A posteriori error estimates in numerical approximation of partial differential equations

Martin Vohralík

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie (Paris 6)

Seminář numerické analýzy, 28.1.-1.2. 2008, Liberec

Outline

5

Introduction

Laplacian and finite elements in one space dimension

- Optimal abstract framework and a first estimate
- Optimal a posteriori error estimate
- Oure diffusion and conforming methods
 - Classical a posteriori estimates
 - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
 - Remarks on finite elements and finite volumes
 - Efficiency of the a posteriori error estimate
 - Convection-reaction-diffusion and nonconforming methods
 - Optimal abstract framework and a first estimate
 - Estimates for discontinuous Galerkin methods
 - Estimates for finite volume methods
 - Complements
 - Conclusions and future work

Outline

- Introduction
- Laplacian and finite elements in one space dimension
 - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
- 3 Pure diffusion and conforming methods
 - Classical a posteriori estimates
 - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
 - Remarks on finite elements and finite volumes
 - Efficiency of the a posteriori error estimate

4 Convection–reaction–diffusion and nonconforming methods

- Optimal abstract framework and a first estimate
- Estimates for discontinuous Galerkin methods
- Estimates for finite volume methods
- Complements
 - Conclusions and future work

What is an a posteriori error estimate

A posteriori error estimate

- Let *p* be a weak solution of a PDE.
- Let p_h be its approximate numerical solution.
- A priori error estimate: ||*p* − *p_h*||_Ω ≤ *f*(*p*)*h^q*. Dependent on *p*, not computable. Useful in theory.
- A posteriori error estimate: ||*p* − *p_h*||_Ω ≤ *f*(*p_h*). Only uses *p_h*, computable. Great in practice.

Usual form

- *f*(*p_h*)² = ∑_{K∈T_h} η_K(*p_h*)², where η_K(*p_h*) is an element indicator.
- Can be used to determine mesh elements with large error.
- We can then refine these elements: mesh adaptivity.

What is an a posteriori error estimate

A posteriori error estimate

- Let *p* be a weak solution of a PDE.
- Let p_h be its approximate numerical solution.
- A priori error estimate: ||*p* − *p_h*||_Ω ≤ *f*(*p*)*h^q*. Dependent on *p*, not computable. Useful in theory.
- A posteriori error estimate: ||*p* − *p_h*||_Ω ≤ *f*(*p_h*). Only uses *p_h*, computable. Great in practice.

Usual form

- $f(p_h)^2 = \sum_{K \in \mathcal{T}_h} \eta_K(p_h)^2$, where $\eta_K(p_h)$ is an element indicator.
- Can be used to determine mesh elements with large error.
- We can then refine these elements: mesh adaptivity.

Guaranteed upper bound (global upper bound)

•
$$\|\boldsymbol{\rho} - \boldsymbol{\rho}_h\|_{\Omega}^2 \leq \sum_{K \in \mathcal{T}_h} \eta_K(\boldsymbol{\rho}_h)^2$$

no undetermined constant

• remark (**reliability**): $\|p - p_h\|_{\Omega}^2 \leq C \sum_{K \in \mathcal{T}_h} \eta_K(p_h)^2$

Global efficiency (global lower bound)

• $\sum_{K \in \mathcal{T}_h} \eta_K (p_h)^2 \le C_{\text{eff},\Omega}^2 \|p - p_h\|_{\Omega}^2$ Asymptotic exactness

• $\sum_{K \in \mathcal{T}_h} \eta_K (p_h)^2 / \|p - p_h\|_{\Omega}^2 \to 1$ Local efficiency (local lower bound)

• $\eta_K(p_h)^2 \leq C_{\text{eff},K}^2 \sum_{L \text{ close to } K} \|p - p_h\|_L^2$ **Robustness**

• *C*_{eff,K} does not depend on data, mesh, or solution **Negligible evaluation cost**

Guaranteed upper bound (global upper bound)

- $\|\boldsymbol{p} \boldsymbol{p}_h\|_{\Omega}^2 \leq \sum_{K \in \mathcal{T}_h} \eta_K(\boldsymbol{p}_h)^2$
- no undetermined constant

• remark (**reliability**): $\|p - p_h\|_{\Omega}^2 \le C \sum_{K \in \mathcal{T}_h} \eta_K(p_h)^2$

Global efficiency (global lower bound)

- $\sum_{K \in \mathcal{T}_h} \eta_K (p_h)^2 \le C_{\text{eff},\Omega}^2 \|p p_h\|_{\Omega}^2$ Asymptotic exactness
- $\sum_{K \in \mathcal{T}_h} \eta_K (p_h)^2 / ||p p_h||_{\Omega}^2 \to 1$ Local efficiency (local lower bound)

• $\eta_{K}(p_{h})^{2} \leq C_{\text{eff},K}^{2} \sum_{L \text{ close to } K} \|p - p_{h}\|_{L}^{2}$ **Robustness**

• *C*_{eff,K} does not depend on data, mesh, or solution **Negligible evaluation cost**

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C

What an a posteriori error estimate should fulfill

Guaranteed upper bound (global upper bound)

•
$$\|\boldsymbol{p} - \boldsymbol{p}_h\|_{\Omega}^2 \leq \sum_{K \in \mathcal{T}_h} \eta_K(\boldsymbol{p}_h)^2$$

no undetermined constant

• remark (reliability): $\|p - p_h\|_{\Omega}^2 \leq C \sum_{K \in \mathcal{T}_h} \eta_K(p_h)^2$

Global efficiency (global lower bound)

• $\sum_{K \in \mathcal{T}_h} \eta_K (p_h)^2 \le C_{\text{eff},\Omega}^2 \|p - p_h\|_{\Omega}^2$ Asymptotic exactness

• $\sum_{K \in \mathcal{I}_h} \eta_K(p_h)^2 / ||p - p_h||_{\Omega}^2 \to 1$ Local efficiency (local lower bound)

• $\eta_K(p_h)^2 \leq C_{\text{eff},K}^2 \sum_{L \text{ close to } K} \|p - p_h\|_L^2$ **Robustness**

• *C*_{eff,*K*} does not depend on data, mesh, or solution **Negligible evaluation cost**

Guaranteed upper bound (global upper bound)

•
$$\|\boldsymbol{\rho} - \boldsymbol{\rho}_h\|_{\Omega}^2 \leq \sum_{K \in \mathcal{T}_h} \eta_K(\boldsymbol{\rho}_h)^2$$

no undetermined constant

• remark (reliability): $\|p - p_h\|_{\Omega}^2 \leq C \sum_{K \in \mathcal{T}_h} \eta_K(p_h)^2$

Global efficiency (global lower bound)

•
$$\sum_{K\in\mathcal{T}_h}\eta_K(p_h)^2\leq C_{\mathrm{eff},\Omega}^2\|p-p_h\|_\Omega^2$$

Asymptotic exactness

• $\sum_{K \in \mathcal{I}_h} \eta_K(p_h)^2 / ||p - p_h||_{\Omega}^2 \to 1$ Local efficiency (local lower bound)

• $\eta_K(p_h)^2 \leq C_{\text{eff},K}^2 \sum_{L \text{ close to } K} \|p - p_h\|_L^2$ **Robustness**

• *C*_{eff,K} does not depend on data, mesh, or solution **Negligible evaluation cost**

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C

What an a posteriori error estimate should fulfill

Guaranteed upper bound (global upper bound)

•
$$\|\boldsymbol{\rho} - \boldsymbol{\rho}_h\|_{\Omega}^2 \leq \sum_{K \in \mathcal{T}_h} \eta_K(\boldsymbol{\rho}_h)^2$$

no undetermined constant

• remark (reliability): $\|p - p_h\|_{\Omega}^2 \leq C \sum_{K \in \mathcal{T}_h} \eta_K(p_h)^2$

Global efficiency (global lower bound)

•
$$\sum_{K \in \mathcal{T}_h} \eta_K(p_h)^2 \leq C_{\mathrm{eff},\Omega}^2 \|p - p_h\|_{\Omega}^2$$

Asymptotic exactness

•
$$\sum_{K\in\mathcal{T}_h}\eta_K(p_h)^2/\|p-p_h\|_\Omega^2
ightarrow 1$$

Local efficiency (local lower bound)

• $\eta_K(p_h)^2 \leq C_{\text{eff},K}^2 \sum_{L \text{ close to } K} \|p - p_h\|_L^2$

• *C*_{eff,*K*} does not depend on data, mesh, or solution **Negligible evaluation cost**

Guaranteed upper bound (global upper bound)

•
$$\|\boldsymbol{p} - \boldsymbol{p}_h\|_{\Omega}^2 \leq \sum_{K \in \mathcal{T}_h} \eta_K(\boldsymbol{p}_h)^2$$

no undetermined constant

• remark (reliability): $\|p - p_h\|_{\Omega}^2 \leq C \sum_{K \in \mathcal{T}_h} \eta_K(p_h)^2$

Global efficiency (global lower bound)

•
$$\sum_{K \in \mathcal{T}_h} \eta_K(p_h)^2 \leq C_{\mathrm{eff},\Omega}^2 \|p - p_h\|_{\Omega}^2$$

Asymptotic exactness

•
$$\sum_{K\in\mathcal{T}_h}\eta_K(p_h)^2/\|p-p_h\|_\Omega^2 o 1$$

Local efficiency (local lower bound)

• $\eta_{\mathcal{K}}(p_h)^2 \leq C_{\mathrm{eff},\mathcal{K}}^2 \sum_{L \operatorname{close to} \mathcal{K}} \|p - p_h\|_L^2$

• $C_{\text{eff},\mathcal{K}}$ does not depend on data, mesh, or solution **Negligible evaluation cost**

Guaranteed upper bound (global upper bound)

•
$$\|\boldsymbol{\rho} - \boldsymbol{\rho}_h\|_{\Omega}^2 \leq \sum_{K \in \mathcal{T}_h} \eta_K(\boldsymbol{\rho}_h)^2$$

no undetermined constant

• remark (reliability): $\|p - p_h\|_{\Omega}^2 \leq C \sum_{K \in \mathcal{T}_h} \eta_K(p_h)^2$

Global efficiency (global lower bound)

•
$$\sum_{K \in \mathcal{I}_h} \eta_K(p_h)^2 \leq C_{\mathrm{eff},\Omega}^2 \|p - p_h\|_{\Omega}^2$$

Asymptotic exactness

•
$$\sum_{K\in\mathcal{T}_h}\eta_K(p_h)^2/\|p-p_h\|_\Omega^2 o 1$$

Local efficiency (local lower bound)

•
$$\eta_{\mathcal{K}}(\boldsymbol{p}_h)^2 \leq C_{\text{eff},\mathcal{K}}^2 \sum_{L \text{ close to } \mathcal{K}} \|\boldsymbol{p} - \boldsymbol{p}_h\|_L^2$$

Robustness

• $C_{\text{eff},K}$ does not depend on data, mesh, or solution Negligible evaluation cost

Guaranteed upper bound (global upper bound)

•
$$\|\boldsymbol{\rho} - \boldsymbol{\rho}_h\|_{\Omega}^2 \leq \sum_{K \in \mathcal{T}_h} \eta_K(\boldsymbol{\rho}_h)^2$$

no undetermined constant

• remark (reliability): $\|p - p_h\|_{\Omega}^2 \leq C \sum_{K \in \mathcal{T}_h} \eta_K(p_h)^2$

Global efficiency (global lower bound)

•
$$\sum_{K \in \mathcal{I}_h} \eta_K(p_h)^2 \leq C_{\mathrm{eff},\Omega}^2 \|p - p_h\|_{\Omega}^2$$

Asymptotic exactness

•
$$\sum_{K\in\mathcal{T}_h}\eta_K(p_h)^2/\|p-p_h\|_\Omega^2 o 1$$

Local efficiency (local lower bound)

•
$$\eta_{\mathcal{K}}(\boldsymbol{p}_{h})^{2} \leq C_{\mathrm{eff},\mathcal{K}}^{2} \sum_{L \operatorname{close to} \mathcal{K}} \|\boldsymbol{p} - \boldsymbol{p}_{h}\|_{L}^{2}$$

Robustness

• $C_{\text{eff},K}$ does not depend on data, mesh, or solution Negligible evaluation cost

Continuous finite elements

- Babuška and Rheinboldt (1978), introduction
- Zienkiewicz and Zhu (1987), averaging-based estimates
- Verfürth (1996), residual-based estimates
- Ainsworth and Oden (2000), equilibrated residual estimates
- Repin (2001), functional a posteriori error estimates
- Luce and Wohlmuth (2004), equilibrated fluxes estimates

Discontinuous finite elements

- Karakashian and Pascal (2003), Becker, Hansbo, and Larson (2003), residual-based estimates
- Ainsworth (2007), Kim (2007), Lazarov, Repin, and Tomar (2007), Nicaise (2007), equilibrated fluxes estimates

Continuous finite elements

- Babuška and Rheinboldt (1978), introduction
- Zienkiewicz and Zhu (1987), averaging-based estimates
- Verfürth (1996), residual-based estimates
- Ainsworth and Oden (2000), equilibrated residual estimates
- Repin (2001), functional a posteriori error estimates
- Luce and Wohlmuth (2004), equilibrated fluxes estimates

Discontinuous finite elements

- Karakashian and Pascal (2003), Becker, Hansbo, and Larson (2003), residual-based estimates
- Ainsworth (2007), Kim (2007), Lazarov, Repin, and Tomar (2007), Nicaise (2007), equilibrated fluxes estimates

Finite volumes

- Ohlberger (2001), non-energy norm estimates
- Nicaise (2004), reconstruction-based estimates

Problems with discontinuous coefficients

- Bernardi and Verfürth (2000), conforming finite elements
- Ainsworth (2005), nonconforming finite elements

Convection-diffusion problems

- Verfürth (1998, 2005), conforming finite elements
- Sangalli (2007), conforming finite elements

Finite volumes

- Ohlberger (2001), non-energy norm estimates
- Nicaise (2004), reconstruction-based estimates

Problems with discontinuous coefficients

- Bernardi and Verfürth (2000), conforming finite elements
- Ainsworth (2005), nonconforming finite elements

Convection–diffusion problems

- Verfürth (1998, 2005), conforming finite elements
- Sangalli (2007), conforming finite elements

Finite volumes

- Ohlberger (2001), non-energy norm estimates
- Nicaise (2004), reconstruction-based estimates

Problems with discontinuous coefficients

- Bernardi and Verfürth (2000), conforming finite elements
- Ainsworth (2005), nonconforming finite elements

Convection–diffusion problems

- Verfürth (1998, 2005), conforming finite elements
- Sangalli (2007), conforming finite elements

Outline

Introd

Laplacian and finite elements in one space dimension

- Optimal abstract framework and a first estimate
- Optimal a posteriori error estimate
- Pure diffusion and conforming methods
 - Classical a posteriori estimates
 - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
 - Remarks on finite elements and finite volumes
 - Efficiency of the a posteriori error estimate

4 Convection–reaction–diffusion and nonconforming methods

- Optimal abstract framework and a first estimate
- Estimates for discontinuous Galerkin methods
- Estimates for finite volume methods
- Complements
 - Conclusions and future work

1D & FEs Pure dif. & conf. CRD & nonc. Compl. C

Optimal framework and a first estimate Optimal estimate

A 1D model problem -p'' = f in Ω , p = 0 on $\partial \Omega$

Definition (Bilinear form \mathcal{B})

We define a bilinear form \mathcal{B} for $p, \varphi \in H_0^1(\Omega)$ by $\mathcal{B}(p, \varphi) := (p', \varphi')$.

Definition (Energy norm)

The associated energy norm for $\varphi \in H_0^1(\Omega)$ is given by $|||\varphi|||^2 := \mathcal{B}(\varphi, \varphi) = ||\varphi'||^2.$

Definition (Weak solution)

Weak solution: $p \in H_0^1(\Omega)$ such that $\mathcal{B}(p, \varphi) = (f, \varphi) \qquad orall \varphi \in H_0^1(\Omega).$

Definition (Finite element approximation)

Finite element approximation: $p_h \in V_h$ such that $\mathcal{B}(p_h, \varphi_h) = (f, \varphi_h) \quad \forall \varphi_h \in V_h.$

A 1D model problem -p'' = f in Ω , p = 0 on $\partial \Omega$

Definition (Bilinear form \mathcal{B})

We define a bilinear form
$$\mathcal{B}$$
 for $p, \varphi \in H_0^1(\Omega)$ by
 $\mathcal{B}(p, \varphi) := (p', \varphi')$.

Definition (Energy norm)

The associated energy norm for $\varphi \in H_0^1(\Omega)$ is given by $|||\varphi|||^2 := \mathcal{B}(\varphi, \varphi) = ||\varphi'||^2.$

A 1D model problem -p'' = f in Ω , p = 0 on $\partial \Omega$

Definition (Bilinear form \mathcal{B})

We define a bilinear form
$$\mathcal{B}$$
 for $p, \varphi \in H_0^1(\Omega)$ by
 $\mathcal{B}(p, \varphi) := (p', \varphi')$.

Definition (Energy norm)

The associated energy norm for $\varphi \in H_0^1(\Omega)$ is given by $|||\varphi|||^2 := \mathcal{B}(\varphi, \varphi) = ||\varphi'||^2.$

Definition (Weak solution)

Weak solution: $p \in H_0^1(\Omega)$ such that $\mathcal{B}(\boldsymbol{p}, \varphi) = (f, \varphi) \qquad \forall \varphi \in H_0^1(\Omega).$

A 1D model problem -p'' = f in Ω , p = 0 on $\partial \Omega$

Definition (Bilinear form \mathcal{B})

We define a bilinear form
$$\mathcal{B}$$
 for $p, \varphi \in H_0^1(\Omega)$ by
 $\mathcal{B}(p, \varphi) := (p', \varphi')$.

Definition (Energy norm)

The associated energy norm for $\varphi \in H_0^1(\Omega)$ is given by $|||\varphi|||^2 := \mathcal{B}(\varphi, \varphi) = ||\varphi'||^2.$

Definition (Weak solution)

Weak solution: $p \in H_0^1(\Omega)$ such that $\mathcal{B}(\boldsymbol{p},\varphi) = (f,\varphi) \qquad \forall \varphi \in H_0^1(\Omega).$

Definition (Finite element approximation)

Finite element approximation: $p_h \in V_h$ such that

$$\mathcal{B}(\boldsymbol{p}_h, \varphi_h) = (f, \varphi_h) \qquad \forall \varphi_h \in V_h.$$

Outline

Introductior

Laplacian and finite elements in one space dimension

- Optimal abstract framework and a first estimate
- Optimal a posteriori error estimate
- Pure diffusion and conforming methods
 - Classical a posteriori estimates
 - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
 - Remarks on finite elements and finite volumes
 - Efficiency of the a posteriori error estimate

4 Convection–reaction–diffusion and nonconforming methods

- Optimal abstract framework and a first estimate
- Estimates for discontinuous Galerkin methods
- Estimates for finite volume methods
- Complements
 - Conclusions and future work

Optimal abstract framework for -p'' = f

Theorem (Optimal abstract framework, 1D Laplacian)

Let $p, p_h \in H_0^1(\Omega)$ be arbitrary. Then

$$\|\|\boldsymbol{p}-\boldsymbol{p}_h\|\| \leq \sup_{\varphi\in \mathcal{H}_0^1(\Omega), \, \|\|\varphi\|\|=1} \mathcal{B}(\boldsymbol{p}-\boldsymbol{p}_h, \varphi) \leq \|\|\boldsymbol{p}-\boldsymbol{p}_h\|\|_{\mathcal{H}_0^1}$$

Proof.

We have

$$\begin{aligned} |||p - p_h||| &= \mathcal{B}\left(p - p_h, \frac{p - p_h}{|||p - p_h|||}\right) \\ &\leq \sup_{\varphi \in H_0^1(\Omega), \, |||\varphi||| = 1} \mathcal{B}(p - p_h, \varphi) \\ &\leq |||p - p_h||| \sup_{\varphi \in H_0^1(\Omega), \, |||\varphi||| = 1} |||\varphi||| \end{aligned}$$

Optimal abstract framework for -p'' = f

Theorem (Optimal abstract framework, 1D Laplacian)

Let $p, p_h \in H_0^1(\Omega)$ be arbitrary. Then

$$\|||\boldsymbol{\rho}-\boldsymbol{\rho}_h||| \leq \sup_{arphi \in H_0^1(\Omega), \, \||arphi\||=1} \mathcal{B}(\boldsymbol{\rho}-\boldsymbol{\rho}_h, arphi) \leq \|||\boldsymbol{\rho}-\boldsymbol{\rho}_h|||$$

Proof.

We have

$$\begin{aligned} |||\boldsymbol{p} - \boldsymbol{p}_h||| &= \mathcal{B}\left(\boldsymbol{p} - \boldsymbol{p}_h, \frac{\boldsymbol{p} - \boldsymbol{p}_h}{|||\boldsymbol{p} - \boldsymbol{p}_h|||}\right) \\ &\leq \sup_{\varphi \in H_0^1(\Omega), \, |||\varphi||| = 1} \mathcal{B}(\boldsymbol{p} - \boldsymbol{p}_h, \varphi) \\ &\leq |||\boldsymbol{p} - \boldsymbol{p}_h||| \sup_{\varphi \in H_0^1(\Omega), \, |||\varphi||| = 1} |||\varphi|||. \end{aligned}$$

Optimal abstract estimate for -p'' = f

Theorem (Optimal abstract estimate, 1D Laplacian)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Then

$$\begin{split} \||\boldsymbol{\rho} - \boldsymbol{\rho}_h\|\| &\leq \inf_{t \in H^1(\Omega)_{\varphi \in H^1_0(\Omega), \||\varphi\|\| = 1}} \sup_{\boldsymbol{\theta} \in H^1_0(\Omega), \||\varphi\|\| = 1} \{(f - t', \varphi) - (\boldsymbol{\rho}'_h + t, \varphi')\} \\ &\leq \||\boldsymbol{\rho} - \boldsymbol{\rho}_h\|\|. \end{split}$$

Proof.

Upper bound: put $\varphi := p - p_h / |||p - p_h|||$ and take $t \in H^1(\Omega)$ arbitrary. Then

$$\mathcal{B}(p - p_h, \varphi) = (f, \varphi) - (p'_h, \varphi') //\mathcal{B} \text{ lin., weak sol. def.}$$

= $(f, \varphi) - (p'_h + t, \varphi') + (t, \varphi') // \pm (t, \varphi')$
= $(f - t', \varphi) - (p'_h + t, \varphi') . //\text{int. by parts}$
ower bound: put $t = -p'$ and use the Schwarz inequality.

Optimal abstract estimate for -p'' = f

Theorem (Optimal abstract estimate, 1D Laplacian)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Then

$$\begin{split} \||\boldsymbol{\rho} - \boldsymbol{\rho}_h\|\| &\leq \inf_{t \in H^1(\Omega)_{\varphi \in H^1_0(\Omega), \||\varphi\|\| = 1}} \sup_{\boldsymbol{\beta} \in H^1_0(\Omega), \|\varphi\|\| = 1} \{(f - t', \varphi) - (\boldsymbol{\rho}'_h + t, \varphi')\} \\ &\leq \||\boldsymbol{\rho} - \boldsymbol{\rho}_h\|\|. \end{split}$$

Proof.

Lo

Upper bound: put $\varphi := p - p_h / |||p - p_h|||$ and take $t \in H^1(\Omega)$ arbitrary. Then

$$\mathcal{B}(\boldsymbol{p} - \boldsymbol{p}_h, \varphi) = (f, \varphi) - (\boldsymbol{p}'_h, \varphi') //\mathcal{B} \text{ lin., weak sol. def.} \\ = (f, \varphi) - (\boldsymbol{p}'_h + t, \varphi') + (t, \varphi') // \pm (t, \varphi') \\ = (f - t', \varphi) - (\boldsymbol{p}'_h + t, \varphi'). //\text{int. by parts} \\ \text{ower bound: put } t = -\boldsymbol{p}' \text{ and use the Schwarz inequality.}$$

Optimal abstract estimate for -p'' = f

Theorem (Optimal abstract estimate, 1D Laplacian)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Then

$$\begin{split} \||\boldsymbol{p} - \boldsymbol{p}_h\|\| &\leq \inf_{t \in H^1(\Omega)_{\varphi \in H^1_0(\Omega), \||\varphi\|\| = 1}} \sup_{\boldsymbol{\xi} \in H^1_0(\Omega), \||\varphi\|\| = 1} \{(\boldsymbol{f} - \boldsymbol{t}', \varphi) - (\boldsymbol{p}'_h + \boldsymbol{t}, \varphi')\} \\ &\leq \||\boldsymbol{p} - \boldsymbol{p}_h\|\|. \end{split}$$

Properties

- Guaranteed upper bound (no undetermined constant).
- Exact and robust.
- Not computable (infimum over an infinite-dimensional space).

A first computable estimate for -p'' = f

Theorem (A first computable estimate, 1D Laplacian)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Take any $t_h \in H^1(\Omega)$. Then

$$||| p - p_h ||| \le \frac{h_\Omega}{\pi} || f - t'_h || + || p'_h + t_h ||.$$

• recall
$$|||p-p_h||| \leq \sup_{\varphi \in H_0^1(\Omega), |||\varphi|||=1} \{(f-t'_h, \varphi) - (p'_h + t_h, \varphi')\};$$

- recall the Friedrichs inequality: $\|\varphi\| \leq \frac{h_{\Omega}}{\pi} \|\varphi'\| = \frac{h_{\Omega}}{\pi} ||\varphi||;$
- use this and the Schwarz inequality: $(f - t'_h, \varphi) \leq ||f - t'_h|| ||\varphi|| \leq ||f - t'_h|| \frac{h_0}{\pi} ||\varphi||;$
- use the Schwarz inequality for the second term: $-(p'_h + t_h, \varphi') \le \|p'_h + t_h\| \|\varphi'\| = \|p'_h + t_h\| \|\varphi\|.$

A first computable estimate for -p'' = f

Theorem (A first computable estimate, 1D Laplacian)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Take any $t_h \in H^1(\Omega)$. Then

$$|||p-p_h||| \leq \frac{h_\Omega}{\pi} ||f-t_h'|| + ||p_h'+t_h||.$$

- recall $|||\boldsymbol{p} \boldsymbol{p}_h||| \leq \sup_{\varphi \in H_0^1(\Omega), \, |||\varphi|||=1} \{(f t'_h, \varphi) (\boldsymbol{p}'_h + t_h, \varphi')\};$
- recall the Friedrichs inequality: $\|\varphi\| \leq \frac{h_{\Omega}}{\pi} \|\varphi'\| = \frac{h_{\Omega}}{\pi} ||\varphi||;$
- use this and the Schwarz inequality: $(f - t'_h, \varphi) \leq ||f - t'_h|| ||\varphi|| \leq ||f - t'_h|| \frac{h_\Omega}{\pi} |||\varphi|||;$
- use the Schwarz inequality for the second term: $-(p'_h + t_h, \varphi') \le ||p'_h + t_h|| ||\varphi'|| = ||p'_h + t_h|| ||\varphi|||.$

A first computable estimate for -p'' = f

Theorem (A first computable estimate, 1D Laplacian)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Take any $t_h \in H^1(\Omega)$. Then

$$|||p-p_h||| \leq \frac{h_\Omega}{\pi} ||f-t_h'|| + ||p_h'+t_h||.$$

- recall $|||\boldsymbol{p} \boldsymbol{p}_h||| \leq \sup_{\varphi \in H_0^1(\Omega), \, |||\varphi|||=1} \{(f t'_h, \varphi) (\boldsymbol{p}'_h + t_h, \varphi')\};$
- recall the Friedrichs inequality: $\|\varphi\| \leq \frac{h_{\Omega}}{\pi} \|\varphi'\| = \frac{h_{\Omega}}{\pi} |||\varphi|||;$
- use this and the Schwarz inequality: $(f - t'_h, \varphi) \le ||f - t'_h|| ||\varphi|| \le ||f - t'_h|| \frac{h_0}{\pi} |||\varphi||;$
- use the Schwarz inequality for the second term: $-(p'_h + t_h, \varphi') \le ||p'_h + t_h|| ||\varphi'|| = ||p'_h + t_h|| ||\varphi|||.$

A first computable estimate for -p'' = f

Theorem (A first computable estimate, 1D Laplacian)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Take any $t_h \in H^1(\Omega)$. Then

$$|||p-p_h||| \leq \frac{h_\Omega}{\pi} ||f-t_h'|| + ||p_h'+t_h||.$$

• recall
$$|||\boldsymbol{p} - \boldsymbol{p}_h||| \leq \sup_{\varphi \in H_0^1(\Omega), |||\varphi|||=1} \{(f - t'_h, \varphi) - (\boldsymbol{p}'_h + t_h, \varphi')\};$$

- recall the Friedrichs inequality: $\|\varphi\| \leq \frac{h_{\Omega}}{\pi} \|\varphi'\| = \frac{h_{\Omega}}{\pi} |||\varphi|||;$
- use this and the Schwarz inequality: $(f - t'_h, \varphi) \le ||f - t'_h|| ||\varphi|| \le ||f - t'_h|| \frac{h_\Omega}{\pi} |||\varphi|||;$
- use the Schwarz inequality for the second term: $-(p'_h + t_h, \varphi') \le \|p'_h + t_h\| \|\varphi'\| = \|p'_h + t_h\| \|\varphi\|.$

A first computable estimate for -p'' = f

Theorem (A first computable estimate, 1D Laplacian)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Take any $t_h \in H^1(\Omega)$. Then

$$||| p - p_h ||| \le \frac{h_\Omega}{\pi} || f - t'_h || + || p'_h + t_h ||.$$

- recall $|||\boldsymbol{p} \boldsymbol{p}_h||| \leq \sup_{\varphi \in H_0^1(\Omega), \, |||\varphi|||=1} \{(f t'_h, \varphi) (\boldsymbol{p}'_h + t_h, \varphi')\};$
- recall the Friedrichs inequality: $\|\varphi\| \leq \frac{h_{\Omega}}{\pi} \|\varphi'\| = \frac{h_{\Omega}}{\pi} ||\varphi||;$
- use this and the Schwarz inequality: $(f - t'_h, \varphi) \le ||f - t'_h|| ||\varphi|| \le ||f - t'_h|| \frac{h_{\Omega}}{\pi} |||\varphi|||;$
- use the Schwarz inequality for the second term: $-(p'_h + t_h, \varphi') \le ||p'_h + t_h|| ||\varphi'|| = ||p'_h + t_h|| ||\varphi|||.$

A first computable estimate for -p'' = f

Theorem (A first computable estimate, 1D Laplacian)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Take any $t_h \in H^1(\Omega)$. Then

$$||| \boldsymbol{p} - \boldsymbol{p}_h ||| \le \frac{h_\Omega}{\pi} || f - t'_h || + || \boldsymbol{p}'_h + t_h ||.$$

Properties

- Guaranteed upper bound $(\frac{1}{\pi}$, Friedrichs constant).
- $\|p'_h + t_h\|$ penalizes $-p'_h \notin H^1(\Omega)$.
- $||f t'_h||$ is a residual term, evaluated for t_h .
- Advantage: scheme-independent (works for all schemes) (promoted by Repin).
- Disadvantage: scheme-independent (no information from the computation used).

1D & FEs Pure dif. & conf. CRD & nonc. Compl. C

Numerical experiment for the first computable estimate

Model problem

$$-p'' = \pi^2 sin(\pi x) \text{ in }]0,1[, p = 0 \text{ in } 0,1]$$

Exact solution

 $p(x) = \sin(\pi x)$

Discretization

N given, h = 1/(N+1), $x_k = kh$, k = 0, ..., N+1 ($x_0 = 0$ and $x_{N+1} = 1$), $x_{k+\frac{1}{2}} = (k+\frac{1}{2})h$, k = 0, ..., N, $x_{-\frac{1}{2}} = 0$, $x_{N+1+\frac{1}{2}} = 1$ **Choice of** t_h

$$\begin{split} t_h(x_{k+\frac{1}{2}}) &= -p'_h(x_{k+\frac{1}{2}}) \quad k = 0, \dots, N, \\ t_h(x_k) &= -(p'_h|_{]x_{k-1}, x_k[} + p'_h|_{]x_k, x_{k+1}[})/2 \quad k = 1, \dots, N, \\ t_h(x_0) &= -p'_h|_{]x_0, x_1[}, \\ t_h(x_{N+1}) &= -p'_h|_{]x_N, x_{N+1}[} \end{split}$$
Numerical experiment for the first computable estimate

Model problem

$$-p'' = \pi^2 sin(\pi x) \text{ in }]0,1[, p = 0 \text{ in } 0,1]$$

Exact solution

$$p(x) = sin(\pi x)$$

Discretization

N given, h = 1/(N+1), $x_k = kh$, k = 0, ..., N+1 ($x_0 = 0$ and $x_{N+1} = 1$), $x_{k+\frac{1}{2}} = (k+\frac{1}{2})h$, k = 0, ..., N, $x_{-\frac{1}{2}} = 0$, $x_{N+1+\frac{1}{2}} = 1$ **Choice of** t_h

$$\begin{split} t_h(x_{k+\frac{1}{2}}) &= -p'_h(x_{k+\frac{1}{2}}) \quad k = 0, \dots, N, \\ t_h(x_k) &= -(p'_h|_{]x_{k-1}, x_k[} + p'_h|_{]x_k, x_{k+1}[})/2 \quad k = 1, \dots, N, \\ t_h(x_0) &= -p'_h|_{]x_0, x_1[}, \\ t_h(x_{N+1}) &= -p'_h|_{]x_N, x_{N+1}[} \end{split}$$

Numerical experiment for the first computable estimate

Model problem

$$-p'' = \pi^2 sin(\pi x) \text{ in }]0,1[, p = 0 \text{ in } 0,1]$$

Exact solution

$$p(x) = sin(\pi x)$$

Discretization

N given, h = 1/(N + 1), $x_k = kh$, k = 0, ..., N + 1 ($x_0 = 0$ and $x_{N+1} = 1$), $x_{k+\frac{1}{2}} = (k + \frac{1}{2})h$, k = 0, ..., N, $x_{-\frac{1}{2}} = 0$, $x_{N+1+\frac{1}{2}} = 1$ Choice of t_h

$$\begin{split} t_h(x_{k+\frac{1}{2}}) &= -p'_h(x_{k+\frac{1}{2}}) \quad k = 0, \dots, N, \\ t_h(x_k) &= -(p'_h|_{]x_{k-1}, x_k[} + p'_h|_{]x_k, x_{k+1}[})/2 \quad k = 1, \dots, N, \\ t_h(x_0) &= -p'_h|_{]x_0, x_1[}, \\ t_h(x_{N+1}) &= -p'_h|_{]x_N, x_{N+1}[} \end{split}$$

Numerical experiment for the first computable estimate

Model problem

$$-p'' = \pi^2 sin(\pi x) \text{ in }]0,1[, p = 0 \text{ in } 0,1]$$

Exact solution

$$p(x) = sin(\pi x)$$

Discretization

N given, h = 1/(N + 1), $x_k = kh$, k = 0, ..., N + 1 ($x_0 = 0$ and $x_{N+1} = 1$), $x_{k+\frac{1}{2}} = (k + \frac{1}{2})h$, k = 0, ..., N, $x_{-\frac{1}{2}} = 0$, $x_{N+1+\frac{1}{2}} = 1$ Choice of t_h

Numerical experiment for the first computable estimate

Numerical experiment for the first computable estimate

Numerical experiment for the first computable estimate

Outline

Introduction

Laplacian and finite elements in one space dimension

Optimal abstract framework and a first estimate

• Optimal a posteriori error estimate

- Pure diffusion and conforming methods
 - Classical a posteriori estimates
 - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
 - Remarks on finite elements and finite volumes
 - Efficiency of the a posteriori error estimate

4 Convection–reaction–diffusion and nonconforming methods

- Optimal abstract framework and a first estimate
- Estimates for discontinuous Galerkin methods
- Estimates for finite volume methods
- Complements
 - Conclusions and future work

Optimal estimate for -p'' = f

Theorem (Optimal estimate, 1D Laplacian)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Take $t_h \in H^1(\Omega)$ such that $(t'_h, 1)_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} = (f, 1)_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[}$ for all k = 1, ..., N. Then $|||p - p_h||| \le \left\{\sum_{k=0}^{N+1} (\eta_{\mathrm{R},k} + \eta_{\mathrm{DF},k})^2\right\}^{\frac{1}{2}}$.

- diffusive flux estimator
 - $\eta_{\mathrm{DF},k} := \| p'_h + t_h \|_{X_{k-\frac{1}{k}}, X_{k+\frac{1}{k}}}$
 - penalizes the fact that $-\vec{p}'_h \notin H^1(\Omega)$
- residual estimator

•
$$\eta_{\mathrm{R},k} := m_k \|f - t'_h\|_{X_{k-\frac{1}{2}}, X_{k+\frac{1}{2}}}$$

•
$$m_k := \frac{h}{\pi}$$
 for $k = 1, ..., N$

•
$$m_k := \frac{h}{2\sqrt{2}}$$
 for $k = 0, N + 1$

• residue evaluated for t_h

Optimal estimate for -p'' = f

Theorem (Optimal estimate, 1D Laplacian)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Take $t_h \in H^1(\Omega)$ such that $(t'_h, 1)_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} = (f, 1)_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[}$ for all k = 1, ..., N. Then $|||p - p_h||| \le \left\{\sum_{k=0}^{N+1} (\eta_{\mathrm{R},k} + \eta_{\mathrm{DF},k})^2\right\}^{\frac{1}{2}}$.

diffusive flux estimator

- $\eta_{\mathrm{DF},k} := \| p'_h + t_h \|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}}$
- penalizes the fact that $-\vec{p}'_h \notin H^1(\Omega)$
- residual estimator
 - $\eta_{\mathbf{R},k} := m_k \|f t'_h\|_{\mathbf{X}_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}}$

•
$$m_k := \frac{h}{\pi}$$
 for $k = 1, ..., N$

•
$$m_k := \frac{\pi h}{2\sqrt{2}}$$
 for $k = 0, N + 1$

• residue evaluated for t_h

Optimal estimate for -p'' = f

Theorem (Optimal estimate, 1D Laplacian)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Take $t_h \in H^1(\Omega)$ such that $(t'_h, 1)_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} = (f, 1)_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[}$ for all k = 1, ..., N. Then $|||p - p_h||| \le \left\{\sum_{k=0}^{N+1} (\eta_{R,k} + \eta_{DF,k})^2\right\}^{\frac{1}{2}}$.

diffusive flux estimator

- $\eta_{\mathrm{DF},k} := \| p'_h + t_h \|_{X_{k-\frac{1}{2}}, X_{k+\frac{1}{2}}}$
- penalizes the fact that $-\vec{p}'_h \notin H^1(\Omega)$
- residual estimator

•
$$\eta_{\mathrm{R},k} := m_k \|f - t'_h\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}}$$

•
$$m_k := \frac{h}{\pi} \text{ for } k = 1, ..., N$$

•
$$m_k := \frac{\pi h}{2\sqrt{2}}$$
 for $k = 0, N + 1$

residue evaluated for t_h

Proof.

• recall $|||\boldsymbol{p} - \boldsymbol{p}_h||| \leq \sup \{(f - t'_h, \varphi) - (\boldsymbol{p}'_h + t_h, \varphi')\};$ $\varphi \in H_0^1(\Omega), |||\varphi|||=1$ • recall the Poincaré inequality: • use this, the conservativity property of t_h , and the Schwarz • for k = 0 and k = N + 1, use instead the Friedrichs • use the Schwarz inequality for the second term:

• recall
$$|||\boldsymbol{p} - \boldsymbol{p}_h||| \leq \sup_{\varphi \in H_0^1(\Omega), |||\varphi|||=1} \{(f - t'_h, \varphi) - (\boldsymbol{p}'_h + t_h, \varphi')\};$$

- recall the Poincaré inequality: $\|\varphi - \varphi_k\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} \leq \frac{h}{\pi} \|\varphi'\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} = \frac{h}{\pi} \|\|\varphi\|\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[},$ where φ_k is the mean value of φ over $]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[;$
- use this, the conservativity property of t_h , and the Schwarz inequality when k = 1, ..., N:

$$(f - t'_{h}, \varphi)_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} = (f - t'_{h}, \varphi - \varphi_{k})_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[}$$

$$\leq \|I - I_{h}\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[\frac{\pi}{\pi}]} \|\varphi\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[;$$

- for k = 0 and k = N + 1, use instead the Friedrichs inequality $\|\varphi\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} \le \frac{h}{2\sqrt{2}} \|\varphi'\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[};$
- use the Schwarz inequality for the second term: $-(p'_{h}+t_{h}, \varphi')_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} \leq \|p'_{h}+t_{h}\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[}\|\|\varphi\|\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[}$

• recall
$$|||\boldsymbol{p} - \boldsymbol{p}_h||| \leq \sup_{\varphi \in H_0^1(\Omega), |||\varphi|||=1} \{(f - t'_h, \varphi) - (\boldsymbol{p}'_h + t_h, \varphi')\};$$

- recall the Poincaré inequality: $\|\varphi - \varphi_k\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} \leq \frac{h}{\pi} \|\varphi'\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} = \frac{h}{\pi} \||\varphi\||_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[},$ where φ_k is the mean value of φ over $]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[$;
- use this, the conservativity property of t_h , and the Schwarz inequality when k = 1, ..., N:

- $\geq \|I l_{h}\|]_{x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[\pi]} \|\varphi\|\|_{x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[\pi]},$
- for k = 0 and k = N + 1, use instead the Friedrichs inequality $\|\varphi\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} \le \frac{h}{2\sqrt{2}} \|\varphi'\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[};$
- use the Schwarz inequality for the second term: $-(p'_h + t_h, \varphi')_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} \leq \|p'_h + t_h\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[}||\varphi||_{]x_{k-\frac{1}{2}}, x_k}$

• recall
$$|||\boldsymbol{p} - \boldsymbol{p}_h||| \leq \sup_{\varphi \in H_0^1(\Omega), |||\varphi|||=1} \{(f - t'_h, \varphi) - (\boldsymbol{p}'_h + t_h, \varphi')\};$$

- recall the Poincaré inequality: $\|\varphi - \varphi_k\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} \leq \frac{h}{\pi} \|\varphi'\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} = \frac{h}{\pi} \||\varphi\||_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[},$ where φ_k is the mean value of φ over $]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[$;
- use this, the conservativity property of t_h , and the Schwarz inequality when k = 1, ..., N:

$$(f - t'_{h}, \varphi)_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} = (f - t'_{h}, \varphi - \varphi_{k})_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} \\ \leq ||f - t'_{h}||_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[\frac{h}{\pi}|||\varphi|||_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[};$$

- for k = 0 and k = N + 1, use instead the Friedrichs inequality $\|\varphi\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} \le \frac{h}{2\sqrt{2}} \|\varphi'\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[};$
- use the Schwarz inequality for the second term: $-(p'_{h}+t_{h},\varphi')_{]x_{k-\frac{1}{2}},x_{k+\frac{1}{2}}[} \leq \|p'_{h}+t_{h}\|_{]x_{k-\frac{1}{2}},x_{k+\frac{1}{2}}[}\||\varphi\||_{]x_{k-\frac{1}{2}},x_{k+\frac{1}{2}}[}.$

• recall
$$|||\boldsymbol{p} - \boldsymbol{p}_h||| \leq \sup_{\varphi \in \mathcal{H}_0^1(\Omega), |||\varphi|||=1} \{(f - t'_h, \varphi) - (\boldsymbol{p}'_h + t_h, \varphi')\};$$

- recall the Poincaré inequality: $\|\varphi - \varphi_k\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} \leq \frac{h}{\pi} \|\varphi'\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} = \frac{h}{\pi} \||\varphi\||_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[},$ where φ_k is the mean value of φ over $]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[$;
- use this, the conservativity property of t_h , and the Schwarz inequality when k = 1, ..., N:

$$\begin{aligned} &(f - t'_h, \varphi)_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} = (f - t'_h, \varphi - \varphi_k)_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} \\ &\leq \|f - t'_h\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[\frac{h}{\pi}|||\varphi|||_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[}; \end{aligned}$$

- for k = 0 and k = N + 1, use instead the Friedrichs inequality $\|\varphi\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} \le \frac{h}{2\sqrt{2}} \|\varphi'\|_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[};$
- use the Schwarz inequality for the second term: $-(p'_{h}+t_{h}, \varphi')_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} \leq ||p'_{h}+t_{h}||_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[}|||\varphi|||_{]x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[}.$

Theorem (Construction of t_h)

Let f be piecewise constant and let $t_h \in H^1(\Omega)$ be given by $t_h(x_{k+\frac{1}{2}}) = -p'_h(x_{k+\frac{1}{2}})$ k = 0, ..., N, $t_h(x_k) = -(p'_h|_{|x_{k-1},x_k[} + p'_h|_{|x_k,x_{k+1}[})/2$ k = 1, ..., N, $t_h(x_0) = -p'_h|_{|x_0,x_1[},$ $t_h(x_{N+1}) = -p'_h|_{|x_N,x_{N+1}[}.$ Then $(t'_h, 1)_{|x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} = (f, 1)_{|x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[}, k = 1, ..., N.$

- the finite element method: $\int_{x_{k-1}}^{x_{k+1}} p'_h \psi'_k dx = \int_{x_{k-1}}^{x_{k+1}} f \psi_k dx$, k = 1, ..., N, where ψ_k is the "pyramidal" basis function;
- *f* piecewise constant: $\int_{x_{k-1}}^{x_{k+1}} f\psi_k \, \mathrm{d}x = \int_{x_{k-\frac{1}{2}}}^{x_{k+\frac{1}{2}}} f \, \mathrm{d}x;$
- construction of t_h : $\int_{x_{k-1}}^{x_{k+1}} p'_h \psi'_k \, \mathrm{d}x = \int_{x_{k-\frac{1}{2}}}^{x_{k+\frac{1}{2}}} t'_h \, \mathrm{d}x.$

Theorem (Construction of t_h)

Let f be piecewise constant and let $t_h \in H^1(\Omega)$ be given by $t_h(x_{k+\frac{1}{2}}) = -p'_h(x_{k+\frac{1}{2}})$ k = 0, ..., N, $t_h(x_k) = -(p'_h|_{|x_{k-1},x_k[} + p'_h|_{|x_k,x_{k+1}[})/2$ k = 1, ..., N, $t_h(x_0) = -p'_h|_{|x_0,x_1[},$ $t_h(x_{N+1}) = -p'_h|_{|x_N,x_{N+1}[}.$ Then $(t'_h, 1)_{|x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} = (f, 1)_{|x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[}, k = 1, ..., N.$

- the finite element method: $\int_{x_{k-1}}^{x_{k+1}} p'_h \psi'_k dx = \int_{x_{k-1}}^{x_{k+1}} f \psi_k dx$, k = 1, ..., N, where ψ_k is the "pyramidal" basis function;
- *f* piecewise constant: $\int_{x_{k-1}}^{x_{k+1}} f\psi_k \, \mathrm{d}x = \int_{x_{k-1}}^{x_{k+1}} f \, \mathrm{d}x;$
- construction of t_h : $\int_{x_{k-1}}^{x_{k+1}} p'_h \psi'_k \, \mathrm{d}x = \int_{x_{k-1}}^{x_{k+\frac{1}{2}}} t'_h \, \mathrm{d}x.$

Theorem (Construction of t_h)

Let f be piecewise constant and let $t_h \in H^1(\Omega)$ be given by $t_h(x_{k+\frac{1}{2}}) = -p'_h(x_{k+\frac{1}{2}})$ k = 0, ..., N, $t_h(x_k) = -(p'_h|_{|x_{k-1},x_k[} + p'_h|_{|x_k,x_{k+1}[})/2$ k = 1, ..., N, $t_h(x_0) = -p'_h|_{|x_0,x_1[},$ $t_h(x_{N+1}) = -p'_h|_{|x_N,x_{N+1}[}.$ Then $(t'_h, 1)_{|x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} = (f, 1)_{|x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[}, k = 1, ..., N.$

- the finite element method: $\int_{x_{k-1}}^{x_{k+1}} p'_h \psi'_k dx = \int_{x_{k-1}}^{x_{k+1}} f \psi_k dx$, k = 1, ..., N, where ψ_k is the "pyramidal" basis function;
- *f* piecewise constant: $\int_{x_{k-1}}^{x_{k+1}} f\psi_k \, \mathrm{d}x = \int_{x_{k-\frac{1}{2}}}^{x_{k+\frac{1}{2}}} f \, \mathrm{d}x;$
- construction of t_h : $\int_{x_{k-1}}^{x_{k+1}} p'_h \psi'_k \, \mathrm{d}x = \int_{x_{k-1}}^{x_{k+\frac{1}{2}}} t'_h \, \mathrm{d}x.$

Theorem (Construction of t_h)

Let f be piecewise constant and let $t_h \in H^1(\Omega)$ be given by $t_h(x_{k+\frac{1}{2}}) = -p'_h(x_{k+\frac{1}{2}})$ k = 0, ..., N, $t_h(x_k) = -(p'_h|_{|x_{k-1},x_k[} + p'_h|_{|x_k,x_{k+1}[})/2$ k = 1, ..., N, $t_h(x_0) = -p'_h|_{|x_0,x_1[},$ $t_h(x_{N+1}) = -p'_h|_{|x_N,x_{N+1}[}.$ Then $(t'_h, 1)_{|x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[} = (f, 1)_{|x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}[}, k = 1, ..., N.$

- the finite element method: $\int_{x_{k-1}}^{x_{k+1}} p'_h \psi'_k dx = \int_{x_{k-1}}^{x_{k+1}} f \psi_k dx$, k = 1, ..., N, where ψ_k is the "pyramidal" basis function;
- *f* piecewise constant: $\int_{x_{k-1}}^{x_{k+1}} f\psi_k \, \mathrm{d}x = \int_{x_{k-\frac{1}{2}}}^{x_{k+\frac{1}{2}}} f \, \mathrm{d}x;$
- construction of t_h : $\int_{x_{k-1}}^{x_{k+1}} p'_h \psi'_k \, \mathrm{d}x = \int_{x_{k-\frac{1}{2}}}^{x_{k+\frac{1}{2}}} t'_h \, \mathrm{d}x.$

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Optimal framework and a first estimate Optimal estimate

Numerical experiment for the optimal estimate

Numerical experiment for the optimal estimate

Outline

- - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
- Pure diffusion and conforming methods 3
 - Classical a posteriori estimates
 - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
 - Remarks on finite elements and finite volumes.
 - Efficiency of the a posteriori error estimate
 - - Optimal abstract framework and a first estimate
 - Estimates for discontinuous Galerkin methods
 - Estimates for finite volume methods

A model problem with discontinuous coefficients

Model problem with discontinuous coefficients

$$-
abla \cdot (a
abla p) = f \quad \text{in } \Omega, \\
 p = 0 \quad \text{on } \partial \Omega$$

Assumptions

- $\Omega \subset \mathbb{R}^d$, d = 2, 3, is a polygonal domain
- a is a piecewise constant scalar, inhomogeneous

A model problem with discontinuous coefficients

Model problem with discontinuous coefficients

$$-
abla \cdot (\pmb{a}
abla \pmb{p}) = f \quad \text{in } \Omega, \\
 \pmb{p} = \mathbf{0} \quad \text{on } \partial \Omega$$

Assumptions

- $\Omega \subset \mathbb{R}^d$, d = 2, 3, is a polygonal domain
- a is a piecewise constant scalar, inhomogeneous

Bilinear form, energy norm, and a weak solution

Definition (Bilinear form \mathcal{B})

We define a bilinear form \mathcal{B} for $p, \varphi \in H_0^1(\Omega)$ by $\mathcal{B}(p, \varphi) := (a \nabla p, \nabla \varphi).$

Definition (Energy norm)

The associated energy norm for $\varphi \in H_0^1(\Omega)$ is given by $|||\varphi|||^2 := \mathcal{B}(\varphi, \varphi) = ||a^{\frac{1}{2}} \nabla \varphi||^2.$

Definition (Weak solution)

Weak solution: $p \in H_0^1(\Omega)$ such that $\mathcal{B}(p, \varphi) = (f, \varphi) \qquad \forall \varphi \in H_0^1(\Omega).$

Bilinear form, energy norm, and a weak solution

Definition (Bilinear form \mathcal{B})

We define a bilinear form \mathcal{B} for $p, \varphi \in H_0^1(\Omega)$ by $\mathcal{B}(p, \varphi) := (a \nabla p, \nabla \varphi).$

Definition (Energy norm)

The associated energy norm for $\varphi \in H_0^1(\Omega)$ is given by $\||\varphi|\|^2 := \mathcal{B}(\varphi, \varphi) = \|a^{\frac{1}{2}} \nabla \varphi\|^2.$

Definition (Weak solution)

Weak solution: $p \in H_0^1(\Omega)$ such that $\mathcal{B}(p, \varphi) = (f, \varphi) \qquad \forall \varphi \in H_0^1(\Omega).$

Bilinear form, energy norm, and a weak solution

Definition (Bilinear form \mathcal{B})

We define a bilinear form \mathcal{B} for $p, \varphi \in H_0^1(\Omega)$ by $\mathcal{B}(p, \varphi) := (a \nabla p, \nabla \varphi).$

Definition (Energy norm)

The associated energy norm for $\varphi \in H_0^1(\Omega)$ is given by $\||\varphi|\|^2 := \mathcal{B}(\varphi, \varphi) = \|a^{\frac{1}{2}} \nabla \varphi\|^2.$

Definition (Weak solution)

Weak solution: $p \in H_0^1(\Omega)$ such that $\mathcal{B}(p, \varphi) = (f, \varphi) \qquad \forall \varphi \in H_0^1(\Omega).$ 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency

Outline

- - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
- Pure diffusion and conforming methods 3
 - Classical a posteriori estimates
 - Optimal abstract framework and a first estimate

- Optimal abstract framework and a first estimate
- Estimates for discontinuous Galerkin methods
- Estimates for finite volume methods

Corollary (Classical residual a posteriori error estimate in FEs)

Let
$$a = 1$$
. Then there holds (cf. Verfürth 96)
 $|||p - p_h||| \leq C_1 \left\{ \sum_{K \in \mathcal{T}_h} h_K^2 \|f + \triangle p_h\|_K^2 \right\}^{1/2} + C_2 \left\{ \sum_{\sigma \in \mathcal{E}_h} h_\sigma \|[\nabla p_h \cdot \mathbf{n}]\|_\sigma^2 \right\}^{1/2}.$

Drawbacks

- What are C_1 and C_2 ?
- If C₁ and C₂ evaluated: overestimation by a factor of 30 (uniform refinement) and 60 (adaptive refinement).
- $\triangle p_h = 0$: $h_K ||f||_K$ as estimator gives no good sense.
- Not robust for inhomogeneities when *a* is discontinuous.

Corollary (Classical residual a posteriori error estimate in FEs)

Let a = 1. Then there holds (cf. Verfürth 96) $|||p - p_h||| \leq C_1 \left\{ \sum_{K \in \mathcal{T}_h} h_K^2 \|f + \triangle p_h\|_K^2 \right\}^{1/2} + C_2 \left\{ \sum_{\sigma \in \mathcal{E}_h} h_\sigma \|[\nabla p_h \cdot \mathbf{n}]\|_\sigma^2 \right\}^{1/2}.$

Drawbacks

- What are C_1 and C_2 ?
- If C₁ and C₂ evaluated: overestimation by a factor of 30 (uniform refinement) and 60 (adaptive refinement).
- $\triangle p_h = 0$: $h_K ||f||_K$ as estimator gives no good sense.
- Not robust for inhomogeneities when *a* is discontinuous.

Corollary (Classical residual a posteriori error estimate in FEs)

$$\begin{array}{ll} a = 1. \ \text{Then there holds (cf. Verfürth 96)} \\ |||p - p_h||| & \leq & C_1 \left\{ \sum_{K \in \mathcal{T}_h} h_K^2 \|f + \triangle p_h\|_K^2 \right\}^{1/2} \\ & + C_2 \left\{ \sum_{\sigma \in \mathcal{E}_h} h_\sigma \|[\nabla p_h \cdot \mathbf{n}]\|_\sigma^2 \right\}^{1/2}. \end{array}$$

Drawbacks

Let

- What are C_1 and C_2 ?
- If C₁ and C₂ evaluated: overestimation by a factor of 30 (uniform refinement) and 60 (adaptive refinement).
- $\triangle p_h = 0$: $h_K ||f||_K$ as estimator gives no good sense.
- Not robust for inhomogeneities when a is discontinuous.

Corollary (Classical residual a posteriori error estimate in FEs)

Let
$$a = 1$$
. Then there holds (cf. Verfürth 96)
 $|||p - p_h||| \leq C_1 \left\{ \sum_{K \in \mathcal{T}_h} h_K^2 \|f + \triangle p_h\|_K^2 \right\}^{1/2} + C_2 \left\{ \sum_{\sigma \in \mathcal{E}_h} h_\sigma \|[\nabla p_h \cdot \mathbf{n}]\|_\sigma^2 \right\}^{1/2}.$

Drawbacks

- What are C_1 and C_2 ?
- If C₁ and C₂ evaluated: overestimation by a factor of 30 (uniform refinement) and 60 (adaptive refinement).
- $\triangle p_h = 0$: $h_K ||f||_K$ as estimator gives no good sense.
- Not robust for inhomogeneities when *a* is discontinuous.

Corollary (Classical residual a posteriori error estimate in FEs)

Let
$$a = 1$$
. Then there holds (cf. Verfürth 96)
 $|||p - p_h||| \leq C_1 \left\{ \sum_{K \in \mathcal{T}_h} h_K^2 \|f + \triangle p_h\|_K^2 \right\}^{1/2} + C_2 \left\{ \sum_{\sigma \in \mathcal{E}_h} h_\sigma \|[\nabla p_h \cdot \mathbf{n}]\|_\sigma^2 \right\}^{1/2}.$

Drawbacks

- What are C_1 and C_2 ?
- If C₁ and C₂ evaluated: overestimation by a factor of 30 (uniform refinement) and 60 (adaptive refinement).
- $\triangle p_h = 0$: $h_K ||f||_K$ as estimator gives no good sense.
- Not robust for inhomogeneities when *a* is discontinuous.

FEs residual constants C_1 and C_2

Constants C₁ and C₂, Carstensen and Funken 00

$$C_{V} := \begin{cases} C_{P,T_{V}}^{\frac{1}{2}} h_{T_{V}} & V \in \mathcal{V}_{h}^{\text{int}}, \\ C_{F,T_{V},\partial\Omega}^{\frac{1}{2}} h_{T_{V}} & V \in \mathcal{V}_{h}^{\text{ext}}, \end{cases}$$

$$C_{1} := \max_{K \in \mathcal{T}_{h}} \left\{ \sum_{V \in \mathcal{V}_{K}} c_{V}^{2} / \min_{K \in \mathcal{T}_{V}} h_{K}^{2} \right\}^{\frac{1}{2}},$$

$$C_{2}^{2} := 3C_{1} \max_{K \in \mathcal{T}_{h}} \max_{\sigma \in \mathcal{E}_{K}} \{h_{K} / h_{\sigma} h_{K}^{2} / |K|\}$$

$$+ \frac{1}{2} 3^{\frac{3}{2}} C_{1}^{2} \max_{K \in \mathcal{T}_{h}} \max_{\sigma \in \mathcal{E}_{K}} \{h_{K} / h_{\sigma} h_{K}^{2} / |K|(3 + h_{K}^{2} / |K|)\}.$$

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency

Zienkiewicz–Zhu averaging a posteriori error estimation for $-\triangle p = f$

Corollary (Zienkiewicz–Zhu averaging a posteriori error estimate in FEs)

There holds (cf. Zienkiewicz–Zhu 87)

 $|||\boldsymbol{p}-\boldsymbol{p}_h||| \lesssim \|\nabla \boldsymbol{p}_h + \mathbf{t}_h\|,$

where \mathbf{t}_h is an averaged smooth flux.

Drawbacks

- No error upper bound (neither guaranteed, nor reliable).
- Not robust for inhomogeneities when a is discontinuous.

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency

Zienkiewicz–Zhu averaging a posteriori error estimation for $-\triangle p = f$

Corollary (Zienkiewicz–Zhu averaging a posteriori error estimate in FEs)

There holds (cf. Zienkiewicz–Zhu 87)

 $|||\boldsymbol{p}-\boldsymbol{p}_h||| \lesssim \|\nabla \boldsymbol{p}_h + \mathbf{t}_h\|,$

where \mathbf{t}_h is an averaged smooth flux.

Drawbacks

- No error upper bound (neither guaranteed, nor reliable).
- Not robust for inhomogeneities when a is discontinuous.
Zienkiewicz–Zhu averaging a posteriori error estimation for $-\triangle p = f$

Corollary (Zienkiewicz–Zhu averaging a posteriori error estimate in FEs)

There holds (cf. Zienkiewicz–Zhu 87)

 $|||\boldsymbol{p}-\boldsymbol{p}_h||| \lesssim \|\nabla \boldsymbol{p}_h + \mathbf{t}_h\|,$

where \mathbf{t}_h is an averaged smooth flux.

Drawbacks

- No error upper bound (neither guaranteed, nor reliable).
- Not robust for inhomogeneities when *a* is discontinuous.

Outline

- - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
- Pure diffusion and conforming methods 3
 - Classical a posteriori estimates
 - Optimal abstract framework and a first estimate

 - Efficiency of the a posteriori error estimate

- Optimal abstract framework and a first estimate
- Estimates for discontinuous Galerkin methods
- Estimates for finite volume methods

Optimal abstract framework for $-\nabla \cdot (a\nabla p) = f$

Theorem (Optimal abstract framework, conf. & pure dif. case)

Let $p, p_h \in H_0^1(\Omega)$ be arbitrary. Then

$$\|||\boldsymbol{\rho}-\boldsymbol{p}_h|\| \leq \sup_{arphi \in \mathcal{H}_0^1(\Omega), \, \||arphi\||=1} \mathcal{B}(\boldsymbol{\rho}-\boldsymbol{p}_h,arphi) \leq \||\boldsymbol{\rho}-\boldsymbol{p}_h\|\|_{\mathcal{H}_0^1}$$

Proof.

We have

$$\begin{aligned} |||p - p_h||| &= \mathcal{B}\left(p - p_h, \frac{p - p_h}{|||p - p_h|||}\right) \\ &\leq \sup_{\varphi \in H_0^1(\Omega), \, |||\varphi||| = 1} \mathcal{B}(p - p_h, \varphi) \\ &\leq |||p - p_h||| \sup_{\varphi \in H_0^1(\Omega), \, |||\varphi||| = 1} |||\varphi||| \end{aligned}$$

Optimal abstract framework for $-\nabla \cdot (a\nabla p) = f$

Theorem (Optimal abstract framework, conf. & pure dif. case)

Let $p, p_h \in H_0^1(\Omega)$ be arbitrary. Then

$$\|||\boldsymbol{\rho}-\boldsymbol{\rho}_h||| \leq \sup_{arphi \in H_0^1(\Omega), \, \||arphi\||=1} \mathcal{B}(\boldsymbol{\rho}-\boldsymbol{\rho}_h,arphi) \leq \|||\boldsymbol{\rho}-\boldsymbol{\rho}_h|||.$$

Proof.

We have

$$\begin{aligned} |||\boldsymbol{p} - \boldsymbol{p}_h||| &= \mathcal{B}\left(\boldsymbol{p} - \boldsymbol{p}_h, \frac{\boldsymbol{p} - \boldsymbol{p}_h}{|||\boldsymbol{p} - \boldsymbol{p}_h|||}\right) \\ &\leq \sup_{\varphi \in H_0^1(\Omega), \, |||\varphi||| = 1} \mathcal{B}(\boldsymbol{p} - \boldsymbol{p}_h, \varphi) \\ &\leq |||\boldsymbol{p} - \boldsymbol{p}_h||| \sup_{\varphi \in H_0^1(\Omega), \, |||\varphi||| = 1} |||\varphi|||. \end{aligned}$$

Optimal abstract estimate for $-\nabla \cdot (a \nabla p) = f$

Theorem (Optimal abstract estimate, conf. & pure dif. case)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Then

$$\begin{aligned} |||\boldsymbol{p} - \boldsymbol{p}_{h}||| &\leq \inf_{\mathbf{t} \in \mathbf{H}(\operatorname{div},\Omega)_{\varphi \in \mathcal{H}_{0}^{1}(\Omega), |||\varphi||| = 1}} \sup_{\boldsymbol{\xi} \in \mathbf{H}(\operatorname{div},\Omega)_{\varphi \in \mathcal{H}_{0}^{1}(\Omega), |||\varphi||| = 1}} \{(\boldsymbol{f} - \nabla \cdot \mathbf{t}, \varphi) - (\boldsymbol{a} \nabla \boldsymbol{p}_{h} + \mathbf{t}, \nabla \varphi) \} \\ &\leq |||\boldsymbol{p} - \boldsymbol{p}_{h}|||. \end{aligned}$$

Proof.

Upper bound: put $\varphi := p - p_h / ||p - p_h||$ and take $\mathbf{t} \in \mathbf{H}(\operatorname{div}, \Omega)$ arbitrary. Then

$$\begin{split} \mathcal{B}(p-p_h,\varphi) &= (f,\varphi) - (a\nabla p_h,\nabla \varphi) //\mathcal{B} \text{ lin., weak sol. def.} \\ &= (f,\varphi) - (a\nabla p_h + \mathbf{t},\nabla \varphi) + (\mathbf{t},\nabla \varphi) // \pm (\mathbf{t},\nabla \varphi) \\ &= (f-\nabla \cdot \mathbf{t},\varphi) - (a\nabla p_h + \mathbf{t},\nabla \varphi). //\text{Green th.} \\ \text{Lower bound: put } \mathbf{t} &= -a\nabla p \text{ and use the Schwarz inequality.} \end{split}$$

Optimal abstract estimate for $-\nabla \cdot (a \nabla p) = f$

Theorem (Optimal abstract estimate, conf. & pure dif. case)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Then

$$\begin{aligned} |||\boldsymbol{p} - \boldsymbol{p}_{h}||| &\leq \inf_{\mathbf{t} \in \mathbf{H}(\operatorname{div},\Omega)_{\varphi \in \mathcal{H}_{0}^{1}(\Omega), |||\varphi||| = 1}} \sup_{\boldsymbol{\xi} \in \mathbf{H}(\operatorname{div},\Omega)_{\varphi \in \mathcal{H}_{0}^{1}(\Omega), |||\varphi||| = 1}} \{(\boldsymbol{f} - \nabla \cdot \mathbf{t}, \varphi) - (\boldsymbol{a} \nabla \boldsymbol{p}_{h} + \mathbf{t}, \nabla \varphi) \} \\ &\leq |||\boldsymbol{p} - \boldsymbol{p}_{h}|||. \end{aligned}$$

Proof.

Upper bound: put $\varphi := p - p_h / |||p - p_h|||$ and take $\mathbf{t} \in \mathbf{H}(\operatorname{div}, \Omega)$ arbitrary. Then

$$\begin{split} \mathcal{B}(\boldsymbol{p} - \boldsymbol{p}_h, \varphi) &= (f, \varphi) - (a \nabla \boldsymbol{p}_h, \nabla \varphi) //\mathcal{B} \text{ lin., weak sol. def.} \\ &= (f, \varphi) - (a \nabla \boldsymbol{p}_h + \mathbf{t}, \nabla \varphi) + (\mathbf{t}, \nabla \varphi) // \pm (\mathbf{t}, \nabla \varphi) \\ &= (f - \nabla \cdot \mathbf{t}, \varphi) - (a \nabla \boldsymbol{p}_h + \mathbf{t}, \nabla \varphi). //\text{Green th.} \\ \text{Lower bound: put } \mathbf{t} = -a \nabla \boldsymbol{p} \text{ and use the Schwarz inequality.} \end{split}$$

Optimal abstract estimate for $-\nabla \cdot (a\nabla p) = f$

Theorem (Optimal abstract estimate, conf. & pure dif. case)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Then

$$\begin{split} |||\boldsymbol{p} - \boldsymbol{p}_h||| &\leq \inf_{\mathbf{t} \in \mathbf{H}(\operatorname{div},\Omega)_{\varphi \in H_0^1(\Omega), |||\varphi|||=1}} \sup_{\boldsymbol{\xi} \in \mathbf{H}(\operatorname{div},\Omega)_{\varphi \in H_0^1(\Omega), |||\varphi|||=1}} \{(f - \nabla \cdot \mathbf{t}, \varphi) - (a \nabla \boldsymbol{p}_h + \mathbf{t}, \nabla \varphi)\} \\ &\leq |||\boldsymbol{p} - \boldsymbol{p}_h|||. \end{split}$$

Properties

- Guaranteed upper bound (no undetermined constant).
- Exact and robust.
- Not computable (infimum over an infinite-dimensional space).

1D & FEs Pure dif. & conf. CRD & nonc. Compl. C

Theorem (A first computable estimate, conf. & pure dif. case)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Take any $\mathbf{t}_h \in \mathbf{H}(\operatorname{div}, \Omega)$. Then

$$|||\boldsymbol{\rho}-\boldsymbol{\rho}_h||| \leq \frac{C_{\mathrm{F},\Omega}^{1/2}h_\Omega}{c_{\boldsymbol{a},\Omega}^{1/2}}\|\boldsymbol{f}-\nabla\cdot\boldsymbol{t}_h\|+\|\boldsymbol{a}^{\frac{1}{2}}\nabla\boldsymbol{\rho}_h+\boldsymbol{a}^{-\frac{1}{2}}\boldsymbol{t}_h\|.$$

Proof.

• $|||p-p_h||| \leq \sup_{\varphi \in H_0^1(\Omega), |||\varphi|||=1} \{(f - \nabla \cdot \mathbf{t}_h, \varphi) - (a \nabla p_h + \mathbf{t}_h, \nabla \varphi)\};$ • Friedrichs inequality: $||\varphi|| \leq C_{F,\Omega}^{1/2} h_{\Omega} ||\nabla \varphi|| \leq \frac{C_{F,\Omega}^{1/2} h_{\Omega}}{c_{a,\Omega}^{1/2}} |||\varphi|||;$ • use this and the Schwarz inequality: $(f - \nabla \cdot \mathbf{t}_h, \varphi) \leq ||f - \nabla \cdot \mathbf{t}_h|| ||\varphi|| \leq ||f - \nabla \cdot \mathbf{t}_h||\frac{C_{F,\Omega}^{1/2} h_{\Omega}}{c_{a,\Omega}^{1/2}} |||\varphi|||;$ • use the Schwarz inequality for the second term: $-(a \nabla p_h + \mathbf{t}_h, \nabla \varphi) \leq ||a^{\frac{1}{2}} \nabla p_h + a^{-\frac{1}{2}} \mathbf{t}_h||||\varphi|||.$

1D & FEs Pure dif. & conf. CRD & nonc. Compl. C

Theorem (A first computable estimate, conf. & pure dif. case)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Take any $\mathbf{t}_h \in \mathbf{H}(\operatorname{div}, \Omega)$. Then

$$|||\boldsymbol{\rho}-\boldsymbol{\rho}_h||| \leq \frac{C_{\mathrm{F},\Omega}^{1/2}h_\Omega}{c_{\boldsymbol{a},\Omega}^{1/2}}\|\boldsymbol{f}-\nabla\cdot\boldsymbol{t}_h\|+\|\boldsymbol{a}^{\frac{1}{2}}\nabla\boldsymbol{\rho}_h+\boldsymbol{a}^{-\frac{1}{2}}\boldsymbol{t}_h\|.$$

Proof.

• $|||p - p_h||| \leq \sup_{\varphi \in H_0^1(\Omega), |||\varphi|||=1} \{(f - \nabla \cdot \mathbf{t}_h, \varphi) - (a \nabla p_h + \mathbf{t}_h, \nabla \varphi)\};$ • Friedrichs inequality: $||\varphi|| \leq C_{\mathrm{F},\Omega}^{1/2} h_\Omega ||\nabla \varphi|| \leq \frac{C_{\mathrm{F},\Omega}^{1/2} h_\Omega}{c_{a,\Omega}^{1/2}} |||\varphi|||;$ • use this and the Schwarz inequality: $(f - \nabla \cdot \mathbf{t}_h, \varphi) \leq ||f - \nabla \cdot \mathbf{t}_h|||\varphi|| \leq ||f - \nabla \cdot \mathbf{t}_h||\frac{C_{\mathrm{F},\Omega}^{1/2} h_\Omega}{c_{a,\Omega}^{1/2}} |||\varphi|||;$ • use the Schwarz inequality for the second term: $-(a \nabla p_h + \mathbf{t}_h, \nabla \varphi) \leq ||a^{\frac{1}{2}} \nabla p_h + a^{-\frac{1}{2}} \mathbf{t}_h||||\varphi|||.$

1D & FEs Pure dif. & conf. CRD & nonc. Compl. C

Theorem (A first computable estimate, conf. & pure dif. case)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Take any $\mathbf{t}_h \in \mathbf{H}(\operatorname{div}, \Omega)$. Then

$$|||\boldsymbol{\rho}-\boldsymbol{\rho}_h||| \leq \frac{C_{\mathrm{F},\Omega}^{1/2}h_\Omega}{c_{\boldsymbol{a},\Omega}^{1/2}}\|\boldsymbol{f}-\nabla\cdot\boldsymbol{t}_h\|+\|\boldsymbol{a}^{\frac{1}{2}}\nabla\boldsymbol{\rho}_h+\boldsymbol{a}^{-\frac{1}{2}}\boldsymbol{t}_h\|.$$

Proof.

• $||| p - p_h ||| \leq \sup_{\varphi \in H_0^1(\Omega), |||\varphi||| = 1} \{ (f - \nabla \cdot \mathbf{t}_h, \varphi) - (a \nabla p_h + \mathbf{t}_h, \nabla \varphi) \};$ • Friedrichs inequality: $||\varphi|| \leq C_{F,\Omega}^{1/2} h_\Omega ||\nabla \varphi|| \leq \frac{C_{F,\Omega}^{1/2} h_\Omega}{c_{a,\Omega}^{1/2}} |||\varphi|||;$ • use this and the Schwarz inequality: $(f - \nabla \cdot \mathbf{t}_h, \varphi) \leq ||f - \nabla \cdot \mathbf{t}_h|| ||\varphi|| \leq ||f - \nabla \cdot \mathbf{t}_h| \frac{C_{F,\Omega}^{1/2} h_\Omega}{c_{a,\Omega}^{1/2}} |||\varphi|||;$ • use the Schwarz inequality for the second term: $-(a \nabla p_h + \mathbf{t}_h, \nabla \varphi) \leq ||a^{\frac{1}{2}} \nabla p_h + a^{-\frac{1}{2}} \mathbf{t}_h|| |||\varphi|||.$

Theorem (A first computable estimate, conf. & pure dif. case)

1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Take any $\mathbf{t}_h \in \mathbf{H}(\operatorname{div}, \Omega)$. Then

$$|||\boldsymbol{\rho}-\boldsymbol{\rho}_h||| \leq \frac{C_{\mathrm{F},\Omega}^{1/2}h_\Omega}{c_{\boldsymbol{a},\Omega}^{1/2}}\|\boldsymbol{f}-\nabla\cdot\boldsymbol{t}_h\|+\|\boldsymbol{a}^{\frac{1}{2}}\nabla\boldsymbol{\rho}_h+\boldsymbol{a}^{-\frac{1}{2}}\boldsymbol{t}_h\|.$$

Proof.

• $|||p-p_h||| \leq \sup_{\varphi \in H_0^1(\Omega), |||\varphi|||=1} \{(f-\nabla \cdot \mathbf{t}_h, \varphi) - (a\nabla p_h + \mathbf{t}_h, \nabla \varphi)\};$ • Friedrichs inequality: $||\varphi|| \leq C_{F,\Omega}^{1/2} h_{\Omega} ||\nabla \varphi|| \leq \frac{C_{F,\Omega}^{1/2} h_{\Omega}}{c_{a,\Omega}^{1/2}} |||\varphi|||;$ • use this and the Schwarz inequality: $(f - \nabla \cdot \mathbf{t}_h, \varphi) \leq ||f - \nabla \cdot \mathbf{t}_h|| ||\varphi|| \leq ||f - \nabla \cdot \mathbf{t}_h| \frac{C_{F,\Omega}^{1/2} h_{\Omega}}{c_{a,\Omega}^{1/2}} |||\varphi|||;$ • use the Schwarz inequality for the second term: $-(a\nabla p_h + \mathbf{t}_h, \nabla \varphi) \leq ||a^{\frac{1}{2}} \nabla p_h + a^{-\frac{1}{2}} \mathbf{t}_h||||\varphi|||.$

Theorem (A first computable estimate, conf. & pure dif. case)

1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Take any $\mathbf{t}_h \in \mathbf{H}(\operatorname{div}, \Omega)$. Then

$$|||\boldsymbol{\rho}-\boldsymbol{\rho}_h||| \leq \frac{C_{\mathrm{F},\Omega}^{1/2}h_\Omega}{c_{\boldsymbol{a},\Omega}^{1/2}}\|\boldsymbol{f}-\nabla\cdot\boldsymbol{t}_h\|+\|\boldsymbol{a}^{\frac{1}{2}}\nabla\boldsymbol{\rho}_h+\boldsymbol{a}^{-\frac{1}{2}}\boldsymbol{t}_h\|.$$

Proof.

• $|||p-p_h||| \leq \sup_{\varphi \in H_0^1(\Omega), |||\varphi|||=1} \{(f - \nabla \cdot \mathbf{t}_h, \varphi) - (a \nabla p_h + \mathbf{t}_h, \nabla \varphi)\};$ • Friedrichs inequality: $||\varphi|| \leq C_{F,\Omega}^{1/2} h_{\Omega} ||\nabla \varphi|| \leq \frac{C_{F,\Omega}^{1/2} h_{\Omega}}{c_{a,\Omega}^{1/2}} |||\varphi|||;$ • use this and the Schwarz inequality: $(f - \nabla \cdot \mathbf{t}_h, \varphi) \leq ||f - \nabla \cdot \mathbf{t}_h|| ||\varphi|| \leq ||f - \nabla \cdot \mathbf{t}_h| \frac{C_{F,\Omega}^{1/2} h_{\Omega}}{c_{a,\Omega}^{1/2}} |||\varphi|||;$ • use the Schwarz inequality for the second term: $-(a \nabla p_h + \mathbf{t}_h, \nabla \varphi) \leq ||a^{\frac{1}{2}} \nabla p_h + a^{-\frac{1}{2}} \mathbf{t}_h|| |||\varphi|||.$

A first computable estimate for $-\nabla \cdot (a\nabla p) = f$

Theorem (A first computable estimate, conf. & pure dif. case)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Take any $\mathbf{t}_h \in \mathbf{H}(\operatorname{div}, \Omega)$. Then

$$|||\boldsymbol{\rho} - \boldsymbol{\rho}_h||| \leq \frac{C_{F,\Omega}^{1/2} h_{\Omega}}{c_{a,\Omega}^{1/2}} ||\boldsymbol{f} - \nabla \cdot \mathbf{t}_h|| + ||\boldsymbol{a}_{\Sigma}^{\frac{1}{2}} \nabla \boldsymbol{\rho}_h + \boldsymbol{a}^{-\frac{1}{2}} \mathbf{t}_h||.$$

Properties

- Guaranteed upper bound ($C_{F,\Omega} \leq 1$, Friedrichs constant).
- $\|a^{\frac{1}{2}}\nabla p_h + a^{-\frac{1}{2}}\mathbf{t}_h\|$ penalizes $-a\nabla p_h \notin \mathbf{H}(\operatorname{div}, \Omega)$.
- $||f \nabla \cdot \mathbf{t}_h||$ is a residual term, evaluated for \mathbf{t}_h .
- Advantage: scheme-independent (works for all schemes) (promoted by Repin).
- Disadvantage: scheme-independent (no information from the computation used).

Outline

- - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
- Pure diffusion and conforming methods 3
 - Classical a posteriori estimates
 - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
 - Remarks on finite elements and finite volumes
 - Efficiency of the a posteriori error estimate

- Optimal abstract framework and a first estimate
- Estimates for discontinuous Galerkin methods
- Estimates for finite volume methods

Optimal a posteriori error estimate for $-\nabla \cdot (a\nabla p) = f$

Theorem (Optimal a posteriori error estimate)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Let $\mathcal{D}_h = \mathcal{D}_h^{\text{int}} \cup \mathcal{D}_h^{\text{ext}}$ be a partition of Ω and take $\mathbf{t}_h \in \mathbf{H}(\text{div}, \Omega)$ such that $(\nabla \cdot \mathbf{t}_h, 1)_D = (f, 1)_D$ for all $D \in \mathcal{D}_h^{\text{int}}$. Then $|||p - p_h||| \leq \left\{ \sum_{D \in \mathcal{D}_h} (\eta_{\text{R},D} + \eta_{\text{DF},D})^2 \right\}^{1/2}$.

• diffusive flux estimator

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C

• $\eta_{\mathrm{DF},D} := \|\boldsymbol{a}^{\frac{1}{2}} \nabla \boldsymbol{p}_h + \boldsymbol{a}^{-\frac{1}{2}} \mathbf{t}_h \|_D$

• penalizes the fact that $-a\nabla p_h \notin \mathbf{H}(\operatorname{div}, \Omega)$

- residual estimator
 - $\eta_{\mathrm{R},\mathrm{D}} := m_{\mathrm{D},a} \| f \nabla \cdot \mathbf{t}_h \|_{\mathrm{D}}$

• $m_{D,a}^2 := C_{P,D} h_D^2 / c_{a,D}$ for $D \in \mathcal{D}_h^{\text{int}}$, $C_{P,D} = 1/\pi^2$ if D convex

- $m_{D,a}^2 := C_{F,D} h_D^2 / c_{a,D}$ for $D \in \mathcal{D}_h^{ext}$, $C_{F,D} = 1$ in general
- c_{a,D} is the smallest value of a on D
- residue evaluated for t_h

Optimal a posteriori error estimate for $-\nabla \cdot (a\nabla p) = f$

Theorem (Optimal a posteriori error estimate)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Let $\mathcal{D}_h = \mathcal{D}_h^{\text{int}} \cup \mathcal{D}_h^{\text{ext}}$ be a partition of Ω and take $\mathbf{t}_h \in \mathbf{H}(\text{div}, \Omega)$ such that $(\nabla \cdot \mathbf{t}_h, 1)_D = (f, 1)_D$ for all $D \in \mathcal{D}_h^{\text{int}}$. Then $|||p - p_h||| \leq \left\{ \sum_{D \in \mathcal{D}_h} (\eta_{\text{R},D} + \eta_{\text{DF},D})^2 \right\}^{1/2}$.

diffusive flux estimator

1D & FEs Pure dif. & conf. CRD & nonc. Compl. C

• $\eta_{\text{DF},D} := \|a^{\frac{1}{2}} \nabla p_h + a^{-\frac{1}{2}} \mathbf{t}_h\|_D$

• penalizes the fact that $-a\nabla p_h \notin H(\operatorname{div}, \Omega)$

- residual estimator
 - $\eta_{\mathrm{R},\mathrm{D}} := m_{\mathrm{D},a} \| f \nabla \cdot \mathbf{t}_h \|_{\mathrm{D}}$

• $m_{D,a}^2 := C_{P,D} h_D^2 / c_{a,D}$ for $D \in \mathcal{D}_h^{\text{int}}$, $C_{P,D} = 1/\pi^2$ if D convex

- $m_{D,a}^2 := C_{F,D} h_D^2 / c_{a,D}$ for $D \in \mathcal{D}_h^{ext}$, $C_{F,D} = 1$ in general
- c_{a,D} is the smallest value of a on D
- residue evaluated for t_h

Optimal a posteriori error estimate for $-\nabla \cdot (a\nabla p) = f$

Theorem (Optimal a posteriori error estimate)

Let *p* be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Let $\mathcal{D}_h = \mathcal{D}_h^{\text{int}} \cup \mathcal{D}_h^{\text{ext}}$ be a partition of Ω and take $\mathbf{t}_h \in \mathbf{H}(\text{div}, \Omega)$ such that $(\nabla \cdot \mathbf{t}_h, 1)_D = (f, 1)_D$ for all $D \in \mathcal{D}_h^{\text{int}}$. Then $|||p - p_h||| \leq \left\{ \sum_{D \in \mathcal{D}_h} (\eta_{\text{R},D} + \eta_{\text{DF},D})^2 \right\}^{1/2}$.

diffusive flux estimator

1D & FEs Pure dif. & conf. CRD & nonc. Compl. C

• $\eta_{\mathrm{DF},D} := \|\boldsymbol{a}^{\frac{1}{2}} \nabla \boldsymbol{p}_h + \boldsymbol{a}^{-\frac{1}{2}} \mathbf{t}_h\|_D$

• penalizes the fact that $-a\nabla p_h \notin \mathbf{H}(\operatorname{div}, \Omega)$

- residual estimator
 - $\eta_{\mathrm{R},D} := m_{D,a} \| f \nabla \cdot \mathbf{t}_h \|_D$
 - $m_{D,a}^2 := C_{P,D} h_D^2 / c_{a,D}$ for $D \in \mathcal{D}_h^{\text{int}}$, $C_{P,D} = 1/\pi^2$ if D convex
 - $m_{D,a}^2 := C_{F,D} h_D^2 / c_{a,D}$ for $D \in \mathcal{D}_h^{ext}$, $C_{F,D} = 1$ in general
 - c_{a,D} is the smallest value of a on D
 - residue evaluated for t_h

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency

Proof.

• recall $|||p - p_h||| \leq \sup_{\varphi \in H_0^1(\Omega), |||\varphi|||=1} \{(f - \nabla \cdot \mathbf{t}_h, \varphi) - (a \nabla p_h + \mathbf{t}_h, \nabla \varphi)\};$

- recall the Poincaré inequality: $\|\varphi \varphi_D\|_D^2 \leq C_{P,D} h_D^2 \|\nabla \varphi\|_D^2$, where φ_D is the mean value of φ over D;
- recall the Friedrichs inequality: $\|\varphi\|_D^2 \leq C_{\mathrm{F},D,\partial\Omega}h_D^2\|\nabla\varphi\|_D^2$, where $\varphi = 0$ on $\partial\Omega \cap \partial D \neq \emptyset$;
- recall that $\|\nabla \varphi\|_D^2 \leq \frac{1}{c_{a,D}} \||\varphi|\|_D^2$;
- $D \in \mathcal{D}_h^{\text{int}}$: cons. of \mathbf{t}_h , Schwarz ineq., and Poincaré ineq.: $(f - \nabla \cdot \mathbf{t}_h, \varphi)_D = (f - \nabla \cdot \mathbf{t}_h, \varphi - \varphi_D)_D \le m_{D,a} \|f - \nabla \cdot \mathbf{t}_h\|_D \||\varphi|\|_D;$
- $D \in \mathcal{D}_h^{\text{ext}}$: Schwarz and Friedrichs inequalities:
 - $(f \nabla \cdot \mathbf{t}_h, \varphi)_D \leq m_{D,a} \|f \nabla \cdot \mathbf{t}_h\|_D \|\varphi\|_D;$
- the Schwarz inequality for the second term:
 - $-(a\nabla p_h + \mathbf{t}_h, \nabla \varphi)_D \leq \|a^{\frac{1}{2}} \nabla p_h + a^{-\frac{1}{2}} \mathbf{t}_h\|_D \||\varphi\||_D.$

1 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency

- recall $|||p p_h||| \leq \sup_{\varphi \in H_0^1(\Omega), |||\varphi|||=1} \{(f \nabla \cdot \mathbf{t}_h, \varphi) (a \nabla p_h + \mathbf{t}_h, \nabla \varphi)\};$
- recall the Poincaré inequality: $\|\varphi \varphi_D\|_D^2 \leq C_{P,D} h_D^2 \|\nabla \varphi\|_D^2$, where φ_D is the mean value of φ over D;
- recall the Friedrichs inequality: $\|\varphi\|_D^2 \leq C_{\mathrm{F},D,\partial\Omega}h_D^2\|\nabla\varphi\|_D^2$, where $\varphi = 0$ on $\partial\Omega \cap \partial D \neq \emptyset$;
- recall that $\|\nabla \varphi\|_D^2 \leq \frac{1}{c_{a,D}} \||\varphi|\|_D^2$;
- $D \in \mathcal{D}_h^{\text{int}}$: cons. of \mathbf{t}_h , Schwarz ineq., and Poincaré ineq.: $(f - \nabla \cdot \mathbf{t}_h, \varphi)_D = (f - \nabla \cdot \mathbf{t}_h, \varphi - \varphi_D)_D \le m_{D,a} \|f - \nabla \cdot \mathbf{t}_h\|_D \|\varphi\|_D;$
- $D \in \mathcal{D}_h^{\text{ext}}$: Schwarz and Friedrichs inequalities:
 - $(f \nabla \cdot \mathbf{t}_h, \varphi)_D \leq m_{D,a} \|f \nabla \cdot \mathbf{t}_h\|_D \|\varphi\|_D;$
- the Schwarz inequality for the second term:
 - $-(a\nabla p_h + \mathbf{t}_h, \nabla \varphi)_D \leq \|a^{\frac{1}{2}} \nabla p_h + a^{-\frac{1}{2}} \mathbf{t}_h\|_D \||\varphi\||_D.$

1 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency

- recall $|||p p_h||| \leq \sup_{\varphi \in H_0^1(\Omega), |||\varphi|||=1} \{(f \nabla \cdot \mathbf{t}_h, \varphi) (a \nabla p_h + \mathbf{t}_h, \nabla \varphi)\};$
- recall the Poincaré inequality: $\|\varphi \varphi_D\|_D^2 \leq C_{P,D} h_D^2 \|\nabla \varphi\|_D^2$, where φ_D is the mean value of φ over D;
- recall the Friedrichs inequality: $\|\varphi\|_D^2 \leq C_{F,D,\partial\Omega} h_D^2 \|\nabla\varphi\|_D^2$, where $\varphi = 0$ on $\partial\Omega \cap \partial D \neq \emptyset$;
- recall that $\|\nabla \varphi\|_D^2 \leq \frac{1}{c_{a,D}} \||\varphi|\|_D^2$;
- $D \in \mathcal{D}_h^{\text{int}}$: cons. of \mathbf{t}_h , Schwarz ineq., and Poincaré ineq.: $(f - \nabla \cdot \mathbf{t}_h, \varphi)_D = (f - \nabla \cdot \mathbf{t}_h, \varphi - \varphi_D)_D \le m_{D,a} \|f - \nabla \cdot \mathbf{t}_h\|_D \|\varphi\|_D;$
- $D \in \mathcal{D}_h^{\text{ext}}$: Schwarz and Friedrichs inequalities:
 - $(f \nabla \cdot \mathbf{t}_h, \varphi)_D \leq m_{D,a} \|f \nabla \cdot \mathbf{t}_h\|_D \|\varphi\|_D;$
- the Schwarz inequality for the second term:
 - $-(a\nabla p_h + \mathbf{t}_h, \nabla \varphi)_D \leq \|a^{\frac{1}{2}} \nabla p_h + a^{-\frac{1}{2}} \mathbf{t}_h\|_D \||\varphi\||_D.$

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency

• recall
$$|||p - p_h||| \leq \sup_{\varphi \in H_0^1(\Omega), |||\varphi|||=1} \{(f - \nabla \cdot \mathbf{t}_h, \varphi) - (a \nabla p_h + \mathbf{t}_h, \nabla \varphi)\};$$

- recall the Poincaré inequality: $\|\varphi \varphi_D\|_D^2 \leq C_{P,D} h_D^2 \|\nabla \varphi\|_D^2$, where φ_D is the mean value of φ over D;
- recall the Friedrichs inequality: $\|\varphi\|_D^2 \leq C_{F,D,\partial\Omega} h_D^2 \|\nabla\varphi\|_D^2$, where $\varphi = 0$ on $\partial\Omega \cap \partial D \neq \emptyset$;
- recall that $\|\nabla \varphi\|_D^2 \leq \frac{1}{c_{a,D}} \||\varphi|\|_D^2$;
- $D \in \mathcal{D}_h^{\text{int}}$: cons. of \mathbf{t}_h , Schwarz ineq., and Poincaré ineq.: $(f - \nabla \cdot \mathbf{t}_h, \varphi)_D = (f - \nabla \cdot \mathbf{t}_h, \varphi - \varphi_D)_D \le m_{D,a} \|f - \nabla \cdot \mathbf{t}_h\|_D \|\varphi\|_D;$
- $D \in \mathcal{D}_h^{\text{ext}}$: Schwarz and Friedrichs inequalities:
 - $(f \nabla \cdot \mathbf{t}_h, \varphi)_D \leq m_{D,a} \|f \nabla \cdot \mathbf{t}_h\|_D \|\varphi\|_D;$
- the Schwarz inequality for the second term:
 - $-(a\nabla p_h + \mathbf{t}_h, \nabla \varphi)_D \leq \|a^{\frac{1}{2}} \nabla p_h + a^{-\frac{1}{2}} \mathbf{t}_h\|_D \||\varphi\||_D.$

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency

• recall
$$|||p - p_h||| \leq \sup_{\varphi \in H_0^1(\Omega), |||\varphi|||=1} \{(f - \nabla \cdot \mathbf{t}_h, \varphi) - (a \nabla p_h + \mathbf{t}_h, \nabla \varphi)\};$$

- recall the Poincaré inequality: ||φ φ_D||²_D ≤ C_{P,D}h²_D||∇φ||²_D, where φ_D is the mean value of φ over D;
- recall the Friedrichs inequality: $\|\varphi\|_D^2 \leq C_{F,D,\partial\Omega} h_D^2 \|\nabla\varphi\|_D^2$, where $\varphi = 0$ on $\partial\Omega \cap \partial D \neq \emptyset$;
- recall that $\|\nabla \varphi\|_D^2 \leq \frac{1}{c_{a,D}} \||\varphi|\|_D^2$;
- $D \in \mathcal{D}_h^{\text{int}}$: cons. of \mathbf{t}_h , Schwarz ineq., and Poincaré ineq.: $(f - \nabla \cdot \mathbf{t}_h, \varphi)_D = (f - \nabla \cdot \mathbf{t}_h, \varphi - \varphi_D)_D \le m_{D,a} \|f - \nabla \cdot \mathbf{t}_h\|_D \||\varphi|\|_D;$
- $D \in \mathcal{D}_h^{\text{ext}}$: Schwarz and Friedrichs inequalities:
 - $(f \nabla \cdot \mathbf{t}_h, \varphi)_D \leq m_{D,a} \|f \nabla \cdot \mathbf{t}_h\|_D \|\varphi\|_D;$
- the Schwarz inequality for the second term:
 - $-(a\nabla p_h + \mathbf{t}_h, \nabla \varphi)_D \leq \|a^{\frac{1}{2}} \nabla p_h + a^{-\frac{1}{2}} \mathbf{t}_h\|_D \||\varphi\||_D.$

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency

• recall
$$|||p - p_h||| \leq \sup_{\varphi \in H_0^1(\Omega), |||\varphi|||=1} \{(f - \nabla \cdot \mathbf{t}_h, \varphi) - (a \nabla p_h + \mathbf{t}_h, \nabla \varphi)\};$$

- recall the Poincaré inequality: ||φ φ_D||²_D ≤ C_{P,D}h²_D||∇φ||²_D, where φ_D is the mean value of φ over D;
- recall the Friedrichs inequality: $\|\varphi\|_D^2 \leq C_{F,D,\partial\Omega} h_D^2 \|\nabla\varphi\|_D^2$, where $\varphi = 0$ on $\partial\Omega \cap \partial D \neq \emptyset$;
- recall that $\|\nabla \varphi\|_D^2 \leq \frac{1}{c_{a,D}} \||\varphi|\|_D^2$;
- $D \in \mathcal{D}_h^{\text{int}}$: cons. of \mathbf{t}_h , Schwarz ineq., and Poincaré ineq.: $(f - \nabla \cdot \mathbf{t}_h, \varphi)_D = (f - \nabla \cdot \mathbf{t}_h, \varphi - \varphi_D)_D \le m_{D,a} \|f - \nabla \cdot \mathbf{t}_h\|_D \||\varphi|\|_D;$
- $D \in \mathcal{D}_h^{\text{ext}}$: Schwarz and Friedrichs inequalities: $(f - \nabla \cdot \mathbf{t}_h, \varphi)_D \leq m_{D,a} ||f - \nabla \cdot \mathbf{t}_h||_D |||\varphi|||_D;$
- the Schwarz inequality for the second term: $-(a\nabla p_h + \mathbf{t}_h, \nabla \varphi)_D \leq ||a^{\frac{1}{2}} \nabla p_h + a^{-\frac{1}{2}} \mathbf{t}_h||_D |||\varphi|||_D.$

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency

• recall
$$|||p - p_h||| \leq \sup_{\varphi \in H_0^1(\Omega), |||\varphi|||=1} \{(f - \nabla \cdot \mathbf{t}_h, \varphi) - (a \nabla p_h + \mathbf{t}_h, \nabla \varphi)\};$$

- recall the Poincaré inequality: ||φ φ_D||²_D ≤ C_{P,D}h²_D||∇φ||²_D, where φ_D is the mean value of φ over D;
- recall the Friedrichs inequality: $\|\varphi\|_D^2 \leq C_{F,D,\partial\Omega} h_D^2 \|\nabla\varphi\|_D^2$, where $\varphi = 0$ on $\partial\Omega \cap \partial D \neq \emptyset$;
- recall that $\|\nabla \varphi\|_D^2 \leq \frac{1}{c_{a,D}} |||\varphi|||_D^2$;
- $D \in \mathcal{D}_h^{\text{int}}$: cons. of \mathbf{t}_h , Schwarz ineq., and Poincaré ineq.: $(f - \nabla \cdot \mathbf{t}_h, \varphi)_D = (f - \nabla \cdot \mathbf{t}_h, \varphi - \varphi_D)_D \le m_{D,a} \|f - \nabla \cdot \mathbf{t}_h\|_D \|\varphi\|_D;$
- $D \in \mathcal{D}_h^{\text{ext}}$: Schwarz and Friedrichs inequalities: $(f - \nabla \cdot \mathbf{t}_h, \varphi)_D \le m_{D,a} ||f - \nabla \cdot \mathbf{t}_h||_D |||\varphi|||_D;$
- the Schwarz inequality for the second term: $-(a\nabla p_h + \mathbf{t}_h, \nabla \varphi)_D \le ||a^{\frac{1}{2}}\nabla p_h + a^{-\frac{1}{2}}\mathbf{t}_h||_D |||\varphi|||_D.$

Outline

- - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
- Pure diffusion and conforming methods 3
 - Classical a posteriori estimates
 - Optimal abstract framework and a first estimate

 - Remarks on finite elements and finite volumes.
 - Efficiency of the a posteriori error estimate

- Optimal abstract framework and a first estimate
- Estimates for discontinuous Galerkin methods
- Estimates for finite volume methods

Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency

Finite element and cell-centered finite volume methods

$-\nabla \cdot (a\nabla p) = f \quad \text{in } \Omega$ $p = 0 \quad \text{on } \partial \Omega$

Finite elements

- $(a\nabla p_h, \nabla \varphi_h) = (f, \varphi_h) \quad \forall \varphi_h \in V_h$
- $-\nabla p_h \notin \mathbf{H}(\operatorname{div}, \Omega) \Rightarrow$ not locally conservative
- $p_h \in H_0^1(\Omega) \Rightarrow$ conforming
- Galerkin orthogonality
- arithmetic averaging of a

Cell-centered finite volumes

- $-\sum_{E \in \mathcal{N}(D)} \{a\}_{\omega} \frac{|\sigma_{D,E}|}{d_{D,E}} (p_E p_D) = (f,1)_D$ $\forall D \in \mathcal{D}_{\mu}^{\text{int}}$
 - Iocally conservative
 - $p_h \notin H_0^1(\Omega) \Rightarrow$ nonconforming
 - Ilux formulation
 - harmonic averaging of a

Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency

Finite element and cell-centered finite volume methods

$\begin{aligned} -\nabla \cdot (\boldsymbol{a} \nabla \boldsymbol{p}) &= \boldsymbol{f} \quad \text{in } \Omega \\ \boldsymbol{p} &= \boldsymbol{0} \quad \text{on } \partial \Omega \end{aligned}$

Finite elements

$$(a \nabla p_h, \nabla \varphi_h) = (f, \varphi_h) \ \forall \varphi_h \in V_h$$

- −∇p_h ∉ H(div, Ω) ⇒ not locally conservative
- $p_h \in H_0^1(\Omega) \Rightarrow$ conforming
- Galerkin orthogonality
- arithmetic averaging of a

Cell-centered finite volumes

- $-\sum_{E \in \mathcal{N}(D)} \{a\}_{\omega} \frac{|\sigma_{D,E}|}{d_{D,E}} (p_E p_D) = (f, 1)_D$ $\forall D \in \mathcal{D}_{b}^{\text{int}}$
 - Iocally conservative
 - $p_h \notin H_0^1(\Omega) \Rightarrow$ nonconforming
 - Ilux formulation
 - harmonic averaging of a

Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency

Finite element and cell-centered finite volume methods

$$\begin{aligned} -\nabla \cdot (a \nabla p) &= f & \text{in } \Omega \\ p &= 0 & \text{on } \partial \Omega \end{aligned}$$

Finite elements

$$(a \nabla p_h, \nabla \varphi_h) = (f, \varphi_h) \quad \forall \varphi_h \in V_h$$

- −∇p_h ∉ H(div, Ω) ⇒ not locally conservative
- $p_h \in H_0^1(\Omega) \Rightarrow$ conforming
- Galerkin orthogonality
- arithmetic averaging of a

Cell-centered finite volumes

$$-\sum_{E \in \mathcal{N}(D)} \{a\}_{\omega} \frac{|\sigma_{D,E}|}{d_{D,E}} (p_E - p_D) = (f, 1)_D \\ \forall D \in \mathcal{D}_b^{\text{int}}$$

- locally conservative
- $p_h \notin H_0^1(\Omega) \Rightarrow$ nonconforming
- flux formulation
- harmonic averaging of a

Theorem (Equivalence between FEs and FVs, EGH 00)

Let d = 2, let a = 1, let T_h be Delaunay and let D_h be its Voronoï dual (given by the orthogonal bisectors of the edges from T_h). Let next f be piecewise constant on T_h . Then FEs and FVs produce the same discrete systems.

- interpretation of the results
- local conservativity of FEs on \mathcal{D}_h
- general *f*: equivalence up to numerical quadrature

Theorem (Equivalence between FEs and FVs, EGH 00)

Let d = 2, let a = 1, let T_h be Delaunay and let D_h be its Voronoï dual (given by the orthogonal bisectors of the edges from T_h). Let next f be piecewise constant on T_h . Then FEs and FVs produce the same discrete systems.

- interpretation of the results
- local conservativity of FEs on \mathcal{D}_h
- general f: equivalence up to numerical quadrature

Theorem (Equivalence between FEs and FVs, EGH 00)

Let d = 2, let a = 1, let T_h be Delaunay and let D_h be its Voronoï dual (given by the orthogonal bisectors of the edges from T_h). Let next f be piecewise constant on T_h . Then FEs and FVs produce the same discrete systems.

- interpretation of the results
- local conservativity of FEs on \mathcal{D}_h
- general f: equivalence up to numerical quadrature

Theorem (Equivalence between FEs and FVs, EGH 00)

Let d = 2, let a = 1, let T_h be Delaunay and let D_h be its Voronoï dual (given by the orthogonal bisectors of the edges from T_h). Let next f be piecewise constant on T_h . Then FEs and FVs produce the same discrete systems.

- interpretation of the results
- local conservativity of FEs on \mathcal{D}_h
- general *f*: equivalence up to numerical quadrature

Finite elements for $-\nabla \cdot (a\nabla p) = f$

Finite element method

• Find $p_h \in V_h$ such that $(a \nabla p_h, \nabla \varphi_h) = (f, \varphi_h) \quad \forall \varphi_h \in V_h.$

• $p_h \in H^1_0(\Omega)$:

Choice of $\mathbf{t}_h \in \mathbf{H}(\operatorname{div}, \Omega)$

Recall the equivalence with finite volumes

• using the FV fluxes on \mathcal{D}_h , construct $\mathbf{t}_h \in \mathbf{RTN}(\mathcal{S}_h)$; $\langle \mathbf{t}_h \cdot \mathbf{n}, \mathbf{1} \rangle_{\partial D} = (\nabla \cdot \mathbf{t}_h, \mathbf{1})_D = (f, \mathbf{1})_D \quad \forall D \in \mathcal{D}_h^{\text{int}}.$

M. Vohralík

Cell-centered finite volumes for $-\nabla \cdot (a\nabla p) = f$

Cell-centered finite volume method

Find
$$\{p_D\}_{D \in \mathcal{D}_h^{\text{int}}}$$
 such that

$$-\{a\}_{\omega} \sum_{E \in \mathcal{N}(D)} \frac{|\sigma_{D,E}|}{d_{D,E}} (p_E - p_D) = (f, 1)_D \quad \forall D \in \mathcal{D}_h^{\text{int}}.$$

- $\{a\}_{\omega}$: harmonic averaging of the diffusion tensor.
- We immediately have $\mathbf{t}_h \in \mathbf{RTN}(\mathcal{S}_h)$ which verifies $\langle \mathbf{t}_h \cdot \mathbf{n}, 1 \rangle_{\partial D} = (\nabla \cdot \mathbf{t}_h, 1)_D = (f, 1)_D \quad \forall D \in \mathcal{D}_h^{\text{int}}.$

Interpretation of $\{p_D\}_{D \in \mathcal{D}_h^{\text{int}}}$ as $p_h \in V_h$

Interpretation of $\{p_D\}_{D \in \mathcal{D}_h^{\text{int}}}$ as $p_h \in V_h$

Outline

- - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
- Pure diffusion and conforming methods 3
 - Classical a posteriori estimates
 - Optimal abstract framework and a first estimate

 - Efficiency of the a posteriori error estimate
 - - Optimal abstract framework and a first estimate
 - Estimates for discontinuous Galerkin methods
 - Estimates for finite volume methods

Optimal a posteriori error estimate for $-\nabla \cdot (a\nabla p) = f$

Theorem (Optimal a posteriori error estimate)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Let $\mathcal{D}_h = \mathcal{D}_h^{\text{int}} \cup \mathcal{D}_h^{\text{ext}}$ be a partition of Ω and take $\mathbf{t}_h \in \mathbf{H}(\text{div}, \Omega)$ such that $(\nabla \cdot \mathbf{t}_h, 1)_D = (f, 1)_D$ for all $D \in \mathcal{D}_h^{\text{int}}$. Then $|||p - p_h||| \leq \left\{\sum_{D \in \mathcal{D}_h} (\eta_{\text{R},D} + \eta_{\text{DF},D})^2\right\}^{1/2}$.

• diffusive flux estimator

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C

• $\eta_{\mathrm{DF},D} := \|\boldsymbol{a}^{\frac{1}{2}} \nabla \boldsymbol{p}_h + \boldsymbol{a}^{-\frac{1}{2}} \mathbf{t}_h \|_D$

• penalizes the fact that $-a\nabla p_h \notin \mathbf{H}(\operatorname{div}, \Omega)$

- residual estimator
 - $\eta_{\mathbf{R},D} := m_{D,a} \| f \nabla \cdot \mathbf{t}_h \|_D$

• $m_{D,a}^2 := C_{P,D} h_D^2 / c_{a,D}$ for $D \in \mathcal{D}_h^{\text{int}}$, $C_{P,D} = 1/\pi^2$ if D convex

- $m_{D,a}^2 := C_{F,D} h_D^2 / c_{a,D}$ for $D \in \mathcal{D}_h^{ext}$, $C_{F,D} = 1$ in general
- c_{a,D} is the smallest value of a on D
- residue evaluated for t_h

Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency

Optimal a posteriori error estimate for $-\nabla \cdot (a\nabla p) = f$

Theorem (Optimal a posteriori error estimate)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Let $\mathcal{D}_h = \mathcal{D}_h^{\text{int}} \cup \mathcal{D}_h^{\text{ext}}$ be a partition of Ω and take $\mathbf{t}_h \in \mathbf{H}(\text{div}, \Omega)$ such that $(\nabla \cdot \mathbf{t}_h, 1)_D = (f, 1)_D$ for all $D \in \mathcal{D}_h^{\text{int}}$. Then $\||p - p_h|\| \leq \left\{\sum_{D \in \mathcal{D}_h} (\eta_{\text{R},D} + \eta_{\text{DF},D})^2\right\}^{1/2}$.

diffusive flux estimator

1D & FEs Pure dif. & conf. CRD & nonc. Compl. C

• $\eta_{\text{DF},D} := \|a^{\frac{1}{2}} \nabla p_h + a^{-\frac{1}{2}} \mathbf{t}_h\|_D$

• penalizes the fact that $-a\nabla p_h \notin \mathbf{H}(\operatorname{div}, \Omega)$

residual estimator

• $\eta_{\mathrm{R},\mathrm{D}} := m_{\mathrm{D},a} \| f - \nabla \cdot \mathbf{t}_h \|_{\mathrm{D}}$

• $m_{D,a}^2 := C_{P,D} h_D^2 / c_{a,D}$ for $D \in \mathcal{D}_h^{\text{int}}$, $C_{P,D} = 1/\pi^2$ if D convex

- $m_{D,a}^2 := C_{F,D} h_D^2 / c_{a,D}$ for $D \in \mathcal{D}_h^{ext}$, $C_{F,D} = 1$ in general
- $c_{a,D}$ is the smallest value of a on D
- residue evaluated for t_h

Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency

Optimal a posteriori error estimate for $-\nabla \cdot (a\nabla p) = f$

Theorem (Optimal a posteriori error estimate)

Let p be the weak solution and let $p_h \in H_0^1(\Omega)$ be arbitrary. Let $\mathcal{D}_h = \mathcal{D}_h^{\text{int}} \cup \mathcal{D}_h^{\text{ext}}$ be a partition of Ω and take $\mathbf{t}_h \in \mathbf{H}(\text{div}, \Omega)$ such that $(\nabla \cdot \mathbf{t}_h, 1)_D = (f, 1)_D$ for all $D \in \mathcal{D}_h^{\text{int}}$. Then $\||p - p_h|\| \leq \left\{ \sum_{D \in \mathcal{D}_h} (\eta_{\text{R},D} + \eta_{\text{DF},D})^2 \right\}^{1/2}$.

diffusive flux estimator

1D & FEs Pure dif. & conf. CRD & nonc. Compl. C

• $\eta_{\mathrm{DF},D} := \|\boldsymbol{a}^{\frac{1}{2}} \nabla \boldsymbol{p}_h + \boldsymbol{a}^{-\frac{1}{2}} \mathbf{t}_h\|_D$

• penalizes the fact that $-a\nabla p_h \notin \mathbf{H}(\operatorname{div}, \Omega)$

- residual estimator
 - $\eta_{\mathrm{R},D} := m_{D,a} \| f \nabla \cdot \mathbf{t}_h \|_D$
 - $m_{D,a}^2 := C_{P,D} h_D^2 / c_{a,D}$ for $D \in \mathcal{D}_h^{\text{int}}$, $C_{P,D} = 1/\pi^2$ if D convex
 - $m_{D,a}^2 := C_{F,D} h_D^2 / c_{a,D}$ for $D \in \mathcal{D}_h^{ext}$, $C_{F,D} = 1$ in general
 - c_{a,D} is the smallest value of a on D
 - residue evaluated for t_h

Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency

Local efficiency of the estimates for $-\nabla \cdot (a \nabla p) = f$

Theorem (Local efficiency)

Let $\mathbf{t}_h \cdot \mathbf{n}_{\sigma} = -\{a \nabla p_h \cdot \mathbf{n}_{\sigma}\}_{\omega}$ for all $\sigma \in \mathcal{G}_h$. Then

 $\eta_{\mathbf{R},\mathbf{D}} + \eta_{\mathbf{DF},\mathbf{D}} \leq \mathbf{C} |||\mathbf{p} - \mathbf{p}_{h}|||_{\mathcal{T}_{V_{\mathbf{D}}}},$

where *C* depends only on the space dimension *d*, on the shape regularity parameter κ_T , and on the polynomial degree *m* of *f*.

Proof (diffusive flux estimator, case a = 1).

- for each v_h ∈ RTN(K), ||v_h||²_K ≤ Ch_K ∑_{σ∈ε_K} ||v_h ⋅ n||²_σ (equivalence of norms on finite-dimensional spaces)
- put $\mathbf{v}_h = \nabla p_h + \mathbf{t}_h$; then $\|\nabla p_h + \mathbf{t}_h\|_K^2 = \|\mathbf{v}_h\|_K^2$ $\leq Ch_K \sum_{\sigma \in \mathcal{E}_K \cap \mathcal{E}_h^{\text{int}}} \|[\![\nabla p_h \cdot \mathbf{n}_\sigma]\!]\|_{\sigma}^2 \Rightarrow \eta_{\text{DF},D}$ is a lower bound for the classical mass balance estimator

side bubble functions technique of Verfürth:
 h^{1/2}/_K || [[∇p_h · n_σ]] ||_σ ≤ C ∑_{M∈{K,L}} |||p − p_h|||_M for σ ∈ E_K ∩ E^{int}_h

Local efficiency of the estimates for $-\nabla \cdot (a\nabla p) = f$

Theorem (Local efficiency)

Let $\mathbf{t}_h \cdot \mathbf{n}_{\sigma} = -\{a \nabla p_h \cdot \mathbf{n}_{\sigma}\}_{\omega}$ for all $\sigma \in \mathcal{G}_h$. Then

 $\eta_{\mathbf{R},\boldsymbol{D}} + \eta_{\mathbf{DF},\boldsymbol{D}} \leq \boldsymbol{C} |||\boldsymbol{p} - \boldsymbol{p}_{\boldsymbol{h}}|||_{\mathcal{T}_{\boldsymbol{V}_{\boldsymbol{D}}}},$

where *C* depends only on the space dimension *d*, on the shape regularity parameter κ_T , and on the polynomial degree *m* of *f*.

Proof (diffusive flux estimator, case a = 1).

- for each $\mathbf{v}_h \in \mathbf{RTN}(K)$, $\|\mathbf{v}_h\|_K^2 \leq Ch_K \sum_{\sigma \in \mathcal{E}_K} \|\mathbf{v}_h \cdot \mathbf{n}\|_{\sigma}^2$ (equivalence of norms on finite-dimensional spaces)
- put $\mathbf{v}_h = \nabla p_h + \mathbf{t}_h$; then $\|\nabla p_h + \mathbf{t}_h\|_K^2 = \|\mathbf{v}_h\|_K^2$ $\leq Ch_K \sum_{\sigma \in \mathcal{E}_K \cap \mathcal{E}_h^{\text{int}}} \|[\![\nabla p_h \cdot \mathbf{n}_\sigma]\!]\|_{\sigma}^2 \Rightarrow \eta_{\text{DF},D}$ is a lower bound for the classical mass balance estimator
- side bubble functions technique of Verfürth:
 h^{1/2}/_K || [[∇p_h · n_σ]] ||_σ ≤ C ∑_{M∈{K,L}} |||p − p_h|||_M for σ ∈ E_K ∩ E^{int}_h

Local efficiency of the estimates for $-\nabla \cdot (a\nabla p) = f$

Theorem (Local efficiency)

Let $\mathbf{t}_h \cdot \mathbf{n}_{\sigma} = -\{a \nabla p_h \cdot \mathbf{n}_{\sigma}\}_{\omega}$ for all $\sigma \in \mathcal{G}_h$. Then

 $\eta_{\mathbf{R},\boldsymbol{D}} + \eta_{\mathbf{DF},\boldsymbol{D}} \leq \boldsymbol{C} |||\boldsymbol{p} - \boldsymbol{p}_{\boldsymbol{h}}|||_{\mathcal{T}_{\boldsymbol{V}_{\boldsymbol{D}}}},$

where *C* depends only on the space dimension *d*, on the shape regularity parameter κ_T , and on the polynomial degree *m* of *f*.

Proof (diffusive flux estimator, case a = 1).

- for each $\mathbf{v}_h \in \mathbf{RTN}(K)$, $\|\mathbf{v}_h\|_K^2 \leq Ch_K \sum_{\sigma \in \mathcal{E}_K} \|\mathbf{v}_h \cdot \mathbf{n}\|_{\sigma}^2$ (equivalence of norms on finite-dimensional spaces)
- put $\mathbf{v}_h = \nabla p_h + \mathbf{t}_h$; then $\|\nabla p_h + \mathbf{t}_h\|_K^2 = \|\mathbf{v}_h\|_K^2$ $\leq Ch_K \sum_{\sigma \in \mathcal{E}_K \cap \mathcal{E}_h^{\text{int}}} \|[\![\nabla p_h \cdot \mathbf{n}_\sigma]\!]\|_{\sigma}^2 \Rightarrow \eta_{\text{DF},D}$ is a lower bound for the classical mass balance estimator

• side bubble functions technique of Verfürth: $h_{K}^{\frac{1}{2}} \| \llbracket \nabla p_{h} \cdot \mathbf{n}_{\sigma} \rrbracket \|_{\sigma} \leq C \sum_{M \in \{K, L\}} \| |p - p_{h}| \|_{M}$ for $\sigma \in \mathcal{E}_{K} \cap \mathcal{E}_{h}^{\text{int}}$

Local efficiency of the estimates for $-\nabla \cdot (a\nabla p) = f$

Theorem (Local efficiency)

Let $\mathbf{t}_h \cdot \mathbf{n}_{\sigma} = -\{a \nabla p_h \cdot \mathbf{n}_{\sigma}\}_{\omega}$ for all $\sigma \in \mathcal{G}_h$. Then

 $\eta_{\mathbf{R},\mathbf{D}} + \eta_{\mathbf{DF},\mathbf{D}} \leq \mathbf{C} |||\mathbf{p} - \mathbf{p}_{h}|||_{\mathcal{T}_{V_{\mathbf{D}}}},$

where *C* depends only on the space dimension *d*, on the shape regularity parameter κ_T , and on the polynomial degree *m* of *f*.

Proof (diffusive flux estimator, case a = 1).

- for each $\mathbf{v}_h \in \mathbf{RTN}(K)$, $\|\mathbf{v}_h\|_K^2 \leq Ch_K \sum_{\sigma \in \mathcal{E}_K} \|\mathbf{v}_h \cdot \mathbf{n}\|_{\sigma}^2$ (equivalence of norms on finite-dimensional spaces)
- put $\mathbf{v}_h = \nabla p_h + \mathbf{t}_h$; then $\|\nabla p_h + \mathbf{t}_h\|_K^2 = \|\mathbf{v}_h\|_K^2$ $\leq Ch_K \sum_{\sigma \in \mathcal{E}_K \cap \mathcal{E}_h^{\text{int}}} \|[\![\nabla p_h \cdot \mathbf{n}_\sigma]\!]\|_{\sigma}^2 \Rightarrow \eta_{\text{DF},D}$ is a lower bound for the classical mass balance estimator
- side bubble functions technique of Verfürth: $h_{K}^{\frac{1}{2}} \| \llbracket \nabla p_{h} \cdot \mathbf{n}_{\sigma} \rrbracket \|_{\sigma} \leq C \sum_{M \in \{K,L\}} \| |p - p_{h}| \|_{M}$ for $\sigma \in \mathcal{E}_{K} \cap \mathcal{E}_{h}^{\text{int}}$

Local efficiency of the estimates for $-\nabla \cdot (a \nabla p) = f$

Proof (residual estimator, case a = 1).

• element bubble functions technique of Verfürth: $\|f - \nabla \cdot \mathbf{t}_h\|_{\mathcal{K}} \leq Ch_{\mathcal{K}}^{-1} \|\nabla p + \mathbf{t}_h\|_{\mathcal{K}}$

- $\|\nabla \boldsymbol{p} + \mathbf{t}_h\|_D \le \||\boldsymbol{p} \boldsymbol{p}_h\|\|_D + \|\nabla \boldsymbol{p}_h + \mathbf{t}_h\|_D$
- complete the proof by the previous result

- the discontinuities have to be aligned with the dual mesh
- harmonic averaging has to be used in the scheme
- harmonic averaging has to be used in the construction of t_h: t_h ⋅ n_σ = -{∇p_h ⋅ n_σ}_ω

1 10 & FEs Pure dif. & conf. CRD & nonc. Compl. C Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency Local efficiency of the estimates for $-\nabla \cdot (a\nabla p) = f$

Proof (residual estimator, case a = 1).

• element bubble functions technique of Verfürth: $\|f - \nabla \cdot \mathbf{t}_h\|_{\mathcal{K}} \le Ch_{\mathcal{K}}^{-1} \|\nabla p + \mathbf{t}_h\|_{\mathcal{K}}$

• $\|\nabla \boldsymbol{\rho} + \mathbf{t}_h\|_D \le \||\boldsymbol{\rho} - \boldsymbol{\rho}_h\|\|_D + \|\nabla \boldsymbol{\rho}_h + \mathbf{t}_h\|_D$

complete the proof by the previous result

- the discontinuities have to be aligned with the dual mesh
- harmonic averaging has to be used in the scheme
- harmonic averaging has to be used in the construction of t_h: t_h ⋅ n_σ = -{∇p_h ⋅ n_σ}_ω

1 10 & FEs Pure dif. & conf. CRD & nonc. Compl. C Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency Local efficiency of the estimates for $-\nabla \cdot (a\nabla p) = f$

Proof (residual estimator, case a = 1).

• element bubble functions technique of Verfürth: $\|f - \nabla \cdot \mathbf{t}_h\|_{\mathcal{K}} \le Ch_{\mathcal{K}}^{-1} \|\nabla \rho + \mathbf{t}_h\|_{\mathcal{K}}$

•
$$\|\nabla \boldsymbol{\rho} + \mathbf{t}_h\|_D \le \||\boldsymbol{\rho} - \boldsymbol{\rho}_h\|\|_D + \|\nabla \boldsymbol{\rho}_h + \mathbf{t}_h\|_D$$

complete the proof by the previous result

- the discontinuities have to be aligned with the dual mesh
- harmonic averaging has to be used in the scheme
- harmonic averaging has to be used in the construction of t_h: t_h ⋅ n_σ = -{∇p_h ⋅ n_σ}_ω

1 10 & FEs Pure dif. & conf. CRD & nonc. Compl. C Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency Local efficiency of the estimates for $-\nabla \cdot (a\nabla p) = f$

Proof (residual estimator, case a = 1).

• element bubble functions technique of Verfürth: $\|f - \nabla \cdot \mathbf{t}_h\|_{\mathcal{K}} \leq Ch_{\mathcal{K}}^{-1} \|\nabla p + \mathbf{t}_h\|_{\mathcal{K}}$

•
$$\|\nabla \boldsymbol{\rho} + \mathbf{t}_h\|_D \le \||\boldsymbol{\rho} - \boldsymbol{\rho}_h\|\|_D + \|\nabla \boldsymbol{\rho}_h + \mathbf{t}_h\|_D$$

complete the proof by the previous result

- the discontinuities have to be aligned with the dual mesh
- harmonic averaging has to be used in the scheme
- harmonic averaging has to be used in the construction of t_h: t_h ⋅ n_σ = -{∇p_h ⋅ n_σ}_ω

Local efficiency of the estimates for $-\nabla \cdot (a\nabla p) = f$

Properties

- guaranteed upper bound
- local and global efficiency
- full robustness
- negligible evaluation cost
- locally, our estimator is a lower bound for the classical residual one, with better constants

Local efficiency of the estimates for $-\nabla \cdot (a\nabla p) = f$

Properties

- guaranteed upper bound
- local and global efficiency
- full robustness
- negligible evaluation cost
- locally, our estimator is a lower bound for the classical residual one, with better constants

A finite element method with harmonic averaging

A finite element method with harmonic averaging:

$$(\tilde{a} \nabla p_h, \nabla \varphi_h) = (f, \varphi_h) \quad \forall \varphi_h \in V_h,$$

where

 $\tilde{\mathbf{a}}|_{K} = \left((\mathbf{a}^{-1}, 1)_{K} / |K| \right)^{-1} \quad \forall K \in \mathcal{T}_{h}.$

Changes with respect to classical FEs

- of course $\tilde{a} = a$ when a piecewise constant on T_h
- a piecewise constant on \mathcal{D}_h : harmonic averaging of a

Flux from D to E:	Flux from D to E:
$-a_{D,E} \sigma_{D,E} /d_{D,E}(p_E-p_D)$	$(\hat{a} abla arphi_E, abla arphi_D)(p_E - p_D)$
arithmetic averaging:	• arithmetic averaging: $\hat{a} = a$
$a_{D,E}=rac{a_{ _D}+a_{ _E}}{2}$	• harmonic averaging: $\hat{a} = \tilde{a}$
harmonic averaging:	
$a_{D,E}=rac{2a_{ D}a _E}{a_{ D}+a _E}$	

A finite element method with harmonic averaging

A finite element method with harmonic averaging:

$$(\tilde{a} \nabla p_h, \nabla \varphi_h) = (f, \varphi_h) \quad \forall \varphi_h \in V_h,$$

where

 $\tilde{a}|_{K} = \left((a^{-1},1)_{K}/|K|\right)^{-1} \quad \forall K \in \mathcal{T}_{h}.$

Changes with respect to classical FEs

- of course $\tilde{a} = a$ when a piecewise constant on T_h
- a piecewise constant on \mathcal{D}_h : harmonic averaging of a

Flux from <i>D</i> to <i>E</i> : $-a_{D,E} \sigma_{D,E} /d_{D,E}(p_E - p_D)$ • arithmetic averaging: $a_{D,E} = \frac{a_{D} + a_{E}}{2}$	Flux from <i>D</i> to <i>E</i> : $(\hat{a} \nabla \varphi_E, \nabla \varphi_D)(p_E - p_D)$ • arithmetic averaging: $\hat{a} = a$ • harmonic averaging: $\hat{a} = \tilde{a}$
• harmonic averaging: $a_{D,E} = \frac{2a _Da _E}{a _D+a _E}$	

A finite element method with harmonic averaging

A finite element method with harmonic averaging:

$$(\tilde{a} \nabla p_h, \nabla \varphi_h) = (f, \varphi_h) \quad \forall \varphi_h \in V_h,$$

where

 $\tilde{a}|_{K} = \left((a^{-1},1)_{K}/|K|\right)^{-1} \quad \forall K \in \mathcal{T}_{h}.$

Changes with respect to classical FEs

• of course $\tilde{a} = a$ when a piecewise constant on T_h

M. Vohralík

• a piecewise constant on \mathcal{D}_h : harmonic averaging of a

Cell-centered finite volumes	Finite elements
Flux from D to E:	Flux from D to E:
$-a_{D,E} \sigma_{D,E} /d_{D,E}(p_E-p_D)$	$(\hat{a} abla arphi_E, abla arphi_D)(p_E - p_D)$
• arithmetic averaging: $a_{D,E} = \frac{a _D + a _E}{2}$	 arithmetic averaging: â = a harmonic averaging: â = ã
• harmonic averaging: $a_{D,E} = \frac{2a _{D}a _{E}}{a _{D}+a _{E}}$	

A posteriori error estimates in numerical approximation of PDEs

A finite element method with harmonic averaging

A finite element method with harmonic averaging:

$$(\tilde{a} \nabla p_h, \nabla \varphi_h) = (f, \varphi_h) \quad \forall \varphi_h \in V_h,$$

where

 $\tilde{a}|_{K} = \left((a^{-1},1)_{K}/|K|\right)^{-1} \quad \forall K \in \mathcal{T}_{h}.$

Changes with respect to classical FEs

• of course $\tilde{a} = a$ when a piecewise constant on T_h

M. Vohralík

• a piecewise constant on \mathcal{D}_h : harmonic averaging of a

Cell-centered finite volumes	Finite elements
Flux from D to E: $-a_D \int dD \int dD \int (DD - DD)$	Flux from D to E: $(\hat{a} \nabla \varphi_F, \nabla \varphi_D)(p_F - p_D)$
• arithmetic averaging: $a_{D,E} = \frac{a _D + a _E}{2}$	 arithmetic averaging: â = a harmonic averaging: â = ã
• harmonic averaging: $a_{D,E} = \frac{2a _Da _E}{a _D+a _E}$	

A posteriori error estimates in numerical approximation of PDEs

L-shape domain example and finite elements

Problem

$$\begin{split} - \bigtriangleup \pmb{\rho} &= \pmb{0}, \qquad \text{in } \Omega \\ \pmb{\rho} &= \pmb{\rho}_{\pmb{0}}, \qquad \text{on } \partial \Omega \end{split}$$

Exact solution (polar coordinates)

$$p_0(r,\varphi) = r^{-\frac{2}{3}} \sin\left(\frac{2}{3}\varphi\right)$$

Effectivity index – comparison, uniform refinement

Effectivity indices for the jump and classical estimators

Improvement by local minimization

Observation

- Fluxes of \mathbf{t}_h need to be prescribed on the boundary of dual volumes only to get $(\nabla \cdot \mathbf{t}_h, 1)_D = (f, 1)_D$.
- We can choose them on other edges.

Local minimization (for each vertex)

- compute local minimization matrix for the internal fluxes
- solve local linear problem (size = number od sides sharing the given vertex)
- compute the estimators
- the whole estimate still has a linear cost

Improvement by local minimization

Observation

- Fluxes of \mathbf{t}_h need to be prescribed on the boundary of dual volumes only to get $(\nabla \cdot \mathbf{t}_h, 1)_D = (f, 1)_D$.
- We can choose them on other edges.

Local minimization (for each vertex)

- compute local minimization matrix for the internal fluxes
- solve local linear problem (size = number od sides sharing the given vertex)
- compute the estimators
- the whole estimate still has a linear cost

1 10 & FEs Pure dif. & conf. CRD & nonc. Compl. C Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency Residual and diffusive flux estimators, uniform

refinement

Residual and diffusive flux estimators comparison

M. Vohralík A posteriori error estimates in numerical approximation of PDEs

Effectivity index – comparison, uniform refinement

Residual and diffusive flux estimators, uniform refinement

Residual and diffusive flux estimators comparison

M. Vohralík A posteriori error estimates in numerical approximation of PDEs

Effectivity index – comparison, adaptive refinement

Effectivity indices for the jump, minimization, and classical estimators

M. Vohralík A posteriori error estimates in numerical approximation of PDEs

Error distribution on a uniformly refined mesh

Estimated error distribution

Exact error distribution

Error distribution on an adaptively refined mesh

Estimated error distribution

Exact error distribution

Energy error

Effectivity index

Effectivity index, uniformly/adaptively refined meshes

Discontinuous diffusion tensor and vertex-centered finite volumes

• consider the pure diffusion equation

 $-\nabla \cdot (a \nabla p) = 0$ in $\Omega = (-1, 1) \times (-1, 1)$

• discontinuous and inhomogeneous *a*, two cases:

analytical solution: singularity at the origin

 $p(r,\theta)|_{\Omega_i} = r^{\alpha}(a_i \sin(\alpha \theta) + b_i \cos(\alpha \theta))$

- (r, θ) polar coordinates in Ω
- a_i, b_i constants depending on Ω_i
- α regularity of the solution

Analytical solutions

Error distribution on a uniformly refined mesh, case 1

I 10 & FEs Pure dif. & conf. CRD & nonc. Compl. C Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency Error distribution on an adaptively refined mesh, case 2

Estimated error distribution

Exact error distribution

5.743

5.105

4 468

3 83

- 3.193

2.556

1.918

1 281

0.6434

0.005999

Approximate solutions on adaptively refined meshes

M. Vohralík A posteriori error estimates in numerical approximation of PDEs

Estimated and actual error in uniformly/adaptively refined meshes

M. Vohralík A posteriori error estimates in numerical approximation of PDEs
I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency

Original effectivity indices in uniformly/adaptively refined meshes

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Clas. est. Opt. fram. Opt. est. FEs & FVs Efficiency

Effectivity indices in uniformly/adaptively refined meshes using a simple local minimization

M. Vohralík A posteriori error estimates in numerical approximation of PDEs

Outline

Introduction

- Laplacian and finite elements in one space dimension
 - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
- 3 Pure diffusion and conforming methods
 - Classical a posteriori estimates
 - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
 - Remarks on finite elements and finite volumes
 - Efficiency of the a posteriori error estimate

4 Convection-reaction-diffusion and nonconforming methods

- Optimal abstract framework and a first estimate
- Estimates for discontinuous Galerkin methods
- Estimates for finite volume methods
- Complements
 - Conclusions and future work

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Optimal framework and a first estimate DGs FVs

A model convection-diffusion-reaction problem

A model convection-diffusion-reaction problem

$$\begin{aligned} -\nabla \cdot (\mathbf{S} \nabla p) + \mathbf{w} \cdot \nabla p + rp &= f & \text{in } \Omega, \\ p &= 0 & \text{on } \partial \Omega \end{aligned}$$

Assumptions

- $\Omega \subset \mathbb{R}^d$, d = 2, 3, is a polygonal domain
- S|_K is a constant SPD matrix, c_{S,K} its smallest, and C_{S,K} its largest eigenvalue on each K ∈ T_h
- $(r \frac{1}{2}\nabla \cdot \mathbf{w})|_{K} \ge c_{\mathbf{w},r,K} \ge 0$ on each $K \in \mathcal{T}_{h}$ (from pure diffusion to convection–diffusion–reaction cases)

Difficulties

- S is a piecewise constant matrix, inhomogeneous and anisotropic
- w is dominating

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Optimal framework and a first estimate DGs FVs

A model convection-diffusion-reaction problem

A model convection-diffusion-reaction problem

$$\begin{aligned} -\nabla \cdot (\mathbf{S} \nabla p) + \mathbf{w} \cdot \nabla p + rp &= f & \text{in } \Omega, \\ p &= 0 & \text{on } \partial \Omega \end{aligned}$$

Assumptions

- $\Omega \subset \mathbb{R}^d$, d = 2, 3, is a polygonal domain
- S|_K is a constant SPD matrix, c_{S,K} its smallest, and C_{S,K} its largest eigenvalue on each K ∈ T_h
- $(r \frac{1}{2}\nabla \cdot \mathbf{w})|_{\mathcal{K}} \ge c_{\mathbf{w},r,\mathcal{K}} \ge 0$ on each $\mathcal{K} \in \mathcal{T}_h$ (from pure diffusion to convection–diffusion–reaction cases)

Difficulties

- S is a piecewise constant matrix, inhomogeneous and anisotropic
- w is dominating

1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Optimal framework and a first estimate DGs FVs

A model convection-diffusion-reaction problem

A model convection-diffusion-reaction problem

$$\begin{aligned} -\nabla \cdot (\mathbf{S} \nabla p) + \mathbf{w} \cdot \nabla p + rp &= f & \text{in } \Omega, \\ p &= 0 & \text{on } \partial \Omega \end{aligned}$$

Assumptions

- $\Omega \subset \mathbb{R}^d$, d = 2, 3, is a polygonal domain
- S|_K is a constant SPD matrix, c_{S,K} its smallest, and C_{S,K} its largest eigenvalue on each K ∈ T_h
- $(r \frac{1}{2}\nabla \cdot \mathbf{w})|_{\mathcal{K}} \ge c_{\mathbf{w},r,\mathcal{K}} \ge 0$ on each $\mathcal{K} \in \mathcal{T}_h$ (from pure diffusion to convection–diffusion–reaction cases)

Difficulties

- S is a piecewise constant matrix, inhomogeneous and anisotropic
- w is dominating

Bilinear form, weak solution, and energy norm

Definition (Bilinear form \mathcal{B})

We define a bilinear form \mathcal{B} for $p, \varphi \in H^1(\mathcal{T}_h)$ by

$$\mathcal{B}(\boldsymbol{p}, arphi) := \sum_{K \in \mathcal{T}_h} \left\{ (\mathbf{S}
abla \boldsymbol{p},
abla arphi)_K + (\mathbf{w} \cdot
abla \boldsymbol{p}, arphi)_K + (\mathbf{r} \boldsymbol{p}, arphi)_K
ight\}.$$

Definition (Weak solution)

Weak solution: $p \in H_0^1(\Omega)$ such that $\mathcal{B}(p, \varphi) = (f, \varphi) \quad \forall \varphi \in H_0^1$

Definition (Energy (semi-)norm)

We define the energy (semi-)norm for $\varphi \in H^1(\mathcal{T}_h)$ by

 $|||\varphi|||^{2} := \sum_{K \in \mathcal{T}_{h}} |||\varphi|||_{K}^{2}, |||\varphi|||_{K}^{2} := \left\|\mathbf{S}^{\frac{1}{2}} \nabla \varphi\right\|_{K}^{2} + \left\|\left(r - \frac{1}{2} \nabla \cdot \mathbf{w}\right)^{\frac{1}{2}} \varphi\right\|_{K}^{2}.$

Bilinear form, weak solution, and energy norm

Definition (Bilinear form \mathcal{B})

We define a bilinear form \mathcal{B} for $p, \varphi \in H^1(\mathcal{T}_h)$ by

$$\mathcal{B}(\boldsymbol{
ho}, arphi) := \sum_{K \in \mathcal{T}_h} \left\{ (\mathbf{S}
abla \boldsymbol{
ho},
abla arphi)_K + (\mathbf{w} \cdot
abla \boldsymbol{
ho}, arphi)_K + (\mathbf{r} \boldsymbol{
ho}, arphi)_K
ight\}.$$

Definition (Weak solution)

Weak solution: $p \in H_0^1(\Omega)$ such that

$$\mathcal{B}(\boldsymbol{\rho}, \varphi) = (f, \varphi) \quad \forall \varphi \in H_0^1(\Omega).$$

Definition (Energy (semi-)norm)

We define the energy (semi-)norm for $arphi \in H^1(\mathcal{T}_h)$ by

$$|||\varphi|||^{2} := \sum_{K \in \mathcal{T}_{h}} |||\varphi|||_{K}^{2}, |||\varphi|||_{K}^{2} := \left\|\mathbf{S}^{\frac{1}{2}} \nabla \varphi\right\|_{K}^{2} + \left\|\left(r - \frac{1}{2} \nabla \cdot \mathbf{w}\right)^{\frac{1}{2}} \varphi\right\|_{K}^{2}.$$

Bilinear form, weak solution, and energy norm

Definition (Bilinear form \mathcal{B})

We define a bilinear form \mathcal{B} for $\boldsymbol{p}, \varphi \in H^1(\mathcal{T}_h)$ by

$$\mathcal{B}(\boldsymbol{\rho},\varphi) := \sum_{K \in \mathcal{T}_h} \left\{ (\mathbf{S} \nabla \boldsymbol{\rho}, \nabla \varphi)_K + (\mathbf{w} \cdot \nabla \boldsymbol{\rho}, \varphi)_K + (\mathbf{r} \boldsymbol{\rho}, \varphi)_K \right\}.$$

Definition (Weak solution)

Weak solution: $p \in H_0^1(\Omega)$ such that

$$\mathcal{B}(\boldsymbol{\rho}, \varphi) = (f, \varphi) \quad \forall \varphi \in H_0^1(\Omega).$$

Definition (Energy (semi-)norm)

We define the energy (semi-)norm for $\varphi \in H^1(\mathcal{T}_h)$ by

$$|||\varphi|||^{2} := \sum_{K \in \mathcal{T}_{h}} |||\varphi|||_{K}^{2}, |||\varphi|||_{K}^{2} := \left\|\mathbf{S}^{\frac{1}{2}} \nabla \varphi\right\|_{K}^{2} + \left\|\left(r - \frac{1}{2} \nabla \cdot \mathbf{w}\right)^{\frac{1}{2}} \varphi\right\|_{K}^{2}.$$

Outline

Introduction

- Laplacian and finite elements in one space dimension
 - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
- 3 Pure diffusion and conforming methods
 - Classical a posteriori estimates
 - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
 - Remarks on finite elements and finite volumes
 - Efficiency of the a posteriori error estimate

Convection-reaction-diffusion and nonconforming methods

- Optimal abstract framework and a first estimate
- Estimates for discontinuous Galerkin methods
- Estimates for finite volume methods
- 5 Complements
 - Conclusions and future work

Optimal abstr. fr. for
$$-\nabla \cdot (\mathbf{S}\nabla p) + \mathbf{w} \cdot \nabla p + rp = f$$

Theorem (Optimal abstract framework, nonconf. & gen. case)
Let
$$p \in H_0^1(\Omega), p_h \in H^1(\mathcal{T}_h)$$
 be arbitrary. Then
 $|||p - p_h||| \leq \inf_{s \in H_0^1(\Omega)} \left\{ |||p_h - s||| + \sup_{\varphi \in H_0^1(\Omega), |||\varphi||| = 1} |\mathcal{B}(p - p_h, \varphi) + (\mathbf{w} \cdot \nabla(p_h - s) + \frac{1}{2}(\nabla \cdot \mathbf{w})(p_h - s), \varphi)| \right\}.$
 $\leq 2|||p - p_h|||.$

- Guaranteed upper bound, quasi-exact, and robust.
- Holds uniformly for any mesh (anisotropic) and polynomial degree of p_h.
- Not computable (includes *p*).

nal fearain and a first actionate

Optimal abstr. fr. for
$$-\nabla \cdot (\mathbf{S}\nabla p) + \mathbf{w} \cdot \nabla p + rp = f$$

Theorem (Optimal abstract framework, nonconf. & gen. case) Let $p \in H_0^1(\Omega)$, $p_h \in H^1(\mathcal{T}_h)$ be arbitrary. Then $|||p - p_h||| \leq \inf_{s \in H_0^1(\Omega)} \left\{ |||p_h - s||| + \sup_{\varphi \in H_0^1(\Omega), |||\varphi||| = 1} |\mathcal{B}(p - p_h, \varphi) + (\mathbf{w} \cdot \nabla(p_h - s) + \frac{1}{2}(\nabla \cdot \mathbf{w})(p_h - s), \varphi) | \right\}.$ $\leq 2|||p - p_h|||.$

- Guaranteed upper bound, quasi-exact, and robust.
- Holds uniformly for any mesh (anisotropic) and polynomial degree of p_h.
- Not computable (includes *p*).

Optimal abstr. fr. for
$$-\nabla \cdot (\mathbf{S}\nabla p) + \mathbf{w} \cdot \nabla p + rp = f$$

Theorem (Optimal abstract framework, nonconf. & gen. case)
Let
$$p \in H_0^1(\Omega), p_h \in H^1(\mathcal{T}_h)$$
 be arbitrary. Then
 $|||p - p_h||| \leq \inf_{s \in H_0^1(\Omega)} \left\{ |||p_h - s||| + \sup_{\varphi \in H_0^1(\Omega), |||\varphi||| = 1} |\mathcal{B}(p - p_h, \varphi) + (\mathbf{w} \cdot \nabla(p_h - s) + \frac{1}{2}(\nabla \cdot \mathbf{w})(p_h - s), \varphi)| \right\}.$
 $\leq 2|||p - p_h|||.$

- Guaranteed upper bound, quasi-exact, and robust.
- Holds uniformly for any mesh (anisotropic) and polynomial degree of p_h.
- Not computable (includes *p*).

framework and a first actimate

Optimal abstr. fr. for
$$-\nabla \cdot (\mathbf{S}\nabla p) + \mathbf{w} \cdot \nabla p + rp = f$$

Theorem (Optimal abstract framework, nonconf. & gen. case)
Let
$$p \in H_0^1(\Omega), p_h \in H^1(\mathcal{T}_h)$$
 be arbitrary. Then
 $|||p - p_h||| \leq \inf_{s \in H_0^1(\Omega)} \left\{ |||p_h - s||| + \sup_{\varphi \in H_0^1(\Omega), |||\varphi||| = 1} |\mathcal{B}(p - p_h, \varphi) + (\mathbf{w} \cdot \nabla(p_h - s) + \frac{1}{2}(\nabla \cdot \mathbf{w})(p_h - s), \varphi)| \right\}.$
 $\leq 2|||p - p_h|||.$

- Guaranteed upper bound, quasi-exact, and robust.
- Holds uniformly for any mesh (anisotropic) and polynomial degree of p_h.
- Not computable (includes *p*).

1 10 & FES Pure dit. & cont. CRD & none. Compl. C
Optimal abstr. est. for
$$-\nabla \cdot (\mathbf{S}\nabla p) + \mathbf{w} \cdot \nabla p + rp = f$$

Theorem (Optimal abstract estimate, nonconf. & gen. case)
Let p be the weak sol. and let $p_h \in H^1(T_h)$ be arbitrary. Then
 $\|\|p - p_h\|\| \leq \inf_{s \in H^1_0(\Omega)} \left\{ \|\|p_h - s\|\|$
 $+ \inf_{\mathbf{t} \in \mathbf{H}(\operatorname{div},\Omega)} \sup_{\varphi \in H^1_0(\Omega), \|\|\varphi\|\| = 1} |(f - \nabla \cdot \mathbf{t} - \mathbf{w} \cdot \nabla s - rs, \varphi)|$
 $-(\mathbf{S}\nabla p_h + \mathbf{t}, \nabla \varphi) + ((r - \frac{1}{2}\nabla \cdot \mathbf{w})(s - p_h), \varphi)| \right\}$
 $\leq 2\|\|p - p_h\|\|.$

• Guaranteed upper bound, quasi-exact, and robust.

• Holds uniformly for any mesh and polynomial degree.

- The solution *p* has been eliminated using $\mathcal{B}(p, \varphi) = (f, \varphi)$
- Not computable (infimum over an infinite-dim. space).

1 10 & FES Pure dit & cont. CRD & nonc. Compl. C
Optimal abstr. est. for
$$-\nabla \cdot (\mathbf{S}\nabla p) + \mathbf{w} \cdot \nabla p + rp = f$$

Theorem (Optimal abstract estimate, nonconf. & gen. case)
Let p be the weak sol. and let $p_h \in H^1(T_h)$ be arbitrary. Then
 $|||p - p_h||| \leq \inf_{s \in H^1_0(\Omega)} \left\{ |||p_h - s||| + \inf_{t \in \mathbf{H}(\operatorname{div},\Omega)} \sup_{\varphi \in H^1_0(\Omega), |||\varphi||| = 1} |(f - \nabla \cdot \mathbf{t} - \mathbf{w} \cdot \nabla s - rs, \varphi) - (\mathbf{S}\nabla p_h + \mathbf{t}, \nabla \varphi) + ((r - \frac{1}{2}\nabla \cdot \mathbf{w})(s - p_h), \varphi)| \right\}$
 $\leq 2|||p - p_h|||.$

- Guaranteed upper bound, quasi-exact, and robust.
- Holds uniformly for any mesh and polynomial degree.
- The solution *p* has been eliminated using $\mathcal{B}(p, \varphi) = (f, \varphi)$.
- Not computable (infimum over an infinite-dim. space).

1 10 & FES Pure dit & cont. CRD & nonc. Compl. C
Optimal abstr. est. for
$$-\nabla \cdot (\mathbf{S}\nabla p) + \mathbf{w} \cdot \nabla p + rp = f$$

Theorem (Optimal abstract estimate, nonconf. & gen. case)
Let p be the weak sol. and let $p_h \in H^1(T_h)$ be arbitrary. Then
 $|||p - p_h||| \leq \inf_{s \in H^1_0(\Omega)} \left\{ |||p_h - s||| + \inf_{t \in \mathbf{H}(\operatorname{div},\Omega)} \sup_{\varphi \in H^1_0(\Omega), |||\varphi||| = 1} |(f - \nabla \cdot \mathbf{t} - \mathbf{w} \cdot \nabla s - rs, \varphi) - (\mathbf{S}\nabla p_h + \mathbf{t}, \nabla \varphi) + ((r - \frac{1}{2}\nabla \cdot \mathbf{w})(s - p_h), \varphi)| \right\}$
 $\leq 2|||p - p_h|||.$

- Guaranteed upper bound, quasi-exact, and robust.
- Holds uniformly for any mesh and polynomial degree.
- The solution p has been eliminated using $\mathcal{B}(p, \varphi) = (f, \varphi)$.
- Not computable (infimum over an infinite-dim. space).

1 10 & FES Pure dit. & cont. CBD & nonc. Compl. C Optimal framework and a first estimate. DGs FVS
Optimal abstr. est. for
$$-\nabla \cdot (\mathbf{S}\nabla p) + \mathbf{W} \cdot \nabla p + rp = f$$

Theorem (Optimal abstract estimate, nonconf. & gen. case)
Let p be the weak sol. and let $p_h \in H^1(\mathcal{T}_h)$ be arbitrary. Then
 $\|\|p - p_h\|\| \leq \inf_{s \in H^1_0(\Omega)} \left\{ \|\|p_h - s\|\|$
 $+ \inf_{t \in \mathbf{H}(\operatorname{div},\Omega)} \sup_{\varphi \in H^1_0(\Omega), \|\|\varphi\|\| = 1} |(f - \nabla \cdot \mathbf{t} - \mathbf{W} \cdot \nabla s - rs, \varphi)|$
 $-(\mathbf{S}\nabla p_h + \mathbf{t}, \nabla \varphi) + ((r - \frac{1}{2}\nabla \cdot \mathbf{W})(s - p_h), \varphi)|\right\}$
 $\leq 2\|\|p - p_h\|\|.$

- Guaranteed upper bound, quasi-exact, and robust.
- Holds uniformly for any mesh and polynomial degree.
- The solution p has been eliminated using $\mathcal{B}(p,\varphi) = (f,\varphi)$.
- Not computable (infimum over an infinite-dim. space).

Theorem (A first computable estimate, nonconf. & gen. case)

Let *p* be the weak solution and let $p_h \in H^1(\mathcal{T}_h)$ be arbitrary. Take any $\mathbf{t}_h \in \mathbf{H}(\operatorname{div}, \Omega)$ and any $s_h \in H^1_0(\Omega)$. Then $|||p - p_h|||$

$$\leq |||\boldsymbol{p}_{h} - \boldsymbol{s}_{h}||| + \min\left\{\frac{C_{\mathrm{F},\Omega}^{1/2}h_{\Omega}}{\min_{K\in\mathcal{T}_{h}}c_{\mathbf{S},K}^{1/2}}, \frac{1}{\min_{K\in\mathcal{T}_{h}}c_{\mathbf{w},r,K}^{1/2}}\right\} \\ \times \|\boldsymbol{f} - \nabla\cdot\mathbf{t}_{h} - \mathbf{w}\cdot\nabla\boldsymbol{s}_{h} - \boldsymbol{rs}_{h}\| \\ + \left(\|\mathbf{S}^{\frac{1}{2}}\nabla\boldsymbol{p}_{h} + \mathbf{S}^{-\frac{1}{2}}\mathbf{t}_{h}\|^{2} + \|(\boldsymbol{r} - \frac{1}{2}\nabla\cdot\mathbf{w})^{1/2}(\boldsymbol{p}_{h} - \boldsymbol{s}_{h})\|^{2}\right)^{1/2}.$$

- Guaranteed upper bound ($C_{F,\Omega} \leq 1$).
- $\|\mathbf{S}^{\frac{1}{2}} \nabla p_h + \mathbf{S}^{-\frac{1}{2}} \mathbf{t}_h\|$ penalizes $-\mathbf{S} \nabla p_h \notin \mathbf{H}(\operatorname{div}, \Omega)$.
- $|||p_h s_h|||$ penalizes $p_h \notin H_0^1(\Omega)$.

Theorem (A first computable estimate, nonconf. & gen. case)

Let p be the weak solution and let $p_h \in H^1(\mathcal{T}_h)$ be arbitrary. Take any $\mathbf{t}_h \in \mathbf{H}(\operatorname{div}, \Omega)$ and any $s_h \in H^1_0(\Omega)$. Then $|||p - p_h|||$

$$\leq |||\boldsymbol{p}_{h} - \boldsymbol{s}_{h}||| + \min\left\{\frac{C_{\mathrm{F},\Omega}^{1/2}h_{\Omega}}{\min_{K\in\mathcal{T}_{h}}c_{\mathbf{S},K}^{1/2}}, \frac{1}{\min_{K\in\mathcal{T}_{h}}c_{\mathbf{w},r,K}^{1/2}}\right\} \\ \times \|\boldsymbol{f} - \nabla\cdot\mathbf{t}_{h} - \mathbf{w}\cdot\nabla\boldsymbol{s}_{h} - \boldsymbol{rs}_{h}\| \\ + \left(\|\mathbf{S}^{\frac{1}{2}}\nabla\boldsymbol{p}_{h} + \mathbf{S}^{-\frac{1}{2}}\mathbf{t}_{h}\|^{2} + \|(\boldsymbol{r} - \frac{1}{2}\nabla\cdot\mathbf{w})^{1/2}(\boldsymbol{p}_{h} - \boldsymbol{s}_{h})\|^{2}\right)^{1/2}.$$

- Guaranteed upper bound ($C_{F,\Omega} \leq 1$).
- $\|\mathbf{S}^{\frac{1}{2}} \nabla p_h + \mathbf{S}^{-\frac{1}{2}} \mathbf{t}_h\|$ penalizes $-\mathbf{S} \nabla p_h \notin \mathbf{H}(\operatorname{div}, \Omega)$.
- $|||p_h s_h|||$ penalizes $p_h \notin H_0^1(\Omega)$.

Theorem (A first computable estimate, nonconf. & gen. case)

Let *p* be the weak solution and let $p_h \in H^1(\mathcal{T}_h)$ be arbitrary. Take any $\mathbf{t}_h \in \mathbf{H}(\operatorname{div}, \Omega)$ and any $s_h \in H^1_0(\Omega)$. Then $|||p - p_h|||$

$$\leq |||\boldsymbol{p}_{h} - \boldsymbol{s}_{h}||| + \min\left\{\frac{C_{\mathrm{F},\Omega}^{1/2}h_{\Omega}}{\min_{K\in\mathcal{T}_{h}}c_{\mathbf{S},K}^{1/2}}, \frac{1}{\min_{K\in\mathcal{T}_{h}}c_{\mathbf{w},r,K}^{1/2}}\right\} \\ \times ||f - \nabla \cdot \mathbf{t}_{h} - \mathbf{w} \cdot \nabla \boldsymbol{s}_{h} - \boldsymbol{rs}_{h}|| \\ + \left(\left\|\mathbf{S}^{\frac{1}{2}}\nabla \boldsymbol{p}_{h} + \mathbf{S}^{-\frac{1}{2}}\mathbf{t}_{h}\right\|^{2} + \left\|(r - \frac{1}{2}\nabla \cdot \mathbf{w})^{1/2}(\boldsymbol{p}_{h} - \boldsymbol{s}_{h})\right\|^{2}\right)^{1/2}.$$

- Guaranteed upper bound ($C_{F,\Omega} \leq 1$).
- $\|\mathbf{S}^{\frac{1}{2}}\nabla p_h + \mathbf{S}^{-\frac{1}{2}}\mathbf{t}_h\|$ penalizes $-\mathbf{S}\nabla p_h \notin \mathbf{H}(\operatorname{div}, \Omega)$.
- $|||p_h s_h|||$ penalizes $p_h \notin H_0^1(\Omega)$.

Theorem (A first computable estimate, nonconf. & gen. case)

Let *p* be the weak solution and let $p_h \in H^1(\mathcal{T}_h)$ be arbitrary. Take any $\mathbf{t}_h \in \mathbf{H}(\operatorname{div}, \Omega)$ and any $s_h \in H^1_0(\Omega)$. Then $|||p - p_h|||$

$$\leq |||\boldsymbol{p}_{h} - \boldsymbol{s}_{h}||| + \min\left\{\frac{C_{\mathrm{F},\Omega}^{1/2}h_{\Omega}}{\min_{K\in\mathcal{T}_{h}}c_{\mathbf{S},K}^{1/2}}, \frac{1}{\min_{K\in\mathcal{T}_{h}}c_{\mathbf{w},r,K}^{1/2}}\right\} \\ \times \|\boldsymbol{f} - \nabla\cdot\mathbf{t}_{h} - \mathbf{w}\cdot\nabla\boldsymbol{s}_{h} - \boldsymbol{rs}_{h}\| \\ + \left(\|\mathbf{S}^{\frac{1}{2}}\nabla\boldsymbol{p}_{h} + \mathbf{S}^{-\frac{1}{2}}\mathbf{t}_{h}\|^{2} + \|(\boldsymbol{r} - \frac{1}{2}\nabla\cdot\mathbf{w})^{1/2}(\boldsymbol{p}_{h} - \boldsymbol{s}_{h})\|^{2}\right)^{1/2}.$$

- Guaranteed upper bound ($C_{F,\Omega} \leq 1$).
- $\|\mathbf{S}^{\frac{1}{2}} \nabla p_h + \mathbf{S}^{-\frac{1}{2}} \mathbf{t}_h\|$ penalizes $-\mathbf{S} \nabla p_h \notin \mathbf{H}(\operatorname{div}, \Omega)$.
- $|||p_h s_h|||$ penalizes $p_h \notin H_0^1(\Omega)$.

Outline

Introduction

- Laplacian and finite elements in one space dimension
 - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
- 3 Pure diffusion and conforming methods
 - Classical a posteriori estimates
 - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
 - Remarks on finite elements and finite volumes
 - Efficiency of the a posteriori error estimate
- 4 Convection–reaction–diffusion and nonconforming methods
 - Optimal abstract framework and a first estimate
 - Estimates for discontinuous Galerkin methods
 - Estimates for finite volume methods
- Complements
- Conclusions and future work

Discontinuous Galerkin method

Discontinuous Galerkin method

• Find
$$p_h \in \mathbb{P}_k(\mathcal{T}_h)$$
 such that for all $\varphi_h \in \mathbb{P}_k(\mathcal{T}_h)$

$$(\mathbf{S}\nabla \boldsymbol{p}_{h}, \nabla \varphi_{h}) + ((\boldsymbol{r} - \nabla \cdot \mathbf{w})\boldsymbol{p}_{h}, \varphi_{h}) - (\boldsymbol{p}_{h}, \mathbf{w} \cdot \nabla \varphi_{h}) - \sum_{\sigma \in \mathcal{E}_{h}} \left\{ \langle \mathbf{n}_{\sigma}^{t} \{ \mathbf{S}\nabla \boldsymbol{p}_{h} \}_{\omega}, \llbracket \varphi_{h} \rrbracket \rangle_{\sigma} + \theta \langle \mathbf{n}_{\sigma}^{t} \{ \mathbf{S}\nabla \varphi_{h} \}_{\omega}, \llbracket \boldsymbol{p}_{h} \rrbracket \rangle_{\sigma} \right\} + \sum_{\sigma \in \mathcal{E}_{h}} \left\{ \langle \gamma_{\sigma} \llbracket \boldsymbol{p}_{h} \rrbracket, \llbracket \varphi_{h} \rrbracket \rangle_{\sigma} + \langle \mathbf{w} \cdot \mathbf{n}_{\sigma} \{ \boldsymbol{p}_{h} \}, \llbracket \varphi_{h} \rrbracket \rangle_{\sigma} \right\} = (\boldsymbol{f}, \varphi_{h})$$

- jump operator $\llbracket v \rrbracket_{\sigma} = v^{-} v^{+}$
- average operator $\{v\}_{\sigma} = \frac{1}{2}(v^- + v^+)$
- harmonic-weighted average operator
 {*v*}_ω = (ω⁻ v⁻ + ω⁺ v⁺)
- $p_h \notin H_0^1(\Omega), -\mathbf{S} \nabla p_h \notin \mathbf{H}(\operatorname{div}, \Omega)$

Discontinuous Galerkin method

Discontinuous Galerkin method

• Find
$$p_h \in \mathbb{P}_k(\mathcal{T}_h)$$
 such that for all $\varphi_h \in \mathbb{P}_k(\mathcal{T}_h)$

$$(\mathbf{S}\nabla \boldsymbol{p}_{h}, \nabla \varphi_{h}) + ((\boldsymbol{r} - \nabla \cdot \mathbf{w})\boldsymbol{p}_{h}, \varphi_{h}) - (\boldsymbol{p}_{h}, \mathbf{w} \cdot \nabla \varphi_{h}) - \sum_{\sigma \in \mathcal{E}_{h}} \left\{ \langle \mathbf{n}_{\sigma}^{t} \{ \mathbf{S}\nabla \boldsymbol{p}_{h} \}_{\omega}, \llbracket \varphi_{h} \rrbracket \rangle_{\sigma} + \theta \langle \mathbf{n}_{\sigma}^{t} \{ \mathbf{S}\nabla \varphi_{h} \}_{\omega}, \llbracket \boldsymbol{p}_{h} \rrbracket \rangle_{\sigma} \right\} + \sum_{\sigma \in \mathcal{E}_{h}} \left\{ \langle \gamma_{\sigma} \llbracket \boldsymbol{p}_{h} \rrbracket, \llbracket \varphi_{h} \rrbracket \rangle_{\sigma} + \langle \mathbf{w} \cdot \mathbf{n}_{\sigma} \{ \boldsymbol{p}_{h} \}, \llbracket \varphi_{h} \rrbracket \rangle_{\sigma} \right\} = (\boldsymbol{f}, \varphi_{h})$$

- jump operator $\llbracket v \rrbracket_{\sigma} = v^{-} v^{+}$
- average operator $\{v\}_{\sigma} = \frac{1}{2}(v^- + v^+)$
- harmonic-weighted average operator
 {*v*}_ω = (ω⁻ v⁻ + ω⁺ v⁺)
- $p_h \notin H_0^1(\Omega)$, $-\mathbf{S} \nabla p_h \notin \mathbf{H}(\operatorname{div}, \Omega)$

Scalar and diffusive/convective flux reconstructions

Choice of $s_h \in H_0^1(\Omega)$

s_h = I_{Os}(p_h) is the so-called Oswald interpolate of p_h

Choice of $\mathbf{t}_h, \mathbf{q}_h \in \mathbf{H}(\operatorname{div}, \Omega)$

- t_h: diffusive flux reconstruction
- q_h: convective flux reconstruction
- both given on T_h in the Raviart–Thomas–Nédélec spaces
- defined using the properties of the DG scheme
- satisfy in general

$$(\nabla \cdot \mathbf{t}_h + \nabla \cdot \mathbf{q}_h + (\mathbf{r} - \nabla \cdot \mathbf{w})p_h)|_K = \prod_k (f)|_k \quad \forall K \in \mathcal{T}_h$$

Scalar and diffusive/convective flux reconstructions

Choice of $s_h \in H_0^1(\Omega)$

• $s_h = I_{Os}(p_h)$ is the so-called Oswald interpolate of p_h

Choice of $t_h, q_h \in H(\operatorname{div}, \Omega)$

- t_h: diffusive flux reconstruction
- **q**_h: convective flux reconstruction
- both given on T_h in the Raviart–Thomas–Nédélec spaces
- defined using the properties of the DG scheme
- satisfy in general

$$(\nabla \cdot \mathbf{t}_h + \nabla \cdot \mathbf{q}_h + (\mathbf{r} - \nabla \cdot \mathbf{w})\mathbf{p}_h)|_{\mathcal{K}} = \Pi_k(f)|_{\mathcal{K}} \quad \forall \mathcal{K} \in \mathcal{T}_h$$

Diffusive and convective flux reconstructions

Diffusive flux reconstruction (l = k or l = k - 1)

$$\begin{aligned} \langle \mathbf{t}_{h} \cdot \mathbf{n}_{\sigma}, \boldsymbol{q}_{h} \rangle_{\sigma} &= \langle -\mathbf{n}_{\sigma}^{t} \{ \mathbf{S} \nabla \boldsymbol{p}_{h} \}_{\omega} + \alpha_{\sigma} \gamma_{\mathbf{S},\sigma} h_{\sigma}^{-1} \llbracket \boldsymbol{p}_{h} \rrbracket, \boldsymbol{q}_{h} \rangle_{\sigma} \\ & \forall \boldsymbol{q}_{h} \in \mathbb{P}_{l}(\sigma), \, \forall \sigma \in \mathcal{E}_{K}, \\ (\mathbf{t}_{h}, \mathbf{r}_{h})_{\mathcal{K}} &= -(\mathbf{S} \nabla \boldsymbol{p}_{h}, \mathbf{r}_{h})_{\mathcal{K}} + \theta \sum_{\sigma \in \mathcal{E}_{K}} \omega_{\mathcal{K},\sigma} \langle \mathbf{n}_{\sigma}^{t} \mathbf{S} \mathbf{r}_{h}, \llbracket \boldsymbol{p}_{h} \rrbracket \rangle_{\sigma} \\ & \forall \mathbf{r}_{h} \in \mathbb{P}_{l-1}^{d}(\mathcal{K}) \end{aligned}$$

Convective flux reconstruction (l = k or l = k - 1)

$$\begin{aligned} \langle \mathbf{q}_{h} \cdot \mathbf{n}_{\sigma}, q_{h} \rangle_{\sigma} &= \langle \mathbf{w} \cdot \mathbf{n}_{\sigma} \{ p_{h} \} + \gamma_{\mathbf{w},\sigma} \llbracket p_{h} \rrbracket, q_{h} \rangle_{\sigma} \\ & \forall q_{h} \in \mathbb{P}_{l}(\sigma), \, \forall \sigma \in \mathcal{E}_{K}, \\ (\mathbf{q}_{h}, \mathbf{r}_{h})_{\mathcal{K}} &= (p_{h}, \mathbf{w} \cdot \mathbf{r}_{h})_{\mathcal{K}} \quad \forall \mathbf{r}_{h} \in \mathbb{P}_{l-1}^{d}(\mathcal{K}) \end{aligned}$$

Diffusive and convective flux reconstructions

Diffusive flux reconstruction (l = k or l = k - 1)

$$\begin{array}{lll} \langle \mathbf{t}_{h} \cdot \mathbf{n}_{\sigma}, q_{h} \rangle_{\sigma} &= \langle -\mathbf{n}_{\sigma}^{t} \{ \mathbf{S} \nabla p_{h} \}_{\omega} + \alpha_{\sigma} \gamma_{\mathbf{S},\sigma} h_{\sigma}^{-1} \llbracket p_{h} \rrbracket, q_{h} \rangle_{\sigma} \\ & \forall q_{h} \in \mathbb{P}_{l}(\sigma), \ \forall \sigma \in \mathcal{E}_{K}, \\ (\mathbf{t}_{h}, \mathbf{r}_{h})_{K} &= -(\mathbf{S} \nabla p_{h}, \mathbf{r}_{h})_{K} + \theta \sum_{\sigma \in \mathcal{E}_{K}} \omega_{K,\sigma} \langle \mathbf{n}_{\sigma}^{t} \mathbf{S} \mathbf{r}_{h}, \llbracket p_{h} \rrbracket \rangle_{\sigma} \\ & \forall \mathbf{r}_{h} \in \mathbb{P}_{l-1}^{d}(K) \end{array}$$

Convective flux reconstruction (l = k or l = k - 1)

$$\begin{array}{lll} \langle \mathbf{q}_h \cdot \mathbf{n}_\sigma, q_h \rangle_\sigma &=& \langle \mathbf{w} \cdot \mathbf{n}_\sigma \{ p_h \} + \gamma_{\mathbf{w},\sigma} \llbracket p_h \rrbracket, q_h \rangle_\sigma \\ & \forall q_h \in \mathbb{P}_l(\sigma), \, \forall \sigma \in \mathcal{E}_K, \\ (\mathbf{q}_h, \mathbf{r}_h)_{\mathcal{K}} &=& (p_h, \mathbf{w} \cdot \mathbf{r}_h)_{\mathcal{K}} \quad \forall \mathbf{r}_h \in \mathbb{P}_{l-1}^d(\mathcal{K}) \end{array}$$

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Optimal framework and a first estimate DGs FVs

A post. estimate for $-\nabla \cdot (\mathbf{S} \nabla p) + \mathbf{w} \cdot \nabla p + rp = f$

Theorem (A posteriori error estimate)

There holds

$$\||\boldsymbol{p} - \boldsymbol{p}_h\|\| \leq \left\{\sum_{K \in \mathcal{T}_h} \eta_{\mathrm{NC},K}^2\right\}^{\frac{1}{2}}$$

$$+\left\{\sum_{\mathcal{K}\in\mathcal{T}_{h}}\left(\eta_{\mathrm{R},\mathcal{K}}+(\eta_{\mathrm{DF},\mathcal{K}}^{2}+\eta_{\mathrm{C},2,\mathcal{K}}^{2})^{\frac{1}{2}}+\eta_{\mathrm{C},1,\mathcal{K}}+\eta_{\mathrm{U},\mathcal{K}}\right)^{2}\right\}^{\frac{1}{2}},$$

•
$$\eta_{\text{NC},K} = |||p_h - \mathcal{I}_{\text{Os}}(p_h)|||_K$$
 (nonconformity)

- $n_{\text{DE}K} = \|\mathbf{S}^{\frac{1}{2}} \nabla p_h + \mathbf{S}^{-\frac{1}{2}} \mathbf{t}_h \|_{\mathcal{K}}$ (diffusive flux)
- $\eta_{\mathsf{R},\mathsf{K}} = m_{\mathsf{K}} \| f \nabla \cdot \mathbf{t}_{b} \nabla \cdot \mathbf{q}_{b} (r \nabla \cdot \mathbf{w}) p_{b} \|_{\mathsf{K}}$ (residual)
- $\eta_{C_{1,K}} = m_K \|\nabla \cdot (\mathbf{q}_h \mathbf{w} \mathbf{s}_h) \Pi_0 (\nabla \cdot (\mathbf{q}_h \mathbf{w} \mathbf{s}_h)) \|_K$ (convection)
- $\eta_{\mathrm{C},2,K} = \frac{1}{c^{1/2}} \left\| \frac{1}{2} (\nabla \cdot \mathbf{w}) (p_h s_h) \right\|_K$ (convection)
- $\eta_{U,K} = \sum_{\sigma \in \mathcal{E}_{K}} m_{\sigma} \| \Pi_{0,\sigma}((\mathbf{q}_{h} \mathbf{w}s_{h}) \cdot \mathbf{n}_{\sigma}) \|_{\sigma}$ (upwinding).

1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Optimal framework and a first estimate DGs FVs

A post. estimate for $-\nabla \cdot (\mathbf{S} \nabla p) + \mathbf{w} \cdot \nabla p + rp = f$

Theorem (A posteriori error estimate)

There holds

$$\left| \boldsymbol{p}_h
ight|
ight| \leq \left\{ \sum_{\mathcal{K} \in \mathcal{I}_h} \eta_{ ext{NC},\mathcal{K}}^2
ight\}^{rac{1}{2}}$$

$$+\left\{\sum_{\mathcal{K}\in\mathcal{T}_{h}}\left(\eta_{\mathrm{R},\mathcal{K}}+(\eta_{\mathrm{DF},\mathcal{K}}^{2}+\eta_{\mathrm{C},2,\mathcal{K}}^{2})^{\frac{1}{2}}+\eta_{\mathrm{C},1,\mathcal{K}}+\eta_{\mathrm{U},\mathcal{K}}\right)^{2}\right\}^{\frac{1}{2}},$$

where

|||p -

•
$$\eta_{NC,K} = |||p_h - \mathcal{I}_{Os}(p_h)|||_K$$
 (nonconformity)
• $\eta_{DF,K} = ||\mathbf{S}^{\frac{1}{2}} \nabla p_h + \mathbf{S}^{-\frac{1}{2}} \mathbf{t}_h||_K$ (diffusive flux)
• $\eta_{R,K} = m_K ||f - \nabla \cdot \mathbf{t}_h - \nabla \cdot \mathbf{q}_h - (r - \nabla \cdot \mathbf{w})p_h||_K$ (residual)
• $\eta_{C,1,K} = m_K ||\nabla \cdot (\mathbf{q}_h - \mathbf{w}s_h) - \Pi_0(\nabla \cdot (\mathbf{q}_h - \mathbf{w}s_h))||_K$ (convection)
• $\eta_{C,2,K} = \frac{1}{c_{\mathbf{w},r,K}^{1/2}} ||\frac{1}{2}(\nabla \cdot \mathbf{w})(p_h - s_h)||_K$ (convection)
• $\eta_{U,K} = \sum_{\sigma \in \mathcal{E}_K} m_\sigma ||\Pi_{0,\sigma}((\mathbf{q}_h - \mathbf{w}s_h) \cdot \mathbf{n}_\sigma)||_\sigma$ (upwinding).

Loc. efficiency for $-\nabla \cdot (\mathbf{S} \nabla p) + \mathbf{w} \cdot \nabla p + rp = f$

Theorem (Local efficiency)

There holds

 $\eta_{\mathrm{NC},\mathcal{K}} + \eta_{\mathrm{DF},\mathcal{K}} + \eta_{\mathrm{R},\mathcal{K}} + \eta_{\mathrm{C},1,\mathcal{K}} + \eta_{\mathrm{C},2,\mathcal{K}} + \eta_{\mathrm{U},\mathcal{K}} \leq C_{\mathrm{eff},\mathcal{K}} ||| \boldsymbol{\rho} - \boldsymbol{\rho}_h |||_{*,\widetilde{\mathcal{E}}_{\mathcal{K}}}.$

- guaranteed upper bound
- local and global efficiency
- negligible evaluation cost
- residual estimator $\eta_{\mathbf{R},\mathbf{K}}$ is a higher-order term
- valid also on anisotropic meshes
- valid uniformly with respect to polynomial degree
- semi-robust (*C*_{eff,K} depends on local inhomogeneities and anisotropies and affinely on Pe_K)

Loc. efficiency for $-\nabla \cdot (\mathbf{S} \nabla p) + \mathbf{w} \cdot \nabla p + rp = f$

Theorem (Local efficiency)

There holds

 $\eta_{\mathrm{NC},K} + \eta_{\mathrm{DF},K} + \eta_{\mathrm{R},K} + \eta_{\mathrm{C},1,K} + \eta_{\mathrm{C},2,K} + \eta_{\mathrm{U},K} \leq C_{\mathrm{eff},K} ||| \boldsymbol{\rho} - \boldsymbol{\rho}_h |||_{*,\widetilde{\mathcal{E}}_K}.$

- guaranteed upper bound
- local and global efficiency
- negligible evaluation cost
- residual estimator $\eta_{R,K}$ is a higher-order term
- valid also on anisotropic meshes
- valid uniformly with respect to polynomial degree
- semi-robust ($C_{\text{eff},K}$ depends on local inhomogeneities and anisotropies and affinely on Pe_K)

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Optimal framework and a first estimate DGs FVs

Discontinuous diffusion tensor and discontinuous Galerkin methods

• consider the pure diffusion equation

 $-\nabla \cdot (\mathbf{S} \nabla p) = 0$ in $\Omega = (-1, 1) \times (-1, 1)$

• discontinuous and inhomogeneous S, two cases:

analytical solution: singularity at the origin

 $p(r,\theta)|_{\Omega_i} = r^{\alpha}(a_i \sin(\alpha \theta) + b_i \cos(\alpha \theta))$

- (r, θ) polar coordinates in Ω
- a_i, b_i constants depending on Ω_i
- α regularity of the solution

Analytical solutions

Series of refined meshes, case 1

Mesh with 342 elements

Mesh with 494 elements
Estimated and actual error, case 1

			<i>l</i> = 0		/ = 1	
Ν	$\ p-p_h \ $	$\eta_{ m NC}$	$\eta_{\rm DF}$	eff.	$\eta_{\rm DF}$	eff.
112	6.11e-01	8.70e-1	7.43e-1	1.9	6.00e-1	1.7
448	4.28e-01	6.09e-1	5.35e-1	1.9	4.32e-1	1.7
1792	2.97e-01	4.23e-1	3.74e-1	1.9	3.05e-1	1.8
7168	2.01e-01	2.92e-1	2.60e-1	1.9	2.12e-1	1.8
order	0.53	0.53	0.53	-	0.52	-
•						

Convergence rates of error estimators for test case 1, unstructured meshes

Estimated and actual error, case 2

		<i>l</i> = 0		/ = 1	
$\ p-p_h \ $	$\eta_{ m NC}$	$\eta_{\rm DF}$	eff.	η_{DF}	eff.
3.27	11.8	2.39	3.7	1.89	3.7
3.11	11.3	2.33	3.7	1.84	3.7
2.93	10.8	2.23	3.8	1.77	3.7
2.75	10.3	2.12	3.8	1.68	3.8
0.09	0.08	0.08	-	0.07	-
	$\frac{ p - p_h }{3.27}$ 3.11 2.93 2.75 0.09	$ p - p_h $ η_{NC} 3.27 11.8 3.11 11.3 2.93 10.8 2.75 10.3 0.09 0.08	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$l = 0$ $l =$ $ p - p_h $ η_{NC} η_{DF} eff. η_{DF} 3.2711.82.393.71.893.1111.32.333.71.842.9310.82.233.81.772.7510.32.123.81.680.090.080.08-0.07

Convergence rates of error estimators for test case 2, unstructured meshes

Outline

Introduction

- Laplacian and finite elements in one space dimension
 - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
- 3 Pure diffusion and conforming methods
 - Classical a posteriori estimates
 - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
 - Remarks on finite elements and finite volumes
 - Efficiency of the a posteriori error estimate

4 Convection-reaction-diffusion and nonconforming methods

- Optimal abstract framework and a first estimate
- Estimates for discontinuous Galerkin methods
- Estimates for finite volume methods
- **Complements**
- Conclusions and future work

A convection–diffusion–reaction problem with general boundary conditions

Problem

$$\begin{aligned} -\nabla \cdot (\mathbf{S} \nabla p) + \nabla \cdot (p \mathbf{w}) + rp &= f & \text{in } \Omega, \\ p &= g & \text{on } \Gamma_{\mathrm{D}}, \\ -\mathbf{S} \nabla p \cdot \mathbf{n} &= u & \text{on } \Gamma_{\mathrm{N}} \end{aligned}$$

Assumptions

• $\Omega \subset \mathbb{R}^d$, d = 2, 3, is a polygonal domain

- S|_K is a constant SPD matrix, c_{S,K} its smallest, and C_{S,K} its largest eigenvalue on each K ∈ T_h
- $(\frac{1}{2}\nabla \cdot \mathbf{w} + r)|_{K} \ge c_{\mathbf{w},r,K} \ge 0$ on each $K \in \mathcal{T}_{h}$ (from pure diffusion to convection–diffusion–reaction cases)

Difficulties

- S is a piecewise constant matrix, inhomogeneous and anisotropic
- w is dominating

A convection–diffusion–reaction problem with general boundary conditions

Problem

$$\begin{aligned} -\nabla \cdot (\mathbf{S} \nabla p) + \nabla \cdot (p \mathbf{w}) + rp &= f & \text{in } \Omega, \\ p &= g & \text{on } \Gamma_{\mathrm{D}}, \\ -\mathbf{S} \nabla p \cdot \mathbf{n} &= u & \text{on } \Gamma_{\mathrm{N}} \end{aligned}$$

Assumptions

- $\Omega \subset \mathbb{R}^d$, d = 2, 3, is a polygonal domain
- S|_K is a constant SPD matrix, c_{S,K} its smallest, and C_{S,K} its largest eigenvalue on each K ∈ T_h
- $(\frac{1}{2}\nabla \cdot \mathbf{w} + r)|_{\mathcal{K}} \ge c_{\mathbf{w},r,\mathcal{K}} \ge 0$ on each $\mathcal{K} \in \mathcal{T}_h$ (from pure diffusion to convection–diffusion–reaction cases)

Difficulties

- S is a piecewise constant matrix, inhomogeneous and anisotropic
- w is dominating

A convection–diffusion–reaction problem with general boundary conditions

Problem

$$\begin{aligned} -\nabla \cdot (\mathbf{S} \nabla p) + \nabla \cdot (p \mathbf{w}) + rp &= f & \text{in } \Omega, \\ p &= g & \text{on } \Gamma_{\mathrm{D}}, \\ -\mathbf{S} \nabla p \cdot \mathbf{n} &= u & \text{on } \Gamma_{\mathrm{N}} \end{aligned}$$

Assumptions

- $\Omega \subset \mathbb{R}^d$, d = 2, 3, is a polygonal domain
- S|_K is a constant SPD matrix, c_{S,K} its smallest, and C_{S,K} its largest eigenvalue on each K ∈ T_h
- $(\frac{1}{2}\nabla \cdot \mathbf{w} + r)|_{\mathcal{K}} \ge c_{\mathbf{w},r,\mathcal{K}} \ge 0$ on each $\mathcal{K} \in \mathcal{T}_h$ (from pure diffusion to convection–diffusion–reaction cases)

Difficulties

- S is a piecewise constant matrix, inhomogeneous and anisotropic
- w is dominating

Bilinear form, weak solution, and energy norm

Definition (Bilinear form \mathcal{B})

We define a bilinear form \mathcal{B} for $p, \varphi \in H^1(\mathcal{T}_h)$ by

$$\mathcal{B}(\boldsymbol{p}, arphi) := \sum_{K \in \mathcal{T}_h} \left\{ (\mathbf{S}
abla \boldsymbol{p},
abla arphi)_K + (
abla \cdot (\mathbf{w} \boldsymbol{p}), arphi)_K + (\boldsymbol{r} \boldsymbol{p}, arphi)_K
ight\}.$$

Definition (Weak solution)

Weak solution: $p \in H^1(\Omega)$ with $p|_{\Gamma_D} = g$ such that $\mathcal{B}(p, \varphi) = (f, \varphi) - \langle u, \varphi \rangle_{\Gamma_N} \quad \forall \varphi \in H^1_D(\Omega)$

Definition (Energy (semi-)norm)

We define the energy (semi-)norm for $\varphi \in H^1(\mathcal{T}_h)$ by

 $|||\varphi|||^{2} := \sum_{K \in \mathcal{T}_{h}} |||\varphi|||_{K}^{2}, |||\varphi|||_{K}^{2} := \left\|\mathbf{S}^{\frac{1}{2}} \nabla \varphi\right\|_{K}^{2} + \left\|\left(\frac{1}{2} \nabla \cdot \mathbf{w} + r\right)^{\frac{1}{2}} \varphi\right\|_{K}^{2}.$

Bilinear form, weak solution, and energy norm

Definition (Bilinear form \mathcal{B})

We define a bilinear form \mathcal{B} for $p, \varphi \in H^1(\mathcal{T}_h)$ by

$$\mathcal{B}(oldsymbol{
ho},arphi) := \sum_{K\in\mathcal{T}_h} ig\{ (oldsymbol{S}
abla oldsymbol{
ho},
abla arphi)_K + (
abla \cdot oldsymbol{
ho}, arphi)_K + (r oldsymbol{
ho}, arphi)_K ig\}.$$

Definition (Weak solution)

Weak solution:
$$p \in H^1(\Omega)$$
 with $p|_{\Gamma_D} = g$ such that
 $\mathcal{B}(p, \varphi) = (f, \varphi) - \langle u, \varphi \rangle_{\Gamma_N} \quad \forall \varphi \in H^1_D(\Omega).$

Definition (Energy (semi-)norm)

We define the energy (semi-)norm for $\varphi \in H^1(\mathcal{T}_h)$ by

 $|||\varphi|||^{2} := \sum_{K \in \mathcal{T}_{h}} |||\varphi|||_{K}^{2}, |||\varphi|||_{K}^{2} := \left\|\mathbf{S}^{\frac{1}{2}} \nabla \varphi\right\|_{K}^{2} + \left\|\left(\frac{1}{2} \nabla \cdot \mathbf{w} + r\right)^{\frac{1}{2}} \varphi\right\|_{K}^{2}.$

Bilinear form, weak solution, and energy norm

Definition (Bilinear form \mathcal{B})

We define a bilinear form \mathcal{B} for $p, \varphi \in H^1(\mathcal{T}_h)$ by

$$\mathcal{B}(oldsymbol{
ho},arphi) := \sum_{K\in\mathcal{T}_h} \left\{ (\mathbf{S}
abla oldsymbol{
ho},
abla arphi)_K + (
abla \cdot (\mathbf{w} oldsymbol{
ho}), arphi)_K + (r oldsymbol{
ho}, arphi)_K
ight\}.$$

Definition (Weak solution)

Weak solution: $p \in H^1(\Omega)$ with $p|_{\Gamma_D} = g$ such that $\mathcal{B}(p, \varphi) = (f, \varphi) - \langle u, \varphi \rangle_{\Gamma_N} \quad \forall \varphi \in H^1_D(\Omega).$

Definition (Energy (semi-)norm)

We define the energy (semi-)norm for $\varphi \in H^1(\mathcal{T}_h)$ by

$$|||\varphi|||^{2} := \sum_{K \in \mathcal{T}_{h}} |||\varphi|||_{K}^{2}, |||\varphi|||_{K}^{2} := \left\|\mathbf{S}^{\frac{1}{2}}\nabla\varphi\right\|_{K}^{2} + \left\|\left(\frac{1}{2}\nabla \cdot \mathbf{w} + r\right)^{\frac{1}{2}}\varphi\right\|_{K}^{2}.$$

General finite volume scheme

Definition (FV scheme for $-\nabla \cdot (\mathbf{S} \nabla p) + \nabla \cdot (p\mathbf{w}) + rp = f$)

Find p_K , $K \in T_h$, such that

$$\sum_{\sigma\in\mathcal{E}_{K}}S_{K,\sigma}+\sum_{\sigma\in\mathcal{E}_{K}}W_{K,\sigma}+r_{K}p_{K}|K|=f_{K}|K|\qquad\forall K\in\mathcal{T}_{h}.$$

•
$$S_{K,\sigma}$$
: diffusive flux
 $W_{K,\sigma}$: convective flux

no specific form, ust conservativity needed

- $r_K := (r, 1)/|K|$
- $f_K := (f, 1)/|K|$

Example

•
$$S_{K,\sigma} = -s_{K,L} \frac{|\sigma_{K,L}|}{d_{K,L}} (p_L - p_K)$$

• $W_{K,\sigma} = p_{\sigma} \langle \mathbf{w} \cdot \mathbf{n}, 1 \rangle_{\sigma}$: weighted-upwind

General finite volume scheme

Definition (FV scheme for $-\nabla \cdot (\mathbf{S} \nabla p) + \nabla \cdot (p\mathbf{w}) + rp = f$)

Find p_K , $K \in T_h$, such that

$$\sum_{\sigma\in\mathcal{E}_{K}}S_{K,\sigma}+\sum_{\sigma\in\mathcal{E}_{K}}W_{K,\sigma}+r_{K}p_{K}|K|=f_{K}|K|\qquad\forall K\in\mathcal{T}_{h}.$$

•
$$S_{K,\sigma}$$
: diffusive flux
 $W_{K,\sigma}$: convective flux $just$ conservativity needed
• $r_K := (r, 1)/|K|$
• $f_K := (f, 1)/|K|$

Example

•
$$S_{K,\sigma} = -s_{K,L} \frac{|\sigma_{K,L}|}{d_{K,L}} (p_L - p_K)$$

• $W_{K,\sigma} = p_{\sigma} \langle \mathbf{w} \cdot \mathbf{n}, 1 \rangle_{\sigma}$: weighted-upwind

General finite volume scheme

Definition (FV scheme for $-\nabla \cdot (\mathbf{S} \nabla p) + \nabla \cdot (p\mathbf{w}) + rp = f$)

Find p_K , $K \in T_h$, such that

$$\sum_{\sigma\in\mathcal{E}_{K}}S_{K,\sigma}+\sum_{\sigma\in\mathcal{E}_{K}}W_{K,\sigma}+r_{K}p_{K}|K|=f_{K}|K|\qquad\forall K\in\mathcal{T}_{h}.$$

Example

•
$$S_{K,\sigma} = -s_{K,L} \frac{|\sigma_{K,L}|}{d_{K,L}} (p_L - p_K)$$

•
$$W_{K,\sigma} = p_{\sigma} \langle \mathbf{w} \cdot \mathbf{n}, 1 \rangle_{\sigma}$$
: weighted-upwind

Definition (Postprocessed scalar variable \tilde{p}_h)

We define \tilde{p}_h such that, separately on each $K \in \mathcal{T}_h$,

$$\begin{aligned} -\nabla \cdot (\mathbf{S} \nabla p_h) &= \frac{1}{|\mathcal{K}|} \sum_{\sigma \in \mathcal{E}_K} S_{K,\sigma}, \\ (1 - \mu_K) (\tilde{p}_h, 1)_K / |\mathcal{K}| + \mu_K \tilde{p}_h(\mathbf{x}_K) &= p_K, \\ -\mathbf{S} \nabla \tilde{p}_h|_K \cdot \mathbf{n} &= S_{K,\sigma} / |\sigma| \quad \forall \sigma \in \mathcal{E}_K. \end{aligned}$$

- \tilde{p}_h exists and is unique
- flux of \tilde{p}_h is given by $S_{K,\sigma}$, point or mean value by p_K
- $\tilde{p}_h \notin H^1(\Omega)$, only $\in H^1(\mathcal{T}_h)$ in general
- $-\mathbf{S}\nabla \tilde{p}_h \in \mathbf{H}(\operatorname{div}, \Omega) \Rightarrow \operatorname{put} \mathbf{t}_h = -\mathbf{S}\nabla \tilde{p}_h$ in the gen. fram.
- given on T_h , no need for a dual mesh
- for simplices or rectangular parallelepipeds when S is diagonal: p
 p b i s a piecewise second-order polynomial

Definition (Postprocessed scalar variable \tilde{p}_h)

We define \tilde{p}_h such that, separately on each $K \in \mathcal{T}_h$,

$$(1 - \mu_{K})(\tilde{p}_{h}, 1)_{K}/|K| + \mu_{K}\tilde{p}_{h}(\mathbf{x}_{K}) = p_{K},$$

$$-\mathbf{S}\nabla\tilde{p}_{h}|_{K} \cdot \mathbf{n} = S_{K,\sigma}/|\sigma| \quad \forall \sigma \in \mathcal{E}_{K}.$$

 $-\nabla \cdot (\mathbf{S} \nabla \tilde{\mathbf{p}}_{t}) = \frac{1}{2} \nabla \mathbf{c}_{t}$

- \tilde{p}_h exists and is unique
- flux of \tilde{p}_h is given by $S_{K,\sigma}$, point or mean value by p_K
- $\tilde{p}_h \notin H^1(\Omega)$, only $\in H^1(\mathcal{T}_h)$ in general
- $-\mathbf{S}\nabla \tilde{p}_h \in \mathbf{H}(\operatorname{div}, \Omega) \Rightarrow \operatorname{put} \mathbf{t}_h = -\mathbf{S}\nabla \tilde{p}_h$ in the gen. fram.
- given on T_h , no need for a dual mesh
- for simplices or rectangular parallelepipeds when S is diagonal: p
 p b i s a piecewise second-order polynomial

Definition (Postprocessed scalar variable \tilde{p}_h)

We define \tilde{p}_h such that, separately on each $K \in T_h$,

$$\begin{aligned} -\nabla \cdot (\mathbf{S} \nabla p_h) &= \frac{1}{|K|} \sum_{\sigma \in \mathcal{E}_K} S_{K,\sigma}, \\ (1 - \mu_K) (\tilde{p}_h, 1)_K / |K| + \mu_K \tilde{p}_h(\mathbf{x}_K) &= p_K, \\ -\mathbf{S} \nabla \tilde{p}_h|_K \cdot \mathbf{n} &= S_{K,\sigma} / |\sigma| \quad \forall \sigma \in \mathcal{E}_K. \end{aligned}$$

- \tilde{p}_h exists and is unique
- flux of \tilde{p}_h is given by $S_{K,\sigma}$, point or mean value by p_K
- $\tilde{p}_h \notin H^1(\Omega)$, only $\in H^1(\mathcal{T}_h)$ in general
- $-\mathbf{S}\nabla \tilde{p}_h \in \mathbf{H}(\operatorname{div}, \Omega) \Rightarrow \operatorname{put} \mathbf{t}_h = -\mathbf{S}\nabla \tilde{p}_h$ in the gen. fram.
- given on T_h , no need for a dual mesh
- for simplices or rectangular parallelepipeds when S is diagonal: p
 μ is a piecewise second-order polynomial

Definition (Postprocessed scalar variable \tilde{p}_h)

We define \tilde{p}_h such that, separately on each $K \in T_h$,

$$\begin{aligned} -\nabla \cdot (\mathbf{S} \nabla p_h) &= \frac{1}{|K|} \sum_{\sigma \in \mathcal{E}_K} S_{K,\sigma}, \\ (1 - \mu_K) (\tilde{p}_h, 1)_K / |K| + \mu_K \tilde{p}_h(\mathbf{x}_K) &= p_K, \\ -\mathbf{S} \nabla \tilde{p}_h|_K \cdot \mathbf{n} &= S_{K,\sigma} / |\sigma| \quad \forall \sigma \in \mathcal{E}_K. \end{aligned}$$

- \tilde{p}_h exists and is unique
- flux of \tilde{p}_h is given by $S_{K,\sigma}$, point or mean value by p_K
- $\tilde{\rho}_h \notin H^1(\Omega)$, only $\in H^1(\tilde{T}_h)$ in general
- $-\mathbf{S}\nabla \tilde{p}_h \in \mathbf{H}(\operatorname{div}, \Omega) \Rightarrow \operatorname{put} \mathbf{t}_h = -\mathbf{S}\nabla \tilde{p}_h$ in the gen. fram.
- given on T_h , no need for a dual mesh
- for simplices or rectangular parallelepipeds when S is diagonal: p
 μ is a piecewise second-order polynomial

Definition (Postprocessed scalar variable \tilde{p}_h)

We define \tilde{p}_h such that, separately on each $K \in \mathcal{T}_h$,

$$\begin{aligned} -\nabla \cdot (\mathbf{S} \nabla \boldsymbol{p}_h) &= \overline{|K|} \sum_{\sigma \in \mathcal{E}_K} S_{K,\sigma}, \\ (1 - \mu_K) (\tilde{\boldsymbol{p}}_h, 1)_K / |K| + \mu_K \tilde{\boldsymbol{p}}_h(\mathbf{x}_K) &= \boldsymbol{p}_K, \\ -\mathbf{S} \nabla \tilde{\boldsymbol{p}}_h|_K \cdot \mathbf{n} &= S_{K,\sigma} / |\sigma| \quad \forall \sigma \in \mathcal{E}_K. \end{aligned}$$

- \tilde{p}_h exists and is unique
- flux of \tilde{p}_h is given by $S_{K,\sigma}$, point or mean value by p_K
- $\tilde{\rho}_h \notin H^1(\Omega)$, only $\in H^1(\mathcal{T}_h)$ in general
- $-\mathbf{S}\nabla\tilde{\rho}_h \in \mathbf{H}(\operatorname{div},\Omega) \Rightarrow \operatorname{put} \mathbf{t}_h = -\mathbf{S}\nabla\tilde{\rho}_h$ in the gen. fram.
- given on T_h , no need for a dual mesh
- for simplices or rectangular parallelepipeds when **S** is diagonal: \tilde{p}_h is a piecewise second-order polynomial

Definition (Postprocessed scalar variable \tilde{p}_h)

We define \tilde{p}_h such that, separately on each $K \in T_h$,

$$\begin{aligned} -\nabla \cdot (\mathbf{S} \nabla p_h) &= \frac{1}{|\mathcal{K}|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} S_{\mathcal{K},\sigma}, \\ (1 - \mu_{\mathcal{K}})(\tilde{p}_h, 1)_{\mathcal{K}}/|\mathcal{K}| + \mu_{\mathcal{K}} \tilde{p}_h(\mathbf{x}_{\mathcal{K}}) &= p_{\mathcal{K}}, \\ -\mathbf{S} \nabla \tilde{p}_h|_{\mathcal{K}} \cdot \mathbf{n} &= S_{\mathcal{K},\sigma}/|\sigma| \quad \forall \sigma \in \mathcal{E}_{\mathcal{K}}. \end{aligned}$$

- \tilde{p}_h exists and is unique
- flux of \tilde{p}_h is given by $S_{K,\sigma}$, point or mean value by p_K
- $\tilde{\rho}_h \notin H^1(\Omega)$, only $\in H^1(\mathcal{T}_h)$ in general
- $-\mathbf{S}\nabla\tilde{p}_h \in \mathbf{H}(\operatorname{div},\Omega) \Rightarrow \operatorname{put} \mathbf{t}_h = -\mathbf{S}\nabla\tilde{p}_h$ in the gen. fram.
- given on T_h , no need for a dual mesh
- for simplices or rectangular parallelepipeds when **S** is diagonal: \tilde{p}_h is a piecewise second-order polynomial

Definition (Postprocessed scalar variable \tilde{p}_h)

We define \tilde{p}_h such that, separately on each $K \in \mathcal{T}_h$,

$$\begin{aligned} -\nabla \cdot (\mathbf{S} \nabla \tilde{p}_h) &= \frac{1}{|\mathcal{K}|} \sum_{\sigma \in \mathcal{E}_K} S_{\mathcal{K},\sigma}, \\ (1 - \mu_{\mathcal{K}}) (\tilde{p}_h, 1)_{\mathcal{K}} / |\mathcal{K}| + \mu_{\mathcal{K}} \tilde{p}_h(\mathbf{x}_{\mathcal{K}}) &= p_{\mathcal{K}}, \\ -\mathbf{S} \nabla \tilde{p}_h|_{\mathcal{K}} \cdot \mathbf{n} &= S_{\mathcal{K},\sigma} / |\sigma| \quad \forall \sigma \in \mathcal{E}_{\mathcal{K}}. \end{aligned}$$

- \tilde{p}_h exists and is unique
- flux of \tilde{p}_h is given by $S_{K,\sigma}$, point or mean value by p_K
- $\tilde{\rho}_h \notin H^1(\Omega)$, only $\in H^1(\mathcal{T}_h)$ in general
- $-\mathbf{S}\nabla\tilde{\rho}_h \in \mathbf{H}(\operatorname{div},\Omega) \Rightarrow \operatorname{put} \mathbf{t}_h = -\mathbf{S}\nabla\tilde{\rho}_h$ in the gen. fram.
- given on T_h , no need for a dual mesh
- for simplices or rectangular parallelepipeds when S is diagonal: p

 h is a piecewise second-order polynomial

A post. estimate for $-\nabla \cdot (\mathbf{S} \nabla p) + \nabla \cdot (p\mathbf{w}) + rp = f$

Theorem (A posteriori error estimate)

There holds
$$|||\boldsymbol{p}-\tilde{\boldsymbol{p}}_{h}||| \leq \left\{\sum_{K\in\mathcal{T}_{h}}\eta_{\mathrm{NC},K}^{2}\right\}^{\frac{1}{2}} + \left\{\sum_{K\in\mathcal{T}_{h}}(\eta_{\mathrm{R},K}+\eta_{\mathrm{C},K}+\eta_{\mathrm{U},K}+\eta_{\mathrm{RQ},K}+\eta_{\mathrm{\Gamma}_{\mathrm{N}},K})^{2}\right\}^{\frac{1}{2}}.$$

nonconformity estimator

- $\eta_{\mathrm{NC},K} := |||\tilde{p}_h \mathcal{I}_{\mathrm{Os}}(\tilde{p}_h)||_K$
- $\mathcal{I}_{Os}(\tilde{p}_h)$: Oswald int. operator (Burman and Ern '07)
- residual estimator

•
$$\eta_{\mathbf{R},K} := m_K \| f + \nabla \cdot (\mathbf{S}_K \nabla \tilde{p}_h) - \nabla \cdot (\tilde{p}_h \mathbf{w}) - r \tilde{p}_h \|_K$$

• $m_K^2 := \min \left\{ C_{\mathrm{P}} \frac{h_K^2}{c_{\mathrm{S},K}}, \frac{1}{c_{\mathrm{w},r,K}} \right\}$

•
$$\eta_{\mathrm{C},K} := \min\left\{\frac{\|\nabla \cdot (vw) - \frac{1}{2}v \nabla \cdot w\|_{K} + \|\nabla \cdot (vw)\|_{K}}{\sqrt{c_{w,r,K}}}, \left(\frac{c_{\mathrm{P}}h_{K}^{2} \|\nabla v \cdot w\|_{K}^{2}}{c_{\mathrm{S},K}} + \frac{9\|v \nabla \cdot w\|_{K}^{2}}{4c_{w,r,K}}\right)^{\frac{1}{2}}\right\}$$

• $v = \tilde{p}_{h} - \mathcal{I}_{\mathrm{Os}}(\tilde{p}_{h})$

A post. estimate for $-\nabla \cdot (\mathbf{S} \nabla p) + \nabla \cdot (p\mathbf{w}) + rp = f$

Theorem (A posteriori error estimate)

There holds
$$|||\boldsymbol{p}-\tilde{\boldsymbol{p}}_{h}||| \leq \left\{\sum_{K\in\mathcal{T}_{h}}\eta_{\mathrm{NC},K}^{2}\right\}^{\frac{1}{2}} + \left\{\sum_{K\in\mathcal{T}_{h}}(\eta_{\mathrm{R},K}+\eta_{\mathrm{C},K}+\eta_{\mathrm{U},K}+\eta_{\mathrm{RQ},K}+\eta_{\Gamma_{\mathrm{N}},K})^{2}\right\}^{\frac{1}{2}}.$$

nonconformity estimator

- $\eta_{\mathrm{NC},K} := |||\tilde{\rho}_h \mathcal{I}_{\mathrm{Os}}(\tilde{\rho}_h)||_{K}$
- $\mathcal{I}_{Os}(\tilde{p}_h)$: Oswald int. operator (Burman and Ern '07)
- residual estimator

•
$$\eta_{\mathrm{R},\mathrm{K}} := m_{\mathrm{K}} \| f + \nabla \cdot (\mathbf{S}_{\mathrm{K}} \nabla \tilde{p}_h) - \nabla \cdot (\tilde{p}_h \mathbf{w}) - r \tilde{p}_h \|_{\mathrm{K}}$$

•
$$m_K^2 := \min\left\{C_{\mathrm{P}}\frac{h_K^2}{c_{\mathbf{S},K}}, \frac{1}{c_{\mathbf{w},r,K}}\right\}$$

•
$$\eta_{\mathrm{C},K} := \min\left\{\frac{\|\nabla \cdot (\mathbf{v}\mathbf{w}) - \frac{1}{2}\mathbf{v}\nabla \cdot \mathbf{w}\|_{K} + \|\nabla \cdot (\mathbf{v}\mathbf{w})\|_{K}}{\sqrt{c_{\mathbf{w},r,K}}}, \left(\frac{c_{\mathrm{P}}h_{K}^{2}\|\nabla \cdot \mathbf{w}\|_{K}^{2}}{c_{\mathrm{S},K}} + \frac{9\|\mathbf{v}\nabla \cdot \mathbf{w}\|_{K}^{2}}{4c_{\mathbf{w},r,K}}\right)^{\frac{1}{2}}\right\}$$

• $\mathbf{v} = \tilde{p}_{h} - \mathcal{I}_{\mathrm{Os}}(\tilde{p}_{h})$

A post. estimate for $-\nabla \cdot (\mathbf{S} \nabla p) + \nabla \cdot (p\mathbf{w}) + rp = f$

Theorem (A posteriori error estimate)

There holds
$$|||\boldsymbol{p}-\tilde{\boldsymbol{p}}_{h}||| \leq \left\{\sum_{K\in\mathcal{T}_{h}}\eta_{\mathrm{NC},K}^{2}\right\}^{\frac{1}{2}} + \left\{\sum_{K\in\mathcal{T}_{h}}(\eta_{\mathrm{R},K}+\eta_{\mathrm{C},K}+\eta_{\mathrm{U},K}+\eta_{\mathrm{RQ},K}+\eta_{\Gamma_{\mathrm{N}},K})^{2}\right\}^{\frac{1}{2}}.$$

nonconformity estimator

- $\eta_{\mathrm{NC},K} := |||\tilde{p}_h \mathcal{I}_{\mathrm{Os}}(\tilde{p}_h)||_K$
- $\mathcal{I}_{Os}(\tilde{p}_h)$: Oswald int. operator (Burman and Ern '07)

residual estimator

•
$$\eta_{\mathsf{R},\mathsf{K}} := m_{\mathsf{K}} \| f + \nabla \cdot (\mathbf{S}_{\mathsf{K}} \nabla \tilde{p}_h) - \nabla \cdot (\tilde{p}_h \mathbf{w}) - r \tilde{p}_h \|_{\mathsf{K}}$$

• $m_{\mathsf{K}}^2 := \min \left\{ C_{\mathsf{P}} \frac{h_{\mathsf{K}}^2}{c_{\mathbf{S},\mathsf{K}}}, \frac{1}{c_{\mathbf{w},r,\mathsf{K}}} \right\}$

•
$$\eta_{C,K} := \min\left\{\frac{\|\nabla \cdot (vw) - \frac{1}{2}v\nabla \cdot w\|_{K} + \|\nabla \cdot (vw)\|_{K}}{\sqrt{c_{w,r,K}}}, \left(\frac{C_{P}h_{K}^{2}\|\nabla \cdot w\|_{K}^{2}}{c_{S,K}} + \frac{9\|v\nabla \cdot w\|_{K}^{2}}{4c_{w,r,K}}\right)^{\frac{1}{2}}\right\}$$

• $v = \tilde{p}_{h} - \mathcal{I}_{Os}(\tilde{p}_{h})$

A post. estimate for $-\nabla \cdot (\mathbf{S} \nabla p) + \nabla \cdot (p\mathbf{w}) + rp = f$

Theorem (A posteriori error estimate)

There holds
$$|||\boldsymbol{p}-\tilde{\boldsymbol{p}}_{h}||| \leq \left\{\sum_{K\in\mathcal{T}_{h}}\eta_{\mathrm{NC},K}^{2}\right\}^{\frac{1}{2}} + \left\{\sum_{K\in\mathcal{T}_{h}}(\eta_{\mathrm{R},K}+\eta_{\mathrm{C},K}+\eta_{\mathrm{U},K}+\eta_{\mathrm{RQ},K}+\eta_{\Gamma_{\mathrm{N}},K})^{2}\right\}^{\frac{1}{2}}.$$

nonconformity estimator

- $\eta_{\mathrm{NC},K} := |||\tilde{\rho}_h \mathcal{I}_{\mathrm{Os}}(\tilde{\rho}_h)||_K$
- $\mathcal{I}_{Os}(\tilde{p}_h)$: Oswald int. operator (Burman and Ern '07)

residual estimator

•
$$\eta_{\mathrm{R},\mathrm{K}} := m_{\mathrm{K}} ||f + \nabla \cdot (\mathbf{S}_{\mathrm{K}} \nabla \tilde{p}_{h}) - \nabla \cdot (\tilde{p}_{h} \mathbf{w}) - r \tilde{p}_{h}||_{\mathrm{K}}$$

• $m_{\mathrm{K}}^{2} := \min \left\{ C_{\mathrm{P}} \frac{h_{\mathrm{K}}^{2}}{c_{\mathrm{S},\mathrm{K}}}, \frac{1}{c_{\mathrm{w},\mathrm{r},\mathrm{K}}} \right\}$

•
$$\eta_{\mathrm{C},\mathrm{K}} := \min\left\{\frac{\|\nabla \cdot (v\mathbf{w}) - \frac{1}{2}v\nabla \cdot \mathbf{w}\|_{\mathrm{K}} + \|\nabla \cdot (v\mathbf{w})\|_{\mathrm{K}}}{\sqrt{c_{\mathbf{w},\mathrm{r},\mathrm{K}}}}, \left(\frac{c_{\mathrm{P}}h_{\mathrm{K}}^{2}\|\nabla v \cdot \mathbf{w}\|_{\mathrm{K}}^{2}}{c_{\mathrm{S},\mathrm{K}}} + \frac{9\|v\nabla \cdot \mathbf{w}\|_{\mathrm{K}}^{2}}{4c_{\mathbf{w},\mathrm{r},\mathrm{K}}}\right)^{\frac{1}{2}}\right\}$$

• $v = \tilde{p}_{h} - \mathcal{I}_{\mathrm{Os}}(\tilde{p}_{h})$

A post. estimate for $-\nabla \cdot (\mathbf{S} \nabla p) + \nabla \cdot (p \mathbf{w}) + rp = f$

upwinding estimator

- $\eta_{\mathrm{U},\mathrm{K}} := \sum_{\sigma \in \mathcal{E}_{\mathrm{K}} \setminus \mathcal{E}_{h}^{\mathrm{N}}} m_{\sigma} \| (W_{\mathrm{K},\sigma} \langle \mathcal{I}_{\mathrm{Os}}^{\mathrm{\Gamma}}(\tilde{p}_{h}) \mathbf{w} \cdot \mathbf{n}, 1 \rangle_{\sigma}) |\sigma|^{-1} \|_{\sigma}$
- $W_{K,\sigma} = p_{\sigma} \langle \mathbf{w} \cdot \mathbf{n}, 1 \rangle_{\sigma}$: weighted-upwind
- m_{σ} : function of $c_{\mathbf{S},K}$, $c_{\mathbf{w},r,K} = (\frac{1}{2}\nabla \cdot \mathbf{w} + r)|_{K}$, $d, h_{K}, |\sigma|, |K|$
- all dependencies evaluated explicitly
- reaction quadrature estimator
 - $\eta_{\mathrm{RQ},K} := \frac{1}{\sqrt{c_{\mathrm{w},r,K}}} \| r_K p_K (r \tilde{p}_h, 1)_K |K|^{-1} \|_K$
 - disappears when *r* pw constant and \tilde{p}_h fixed by mean
- Neumann boundary estimator

•
$$\eta_{\Gamma_{\mathbb{N}},\mathcal{K}} := 0 + \frac{\sqrt{h_{\mathcal{K}}}}{\sqrt{c_{\mathbf{S},\mathcal{K}}}} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}} \cap \mathcal{E}_{h}^{\mathbb{N}}} \sqrt{C_{\mathbf{I},\mathcal{K},\sigma}} \|u_{\sigma} - u\|_{\sigma}$$

A post. estimate for $-\nabla \cdot (\mathbf{S} \nabla p) + \nabla \cdot (p \mathbf{w}) + rp = f$

upwinding estimator

- $\eta_{\mathrm{U},\mathrm{K}} := \sum_{\sigma \in \mathcal{E}_{\mathrm{K}} \setminus \mathcal{E}_{h}^{\mathrm{N}}} m_{\sigma} \| (W_{\mathrm{K},\sigma} \langle \mathcal{I}_{\mathrm{Os}}^{\mathrm{\Gamma}}(\tilde{p}_{h}) \mathbf{w} \cdot \mathbf{n}, 1 \rangle_{\sigma}) |\sigma|^{-1} \|_{\sigma}$
- $W_{K,\sigma} = \rho_{\sigma} \langle \mathbf{w} \cdot \mathbf{n}, 1 \rangle_{\sigma}$: weighted-upwind
- m_{σ} : function of $c_{\mathbf{S},K}$, $c_{\mathbf{w},r,K} = (\frac{1}{2}\nabla \cdot \mathbf{w} + r)|_{K}$, $d, h_{K}, |\sigma|, |K|$
- all dependencies evaluated explicitly
- reaction quadrature estimator
 - $\eta_{\mathrm{RQ},K} := \frac{1}{\sqrt{c_{\mathbf{w},r,K}}} \| r_K p_K (r \tilde{p}_h, 1)_K |K|^{-1} \|_K$
 - disappears when r pw constant and \tilde{p}_h fixed by mean
- Neumann boundary estimator

•
$$\eta_{\Gamma_{\mathbb{N}},\mathcal{K}} := 0 + \frac{\sqrt{h_{\mathcal{K}}}}{\sqrt{c_{\mathbf{S},\mathcal{K}}}} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}} \cap \mathcal{E}_{h}^{\mathbb{N}}} \sqrt{C_{\mathfrak{l},\mathcal{K},\sigma}} \|u_{\sigma} - u\|_{\sigma}$$

A post. estimate for $-\nabla \cdot (\mathbf{S} \nabla p) + \nabla \cdot (p\mathbf{w}) + rp = f$

upwinding estimator

- $\eta_{\mathrm{U},\mathrm{K}} := \sum_{\sigma \in \mathcal{E}_{\mathrm{K}} \setminus \mathcal{E}_{h}^{\mathrm{N}}} m_{\sigma} \| (W_{\mathrm{K},\sigma} \langle \mathcal{I}_{\mathrm{Os}}^{\mathrm{\Gamma}}(\tilde{p}_{h}) \mathbf{w} \cdot \mathbf{n}, 1 \rangle_{\sigma}) |\sigma|^{-1} \|_{\sigma}$
- $W_{K,\sigma} = p_{\sigma} \langle \mathbf{w} \cdot \mathbf{n}, 1 \rangle_{\sigma}$: weighted-upwind
- m_{σ} : function of $c_{\mathbf{S},K}$, $c_{\mathbf{w},r,K} = \left(\frac{1}{2}\nabla \cdot \mathbf{w} + r\right)|_{K}$, $d, h_{K}, |\sigma|, |K|$
- all dependencies evaluated explicitly
- reaction quadrature estimator
 - $\eta_{\mathrm{RQ},K} := \frac{1}{\sqrt{c_{\mathbf{w},r,K}}} \| r_K p_K (r \tilde{p}_h, 1)_K |K|^{-1} \|_K$
 - disappears when r pw constant and \tilde{p}_h fixed by mean
- Neumann boundary estimator

•
$$\eta_{\Gamma_{\mathrm{N}},K} := \mathbf{0} + \frac{\sqrt{h_{K}}}{\sqrt{c_{\mathbf{S},K}}} \sum_{\sigma \in \mathcal{E}_{K} \cap \mathcal{E}_{h}^{\mathrm{N}}} \sqrt{C_{\mathbf{t},K,\sigma}} \|u_{\sigma} - u\|_{\sigma}$$

Loc. efficiency for $-\nabla \cdot (\mathbf{S} \nabla p) + \nabla \cdot (p \mathbf{w}) + rp = f$

Theorem (Local efficiency of the residual estimator)

There holds $\eta_{R,K} \leq$

$$|||p - \tilde{p}_{h}|||_{\mathcal{K}} C\left\{\sqrt{\frac{C_{\mathbf{S},\mathcal{K}}}{c_{\mathbf{S},\mathcal{K}}}}\max\left\{1,\frac{C_{\mathbf{w},r,\mathcal{K}}}{c_{\mathbf{w},r,\mathcal{K}}}\right\} + \min\left\{\operatorname{Pe}_{\mathcal{K}},\sqrt{\frac{C_{\mathbf{S},\mathcal{K}}}{c_{\mathbf{S},\mathcal{K}}}}\varrho_{\mathcal{K}}\right\}\right\}.$$

 residual estimator is locally efficient (lower bound for error on K) and semi-robust (C_{eff,K} depends on local anisotropies and affinely on Pe_K)

• $C_{\mathrm{eff},K}$:

- *C* independent of h_K , **S**, **w**, and *r*
- no dependency on inhomogeneities
- $\frac{C_{w,r,K}}{C_{w,r,K}} \leq 2$ for *r* nonnegative
- $C_{\text{eff},K}$ depends affinely on Pe_K
- *ρ*_K := |w|_K|/<sub>√C_{w,r,K} prevents C_{eff,K} from exploding in convection-dominated cases on rough grids

 </sub>

M. Vohralík A posteriori error estimates in numerical approximation of PDEs

Loc. efficiency for $-\nabla \cdot (\mathbf{S} \nabla p) + \nabla \cdot (p \mathbf{w}) + rp = f$

Theorem (Local efficiency of the residual estimator)

There holds $\eta_{R,K} \leq$

$$|||p - \tilde{p}_{h}|||_{\mathcal{K}} C\left\{\sqrt{\frac{C_{\mathbf{S},\mathcal{K}}}{c_{\mathbf{S},\mathcal{K}}}}\max\left\{1,\frac{C_{\mathbf{w},r,\mathcal{K}}}{c_{\mathbf{w},r,\mathcal{K}}}\right\} + \min\left\{\operatorname{Pe}_{\mathcal{K}},\sqrt{\frac{C_{\mathbf{S},\mathcal{K}}}{c_{\mathbf{S},\mathcal{K}}}}\varrho_{\mathcal{K}}\right\}\right\}.$$

- residual estimator is locally efficient (lower bound for error on *K*) and semi-robust (C_{eff,K} depends on local anisotropies and affinely on Pe_K)
- *C*_{eff,*K*}:
 - C independent of h_K , S, w, and r
 - no dependency on inhomogeneities
 - $\frac{C_{\mathbf{w},r,K}}{c_{\mathbf{w},r,K}} \leq 2$ for *r* nonnegative
 - $C_{\text{eff},K}$ depends affinely on Pe_K
 - *ρ*_K := |w|_K|/<sub>√C_{w,r,K} prevents C_{eff,K} from exploding in convection-dominated cases on rough grids

 </sub>

Loc. efficiency for $-\nabla \cdot (\mathbf{S} \nabla p) + \nabla \cdot (p\mathbf{w}) + rp = f$

Theorem (Local efficiency of the nonconformity and convection estimators)

There holds

$$\eta_{\mathrm{NC},K}^2 + \eta_{\mathrm{C},K}^2 \leq \alpha \sum_{L;L \cap K \neq \emptyset} |||\boldsymbol{p} - \tilde{\boldsymbol{p}}_h|||_L^2 + \beta \inf_{\boldsymbol{s}_h \in \mathbb{P}_2(\mathcal{T}_h) \cap H_0^1(\Omega)} \sum_{L;L \cap K \neq \emptyset} ||\boldsymbol{p} - \boldsymbol{s}_h||_L^2.$$

 nonconformity and convection estimators are locally efficient (up to higher-order terms if $c_{w,r,K} \neq 0$) and semi-robust ($C_{\text{eff},K}$ depends on local inhomogeneities and anisotropies and affinely on Pe_{κ})

• $C_{\text{eff},K}$:

- depends on maximal ratio of inhomogeneities around K
- depends on anisotropy in each L around K by $\frac{C_{s,L}}{2}$
- $C_{\rm eff \ K}$ depends affinely on ${\rm Pe}_{K}$
- again min{Pe_L, ρ_L } in each L around K prevents $C_{\text{eff},K}$ from

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C

Optimal framework and a first estimate DGs FVs

_oc. efficiency for
$$-\nabla \cdot (\mathbf{S} \nabla p) + \nabla \cdot (p \mathbf{w}) + rp = f$$

Theorem (Local efficiency of the nonconformity and convection estimators)

There holds

$$\eta_{\mathrm{NC},K}^2 + \eta_{\mathrm{C},K}^2 \leq \alpha \sum_{L;L \cap K \neq \emptyset} |||\boldsymbol{p} - \tilde{\boldsymbol{p}}_h|||_L^2 + \beta \inf_{\boldsymbol{s}_h \in \mathbb{P}_2(\mathcal{T}_h) \cap H_0^1(\Omega)} \sum_{L;L \cap K \neq \emptyset} ||\boldsymbol{p} - \boldsymbol{s}_h||_L^2.$$

- nonconformity and convection estimators are locally efficient (up to higher-order terms if c_{w,r,K} ≠ 0) and semi-robust (C_{eff,K} depends on local inhomogeneities and anisotropies and affinely on Pe_K)
- *C*_{eff,*K*}:
 - depends on maximal ratio of inhomogeneities around K
 - depends on anisotropy in each L around K by $\frac{C_{S,L}}{c_{S,L}}$
 - $C_{\text{eff},K}$ depends affinely on Pe_K
 - again min{Pe_L, *ρ*_L} in each *L* around *K* prevents C_{eff,K} from exploding in convection-dominated cases on rough grids

Discontinuous diffusion tensor and finite volumes

consider the pure diffusion equation

$$-\nabla \cdot (\mathbf{S} \nabla p) = 0$$
 in $\Omega = (-1, 1) \times (-1, 1)$

• discontinuous and inhomogeneous S, two cases:

analytical solution: singularity at the origin

$$p(r,\theta)|_{\Omega_i} = r^{\alpha}(a_i \sin(\alpha \theta) + b_i \cos(\alpha \theta))$$

- (r, θ) polar coordinates in Ω
- a_i, b_i constants depending on Ω_i
- α regularity of the solution

Analytical solutions

Error distribution on an adaptively refined mesh, case 1

Approximate solution and the corresponding adaptively refined mesh, case 2

Estimated and actual error in uniformly/adaptively refined meshes

M. Vohralík A posteriori error estimates in numerical approximation of PDEs

Effectivity indices in uniformly/adaptively refined meshes

Convection-dominated problem

consider the convection-diffusion-reaction equation

$$-\varepsilon \bigtriangleup p + \nabla \cdot (p(0,1)) + p = f$$
 in $\Omega = (0,1) \times (0,1)$

analytical solution: layer of width a

$$p(x,y) = 0.5\left(1-\tanh\left(rac{0.5-x}{a}
ight)
ight)$$

consider

 unstructured grid of 46 elements given, uniformly/adaptively refined

Analytical solutions

1 10 & FEs Pure dif. & conf. CRD & nonc. Compl. C Optimal framework and a first estimate DGs FVs Error distribution on a uniformly refined mesh, $\varepsilon = 1$, a = 0.5

Estimated and actual error and the effectivity index, $\varepsilon = 1, a = 0.5$

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Optimal framework and a first estimate DGs FVs

Error distribution on a uniformly refined mesh, $\varepsilon = 10^{-2}, a = 0.05$

1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Optimal framework and a first estimate DGs FVs

Approximate solution and the corresponding adaptively refined mesh, $\varepsilon = 10^{-4}$, a = 0.02

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Optimal framework and a first estimate DGs FVs

Estimated and actual error in uniformly/adaptively refined meshes

M. Vohralík A posteriori error estimates in numerical approximation of PDEs

I 1D & FEs Pure dif. & conf. CRD & nonc. Compl. C Optimal framework and a first estimate DGs FVs

Effectivity indices in uniformly/adaptively refined meshes

M. Vohralík A posteriori error estimates in numerical approximation of PDEs

Outline

- Introduction
- Laplacian and finite elements in one space dimension
 - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
- 3 Pure diffusion and conforming methods
 - Classical a posteriori estimates
 - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
 - Remarks on finite elements and finite volumes
 - Efficiency of the a posteriori error estimate

4 Convection–reaction–diffusion and nonconforming methods

- Optimal abstract framework and a first estimate
- Estimates for discontinuous Galerkin methods
- Estimates for finite volume methods
- Complements
 - Conclusions and future work

A reaction-diffusion problem

Problem

$$-\triangle p + rp = f \quad \text{in } \Omega,$$

$$p = 0 \quad \text{on } \partial \Omega$$

Assumptions

- $\Omega \subset \mathbb{R}^d$, d = 2, 3, is a polygonal domain
- $r \in L^{\infty}(\Omega)$ such that for each $K \in T_h$, $0 \le c_{r,K} \le r$, a.e. in K

Bilinear form, energy norm, and weak solution

Definition (Bilinear form \mathcal{B})

We define a bilinear form \mathcal{B} for $\boldsymbol{p}, \varphi \in H_0^1(\Omega)$ by

$$\mathcal{B}(\boldsymbol{p}, \varphi) := (\nabla \boldsymbol{p}, \nabla \varphi)_{\Omega} + (r^{1/2} \boldsymbol{p}, r^{1/2} \varphi)_{\Omega}.$$

Definition (Energy norm)

The associated energy norm for $\varphi \in H_0^1(\Omega)$ is given by $|||\varphi|||_{\Omega}^2 := \mathcal{B}(\varphi, \varphi)$.

Definition (Weak solution)

Weak solution: $p \in H_0^1(\Omega)$ such that

 $\mathcal{B}(p,\varphi) = (f,\varphi)_{\Omega} \qquad \forall \varphi \in H^1_0(\Omega).$

Bilinear form, energy norm, and weak solution

Definition (Bilinear form \mathcal{B})

We define a bilinear form \mathcal{B} for $\boldsymbol{p}, \varphi \in H_0^1(\Omega)$ by

$$\mathcal{B}(\boldsymbol{p}, \varphi) := (\nabla \boldsymbol{p}, \nabla \varphi)_{\Omega} + (r^{1/2} \boldsymbol{p}, r^{1/2} \varphi)_{\Omega}.$$

Definition (Energy norm)

The associated energy norm for $\varphi \in H_0^1(\Omega)$ is given by $|||\varphi|||_{\Omega}^2 := \mathcal{B}(\varphi, \varphi).$

Definition (Weak solution)

Weak solution: $p \in H_0^1(\Omega)$ such that

$$\mathcal{B}(p,\varphi) = (f,\varphi)_{\Omega} \qquad \forall \varphi \in H^1_0(\Omega).$$

Bilinear form, energy norm, and weak solution

Definition (Bilinear form \mathcal{B})

We define a bilinear form \mathcal{B} for $p, \varphi \in H_0^1(\Omega)$ by

$$\mathcal{B}(\boldsymbol{p},\varphi) := (\nabla \boldsymbol{p}, \nabla \varphi)_{\Omega} + (r^{1/2}\boldsymbol{p}, r^{1/2}\varphi)_{\Omega}.$$

Definition (Energy norm)

The associated energy norm for $\varphi \in H_0^1(\Omega)$ is given by $|||\varphi|||_{\Omega}^2 := \mathcal{B}(\varphi, \varphi).$

Definition (Weak solution)

Weak solution: $p \in H_0^1(\Omega)$ such that

$$\mathcal{B}(\boldsymbol{\rho}, \varphi) = (f, \varphi)_{\Omega} \qquad \forall \varphi \in H^1_0(\Omega).$$

Residual and diffusive flux estimators

Define:

residual estimator

$$\eta_{\mathrm{R},D} := m_D \|f - \nabla \cdot \mathbf{t}_h - r p_h\|_D$$

diffusive flux estimator

$$\eta_{\mathrm{DF},\mathcal{D}} := \min\left\{\eta_{\mathit{DF},\mathcal{D}}^{(1)},\eta_{\mathit{DF},\mathcal{D}}^{(2)}\right\},\label{eq:eq:elements}$$

where

$$\eta_{\mathrm{DF},D}^{(1)} := \|\nabla \boldsymbol{p}_h + \mathbf{t}_h\|_D$$

$$\eta_{\mathrm{DF},D}^{(2)} := \left\{ \sum_{K \in \mathcal{S}_D} \left(m_K \| \triangle \boldsymbol{p}_h + \nabla \cdot \mathbf{t}_h \|_K + \tilde{m}_K^{\frac{1}{2}} \sum_{\sigma \in \mathcal{E}_K \cap \mathcal{G}_h^{\mathrm{int}}} C_t^{\frac{1}{2}} \| (\nabla \boldsymbol{p}_h + \mathbf{t}_h) \cdot \mathbf{n} \|_\sigma \right)^2 \right\}^{\frac{1}{2}}$$

Robust a posteriori error estimates for $-\triangle p + rp = f$

Theorem (A posteriori error estimate)

There holds

$$\||\boldsymbol{\rho}-\boldsymbol{\rho}_{h}|\|_{\Omega} \leq \left\{\sum_{\boldsymbol{D}\in\mathcal{D}_{h}}(\eta_{\mathrm{R},\boldsymbol{D}}+\eta_{\mathrm{DF},\boldsymbol{D}})^{2}
ight\}^{\frac{1}{2}}$$

Theorem (Local efficiency)

There holds

 $\eta_{\mathrm{R},D} + \eta_{\mathrm{DF},D} \leq C ||| \boldsymbol{p} - \boldsymbol{p}_h |||_{\mathcal{T}_{V_D}},$

where C depends only on d, κ_T , and m.

Properties

- guaranteed upper bound
- Iocal and global efficiency
- o robustness
- negligible evaluation cost

Robust a posteriori error estimates for $-\triangle p + rp = f$

Theorem (A posteriori error estimate)

There holds

$$\||\boldsymbol{p}-\boldsymbol{p}_{h}\||_{\Omega} \leq \left\{\sum_{\boldsymbol{D}\in\mathcal{D}_{h}}(\eta_{\mathrm{R},\boldsymbol{D}}+\eta_{\mathrm{DF},\boldsymbol{D}})^{2}\right\}^{\frac{1}{2}}$$

Theorem (Local efficiency)

There holds

$$\eta_{\mathrm{R},D} + \eta_{\mathrm{DF},D} \leq C ||| \boldsymbol{p} - \boldsymbol{p}_h |||_{\mathcal{T}_{V_D}},$$

where C depends only on d, κ_T , and m.

Properties

- guaranteed upper bound
- Iocal and global efficiency
- o robustness
- negligible evaluation cost

Robust a posteriori error estimates for $-\triangle p + rp = f$

Theorem (A posteriori error estimate)

There holds

$$\||\boldsymbol{p}-\boldsymbol{p}_{h}\||_{\Omega} \leq \left\{\sum_{\boldsymbol{D}\in\mathcal{D}_{h}}(\eta_{\mathrm{R},\boldsymbol{D}}+\eta_{\mathrm{DF},\boldsymbol{D}})^{2}\right\}^{\overline{2}}$$

Theorem (Local efficiency)

There holds

$$\eta_{\mathrm{R},D} + \eta_{\mathrm{DF},D} \leq C ||| \boldsymbol{\rho} - \boldsymbol{\rho}_h |||_{\mathcal{T}_{V_D}},$$

where C depends only on d, κ_T , and m.

Properties

- guaranteed upper bound
- Iocal and global efficiency
- o robustness
- negligible evaluation cost

Problem and exact solution

Effectivity indices

Estimated and actual errors, r = 100

Estimated and actual errors, $r = 10^{12}$

A model pure diffusion problem

$$\begin{aligned} -\nabla\cdot(\mathbf{S}\nabla p) &= f \quad \text{in } \Omega, \\ p &= 0 \quad \text{on } \partial\Omega \end{aligned}$$

- at some point, we shall solve $\mathbb{A}X = B$
- we only solve it inexactly, $\mathbb{A}X^* \approx B$
- we know the algebraic residual, $R := B \mathbb{A}X^*$

A model pure diffusion problem

$$\begin{aligned} -\nabla\cdot(\mathbf{S}\nabla p) &= f & \text{in } \Omega, \\ p &= 0 & \text{on } \partial\Omega \end{aligned}$$

- at some point, we shall solve $\mathbb{A}X = B$
- we only solve it inexactly, $\mathbb{A}X^* \approx B$
- we know the algebraic residual, $R := B \mathbb{A}X^*$

A model pure diffusion problem

$$\begin{aligned} -\nabla\cdot(\mathbf{S}\nabla p) &= f & \text{in } \Omega, \\ p &= 0 & \text{on } \partial\Omega \end{aligned}$$

- at some point, we shall solve $\mathbb{A}X = B$
- we only solve it inexactly, $\mathbb{A}X^* \approx B$
- we know the algebraic residual, $R := B AX^*$

A model pure diffusion problem

$$\begin{aligned} -\nabla\cdot(\mathbf{S}\nabla p) &= f & \text{in } \Omega, \\ p &= 0 & \text{on } \partial\Omega \end{aligned}$$

- at some point, we shall solve $\mathbb{A}X = B$
- we only solve it inexactly, $\mathbb{A}X^* \approx B$
- we know the algebraic residual, $R := B \mathbb{A}X^*$

Theorem (A posteriori error estimate including inexact linear systems solution error, cell-centered FVs or MFEs)

There holds
$$|||\boldsymbol{p} - \tilde{\boldsymbol{p}}_h^*||| \leq \left\{\sum_{K \in \mathcal{T}_h} \eta_{\mathrm{NC},K}^2\right\}^{\frac{1}{2}} + \left\{\sum_{K \in \mathcal{T}_h} \eta_{\mathrm{R},K}^2\right\}^{\frac{1}{2}} + \left\{\sum_{K \in \mathcal{T}_h} \eta_{\mathrm{AE},K}^2\right\}^{\frac{1}{2}}.$$

- nonconformity estimator
 - $\eta_{\mathrm{NC},K} := |||\tilde{p}_h^* \mathcal{I}_{\mathrm{Os}}(\tilde{p}_h^*)|||_K$
- residual estimator
 - $\eta_{\mathrm{R},\mathrm{K}} := m_{\mathrm{K}} \| f + \nabla \cdot (\mathbf{S}_{\mathrm{K}} \nabla \tilde{p}_{h}^{*}) \|_{\mathrm{K}}$

•
$$m_K^2 := C_{\mathrm{P}} \frac{m_K}{c_{\mathrm{s},K}}$$

• algebraic error estimator

- $\eta_{\mathrm{AE},K} := \|\mathbf{S}^{-\frac{1}{2}}\mathbf{t}_h\|_K$
- $\mathbf{t}_h \in \mathbf{RTN}(\mathcal{T}_h)$ is such that $\nabla \cdot \mathbf{t}_h|_K = \frac{R_K}{|K|}$
- *R* is the residual vector

Theorem (A posteriori error estimate including inexact linear systems solution error, cell-centered FVs or MFEs)

There holds
$$|||\boldsymbol{p} - \tilde{\boldsymbol{p}}_h^*||| \leq \left\{\sum_{K \in \mathcal{T}_h} \eta_{\text{NC},K}^2\right\}^{\frac{1}{2}} + \left\{\sum_{K \in \mathcal{T}_h} \eta_{\text{R},K}^2\right\}^{\frac{1}{2}} + \left\{\sum_{K \in \mathcal{T}_h} \eta_{\text{AE},K}^2\right\}^{\frac{1}{2}}.$$

nonconformity estimator

- $\eta_{\mathrm{NC},\mathcal{K}} := |||\tilde{p}_h^* \mathcal{I}_{\mathrm{Os}}(\tilde{p}_h^*)|||_{\mathcal{K}}$
- residual estimator
 - $\eta_{\mathrm{R},K} := m_K \|f + \nabla \cdot (\mathbf{S}_K \nabla \tilde{p}_h^*)\|_K$

•
$$m_K^2 := C_{\mathrm{P}} \frac{h_K^2}{c_{\mathbf{s},K}}$$

• algebraic error estimator

- $\eta_{\mathrm{AE},K} := \|\mathbf{S}^{-\frac{1}{2}}\mathbf{t}_h\|_K$
- $\mathbf{t}_h \in \mathbf{RTN}(\mathcal{T}_h)$ is such that $\nabla \cdot \mathbf{t}_h|_{\mathcal{K}} = \frac{R_{\mathcal{K}}}{|\mathcal{K}|}$
- *R* is the residual vector

Theorem (A posteriori error estimate including inexact linear systems solution error, cell-centered FVs or MFEs)

There holds
$$|||\boldsymbol{p} - \tilde{\boldsymbol{p}}_h^*||| \le \left\{\sum_{K \in \mathcal{T}_h} \eta_{\text{NC},K}^2\right\}^{\frac{1}{2}} + \left\{\sum_{K \in \mathcal{T}_h} \eta_{\text{R},K}^2\right\}^{\frac{1}{2}} + \left\{\sum_{K \in \mathcal{T}_h} \eta_{\text{AE},K}^2\right\}^{\frac{1}{2}}.$$

- nonconformity estimator
 - $\eta_{\mathrm{NC},\mathcal{K}} := |||\tilde{p}_h^* \mathcal{I}_{\mathrm{Os}}(\tilde{p}_h^*)|||_{\mathcal{K}}$
- residual estimator
 - $\eta_{\mathrm{R},\mathrm{K}} := m_{\mathrm{K}} \| f + \nabla \cdot (\mathbf{S}_{\mathrm{K}} \nabla \tilde{p}_{h}^{*}) \|_{\mathrm{K}}$

•
$$m_K^2 := C_P \frac{h_K^2}{c_{\mathbf{s},K}}$$

- algebraic error estimator
 - $\eta_{\mathrm{AE},K} := \|\mathbf{S}^{-\frac{1}{2}}\mathbf{t}_h\|_K$
 - $\mathbf{t}_h \in \mathbf{RTN}(\mathcal{T}_h)$ is such that $\nabla \cdot \mathbf{t}_h|_K = \frac{R_K}{|K|}$
 - *R* is the residual vector

Theorem (A posteriori error estimate including inexact linear systems solution error, cell-centered FVs or MFEs)

There holds
$$|||\boldsymbol{p} - \tilde{\boldsymbol{p}}_h^*||| \le \left\{\sum_{K \in \mathcal{T}_h} \eta_{\text{NC},K}^2\right\}^{\frac{1}{2}} + \left\{\sum_{K \in \mathcal{T}_h} \eta_{\text{R},K}^2\right\}^{\frac{1}{2}} + \left\{\sum_{K \in \mathcal{T}_h} \eta_{\text{AE},K}^2\right\}^{\frac{1}{2}}.$$

- nonconformity estimator
 - $\eta_{\mathrm{NC},\mathcal{K}} := |||\tilde{p}_h^* \mathcal{I}_{\mathrm{Os}}(\tilde{p}_h^*)|||_{\mathcal{K}}$
- residual estimator
 - $\eta_{\mathrm{R},\mathrm{K}} := m_{\mathrm{K}} \| f + \nabla \cdot (\mathbf{S}_{\mathrm{K}} \nabla \tilde{p}_{h}^{*}) \|_{\mathrm{K}}$

•
$$m_K^2 := C_{\mathrm{P}} \frac{h_K^2}{c_{\mathbf{s},K}}$$

- algebraic error estimator
 - $\eta_{\text{AE},K} := \|\mathbf{S}^{-\frac{1}{2}}\mathbf{t}_h\|_K$
 - $\mathbf{t}_h \in \mathbf{RTN}(\mathcal{T}_h)$ is such that $\nabla \cdot \mathbf{t}_h|_{\mathcal{K}} = \frac{R_{\mathcal{K}}}{|\mathcal{K}|}$
 - R is the residual vector

Finite volume estimates including inexact linear systems solution

M. Vohralík A posteriori error estimates in numerical approximation of PDEs

Time-dependent and nonlinear problems

Time-dependent problems

VERFÜRTH, R., A posteriori error estimates for finite element discretizations of the heat equation, *Calcolo* **40** (2003), 195–212.

- divide the estimate into time and space estimators
- use the time estimator to refine the time step
- use the space estimator to refine the space mesh
- mesh refinement and coarsening ("moving meshes")

Nonlinear problems

KIM, K. Y., A posteriori error estimators for locally conservative methods of nonlinear elliptic problems, *Appl. Numer. Math.* **57** (2007), 1065–1080.

- a posteriori error estimates for monotone elliptic operators
- applies directly to all our results

Time-dependent and nonlinear problems

Time-dependent problems

VERFÜRTH, R., A posteriori error estimates for finite element discretizations of the heat equation, *Calcolo* **40** (2003), 195–212.

- divide the estimate into time and space estimators
- use the time estimator to refine the time step
- use the space estimator to refine the space mesh
- mesh refinement and coarsening ("moving meshes")

Nonlinear problems

KIM, K. Y., A posteriori error estimators for locally conservative methods of nonlinear elliptic problems, *Appl. Numer. Math.* **57** (2007), 1065–1080.

- a posteriori error estimates for monotone elliptic operators
- applies directly to all our results

Outline

- Introduction
- Laplacian and finite elements in one space dimension
 - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
- 3 Pure diffusion and conforming methods
 - Classical a posteriori estimates
 - Optimal abstract framework and a first estimate
 - Optimal a posteriori error estimate
 - Remarks on finite elements and finite volumes
 - Efficiency of the a posteriori error estimate

4 Convection–reaction–diffusion and nonconforming methods

- Optimal abstract framework and a first estimate
- Estimates for discontinuous Galerkin methods
- Estimates for finite volume methods
- Complements
- Conclusions and future work

Comments on the estimates and their efficiency

General comments

- $p \in H^1(\Omega)$, no additional regularity
- no convexity of Ω needed
- no saturation assumption
- no Helmholtz decomposition
- no shape-regularity needed for the upper bounds (only for the efficiency proofs)
- polynomial degree-independent upper bound
- no "monotonicity" hypothesis on inhomogeneities distribution
- the only important tool: optimal Poincaré–Friedrichs and trace inequalities
- holds from diffusion to convection-diffusion-reaction cases

Essentials of the estimates

Essentials of the estimates

- nonconformity estimate: compare the approximate solution *p_h* to a *H*¹(Ω)-conforming potential *s_h*
- diffusive flux estimate: compare the flux of the approximate solution −S∇p_h to a H(div, Ω)-conforming flux t_h
- evaluate the residue for t_h
- for optimality, t_h has to be locally conservative
- in conforming methods (*p_h* ∈ *H*¹(Ω)), there is no nonconformity estimate
- in flux-conforming methods (−S∇p_h ∈ H(div, Ω)), there is no diffusive flux estimate
- additional nonsymmetric term for convection
- use problem-dependent energy norms

Conclusions and future work

Conclusions

- guaranteed, locally efficient, and robust (in some cases) a posteriori error estimates
- directly and locally computable
- almost asymptotically exact
- optimal framework (exact and robust)
- works for all major numerical schemes
- based on local conservativity

Future work

- asymptotic exactness
- nonlinear (degenerate) cases
- extensions to other types of problems (Stokes, Maxwell)
Conclusions and future work

Conclusions

- guaranteed, locally efficient, and robust (in some cases) a posteriori error estimates
- directly and locally computable
- almost asymptotically exact
- optimal framework (exact and robust)
- works for all major numerical schemes
- based on local conservativity

Future work

- asymptotic exactness
- nonlinear (degenerate) cases
- extensions to other types of problems (Stokes, Maxwell)

Bibliography 1

Papers

- VOHRALíκ M., A posteriori error estimates for lowest-order mixed finite element discretizations of convection–diffusion–reaction equations, SIAM J. Numer. Anal. 45 (2007), 1570–1599.
- VOHRALÍK M., Residual flux-based a posteriori error estimates for finite volume discretizations of inhomogeneous, anisotropic, and convection-dominated problems, submitted to *Numer. Math.*
- ERN A., STEPHANSEN, A. F., VOHRALÍK M., Improved energy norm a posteriori error estimation based on flux reconstruction for discontinuous Galerkin methods, submitted to *SIAM J. Numer. Anal.*
- VOHRALÍK M., A posteriori error estimation in the finite element method based on its local conservativity and using local minimization, submitted to *C. R. Acad. Sci. Paris., Ser. I.*

Bibliography 2

- VOHRALÍK M., Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients, submitted to *Math. Comp.*
- CHEDDADI I., FUČÍK R., PRIETO M. I., VOHRALÍK M., Computable a posteriori error estimates in the finite element method based on its local conservativity: improvements using local minimization, submitted to ESAIM: Proc.
- CHEDDADI I., FUČÍK R., PRIETO M. I., VOHRALÍK M., Guaranteed and robust a posteriori error estimates for singularly-perturbed reaction-diffusion problems, to be submitted to M2AN Math. Model. Numer. Anal.
- JIRÁNEK P., STRAKOŠ Z., VOHRALÍK M., A posteriori estimates including iterative solvers error: guaranteed upper bound for the discretization error and stopping criterion, to be submitted to SIAM J. Sci. Comput.

Thank you for your attention!

M. Vohralík A posteriori error estimates in numerical approximation of PDEs