' = L^2(0, T, H^{-1}(\Omega))$
- $Y := \{ y \in X ; \partial_t y \in X' \}$

Norms

- energy norm $||y||_X^2 := \int_0^t ||\nabla y||^2(t) dt$
- dual norm $||y||_Y := ||y||_X + ||\partial_t y||_{X'}$ $\|\partial_t y\|_{X'} = \left\{ \int_0^T \|\partial_t y\|_{H^{-1}}^2(t) dt \right\}^{1/2}$

$$\langle \partial_t u, v \rangle (t) + (\nabla u, \nabla v)(t) = (f, v)(t)$$

Norms

- energy norm $||y||_X^2 := \int_0^T ||\nabla y||^2(t) dt$
- dual norm $||y||_Y := ||y||_X + ||\partial_t y||_{X'}$ $\|\partial_t y\|_{X'} = \left\{ \int_0^T \|\partial_t y\|_{H^{-1}}^2(t) dt \right\}^{1/2}$

Weak solution

Find $u \in Y$ such that, for a.e. $t \in (0, T)$ and for all $v \in H_0^1(\Omega)$,

$$\langle \partial_t u, v \rangle (t) + (\nabla u, \nabla v)(t) = (f, v)(t)$$

- Setting
 - Continuous setting
 - Discrete setting
- - Potential and flux reconstructions
 - A posteriori error estimates
 - Efficiency
- - Discontinuous Galerkin
 - Cell-centered finite volumes
 - Mixed finite elements
 - Vertex-centered finite volumes
 - Face-centered finite volumes

Time-dependent meshes and discrete solutions

Approximate solutions

- discrete times $\{t^n\}_{0 \le n \le N}$, $t^0 = 0$ and $t^N = T$
- $I_n := (t^{n-1}, t^n], \tau^n := t^n t^{n-1}, 1 < n < N$
- a different simplicial mesh \mathcal{T}^n on all 0 < n < N
- $u_{h_{\pi}}^n \in V_h^n := V_h(\mathcal{T}^n), 0 \le n \le N$
- $u_{h_{\pi}}^{n}$ possibly nonconforming, not included in $H_{0}^{1}(\Omega)$
- $u_{h\tau}: Q \to \mathbb{R}$ continuous and piecewise affine in time

$$u_{h\tau}(\cdot,t) := (1-\varrho)u_{h\tau}^{n-1} + \varrho u_{h\tau}^{n}, \qquad \varrho = \frac{1}{\tau^{n}}(t-t^{n-1})$$

Time-dependent meshes and discrete solutions

Time-dependent meshes and discrete solutions

- - Continuous setting
- A posteriori error estimates and their efficiency
 - Potential and flux reconstructions
 - A posteriori error estimates
 - Efficiency
- - Discontinuous Galerkin
 - Cell-centered finite volumes
 - Mixed finite elements
 - Vertex-centered finite volumes
 - Face-centered finite volumes

Properties of the weak solution

Potential u^n is in $H_0^1(\Omega)$

Flux $-\nabla u^n$ is in $\mathbf{H}(\operatorname{div},\Omega)$

Approximate potential and approximate flux

Approximate potential u_h^n is not in $H_0^1(\Omega)$

Approximate flux $-\nabla u_h^n$ is not in $\mathbf{H}(\operatorname{div},\Omega)$

- - Continuous setting
- A posteriori error estimates and their efficiency
 - Potential and flux reconstructions
 - A posteriori error estimates
 - Efficiency
- - Discontinuous Galerkin
 - Cell-centered finite volumes
 - Mixed finite elements
 - Vertex-centered finite volumes
 - Face-centered finite volumes

General form

- potential reconstruction s is continuous and piecewise affine in time with $s^n \in H_0^1(\Omega)$ for all $0 \le n \le N$ (s^n are in the correct space)
- flux reconstruction θ is piecewise constant in time with

• s^n preserves the mean values of $u_{b\pi}^n$ on $\mathcal{T}^{n,n+1}$, a common

$$(s^n, 1)_{T'} = (u^n_{h\tau}, 1)_{T'} \quad \forall T' \in \mathcal{T}^{n, n+1}$$

• θ^n satisfies a local conservation property

$$(\tilde{f}^n - \partial_t u_{h_{\tau}}^n - \nabla \cdot \theta^n, 1)_{\tau} = 0 \quad \forall T \in \mathcal{T}^n$$

General form

- potential reconstruction s is continuous and piecewise affine in time with $s^n \in H_0^1(\Omega)$ for all $0 \le n \le N$ (s^n are in the correct space)
- flux reconstruction θ is piecewise constant in time with $\theta|_{I_n} \in \mathbf{H}(\mathrm{div},\Omega)$ for all $1 \leq n \leq N$ ($\theta|_{I_n}$ are in the correct space)

• s^n preserves the mean values of $u_{b\pi}^n$ on $\mathcal{T}^{n,n+1}$, a common

$$(s^n, 1)_{T'} = (u^n_{h_T}, 1)_{T'} \quad \forall T' \in \mathcal{T}^{n, n+1}$$

 \bullet θ^n satisfies a local conservation property

$$(\tilde{f}^n - \partial_t u_{h_{\tau}}^n - \nabla \cdot \theta^n, 1)_{\tau} = 0 \quad \forall T \in \mathcal{T}^n$$

General form

- potential reconstruction s is continuous and piecewise affine in time with $s^n \in H_0^1(\Omega)$ for all $0 \le n \le N$ (s^n are in the correct space)
- flux reconstruction θ is piecewise constant in time with $\theta|_{I_n} \in \mathbf{H}(\mathrm{div},\Omega)$ for all $1 \leq n \leq N$ ($\theta|_{I_n}$ are in the correct space)

Two additional assumptions

• s^n preserves the mean values of $u_{b_{\pi}}^n$ on $\mathcal{T}^{n,n+1}$, a common refinement of \mathcal{T}^n and \mathcal{T}^{n+1}

$$(s^n, 1)_{T'} = (u^n_{h_T}, 1)_{T'} \quad \forall T' \in \mathcal{T}^{n, n+1}$$

 \bullet θ^n satisfies a local conservation property

$$(\tilde{f}^n - \partial_t u_{h_{\tau}}^n - \nabla \cdot \theta^n, 1)_{\tau} = 0 \quad \forall T \in \mathcal{T}^n$$

General form

- potential reconstruction s is continuous and piecewise affine in time with $s^n \in H_0^1(\Omega)$ for all $0 \le n \le N$ (s^n are in the correct space)
- flux reconstruction θ is piecewise constant in time with $\theta|_{I_n} \in \mathbf{H}(\mathrm{div},\Omega)$ for all $1 \leq n \leq N$ ($\theta|_{I_n}$ are in the correct space)

Two additional assumptions

• s^n preserves the mean values of $u_{b_{\pi}}^n$ on $\mathcal{T}^{n,n+1}$, a common refinement of \mathcal{T}^n and \mathcal{T}^{n+1}

$$(s^n, 1)_{T'} = (u^n_{h\tau}, 1)_{T'} \quad \forall T' \in \mathcal{T}^{n, n+1}$$

• θ^n satisfies a local conservation property

$$(\widetilde{f}^n - \partial_t u_{h\tau}^n - \nabla \cdot \boldsymbol{\theta}^n, 1)_T = 0 \quad \forall T \in \mathcal{T}^n$$

A postprocessed potential s_h^n is in $H_0^1(\Omega)$

A postprocessed flux θ^n is in $\mathbf{H}(\operatorname{div},\Omega)$

Practical construction of s and θ

Construction of sⁿ

$$egin{aligned} oldsymbol{s}^n &:= \mathcal{I}_{\mathrm{av}}^n(u_{h au}^n) + \sum_{T' \in \mathcal{T}^{n,n+1}} lpha_{T'}^n b_{T'}, \ lpha_{T'}^n &:= rac{1}{(b_{T'},1)_{T'}} (u_{h au}^n - \mathcal{I}_{\mathrm{av}}^n(u_{h au}^n),1)_{T'} \end{aligned}$$

- \mathcal{I}_{av}^n : the averaging interpolate on the mesh \mathcal{T}^n
- $b_{T'}$ standard (time-independent) bubble function supported
- the mean value is preserved on all $T' \in T^{n,n+1}$
- specificity of the parabolic case
- independent of the numerical scheme

- inspired from the elliptic case
- depends on the numerical scheme

Practical construction of s and θ

Construction of sⁿ

$$egin{aligned} oldsymbol{s}^n &:= \mathcal{I}_{\mathrm{av}}^n(u_{h au}^n) + \sum_{T' \in \mathcal{T}^{n,n+1}} lpha_{T'}^n b_{T'}, \ lpha_{T'}^n &:= rac{1}{(b_{T'},1)_{T'}} (u_{h au}^n - \mathcal{I}_{\mathrm{av}}^n(u_{h au}^n),1)_{T'} \end{aligned}$$

- \mathcal{I}_{av}^n : the averaging interpolate on the mesh \mathcal{T}^n
- $b_{T'}$ standard (time-independent) bubble function supported on T'
- the mean value is preserved on all $T' \in T^{n,n+1}$
- specificity of the parabolic case
- independent of the numerical scheme

- inspired from the elliptic case
- depends on the numerical scheme

Practical construction of s and θ

Construction of sⁿ

$$egin{aligned} oldsymbol{s}^n &:= \mathcal{I}_{\mathrm{av}}^n(u_{h au}^n) + \sum_{T' \in \mathcal{T}^{n,n+1}} lpha_{T'}^n b_{T'}, \ lpha_{T'}^n &:= rac{1}{(b_{T'},1)_{T'}} (u_{h au}^n - \mathcal{I}_{\mathrm{av}}^n(u_{h au}^n),1)_{T'} \end{aligned}$$

- \mathcal{I}_{av}^n : the averaging interpolate on the mesh \mathcal{T}^n
- $b_{T'}$ standard (time-independent) bubble function supported on T'
- the mean value is preserved on all $T' \in T^{n,n+1}$
- specificity of the parabolic case
- independent of the numerical scheme

Construction of θ^n

- inspired from the elliptic case
- depends on the numerical scheme

- - Continuous setting
- A posteriori error estimates and their efficiency
 - Potential and flux reconstructions
 - A posteriori error estimates
 - Efficiency
- - Discontinuous Galerkin
 - Cell-centered finite volumes
 - Mixed finite elements
 - Vertex-centered finite volumes
 - Face-centered finite volumes

A posteriori error estimate

Theorem (A posteriori error estimate)

There holds

$$\begin{split} \|u - u_{h\tau}\|_{Y} &\leq 3 \left\{ \sum_{n=1}^{N} \int_{I_{n}} \sum_{T \in \mathcal{T}^{n}} (\eta_{R,T}^{n} + \eta_{DF,T}^{n}(t))^{2} dt \right\}^{1/2} \\ &+ \left\{ \sum_{n=1}^{N} \int_{I_{n}} \sum_{T \in \mathcal{T}^{n}} (\eta_{NC1,T}^{n})^{2}(t) dt \right\}^{1/2} \\ &+ \left\{ \sum_{n=1}^{N} \tau^{n} \sum_{T \in \mathcal{T}^{n}} (\eta_{NC2,T}^{n})^{2} \right\}^{1/2} + \eta_{IC} + 3\|f - \widetilde{f}\|_{X'}. \end{split}$$

- unified setting: no specification of the numerical scheme
- only mean values-preserving potential reconstruction s and locally conservative flux reconstruction θ needed

A posteriori error estimate

Theorem (A posteriori error estimate)

There holds

$$\begin{split} \|u - u_{h\tau}\|_{Y} &\leq 3 \left\{ \sum_{n=1}^{N} \int_{I_{n}} \sum_{T \in \mathcal{T}^{n}} (\eta_{R,T}^{n} + \eta_{DF,T}^{n}(t))^{2} dt \right\}^{1/2} \\ &+ \left\{ \sum_{n=1}^{N} \int_{I_{n}} \sum_{T \in \mathcal{T}^{n}} (\eta_{NC1,T}^{n})^{2}(t) dt \right\}^{1/2} \\ &+ \left\{ \sum_{n=1}^{N} \tau^{n} \sum_{T \in \mathcal{T}^{n}} (\eta_{NC2,T}^{n})^{2} \right\}^{1/2} + \eta_{IC} + 3 \|f - \widetilde{f}\|_{X'}. \end{split}$$

- unified setting: no specification of the numerical scheme
- only mean values-preserving potential reconstruction s and locally conservative flux reconstruction θ needed

- diffusive flux estimator
 - $\eta_{\mathrm{DF}}^{n}(t) := \|\nabla s(t) + \theta^{n}\|_{T}, \quad t \in I_{n}$
 - penalizes the fact that $-\nabla u_{h\tau}^n \notin \mathbf{H}(\text{div},\Omega)$
- residual estimator
 - $\eta_P^n := C_P h_T \|f^n \partial_t s^n \nabla \cdot \theta^n\|_T$
 - residue evaluated for θ^n
 - $C_{\rm P} = 1/\pi$
- nonconformity estimators
 - $\eta_{NC1}^n(t) := \|\nabla^{n-1,n}(s u_{h\tau})(t)\|_T, \quad t \in I_n$
 - $\eta_{NC2}^n = C_P h_T \|\partial_t (s u_{h_T})^n\|_T$
 - penalize the fact that $u_{h_{\pi}}^{n} \notin H_{0}^{1}(\Omega)$
- initial condition estimator
 - $n_{\rm IC} := 2^{1/2} \| s^0 u^0 \|$
- data oscillation estimator
 - $||f f||_{X'}$

- diffusive flux estimator
 - $\eta_{\mathrm{DF}}^{n}(t) := \|\nabla s(t) + \theta^{n}\|_{T}, \quad t \in I_{n}$
 - penalizes the fact that $-\nabla u_{h\tau}^n \notin \mathbf{H}(\text{div},\Omega)$
- residual estimator
 - $\eta_{\mathsf{R}}^n = C_{\mathsf{P}} h_T \| f^n \partial_t s^n \nabla \cdot \theta^n \|_T$
 - residue evaluated for θ^n
 - $C_{\rm P} = 1/\pi$
- nonconformity estimators
 - $\eta_{NC1}^n(t) := \|\nabla^{n-1,n}(s u_{h\tau})(t)\|_T, \quad t \in I_n$
 - $\eta_{NC2}^n = C_P h_T \|\partial_t (s u_{h_T})^n\|_T$
 - penalize the fact that $u_{h_{\pi}}^{n} \notin H_{0}^{1}(\Omega)$
- initial condition estimator
 - $n_{\rm IC} := 2^{1/2} \| s^0 u^0 \|$
- data oscillation estimator
 - $||f f||_{X'}$

- diffusive flux estimator
 - $\eta_{\mathrm{DF}}^{n}(t) := \|\nabla s(t) + \theta^{n}\|_{T}, \quad t \in I_{n}$
 - penalizes the fact that $-\nabla u_{h_{\pi}}^{n} \notin \mathbf{H}(\operatorname{div},\Omega)$
- residual estimator
 - $\eta_{\mathsf{R}}^n = C_{\mathsf{P}} h_T \| f^n \partial_t s^n \nabla \cdot \theta^n \|_T$
 - residue evaluated for θ^n
 - $C_{\rm P} = 1/\pi$
- nonconformity estimators
 - $\eta_{NC1,T}^n(t) := \|\nabla^{n-1,n}(s u_{h\tau})(t)\|_T, \quad t \in I_n$
 - $\eta_{NC2}^n := C_P h_T \|\partial_t (s u_{h_T})^n\|_T$
 - penalize the fact that $u_{b\pi}^n \notin H_0^1(\Omega)$
- initial condition estimator
 - $n_{\rm IC} := 2^{1/2} \| s^0 u^0 \|$
- data oscillation estimator
 - $||f f||_{X'}$

- diffusive flux estimator
 - $\eta_{\mathrm{DF}}^{n}(t) := \|\nabla s(t) + \theta^{n}\|_{T}, \quad t \in I_{n}$
 - penalizes the fact that $-\nabla u_{h_{\pi}}^{n} \notin \mathbf{H}(\operatorname{div},\Omega)$
- residual estimator
 - $\eta_{\mathsf{R}}^n = C_{\mathsf{P}} h_T \| f^n \partial_t s^n \nabla \cdot \theta^n \|_T$
 - residue evaluated for θ^n
 - $C_{\rm P} = 1/\pi$
- nonconformity estimators
 - $\eta_{NC1,T}^n(t) := \|\nabla^{n-1,n}(s u_{h\tau})(t)\|_T, \quad t \in I_n$
 - $\eta_{NC2}^n := C_P h_T \|\partial_t (s u_{h_T})^n\|_T$
 - penalize the fact that $u_{b\pi}^n \notin H_0^1(\Omega)$
- initial condition estimator
 - $\eta_{\rm IC} := 2^{1/2} \| s^0 u^0 \|$
- data oscillation estimator
 - $||f f||_{X'}$

- diffusive flux estimator
 - $\eta_{\mathrm{DF}}^{n}(t) := \|\nabla s(t) + \theta^{n}\|_{T}, \quad t \in I_{n}$
 - penalizes the fact that $-\nabla u_{h_{\pi}}^{n} \notin \mathbf{H}(\operatorname{div},\Omega)$
- residual estimator
 - $\eta_{\mathsf{R}}^n = C_{\mathsf{P}} h_T \| f^n \partial_t s^n \nabla \cdot \theta^n \|_T$
 - residue evaluated for θ^n
 - $C_{\rm P} = 1/\pi$
- nonconformity estimators
 - $\eta_{NC1,T}^n(t) := \|\nabla^{n-1,n}(s u_{h\tau})(t)\|_T, \quad t \in I_n$
 - $\eta_{NC2}^n = C_P h_T \|\partial_t (s u_{h\tau})^n\|_T$
 - penalize the fact that $u_{b\pi}^n \notin H_0^1(\Omega)$
- initial condition estimator
 - $\eta_{\rm IC} := 2^{1/2} \| s^0 u^0 \|$
- data oscillation estimator
 - $\bullet \|f f\|_{X'}$

Remarks

Conforming methods

- in conforming methods (FEs, VCFVs) $u_{br}^n \in H_0^1(\Omega)$
- set $s^n := u_{h_{\tau}}^n$
- \Rightarrow nonconformity estimators $\eta_{NC1,T}^n$ and $\eta_{NC2,T}^n$ vanish

Flux-conforming methods

- in flux-conforming methods (MFEs. CCFVs)
- set $\theta^n := -\nabla^n u_{h_{\pi}}^n$
- \Rightarrow diffusive flux estimator $\eta_{\rm DF}^n$ vanishes

Remarks

Conforming methods

- in conforming methods (FEs, VCFVs) $u_{br}^n \in H_0^1(\Omega)$
- set $s^n := u_{h_{\tau}}^n$
- \Rightarrow nonconformity estimators η_{NC1}^n and η_{NC2}^n vanish

Flux-conforming methods

- in flux-conforming methods (MFEs, CCFVs) $-\nabla^n u_{h_{\pi}}^n \in \mathbf{H}(\mathrm{div},\Omega)$
- set $\theta^n := -\nabla^n u_{h_{\tau}}^n$
- \Rightarrow diffusive flux estimator $\eta_{DF,T,1}^n$ vanishes

Separating the space and time errors

• notice that $\int_{I_2} (\eta_{DF,T}^n)^2 \le (\eta_{DF,T,1}^n)^2 + (\eta_{DF,T,2}^n)^2$, where $(\eta_{\mathrm{DF},T,1}^{n})^{2} := 2\tau^{n} \|\nabla s^{n} + \theta^{n}\|_{T}^{2}$ $(\eta_{\mathrm{DF},T,2}^n)^2 := 2 \int_t \|\nabla s(t) - \nabla s^n\|_T^2 dt = \frac{2}{3} \tau^n \|\nabla (s^n - s^{n-1})\|_T^2,$

- time error estimator $\eta_{\rm tm}^n$ uses $\eta_{\rm DF, T, 2}^n$
- space error estimator η_{sp}^n uses $\eta_{DF,T,1}^n$, $\eta_{R,T}^n$, $\eta_{NC1,T}^n$, and
- this yields

$$\|u - u_{h\tau}\|_{Y} \le \left\{ \sum_{n=1}^{N} (\eta_{\text{sp}}^{n})^{2} \right\}^{1/2} + \left\{ \sum_{n=1}^{N} (\eta_{\text{tm}}^{n})^{2} \right\}^{1/2} + \eta_{\text{IC}} + 3\|f - \widetilde{f}\|_{X'}$$

• notice that $\int_{I_2} (\eta_{DF,T}^n)^2 \le (\eta_{DF,T,1}^n)^2 + (\eta_{DF,T,2}^n)^2$, where $(\eta_{\mathrm{DF},T,1}^{n})^{2} := 2\tau^{n} \|\nabla s^{n} + \theta^{n}\|_{T}^{2}$

$$(\eta^n_{\mathrm{DF},T,2})^2 := 2 \int_{I_n} \|\nabla s(t) - \nabla s^n\|_T^2 \, \mathrm{d}t = \frac{2}{3} \tau^n \|\nabla (s^n - s^{n-1})\|_T^2,$$

- time error estimator η_{tm}^n uses $\eta_{\text{DF},T,2}^n$
- space error estimator η_{SP}^n uses $\eta_{\text{DF},T,1}^n$, $\eta_{\text{R},T}^n$, $\eta_{\text{NC}1,T}^n$, and
- this yields

$$\|u - u_{h\tau}\|_{Y} \le \left\{ \sum_{n=1}^{N} (\eta_{\text{sp}}^{n})^{2} \right\}^{1/2} + \left\{ \sum_{n=1}^{N} (\eta_{\text{tm}}^{n})^{2} \right\}^{1/2} + \eta_{\text{IC}} + 3\|f - \widetilde{f}\|_{X'}$$

Separating the space and time errors

• notice that $\int_{I_2} (\eta_{DF,T}^n)^2 \le (\eta_{DF,T,1}^n)^2 + (\eta_{DF,T,2}^n)^2$, where $(\eta_{\mathrm{DF},T,1}^{n})^{2} := 2\tau^{n} \|\nabla s^{n} + \theta^{n}\|_{T}^{2}$ $(\eta_{\mathrm{DF},T,2}^n)^2 := 2 \int_t \|\nabla s(t) - \nabla s^n\|_T^2 dt = \frac{2}{3} \tau^n \|\nabla (s^n - s^{n-1})\|_T^2,$

- time error estimator η_{tm}^n uses $\eta_{DF,T,2}^n$
- space error estimator η_{sp}^n uses $\eta_{DF,T,1}^n$, $\eta_{R,T}^n$, $\eta_{NC1,T}^n$, and $\eta_{\text{NC2},T}^n$
- this yields

$$\|u - u_{h\tau}\|_{Y} \le \left\{ \sum_{n=1}^{N} (\eta_{\text{sp}}^{n})^{2} \right\}^{1/2} + \left\{ \sum_{n=1}^{N} (\eta_{\text{tm}}^{n})^{2} \right\}^{1/2} + \eta_{\text{IC}} + 3\|f - \widetilde{f}\|_{X'}$$

Separating the space and time errors

• notice that $\int_{L} (\eta_{DF,T}^{n})^{2} \leq (\eta_{DF,T,1}^{n})^{2} + (\eta_{DF,T,2}^{n})^{2}$, where $(\eta_{\rm DF, T, 1}^n)^2 := 2\tau^n \|\nabla s^n + \theta^n\|_T^2$ $(\eta_{\mathrm{DF},T,2}^n)^2 := 2 \int_t \|\nabla s(t) - \nabla s^n\|_T^2 dt = \frac{2}{3} \tau^n \|\nabla (s^n - s^{n-1})\|_T^2,$

- time error estimator η_{tm}^n uses $\eta_{DF,T,2}^n$
- space error estimator η_{sp}^n uses $\eta_{DF,T,1}^n$, $\eta_{R,T}^n$, $\eta_{NC1,T}^n$, and $\eta_{\text{NC2},T}^n$
- this yields

$$\|u - u_{h\tau}\|_{Y} \le \left\{ \sum_{n=1}^{N} (\eta_{\text{sp}}^{n})^{2} \right\}^{1/2} + \left\{ \sum_{n=1}^{N} (\eta_{\text{tm}}^{n})^{2} \right\}^{1/2} + \eta_{\text{IC}} + 3\|f - \widetilde{f}\|_{X'}$$

Algorithm for achieving a given relative precision ε

$$\frac{\sum_{n=1}^{N} \left\{ (\eta_{\text{sp}}^{n})^{2} + (\eta_{\text{tm}}^{n})^{2} \right\}}{\sum_{n=1}^{N} \|u_{h\tau}\|_{Z(I_{n})}^{2}} \leq \varepsilon^{2}$$

- - 2 select an initial time step τ^0 and set n := 1;
- 2 Loop in time: while $\sum_i \tau^i < T$,
 - \bullet set $\mathcal{T}^{n*} := \mathcal{T}^{n-1}$ and $\tau^{n*} := \tau^{n-1}$:

A space-time adaptive time-marching algorithm

Algorithm for achieving a given relative precision ε

$$\frac{\sum_{n=1}^{N} \left\{ (\eta_{\rm sp}^{n})^{2} + (\eta_{\rm tm}^{n})^{2} \right\}}{\sum_{n=1}^{N} \|u_{h\tau}\|_{Z(I_{n})}^{2}} \leq \varepsilon^{2}$$

- Initialization
 - choose an initial mesh \mathcal{T}^0 ;
 - 2 select an initial time step τ^0 and set n := 1;
- - \bullet set $\mathcal{T}^{n*} := \mathcal{T}^{n-1}$ and $\tau^{n*} := \tau^{n-1}$:

A space-time adaptive time-marching algorithm

Algorithm for achieving a given relative precision ε

$$\frac{\sum_{n=1}^{N} \left\{ (\eta_{\rm sp}^{n})^{2} + (\eta_{\rm tm}^{n})^{2} \right\}}{\sum_{n=1}^{N} \|u_{h\tau}\|_{Z(I_{n})}^{2}} \leq \varepsilon^{2}$$

- Initialization
 - choose an initial mesh \mathcal{T}^0 ;
 - 2 select an initial time step τ^0 and set n := 1;
- 2 Loop in time: while $\sum_i \tau^i < T$,
 - **1** set $T^{n*} := T^{n-1}$ and $\tau^{n*} := \tau^{n-1}$:
 - 2 solve $u_{h_{\tau}}^{n*} := \text{Sol}(u_{h_{\tau}}^{n-1}, \tau^{n*}, \mathcal{T}^{n*});$
 - estimate the space and time errors by η_{sn}^n and η_{tm}^n ;
 - when $\eta_{\rm sp}^n$ or $\eta_{\rm tm}^n$ are too much above or below $\varepsilon \|u_{h\tau}\|_{Z(I_n)}/\sqrt{2}$ or not of similar size, refine or derefine the time step τ^{n*} and the space mesh \mathcal{T}^{n*} and return to step (2-2), otherwise save approximate solution, mesh, and time step as $u_{h\tau}^n$, \mathcal{T}^n , and τ^n and set n := n + 1.

Outline

- - Continuous setting
- A posteriori error estimates and their efficiency
 - Potential and flux reconstructions
 - A posteriori error estimates
 - Efficiency
- - Discontinuous Galerkin
 - Cell-centered finite volumes
 - Mixed finite elements
 - Vertex-centered finite volumes
 - Face-centered finite volumes

Efficiency

Theorem (Efficiency)

There holds

$$\eta_{\mathrm{sp}}^{n} + \eta_{\mathrm{tm}}^{n} \lesssim \|u - u_{h\tau}\|_{Y(I_n)} + \mathcal{J}^{n}(u_{h\tau}) + \mathcal{E}_{f}^{n}$$

$$\bullet \ \mathcal{J}^n(u_{h\tau})^2 := \tau^n \sum_{T \in \mathcal{T}^{n-1}} \| \llbracket u_{h\tau}^{n-1} \rrbracket \|_{-\frac{1}{2}, \mathfrak{F}_T^{n-1}}^2 + \tau^n \sum_{T \in \mathcal{T}^n} \| \llbracket u_{h\tau}^n \rrbracket \|_{-\frac{1}{2}, \mathfrak{F}_T^n}^2$$

• (\mathcal{E}_f^n) is space-time data oscillation term

- \mathcal{J}^n is a typical jump seminorm
- it can bounded by the energy error if the jumps in $u_{h\tau}$ have
- it can alternatively be added to the error measure (note

Efficiency

Theorem (Efficiency)

There holds

$$\eta_{\mathrm{sp}}^n + \eta_{\mathrm{tm}}^n \lesssim \|u - u_{h\tau}\|_{Y(I_n)} + \mathcal{J}^n(u_{h\tau}) + \mathcal{E}_f^n$$

Notation

$$\bullet \mathcal{J}^n(u_{h\tau})^2 := \tau^n \sum_{T \in \mathcal{T}^{n-1}} | [\![u_{h\tau}^{n-1}]\!]|^2_{-\frac{1}{2}, \mathfrak{F}_T^{n-1}} + \tau^n \sum_{T \in \mathcal{T}^n} | [\![u_{h\tau}^n]\!]|^2_{-\frac{1}{2}, \mathfrak{F}_T^n}$$

• (\mathcal{E}_f^n) is space-time data oscillation term

- \mathcal{J}^n is a typical jump seminorm
- it can bounded by the energy error if the jumps in $u_{h\tau}$ have
- it can alternatively be added to the error measure (note

Efficiency

Theorem (Efficiency)

There holds

$$\eta_{\mathrm{sp}}^n + \eta_{\mathrm{tm}}^n \lesssim \|u - u_{h\tau}\|_{Y(I_n)} + \mathcal{J}^n(u_{h\tau}) + \mathcal{E}_f^n$$

Notation

$$\bullet \mathcal{J}^n(u_{h\tau})^2 := \tau^n \sum_{T \in \mathcal{T}^{n-1}} | [\![u_{h\tau}^{n-1}]\!]|^2_{-\frac{1}{2}, \mathfrak{F}^{n-1}_T} + \tau^n \sum_{T \in \mathcal{T}^n} | [\![u_{h\tau}^n]\!]|^2_{-\frac{1}{2}, \mathfrak{F}^n_T}$$

• (\mathcal{E}_f^n) is space-time data oscillation term

Comments on \mathcal{J}^n

- \mathcal{J}^n is a typical jump seminorm
- it can bounded by the energy error if the jumps in $u_{h\tau}$ have zero mean values (MFEs, FCFVs, NCFEs); it can also be bounded in DGs, using the scheme
- it can alternatively be added to the error measure (note that $\mathcal{J}^n(u_{h\tau}) = \mathcal{J}^n(u - u_{h\tau})$

Assumptions for the lower bound proof

Main assumption: approximation property of the flux reconstruction

$$\|\nabla u_{h\tau}^{n} + \boldsymbol{\theta}^{n}\|_{T} \lesssim \left\{ \sum_{T' \in \mathfrak{T}_{T}} h_{T'}^{2} \|\widetilde{f}^{n} - \partial_{t} u_{h\tau}^{n} + \Delta u_{h\tau}^{n} \|_{T'}^{2} \right\}^{1/2} \\ + |\mathbf{n} \cdot [\![\nabla^{n} u_{h\tau}^{n}]\!]|_{+\frac{1}{2}, \mathfrak{F}_{T}^{i,n}} + |[\![u_{h\tau}^{n}]\!]|_{-\frac{1}{2}, \mathfrak{F}_{T}^{n}}$$

• $\|\nabla u_{h\tau}^n + \theta^n\|_T$ is a local lower bound for the classical residual estimators

Other assumptions

- the meshes $\{\mathcal{T}^n\}_{0 \le n \le N}$ are shape regular uniformly in n;
- the meshes cannot be refined or coarsened too quickly;
- for nonconforming methods on time-varying meshes, $(h^n)^2 \leq \tau^n$ (mild inverse parabolic CFL on time step)

Assumptions for the lower bound proof

Main assumption: approximation property of the flux reconstruction

$$\|\nabla u_{h\tau}^{n} + \boldsymbol{\theta}^{n}\|_{T} \lesssim \left\{ \sum_{T' \in \mathfrak{T}_{T}} h_{T'}^{2} \|\widetilde{f}^{n} - \partial_{t} u_{h\tau}^{n} + \Delta u_{h\tau}^{n} \|_{T'}^{2} \right\}^{1/2} \\ + |\mathbf{n} \cdot [\![\nabla^{n} u_{h\tau}^{n}]\!]|_{+\frac{1}{2}, \mathfrak{F}_{T}^{i,n}} + |[\![u_{h\tau}^{n}]\!]|_{-\frac{1}{2}, \mathfrak{F}_{T}^{n}}$$

• $\|\nabla u_{h_T}^n + \theta^n\|_T$ is a local lower bound for the classical residual estimators

Other assumptions

- the meshes $\{\mathcal{T}^n\}_{0 \le n \le N}$ are shape regular uniformly in n;
- the meshes cannot be refined or coarsened too quickly;
- for nonconforming methods on time-varying meshes, $(h^n)^2 \lesssim \tau^n$ (mild inverse parabolic CFL on time step)

- - Continuous setting
- - Potential and flux reconstructions
 - A posteriori error estimates
 - Efficiency
- Applications to different numerical methods
 - Discontinuous Galerkin
 - Cell-centered finite volumes
 - Mixed finite elements
 - Vertex-centered finite volumes
 - Face-centered finite volumes

Upper bound

• for $0 \le n \le N$, we only have to construct $\theta^n \in \mathbf{H}(\operatorname{div},\Omega)$ which is locally conservative, i.e., such that

$$(\widetilde{f}^n - \partial_t u_{n\tau}^n - \nabla \cdot \boldsymbol{\theta}^n, \mathbf{1})_T = \mathbf{0}, \qquad \forall T \in \mathcal{T}^n$$

• we construct θ^n in some mixed finite element space;

$$\mathsf{RTN}_I(\mathcal{T}^n) := \left\{ \mathbf{v}_h \in \mathsf{H}(\operatorname{div},\Omega) \, ; \mathbf{v}_h|_T \in \mathsf{RTN}_I(T) \quad \forall T \in \mathcal{T}^n \right\}$$

we only have to verify the flux approximation property

Upper bound

• for $0 \le n \le N$, we only have to construct $\theta^n \in \mathbf{H}(\operatorname{div},\Omega)$ which is locally conservative, i.e., such that

$$(\widetilde{f}^n - \partial_t u_{n\tau}^n - \nabla \cdot \boldsymbol{\theta}^n, \mathbf{1})_T = \mathbf{0}, \qquad \forall T \in \mathcal{T}^n$$

• we construct θ^n in some mixed finite element space; example: Raviart-Thomas-Nédélec spaces

$$\mathsf{RTN}_l(\mathcal{T}^n) := \left\{ \mathbf{v}_h \in \mathsf{H}(\mathrm{div},\Omega) \, ; \mathbf{v}_h|_{\mathcal{T}} \in \mathsf{RTN}_l(\mathcal{T}) \quad \forall \mathcal{T} \in \mathcal{T}^n \right\}$$

we only have to verify the flux approximation property

Upper bound

• for $0 \le n \le N$, we only have to construct $\theta^n \in \mathbf{H}(\operatorname{div},\Omega)$ which is locally conservative, i.e., such that

$$(\widetilde{f}^n - \partial_t u_{n\tau}^n - \nabla \cdot \boldsymbol{\theta}^n, \mathbf{1})_T = \mathbf{0}, \qquad \forall T \in \mathcal{T}^n$$

• we construct θ^n in some mixed finite element space; example: Raviart-Thomas-Nédélec spaces

$$\mathsf{RTN}_l(\mathcal{T}^n) := \left\{ \mathbf{v}_h \in \mathsf{H}(\mathrm{div},\Omega) \, ; \mathbf{v}_h|_{\mathcal{T}} \in \mathsf{RTN}_l(\mathcal{T}) \quad \forall \mathcal{T} \in \mathcal{T}^n \right\}$$

Lower bound

we only have to verify the flux approximation property

Upper bound

• for $0 \le n \le N$, we only have to construct $\theta^n \in \mathbf{H}(\operatorname{div},\Omega)$ which is locally conservative, i.e., such that

$$(\widetilde{f}^n - \partial_t u_{h\tau}^n - \nabla \cdot \boldsymbol{\theta}^n, \mathbf{1})_T = 0, \qquad \forall T \in \mathcal{T}^n$$

• we construct θ^n in some mixed finite element space; example: Raviart-Thomas-Nédélec spaces

$$\mathsf{RTN}_l(\mathcal{T}^n) := \left\{ \mathbf{v}_h \in \mathsf{H}(\mathrm{div},\Omega) \, ; \mathbf{v}_h|_{\mathcal{T}} \in \mathsf{RTN}_l(\mathcal{T}) \quad \forall \mathcal{T} \in \mathcal{T}^n \right\}$$

Lower bound

we only have to verify the flux approximation property

We achieve this by a straightforward generalization of the elliptic case (previous works)

Outline

- - Continuous setting
- - Potential and flux reconstructions
 - A posteriori error estimates
 - Efficiency
- Applications to different numerical methods
 - Discontinuous Galerkin

 - Mixed finite elements
 - Vertex-centered finite volumes
 - Face-centered finite volumes

Discontinuous Galerkin method

Definition (DG method)

On
$$I_{n}$$
, \mathcal{T}^{n} , $1 \leq n \leq N$, find $u_{h\tau}^{n} \in V_{h}^{n} := \mathbb{P}_{k}(\mathcal{T}^{n})$, $k \geq 1$, such that
$$(\partial_{t}u_{h\tau}^{n}, v_{h}) - \sum_{F \in \mathcal{F}^{n}} \{ (\mathbf{n}_{F} \cdot \{\!\!\{ \nabla^{n}u_{h\tau}^{n} \}\!\!\}, [\![v_{h}]\!])_{F} + \theta (\mathbf{n}_{F} \cdot \{\!\!\{ \nabla^{n}v_{h} \}\!\!\}, [\![u_{h\tau}^{n}]\!])_{F} \} + (\nabla^{n}u_{h\tau}^{n}, \nabla^{n}v_{h}) + \sum_{F \in \mathcal{F}^{n}} (\alpha_{F}h_{F}^{-1}[\![u_{h\tau}^{n}]\!], [\![v_{h}]\!])_{F} = (\widetilde{f}^{n}, v_{h}) \quad \forall v_{h} \in V_{h}^{n}.$$

Flux
$$\theta^n \in \mathbf{RTN}_I(\mathcal{T}^n)$$
, $I \in \{k-1, k\}$
For all $T \in \mathcal{T}^n$, all $F \in \mathcal{F}_T^n$, all $q_h \in \mathbb{P}_I(F)$ (face normal comp.
 $(\theta^n \cdot \mathbf{n}_F, q_h)_F = (-\mathbf{n}_F \cdot \{\!\!\{ \nabla^n u_{h_T}^n \}\!\!\} + \alpha_F h_F^{-1} [\![u_{h_T}^n]\!], q_h)_F,$
and for all $\mathbf{r}_h \in \mathbb{P}_{I-1}^d(T)$ (element components),
 $(\theta^n, \mathbf{r}_h)_T = -(\nabla^n u_{h_T}^n, \mathbf{r}_h)_T + \theta \sum_{F \in \mathcal{F}_T^n} \omega_F(\mathbf{n}_F \cdot \mathbf{r}_h, [\![u_{h_T}^n]\!])_F.$

Discontinuous Galerkin method

Definition (DG method)

On
$$I_n$$
, \mathcal{T}^n , $1 \leq n \leq N$, find $u_{h\tau}^n \in V_h^n := \mathbb{P}_k(\mathcal{T}^n)$, $k \geq 1$, such that
$$(\partial_t u_{h\tau}^n, v_h) - \sum_{F \in \mathcal{F}^n} \{ (\mathbf{n}_F \cdot \{\!\!\{ \nabla^n u_{h\tau}^n \}\!\!\}, [\![v_h]\!])_F + \theta (\mathbf{n}_F \cdot \{\!\!\{ \nabla^n v_h \}\!\!\}, [\![u_{h\tau}^n]\!])_F \}$$
$$+ (\nabla^n u_{h\tau}^n, \nabla^n v_h) + \sum_{F \in \mathcal{F}^n} (\alpha_F h_F^{-1} [\![u_{h\tau}^n]\!], [\![v_h]\!])_F = (\widetilde{f}^n, v_h) \quad \forall v_h \in V_h^n.$$

Flux
$$\theta^n \in \mathbf{RTN}_l(\mathcal{T}^n)$$
, $l \in \{k-1, k\}$
For all $T \in \mathcal{T}^n$, all $F \in \mathcal{F}_T^n$, all $q_h \in \mathbb{P}_l(F)$ (face normal comp.),
$$(\theta^n \cdot \mathbf{n}_F, q_h)_F = (-\mathbf{n}_F \cdot \{\!\!\{ \nabla^n u_{h\tau}^n \}\!\!\} + \alpha_F h_F^{-1} [\![u_{h\tau}^n]\!], q_h)_F,$$
 and for all $\mathbf{r}_h \in \mathbb{P}_{l-1}^d(T)$ (element components),
$$(\theta^n, \mathbf{r}_h)_T = -(\nabla^n u_{h\tau}^n, \mathbf{r}_h)_T + \theta \sum_{F \in \mathcal{F}_T^n} \omega_F(\mathbf{n}_F \cdot \mathbf{r}_h, [\![u_{h\tau}^n]\!])_F.$$

- - Continuous setting
- - Potential and flux reconstructions
 - A posteriori error estimates
 - Efficiency
- Applications to different numerical methods
 - Discontinuous Galerkin
 - Cell-centered finite volumes
 - Mixed finite elements
 - Vertex-centered finite volumes
 - Face-centered finite volumes

Cell-centered finite volume method

Definition (CCFV method)

On I_n , \mathcal{T}^n , $1 \leq n \leq N$, find $\bar{u}^n_{h\tau} \in \bar{V}^n_h := \mathbb{P}_0(\mathcal{T}^n)$ such that

$$\frac{1}{\tau^n}(\bar{u}^n_{h\tau}-u^{n-1}_{h\tau},1)_T+\sum_{F\in\mathcal{F}^n_T}S^n_{T,F}=(\widetilde{f}^n,1)_T \qquad \forall T\in\mathcal{T}^n.$$

Flux $\theta^n \in \mathsf{RTN}_0(\mathcal{T}^n)$

$$(\theta^n \cdot \mathbf{n}, 1)_F := S_T^n$$

Postprocessing of the potential

- $\bar{u}^n_{h au}\in ar{V}^n_h$ not suitable for energy error estimates $(
 ablaar{u}^n_{h au}=0)$
- $u_{h\tau}^n \in V_h^n$, V_h^n is $\mathbb{P}_1(\mathcal{T}^n)$ enriched elementwise by the parabolas $\sum_{i=1}^d x_i^2$

$$-\nabla u_{h\tau}^n = \theta^n,$$

$$(u_{h\tau}^n, 1)_T = (\bar{u}_{h\tau}^n, 1)_T$$

Cell-centered finite volume method

Definition (CCFV method)

On I_n , \mathcal{T}^n , $1 \leq n \leq N$, find $\bar{u}^n_{h\tau} \in \bar{V}^n_h := \mathbb{P}_0(\mathcal{T}^n)$ such that

$$\frac{1}{\tau^n}(\bar{\boldsymbol{u}}^n_{h\tau}-\boldsymbol{u}^{n-1}_{h\tau},1)_T+\sum_{F\in\mathcal{F}^n_T}\boldsymbol{S}^n_{T,F}=(\widetilde{\boldsymbol{f}}^n,1)_T \qquad \forall T\in\mathcal{T}^n.$$

Flux $\theta^n \in \mathsf{RTN}_0(\mathcal{T}^n)$

$$(\boldsymbol{\theta}^n \cdot \mathbf{n}, 1)_F := S_{T,F}^n$$

Postprocessing of the potential

- $\bar{u}^n_{h au}\in ar{V}^n_h$ not suitable for energy error estimates $(
 ablaar{u}^n_{h au}=0)$
- $u_{h\tau}^n \in V_h^n$, V_h^n is $\mathbb{P}_1(\mathcal{T}^n)$ enriched elementwise by the parabolas $\sum_{i=1}^d x_i^2$

$$\begin{array}{ccc}
-\nabla u_{h\tau}^n = \boldsymbol{\theta}^n, \\
(u_{h\tau}^n, 1)_T = (\bar{u}_{h\tau}^n, 1)_T
\end{array}$$

Cell-centered finite volume method

Definition (CCFV method)

On I_n , \mathcal{T}^n , $1 \leq n \leq N$, find $\bar{u}^n_{h\tau} \in \bar{V}^n_h := \mathbb{P}_0(\mathcal{T}^n)$ such that

$$\frac{1}{\tau^n}(\bar{\textit{\textbf{u}}}^n_{h\tau} - \textit{\textbf{u}}^{n-1}_{h\tau}, 1)_T + \sum_{F \in \mathcal{F}^n_T} \textit{\textbf{S}}^n_{T,F} = (\widetilde{\textit{\textbf{f}}}^n, 1)_T \qquad \forall T \in \mathcal{T}^n.$$

Flux $\theta^n \in \mathsf{RTN}_0(\mathcal{T}^n)$

$$(\boldsymbol{\theta}^n \cdot \mathbf{n}, 1)_F := S_T^n$$

Postprocessing of the potential

- $ar{u}^n_{h au}\in ar{V}^n_h$ not suitable for energy error estimates $(
 ablaar{u}^n_{h au}=0)$
- $u_{h\tau}^n \in V_h^n$, V_h^n is $\mathbb{P}_1(\mathcal{T}^n)$ enriched elementwise by the parabolas $\sum_{i=1}^d x_i^2$
- $\begin{array}{c} \bullet \\ -\nabla u_{h_T}^n = \boldsymbol{\theta}^n, \\ (u_{h_T}^n, 1)_T = (\bar{u}_{h_T}^n, 1)_T \end{array}$

Outline

- - Continuous setting
- - Potential and flux reconstructions
 - A posteriori error estimates
 - Efficiency
- Applications to different numerical methods
 - Discontinuous Galerkin

 - Mixed finite elements
 - Vertex-centered finite volumes
 - Face-centered finite volumes

Mixed finite element method

Definition (MFE method)

On I_n , \mathcal{T}^n , $1 \leq n \leq N$, find $\sigma_{h_{\tau}}^n \in \mathbf{W}_h^n$ and $\bar{u}_{h_{\tau}}^n \in \bar{V}_h^n$ such that

$$\begin{split} (\boldsymbol{\sigma}_{h\tau}^n, \mathbf{w}_h) - (\bar{u}_{h\tau}^n, \nabla \cdot \mathbf{w}_h) &= 0 \qquad \forall \, \mathbf{w}_h \in \mathbf{W}_h^n, \\ (\nabla \cdot \boldsymbol{\sigma}_{h\tau}^n, v_h) + \frac{1}{\tau^n} (\bar{u}_{h\tau}^n - u_{h\tau}^{n-1}, v_h) &= (\widetilde{f}^n, v_h) \qquad \forall v_h \in \bar{V}_h^n. \end{split}$$

Flux $\theta^n \in W_h^n$

- $u_{h_{\pi}}^{n} \in V_{h}^{n}$, V_{h}^{n} is $\mathbb{P}_{l+1}(\mathcal{T}^{n})$ enriched by bubbles (Arbogast

Mixed finite element method

Definition (MFE method)

On I_n , \mathcal{T}^n , $1 \leq n \leq N$, find $\sigma_{h\tau}^n \in \mathbf{W}_h^n$ and $\bar{u}_{h\tau}^n \in \bar{V}_h^n$ such that

$$\begin{split} (\boldsymbol{\sigma}_{h\tau}^{n}, \mathbf{w}_{h}) - (\bar{u}_{h\tau}^{n}, \nabla \cdot \mathbf{w}_{h}) &= 0 \qquad \forall \mathbf{w}_{h} \in \mathbf{W}_{h}^{n}, \\ (\nabla \cdot \boldsymbol{\sigma}_{h\tau}^{n}, v_{h}) + \frac{1}{\tau^{n}} (\bar{u}_{h\tau}^{n} - u_{h\tau}^{n-1}, v_{h}) &= (\tilde{f}^{n}, v_{h}) \qquad \forall v_{h} \in \bar{V}_{h}^{n}. \end{split}$$

Flux $\theta^n \in W_h^n$ $\theta^n := \sigma_{h_{\tau}}^n$ directly

- $u_{h_{\pi}}^{n} \in V_{h}^{n}$, V_{h}^{n} is $\mathbb{P}_{l+1}(\mathcal{T}^{n})$ enriched by bubbles (Arbogast

Mixed finite element method

Definition (MFE method)

On $I_n,\,\mathcal{T}^n,\,1\leq n\leq N,$ find $\sigma^n_{h\tau}\in \mathbf{W}^n_h$ and $\bar{u}^n_{h\tau}\in \bar{V}^n_h$ such that

$$(\sigma_{h\tau}^n, \mathbf{w}_h) - (\bar{u}_{h\tau}^n, \nabla \cdot \mathbf{w}_h) = 0 \qquad \forall \mathbf{w}_h \in \mathbf{W}_h^n,$$
 $(\nabla \cdot \sigma_{h\tau}^n, v_h) + \frac{1}{\tau^n} (\bar{u}_{h\tau}^n - u_{h\tau}^{n-1}, v_h) = (\tilde{f}^n, v_h) \qquad \forall v_h \in \bar{V}_h^n.$

Flux $\theta^n \in \mathbf{W}_h^n$ $\theta^n := \sigma_{h\tau}^n$ directly

Postprocessing of the potential

- $u_{h\tau}^n \in V_h^n$, V_h^n is $\mathbb{P}_{l+1}(\mathcal{T}^n)$ enriched by bubbles (Arbogast and Chen, 1995)
- $egin{align} egin{align} \Pi_{oldsymbol{W}_h^n}(abla^n u_{h au}^n) &= oldsymbol{\sigma}_{h au}^n, \ \Pi_{ar{V}_h^n}(u_{h au}^n) &= ar{u}_{h au}^n, \ \end{pmatrix}$

Outline

- - Continuous setting
- - Potential and flux reconstructions
 - A posteriori error estimates
 - Efficiency
- Applications to different numerical methods
 - Discontinuous Galerkin

 - Mixed finite elements
 - Vertex-centered finite volumes
 - Face-centered finite volumes

Vertex-centered finite volume method

Definition (VCFV method)

On
$$I_n$$
, \mathcal{T}^n , $1 \leq n \leq N$, find $u_{h\tau}^n \in V_h^n := \mathbb{P}_1(\mathcal{T}^n) \cap H_0^1(\Omega)$ s. t. $(\partial_t u_{h\tau}^n, 1)_D - (\nabla u_{h\tau}^n \cdot \mathbf{n}_D, 1)_{\partial D} = (\widetilde{f}^n, 1)_D \quad \forall D \in \mathcal{D}^{i,n}.$

- triangulation \mathcal{T}^n , dual mesh \mathcal{D}^n , simplicial submesh \mathcal{S}^n Flux $\theta^n \in \mathbf{RTN}_0(\mathcal{S}^n)$
 - by prescription: $\theta^n \cdot \mathbf{n}_F|_F := -\{\!\{ \nabla u_{h_T}^n \cdot \mathbf{n}_F \}\!\}$ on faces F of S^n
 - by solution of local Neumann problems on patches S_D^n

Vertex-centered finite volume method

Definition (VCFV method)

On
$$I_n$$
, \mathcal{T}^n , $1 \leq n \leq N$, find $u_{h\tau}^n \in V_h^n := \mathbb{P}_1(\mathcal{T}^n) \cap H_0^1(\Omega)$ s. t. $(\partial_t u_{h\tau}^n, 1)_D - (\nabla u_{h\tau}^n \cdot \mathbf{n}_D, 1)_{\partial D} = (\widetilde{f}^n, 1)_D \quad \forall D \in \mathcal{D}^{i,n}$.

Setting

• triangulation \mathcal{T}^n , dual mesh \mathcal{D}^n , simplicial submesh \mathcal{S}^n

Flux $\theta^n \in \mathsf{RTN}_0(\mathcal{S}^n)$

- by prescription: $\theta^n \cdot \mathbf{n}_F|_F := -\{\{\nabla u_{b_F}^n \cdot \mathbf{n}_F\}\}$ on faces F of S^n
- by solution of local Neumann problems on patches S_D^n

Vertex-centered finite volume method

Definition (VCFV method)

On
$$I_n$$
, \mathcal{T}^n , $1 \leq n \leq N$, find $u_{h\tau}^n \in V_h^n := \mathbb{P}_1(\mathcal{T}^n) \cap H_0^1(\Omega)$ s. t. $(\partial_t u_{h\tau}^n, 1)_D - (\nabla u_{h\tau}^n \cdot \mathbf{n}_D, 1)_{\partial D} = (\widetilde{f}^n, 1)_D \quad \forall D \in \mathcal{D}^{i,n}.$

- triangulation \mathcal{T}^n , dual mesh \mathcal{D}^n , simplicial submesh \mathcal{S}^n Flux $\theta^n \in \mathbf{RTN}_0(\mathcal{S}^n)$
 - by prescription: $\theta^n \cdot \mathbf{n}_F|_F := -\{\!\{ \nabla u_{b\tau}^n \cdot \mathbf{n}_F \}\!\}$ on faces F of S^n
 - by solution of local Neumann problems on patches S_D^n

- - Continuous setting
- - Potential and flux reconstructions
 - A posteriori error estimates
 - Efficiency
- Applications to different numerical methods
 - Discontinuous Galerkin
 - Cell-centered finite volumes
 - Mixed finite elements
 - Vertex-centered finite volumes
 - Face-centered finite volumes

Face-centered finite volume method

Definition (FCFV method)

On I_n , \mathcal{T}^n , $1 \le n \le N$, find $u_{h_{\mathcal{T}}}^n \in V_h^n$ (Crouzeix–Raviart sp.) s. t. $(\partial_t u_{h_{\mathcal{T}}}^n, 1)_D - (\nabla^n u_{h_{\mathcal{T}}}^n \cdot \mathbf{n}_D, 1)_{\partial D} = (\widetilde{f}^n, 1)_D \qquad \forall D \in \mathcal{D}^{i,n}.$

- triangulation \mathcal{T}^n , dual mesh \mathcal{D}^n , simplicial submesh \mathcal{S}^n Flux $\theta^n \in \mathbf{RTN}_0(\mathcal{S}^n)$
 - by prescription: $\theta^n \cdot \mathbf{n}_F|_F := -\{\!\{ \nabla u^n_{h\tau} \cdot \mathbf{n}_F \}\!\}$ on faces F of \mathcal{S}^n
 - by solution of local Neumann problems on patches \mathcal{S}_D^n

Face-centered finite volume method

Definition (FCFV method)

On I_n , \mathcal{T}^n , $1 \le n \le N$, find $u_{h_{\mathcal{T}}}^n \in V_h^n$ (Crouzeix–Raviart sp.) s. t. $(\partial_t u_{h_{\mathcal{T}}}^n, 1)_D - (\nabla^n u_{h_{\mathcal{T}}}^n \cdot \mathbf{n}_D, 1)_{\partial D} = (\widetilde{f}^n, 1)_D \quad \forall D \in \mathcal{D}^{i,n}$.

Setting

• triangulation \mathcal{T}^n , dual mesh \mathcal{D}^n , simplicial submesh \mathcal{S}^n

Flux $\theta^n \in \mathsf{RTN}_0(\mathcal{S}^n)$

- by prescription: $\theta^n \cdot \mathbf{n}_F|_F := -\{\!\{ \nabla u^n_{h\tau} \cdot \mathbf{n}_F \}\!\}$ on faces F of \mathcal{S}^n
- by solution of local Neumann problems on patches \mathcal{S}^n_D

Face-centered finite volume method

Definition (FCFV method)

On I_n , \mathcal{T}^n , $1 \le n \le N$, find $u_{h_{\mathcal{T}}}^n \in V_h^n$ (Crouzeix–Raviart sp.) s. t. $(\partial_t u_{h_{\mathcal{T}}}^n, 1)_D - (\nabla^n u_{h_{\mathcal{T}}}^n \cdot \mathbf{n}_D, 1)_{\partial D} = (\widetilde{f}^n, 1)_D \qquad \forall D \in \mathcal{D}^{i,n}.$

- triangulation \mathcal{T}^n , dual mesh \mathcal{D}^n , simplicial submesh \mathcal{S}^n Flux $\theta^n \in \mathbf{RTN}_0(\mathcal{S}^n)$
 - by prescription: $\theta^n \cdot \mathbf{n}_F|_F := -\{\!\{ \nabla u_{h\tau}^n \cdot \mathbf{n}_F \}\!\}$ on faces F of S^n
 - ullet by solution of local Neumann problems on patches \mathcal{S}^n_D

Outline

- Introduction
- 2 Setting
 - Continuous setting
 - Discrete setting
- 3 A posteriori error estimates and their efficiency
 - Potential and flux reconstructions
 - A posteriori error estimates
 - Efficiency
- Applications to different numerical methods
 - Discontinuous Galerkin
 - Cell-centered finite volumes
 - Mixed finite elements
 - Vertex-centered finite volumes
 - Face-centered finite volumes
- Numerical experiments
- 6 Conclusions and future work

Numerical experiment

Numerical experiment

- exact solution $u = e^{x+y+t-3}$ on square domain $\Omega = (0,3) \times (0,3)$, T = 1.5 or T = 3
- square meshes: 10×10 , 30×30 , 90×90
- time steps: 0.3, 0.1, 0.3333
- vertex-centered finite volumes
- additional quadrature/mass lumping estimator

Energy norm results, T = 1.5

Energy error and estimators

Effectivity index

Energy norm results, T = 3

Energy error and estimators

Effectivity index

Dual norm results, T = 1.5

Dual error and estimators

Effectivity index

Dual norm results, T=3

Dual error and estimators

Effectivity index

Outline

- Introduction
- 2 Setting
 - Continuous setting
 - Discrete setting
- 3 A posteriori error estimates and their efficiency
 - Potential and flux reconstructions
 - A posteriori error estimates
 - Efficiency
- Applications to different numerical methods
 - Discontinuous Galerkin
 - Cell-centered finite volumes
 - Mixed finite elements
 - Vertex-centered finite volumes
 - Face-centered finite volumes
- Mumerical experiments
- 6 Conclusions and future work

Conclusions and future work

Conclusions

- unified framework for the heat equation (works for all major numerical schemes)
- directly and locally computable estimates
- global-in-space and local-in-time efficiency and robustness with respect to the final time as in Verfürth (2003)

Future work

- nonlinear problems
- extensions to other types of problems

Conclusions and future work

Conclusions

- unified framework for the heat equation (works for all major numerical schemes)
- directly and locally computable estimates
- global-in-space and local-in-time efficiency and robustness with respect to the final time as in Verfürth (2003)

Future work

- nonlinear problems
- extensions to other types of problems

Bibliography

Papers

- ERN A., VOHRALÍK M., A posteriori error estimation based on potential and flux reconstruction for the heat equation, SIAM J. Numer. Anal. 48 (2010), 198–223.
- ERN A., STEPHANSEN, A. F., VOHRALÍK M., Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection—diffusion—reaction problems, *J. Comput. Appl. Math.* 234 (2010), 114–130.
- VOHRALÍK M., A posteriori error estimates for lowest-order mixed finite element discretizations of convection—diffusion—reaction equations, SIAM J. Numer. Anal. 45 (2007), 1570–1599.
- VOHRALÍK M., Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods, Numer. Math. 111 (2008), 121–158.
- VOHRALÍK M., Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients, submitted to J. Sci. Comput.

Thanks for your attention!