A posteriori control of numerical error and stopping criteria for linear and nonlinear solvers

Martin Vohralík

INRIA Paris-Rocquencourt

Paris, May 16, 2013

Outline

2 Adaptive inexact Newton method

- A guaranteed a posteriori error estimate
- Stopping criteria and efficiency
- Numerical results
- Application to two-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Fully implicit cell-centered finite volumes
 - Iteratively coupled implicit pressure—explicit saturation vertex-centered finite volumes
- 4 Conclusions and future directions

Outline

2 Adaptive inexact Newton method

- A guaranteed a posteriori error estimate
- Stopping criteria and efficiency
- Numerical results
- 3 Application to two-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Fully implicit cell-centered finite volumes
 - Iteratively coupled implicit pressure—explicit saturation vertex-centered finite volumes
- 4 Conclusions and future directions

Inexact Newton method

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact linearization)

 Choose initial vector U⁰. Set k := 1.
 U^{k-1} ⇒ matrix A^{k-1} and vector F^{k-1}: find U^k s.t. A^{k-1}U^k ≈ F^{k-1}.

② Do 1 algebraic solver step $\Rightarrow U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.) $\mathbb{A}^{k-1}U^{k,i} = F^{k-1} - B^{k,i}$

Solution Convergence? $OK \Rightarrow U^k := U^{k,i}$. $KO \Rightarrow i := i + 1$, back to 3.2.

Convergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2.

Inexact Newton method

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact linearization)

- Choose initial vector U^0 . Set k := 1.
 - U^{k-1} \Rightarrow matrix \mathbb{A}^{k-1} and vector F^{k-1} : find U^k s.t. $\mathbb{A}^{k-1}U^k \approx F^{k-1}$.
 - • Set $U^{k,0} := U^{k-1}$ and i := 1.
 - **2** Do 1 algebraic solver step $\Rightarrow U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

- Solution Convergence? $OK \Rightarrow U^k := U^{k,i}$. $KO \Rightarrow i := i + 1$, back to 3.2.
- Solution: $OK \Rightarrow finish. \ KO \Rightarrow k := k + 1, \ back \ to \ 2k$

Inexact Newton method

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact linearization)

 Choose initial vector U⁰. Set k := 1.
 U^{k-1} ⇒ matrix A^{k-1} and vector F^{k-1}: find U^k s.t. A^{k-1}U^k ≈ F^{k-1}.

2 Do 1 algebraic solver step $\Rightarrow U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

Sonvergence? OK ⇒ U^k := U^{k,i}. KO ⇒ i := i + 1, back to 3.2.

) Convergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2

Inexact Newton method

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact linearization)

• Choose initial vector U^0 . Set k := 1.

- $U^{k-1} \Rightarrow matrix \mathbb{A}^{k-1}$ and vector F^{k-1} : find U^k s.t. $\mathbb{A}^{k-1}U^k \approx F^{k-1}$.
- Set $U^{k,0} := U^{k-1}$ and i := 1. Do 1 algebraic solver step $\Rightarrow U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.) $A^{k-1}U^{k,i} = F^{k-1} - R^{k,i}$.
 - Solution Convergence? OK ⇒ U^k := U^{k,i}. KO ⇒ i := i + 1, back to 3.2.

• Convergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2

Inexact Newton method

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact linearization)

• Choose initial vector U^0 . Set k := 1.

• $U^{k-1} \Rightarrow matrix \mathbb{A}^{k-1}$ and vector F^{k-1} : find U^k s.t. $\mathbb{A}^{k-1}U^k \approx F^{k-1}$.

3 • Set
$$U^{k,0} := U^{k-1}$$
 and $i := 1$.

2 Do 1 algebraic solver step $\Rightarrow U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

- Sonvergence? OK ⇒ U^k := U^{k,i}. KO ⇒ i := i + 1, back to 3.2.
- Convergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2.

ematic

Inexact Newton method

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact linearization)

• Choose initial vector U^0 . Set k := 1.

• $U^{k-1} \Rightarrow matrix \mathbb{A}^{k-1}$ and vector F^{k-1} : find U^k s.t. $\mathbb{A}^{k-1}U^k \approx F^{k-1}$.

3 • Set
$$U^{k,0} := U^{k-1}$$
 and $i := 1$

2 Do 1 algebraic solver step $\Rightarrow U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

Solution Convergence? $OK \Rightarrow U^k := U^{k,i}$. $KO \Rightarrow i := i + 1$, back to 3.2.

If Convergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2.

ematic

Inexact Newton method

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact linearization)

• Choose initial vector U^0 . Set k := 1.

2
$$U^{k-1} \Rightarrow matrix \mathbb{A}^{k-1}$$
 and vector F^{k-1} : find U^k s.t.
 $\mathbb{A}^{k-1}U^k \approx F^{k-1}$.

Set
$$U^{k,0} := U^{k-1}$$
 and $i := 1$.

2 Do 1 algebraic solver step \Rightarrow $U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

Solution Convergence? $OK \Rightarrow U^k := U^{k,i}$. $KO \Rightarrow i := i + 1$, back to 3.2.

Onvergence? $OK \Rightarrow finish$. $KO \Rightarrow k := k + 1$, back to 2.

Context and questions

Approximate solution

• approximate solution $U^{k,i}$ does not solve $\mathcal{A}(U^{k,i}) = F$ unperiod

 underlying numerical method: the vector U^{k,i} is associated with a (piecewise polynomial) approximation u^{k,i}_h

Partial differential equation

• underlying PDE, *u* its weak solution: A(u) = f

Question (Stopping criteria)

- What is a good stopping criterion for the linear solver?
- What is a good stopping criterion for the nonlinear solver?

Question (Error)

Context and questions

Approximate solution

• approximate solution $U^{k,i}$ does not solve $\mathcal{A}(U^{k,i}) = F$ Numerical method

 underlying numerical method: the vector U^{k,i} is associated with a (piecewise polynomial) approximation u^{k,i}_h

Partial differential equation

• underlying PDE, *u* its weak solution: A(u) = f

Question (Stopping criteria)

- What is a good stopping criterion for the linear solver?
- What is a good stopping criterion for the nonlinear solver?

Question (Error)

Context and questions

Approximate solution

• approximate solution $U^{k,i}$ does not solve $\mathcal{A}(U^{k,i}) = F$

Numerical method

 underlying numerical method: the vector U^{k,i} is associated with a (piecewise polynomial) approximation u^{k,i}_h

Partial differential equation

• underlying PDE, u its weak solution: A(u) = f

Question (Stopping criteria)

- What is a good stopping criterion for the linear solver?
- What is a good stopping criterion for the nonlinear solver?

Question (Error)

Context and questions

Approximate solution

• approximate solution $U^{k,i}$ does not solve $\mathcal{A}(U^{k,i}) = F$

Numerical method

 underlying numerical method: the vector U^{k,i} is associated with a (piecewise polynomial) approximation u^{k,i}_h

Partial differential equation

• underlying PDE, u its weak solution: A(u) = f

Question (Stopping criteria)

- What is a good stopping criterion for the linear solver?
- What is a good stopping criterion for the nonlinear solver?

Question (Error)

Context and questions

Approximate solution

• approximate solution $U^{k,i}$ does not solve $\mathcal{A}(U^{k,i}) = F$

Numerical method

 underlying numerical method: the vector U^{k,i} is associated with a (piecewise polynomial) approximation u^{k,i}_h

Partial differential equation

• underlying PDE, u its weak solution: A(u) = f

Question (Stopping criteria)

- What is a good stopping criterion for the linear solver?
- What is a good stopping criterion for the nonlinear solver?

Question (Error)

Inexact Newton method

- Eisenstat and Walker (1990's) (conception, convergence, a priori error estimates)
- Moret (1989) (discrete a posteriori error estimates)

Adaptive inexact Newton method

- Bank and Rose (1982), combination with multigrid
- Deuflhard (1990's), adaptive damping and multigrid

Stopping criteria for algebraic solvers

- engineering literature, since 1950's
- Becker, Johnson, and Rannacher (1995), multigrid
- A posteriori error estimates for nonlinear problems
 - Han (1994), general framework
 - Verfürth (1994), residual estimates
 - Chaillou and Suri (2006, 2007), distinguishing discretization and linearization errors

Inexact Newton method

- Eisenstat and Walker (1990's) (conception, convergence, a priori error estimates)
- Moret (1989) (discrete a posteriori error estimates)

Adaptive inexact Newton method

- Bank and Rose (1982), combination with multigrid
- Deuflhard (1990's), adaptive damping and multigrid

Stopping criteria for algebraic solvers

- engineering literature, since 1950's
- Becker, Johnson, and Rannacher (1995), multigrid
- A posteriori error estimates for nonlinear problems
 - Han (1994), general framework
 - Verfürth (1994), residual estimates
 - Chaillou and Suri (2006, 2007), distinguishing discretization and linearization errors

Inexact Newton method

- Eisenstat and Walker (1990's) (conception, convergence, a priori error estimates)
- Moret (1989) (discrete a posteriori error estimates)

Adaptive inexact Newton method

- Bank and Rose (1982), combination with multigrid
- Deuflhard (1990's), adaptive damping and multigrid

Stopping criteria for algebraic solvers

- engineering literature, since 1950's
- Becker, Johnson, and Rannacher (1995), multigrid
- A posteriori error estimates for nonlinear problems
 - Han (1994), general framework
 - Verfürth (1994), residual estimates
 - Chaillou and Suri (2006, 2007), distinguishing discretization and linearization errors

Inexact Newton method

- Eisenstat and Walker (1990's) (conception, convergence, a priori error estimates)
- Moret (1989) (discrete a posteriori error estimates)

Adaptive inexact Newton method

- Bank and Rose (1982), combination with multigrid
- Deuflhard (1990's), adaptive damping and multigrid

Stopping criteria for algebraic solvers

- engineering literature, since 1950's
- Becker, Johnson, and Rannacher (1995), multigrid

A posteriori error estimates for nonlinear problems

- Han (1994), general framework
- Verfürth (1994), residual estimates
- Chaillou and Suri (2006, 2007), distinguishing discretization and linearization errors

Outline

Introduction

2 Adaptive inexact Newton method

- A guaranteed a posteriori error estimate
- Stopping criteria and efficiency
- Numerical results
- 3 Application to two-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Fully implicit cell-centered finite volumes
 - Iteratively coupled implicit pressure—explicit saturation vertex-centered finite volumes
- 4 Conclusions and future directions

Adaptive inexact Newton method Two-phase flow C Estimate Stopping cr

Estimate Stopping criteria & efficiency Numerical results

Quasi-linear elliptic problem

Quasi-linear elliptic problem

$$\begin{aligned} -\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) &= \boldsymbol{f} & \text{in } \boldsymbol{\Omega}, \\ \boldsymbol{u} &= \boldsymbol{0} & \text{on } \partial \boldsymbol{\Omega} \end{aligned}$$

Example

p-Laplacian:
$$\sigma(u, \nabla u) = |\nabla u|^{p-2} \nabla u, p \in (1, +\infty)$$

Nonlinear operator $A: V := W_0^{1,p}(\Omega) \to V'$

$$\langle A(u), v \rangle_{V',V} := (\sigma(u, \nabla u), \nabla v)$$

Weak formulation Find $u \in V$ such that

$$A(u) = f$$
 in V'

Approximate solution

• $u_h^{k,i} \in V(\mathcal{T}_h) \not\subset V, u_h^{k,i}$ not necessarily in V

Estimate Stopping criteria & efficiency Numerical results

Quasi-linear elliptic problem

Quasi-linear elliptic problem

$$\begin{aligned} -\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) &= \boldsymbol{f} & \text{in } \boldsymbol{\Omega}, \\ \boldsymbol{u} &= \boldsymbol{0} & \text{on } \partial \boldsymbol{\Omega} \end{aligned}$$

Example

p-Laplacian: $\sigma(u, \nabla u) = |\nabla u|^{p-2} \nabla u, p \in (1, +\infty)$

Nonlinear operator $A: V := W_0^{1,p}(\Omega) \to V'$

$$\langle A(u), v \rangle_{V',V} := (\sigma(u, \nabla u), \nabla v)$$

Weak formulation Find $u \in V$ such that

$$A(u) = f$$
 in V'

Approximate solution

• $u_h^{k,i} \in V(\mathcal{T}_h) \not\subset V, u_h^{k,i}$ not necessarily in V

Estimate Stopping criteria & efficiency Numerical results

Quasi-linear elliptic problem

Quasi-linear elliptic problem

$$\begin{aligned} -\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) &= \boldsymbol{f} & \text{in } \boldsymbol{\Omega}, \\ \boldsymbol{u} &= \boldsymbol{0} & \text{on } \partial \boldsymbol{\Omega} \end{aligned}$$

Example

p-Laplacian:
$$\sigma(u, \nabla u) = |\nabla u|^{p-2} \nabla u, p \in (1, +\infty)$$

Nonlinear operator $A : V := W_0^{1,p}(\Omega) \to V'$

$$\langle A(u), v \rangle_{V',V} := (\sigma(u, \nabla u), \nabla v)$$

Weak formulation Find $u \in V$ such that

$$A(u) = f$$
 in V'

Approximate solution

• $u_h^{k,i} \in V(\mathcal{T}_h) \not\subset V, u_h^{k,i}$ not necessarily in V

Estimate Stopping criteria & efficiency Numerical results

Quasi-linear elliptic problem

Quasi-linear elliptic problem

$$-\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) = f \qquad \text{in } \Omega, \\ \boldsymbol{u} = \mathbf{0} \qquad \text{on } \partial \Omega$$

Example

p-Laplacian:
$$\sigma(u, \nabla u) = |\nabla u|^{p-2} \nabla u, p \in (1, +\infty)$$

Nonlinear operator $A: V := W_0^{1,p}(\Omega) \to V'$

$$\langle A(u), v \rangle_{V',V} := (\sigma(u, \nabla u), \nabla v)$$

Weak formulation

Find $u \in V$ such that

$$A(u) = f$$
 in V'

Approximate solution

• $u_h^{k,i} \in V(\mathcal{T}_h) \not\subset V, u_h^{k,i}$ not necessarily in V

Estimate Stopping criteria & efficiency Numerical results

Quasi-linear elliptic problem

Quasi-linear elliptic problem

$$\begin{aligned} -\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) &= \boldsymbol{f} & \text{in } \boldsymbol{\Omega}, \\ \boldsymbol{u} &= \boldsymbol{0} & \text{on } \partial \boldsymbol{\Omega} \end{aligned}$$

Example

p-Laplacian:
$$\sigma(u, \nabla u) = |\nabla u|^{p-2} \nabla u, p \in (1, +\infty)$$

Nonlinear operator $A: V := W_0^{1,p}(\Omega) \to V'$

$$\langle A(u), v \rangle_{V',V} := (\sigma(u, \nabla u), \nabla v)$$

Weak formulation

Find $u \in V$ such that

$$A(u) = f$$
 in V'

Approximate solution

• $u_h^{k,i} \in V(\mathcal{T}_h) \not\subset V, u_h^{k,i}$ not necessarily in V

Estimate Stopping criteria & efficiency Numerical results

Quasi-linear elliptic problem

Quasi-linear elliptic problem

$$\begin{aligned} -\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) &= \boldsymbol{f} & \text{in } \boldsymbol{\Omega}, \\ \boldsymbol{u} &= \boldsymbol{0} & \text{on } \partial \boldsymbol{\Omega} \end{aligned}$$

Example

p-Laplacian:
$$\sigma(u, \nabla u) = |\nabla u|^{p-2} \nabla u, p \in (1, +\infty)$$

Nonlinear operator $A: V := W_0^{1,p}(\Omega) \to V'$

$$\langle A(u), v \rangle_{V',V} := (\sigma(u, \nabla u), \nabla v)$$

Weak formulation

Find $u \in V$ such that

$$A(u) = f$$
 in V'

Approximate solution

•
$$u_h^{k,i} \in V(\mathcal{T}_h) \not\subset V, u_h^{k,i}$$
 not necessarily in V

• $V(\mathcal{T}_h) := \{ \mathbf{v} \in L^p(\Omega), \ \mathbf{v}|_{\mathcal{K}} \in W^{1,p}(\mathcal{K}) \quad \forall \mathcal{K} \in \mathcal{T}_h \}$

Outline

Introduction

- 2 Adaptive inexact Newton method
 - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Numerical results
- 3 Application to two-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Fully implicit cell-centered finite volumes
 - Iteratively coupled implicit pressure—explicit saturation vertex-centered finite volumes
- 4 Conclusions and future directions

A posteriori error estimate

Assumption A (Total flux reconstruction)

There exists a flux reconstruction $\mathbf{t}_h^{k,i} \in \mathbf{H}^q(\operatorname{div}, \Omega)$ such that $\nabla \cdot \mathbf{t}_h^{k,i} \approx f$.

Theorem (A guaranteed a posteriori error estimate)

Let

- $u \in V$ be the weak solution,
- $u_h^{k,i} \in V(\mathcal{T}_h)$ be arbitrary,
- Assumption A hold.

Then there holds

 $\mathcal{J}_{u}(u_{h}^{k,i}) \leq \overline{\eta}^{k,i},$ where $\overline{\eta}^{k,i}$ is fully computable from $u_{h}^{k,i}$ and $\mathfrak{t}_{h}^{k,i}$.

A posteriori error estimate

Assumption A (Total flux reconstruction)

There exists a flux reconstruction $\mathbf{t}_{h}^{k,i} \in \mathbf{H}^{q}(\operatorname{div}, \Omega)$ such that $\nabla \cdot \mathbf{t}_{h}^{k,i} \approx f$.

Theorem (A guaranteed a posteriori error estimate)

Let

- $u \in V$ be the weak solution,
- $u_h^{k,i} \in V(\mathcal{T}_h)$ be arbitrary,
- Assumption A hold.

Then there holds

 $\mathcal{J}_{u}(u_{h}^{\kappa,i}) \leq \overline{\eta}^{\kappa,i},$ where $\overline{\eta}^{k,i}$ is fully computable from $u_{h}^{k,i}$ and $\mathbf{t}_{h}^{k,i}$.

A posteriori error estimate

Assumption A (Total flux reconstruction)

There exists a flux reconstruction $\mathbf{t}_{h}^{k,i} \in \mathbf{H}^{q}(\operatorname{div}, \Omega)$ such that $\nabla \cdot \mathbf{t}_{h}^{k,i} \approx f$.

Theorem (A guaranteed a posteriori error estimate)

Let

- $u \in V$ be the weak solution,
- $u_h^{k,i} \in V(\mathcal{T}_h)$ be arbitrary,
- Assumption A hold.

Then there holds

 $\mathcal{J}_{u}(u_{h}^{k,i}) \leq \overline{\eta}^{k,i},$ where $\overline{\eta}^{k,i}$ is fully computable from $u_{h}^{k,i}$ and $\mathbf{t}_{h}^{k,i}$.

Estimate distinguishing error components

Theorem (Estimate distinguishing different error components)

Let

- $u \in V$ be the weak solution.
- $u_h^{k,i} \in V(\mathcal{T}_h)$ be arbitrary,
- Assumption A hold.

Estimate distinguishing error components

Theorem (Estimate distinguishing different error components)

Let

- $u \in V$ be the weak solution.
- $u_h^{k,i} \in V(\mathcal{T}_h)$ be arbitrary,
- Assumption A hold.

Then there holds

$$\mathcal{J}_{u}(\boldsymbol{u}_{h}^{k,i}) \leq \eta^{k,i} := \eta_{\text{disc}}^{k,i} + \eta_{\text{lin}}^{k,i} + \eta_{\text{alg}}^{k,i} + \eta_{\text{quad}}^{k,i} + \eta_{\text{osc}}^{k,i}.$$

Outline

Introduction

- Adaptive inexact Newton method
 A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Numerical results
- 3 Application to two-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Fully implicit cell-centered finite volumes
 - Iteratively coupled implicit pressure—explicit saturation vertex-centered finite volumes
- 4 Conclusions and future directions

Stopping criteria

Global stopping criteria

• stop whenever:

$$\begin{split} \eta_{\text{alg}}^{k,i} &\leq \gamma_{\text{alg}} \max \big\{ \eta_{\text{disc}}^{k,i}, \eta_{\text{lin}}^{k,i} \big\}, \\ \eta_{\text{lin}}^{k,i} &\leq \gamma_{\text{lin}} \eta_{\text{disc}}^{k,i} \end{split}$$

• $\gamma_{\rm alg}, \gamma_{\rm lin} \approx 0.1$

- Local stopping criteria
 - stop whenever:

$$\begin{split} \eta_{\mathrm{alg},K}^{k,i} &\leq \gamma_{\mathrm{alg},K} \max\{\eta_{\mathrm{disc},K}^{k,i}, \eta_{\mathrm{lin},K}^{k,i}\} \qquad \forall K \in \mathcal{T}_h, \\ \eta_{\mathrm{lin},K}^{k,i} &\leq \gamma_{\mathrm{lin},K} \eta_{\mathrm{disc},K}^{k,i} \qquad \forall K \in \mathcal{T}_h \end{split}$$

• $\gamma_{\text{alg},K}, \gamma_{\text{lin},K} \approx 0.1$

Stopping criteria

Global stopping criteria

• stop whenever:

$$\begin{split} \eta_{\text{alg}}^{k,i} &\leq \gamma_{\text{alg}} \max\{\eta_{\text{disc}}^{k,i}, \eta_{\text{lin}}^{k,i}\},\\ \eta_{\text{lin}}^{k,i} &\leq \gamma_{\text{lin}} \eta_{\text{disc}}^{k,i} \end{split}$$

• $\gamma_{\rm alg}, \gamma_{\rm lin} \approx 0.1$

Local stopping criteria

stop whenever:

$$\begin{split} \eta_{\text{alg},K}^{k,i} &\leq \gamma_{\text{alg},K} \max\{\eta_{\text{disc},K}^{k,i}, \eta_{\text{lin},K}^{k,i}\} \qquad \forall K \in \mathcal{T}_h, \\ \eta_{\text{lin},K}^{k,i} &\leq \gamma_{\text{lin},K} \eta_{\text{disc},K}^{k,i} \qquad \forall K \in \mathcal{T}_h \end{split}$$

• $\gamma_{\text{alg},K}, \gamma_{\text{lin},K} \approx 0.1$

Global efficiency

Theorem (Global efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the global stopping criteria hold. Recall that $\mathcal{J}_u(u_h^{\kappa,i}) \leq \eta^{\kappa,i}$. Then, under Assumption C,

$$\eta^{k,i} \lesssim \mathcal{J}_{u}(\boldsymbol{u}_{h}^{k,i}) + \eta_{\text{quad}}^{k,i} + \eta_{\text{osc}}^{k,i},$$

where \leq means up to a constant independent of σ and q.

• **robustness** with respect to the **nonlinearity** thanks to the choice of the dual norm as error measure

Global efficiency

Theorem (Global efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the global stopping criteria hold. Recall that $\mathcal{J}_u(u_h^{k,i}) \leq \eta^{k,i}$. Then, under Assumption *C*,

$$\eta^{k,i} \lesssim \mathcal{J}_{u}(\boldsymbol{u}_{h}^{k,i}) + \eta_{\text{quad}}^{k,i} + \eta_{\text{osc}}^{k,i},$$

where \leq means up to a constant independent of σ and q.

• **robustness** with respect to the **nonlinearity** thanks to the choice of the dual norm as error measure

Global efficiency

Theorem (Global efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the global stopping criteria hold. Recall that $\mathcal{J}_u(u_h^{k,i}) \leq \eta^{k,i}$. Then, under Assumption C,

$$\eta^{k,i} \lesssim \mathcal{J}_{u}(\boldsymbol{u}_{h}^{k,i}) + \eta_{\text{quad}}^{k,i} + \eta_{\text{osc}}^{k,i},$$

where \leq means up to a constant independent of σ and q.

 robustness with respect to the nonlinearity thanks to the choice of the dual norm as error measure

Global efficiency

Theorem (Global efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the global stopping criteria hold. Recall that $\mathcal{J}_u(u_h^{k,i}) \leq \eta^{k,i}$. Then, under Assumption C,

$$\eta^{k,i} \lesssim \mathcal{J}_{u}(\boldsymbol{u}_{h}^{k,i}) + \eta_{\text{quad}}^{k,i} + \eta_{\text{osc}}^{k,i},$$

where \leq means up to a constant independent of σ and q.

 robustness with respect to the nonlinearity thanks to the choice of the dual norm as error measure

Local efficiency

Theorem (Local efficiency)

Let the mesh T_h be shape-regular and let the local stopping criteria hold. Then, under Assumption C,

$$\begin{split} \eta_{\mathrm{disc},K}^{k,i} &+ \eta_{\mathrm{lin},K}^{k,i} + \eta_{\mathrm{alg},K}^{k,i} \\ \lesssim \mathcal{J}_{u,\mathfrak{T}_{K}}^{\mathrm{up}}(u_{h}^{k,i}) + \eta_{\mathrm{quad},\mathfrak{T}_{K}}^{k,i} + \eta_{\mathrm{osc},\mathfrak{T}_{H}}^{k,i} \end{split}$$

for all $K \in \mathcal{T}_h$.

 robustness and local efficiency for an upper bound on the dual norm

Local efficiency

Theorem (Local efficiency)

Let the mesh T_h be shape-regular and let the local stopping criteria hold. Then, under Assumption C,

$$\begin{split} \eta_{\mathrm{disc},K}^{k,i} &+ \eta_{\mathrm{lin},K}^{k,i} + \eta_{\mathrm{alg},K}^{k,i} \\ \lesssim \mathcal{J}_{u,\mathfrak{T}_{K}}^{\mathrm{up}}(\boldsymbol{u}_{h}^{k,i}) + \eta_{\mathrm{quad},\mathfrak{T}_{K}}^{k,i} + \eta_{\mathrm{osc},\mathfrak{T}_{K}}^{k,i} \end{split}$$

for all $K \in \mathcal{T}_h$.

 robustness and local efficiency for an upper bound on the dual norm

Local efficiency

Theorem (Local efficiency)

Let the mesh T_h be shape-regular and let the local stopping criteria hold. Then, under Assumption C,

$$\begin{split} \eta_{\mathrm{disc},K}^{k,i} &+ \eta_{\mathrm{lin},K}^{k,i} + \eta_{\mathrm{alg},K}^{k,i} \\ \lesssim \mathcal{J}_{u,\mathfrak{T}_{K}}^{\mathrm{up}}(\boldsymbol{u}_{h}^{k,i}) + \eta_{\mathrm{quad},\mathfrak{T}_{K}}^{k,i} + \eta_{\mathrm{osc},\mathfrak{T}_{K}}^{k,i} \end{split}$$

for all $K \in \mathcal{T}_h$.

 robustness and local efficiency for an upper bound on the dual norm

Outline

Introduction

2 Adaptive inexact Newton method

- A guaranteed a posteriori error estimate
- Stopping criteria and efficiency
- Numerical results
- 3 Application to two-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Fully implicit cell-centered finite volumes
 - Iteratively coupled implicit pressure—explicit saturation vertex-centered finite volumes
- 4 Conclusions and future directions

Numerical experiment I

Model problem

• p-Laplacian

$$\nabla \cdot (|\nabla u|^{p-2} \nabla u) = f \quad \text{in } \Omega,$$
$$u = u_0 \quad \text{on } \partial \Omega$$

• weak solution (used to impose the Dirichlet BC)

$$u(x,y) = -\frac{p-1}{p} \left((x - \frac{1}{2})^2 + (y - \frac{1}{2})^2 \right)^{\frac{p}{2(p-1)}} + \frac{p-1}{p} \left(\frac{1}{2} \right)^{\frac{p}{p-1}}$$

- tested values p = 1.5 and 10
- nonconforming finite elements

Analytical and approximate solutions

Error and estimators as a function of CG iterations, p = 10, 6th level mesh, 6th Newton step.

Error and estimators as a function of Newton iterations, p = 10, 6th level mesh

Estimate Stopping criteria & efficiency Numerical results

Error and estimators, p = 10

Estimate Stopping criteria & efficiency Numerical results

Effectivity indices, p = 10

Estimate Stopping criteria & efficiency Numerical results

Error distribution, p = 10

Estimated error distribution

Exact error distribution

Newton and algebraic iterations, p = 10

Newton it. / refinement alg. it. / Newton step

alg. it. / refinement

Error and estimators as a function of CG iterations, p = 1.5, 6th level mesh, 1st Newton step.

Error and estimators as a function of Newton iterations, p = 1.5, 6th level mesh

Error and estimators, p = 1.5

Estimate Stopping criteria & efficiency Numerical results

Effectivity indices, p = 1.5

Newton and algebraic iterations, p = 1.5

Newton it. / refinement alg. it. / Newton step

alg. it. / refinement

Numerical experiment II

Model problem

p-Laplacian

$$\nabla \cdot (|\nabla u|^{p-2} \nabla u) = f \quad \text{in } \Omega,$$
$$u = u_0 \quad \text{on } \partial \Omega$$

• weak solution (used to impose the Dirichlet BC)

$$u(r,\theta)=r^{\frac{7}{8}}\sin(\theta\frac{7}{8})$$

- p = 4, L-shape domain, singularity in the origin (Carstensen and Klose (2003))
- nonconforming finite elements

Error distribution on an adaptively refined mesh

Estimated error distribution

Exact error distribution

Estimated and actual errors and the effectivity index

Energy error and overall performance

Outline

Introduction

2 Adaptive inexact Newton method

- A guaranteed a posteriori error estimate
- Stopping criteria and efficiency
- Numerical results

Application to two-phase flow in porous media

- A guaranteed a posteriori error estimate
- Fully implicit cell-centered finite volumes
- Iteratively coupled implicit pressure—explicit saturation vertex-centered finite volumes
- 4 Conclusions and future directions

Two-phase flow

Horizontal two-phase flow in porous media

$$egin{aligned} \partial_t(\phi oldsymbol{s}_lpha) -
abla \cdot \left(rac{k_{\mathrm{r},lpha}(oldsymbol{s}_\mathrm{w})}{\mu_lpha} oldsymbol{\underline{K}}
abla oldsymbol{p}_lpha
ight) = oldsymbol{0}, \ oldsymbol{s}_\mathrm{n} + oldsymbol{s}_\mathrm{w} = oldsymbol{1}, \ oldsymbol{p}_\mathrm{n} - oldsymbol{p}_\mathrm{w} = \pi(oldsymbol{s}_\mathrm{w}) \end{aligned}$$

Mathematical issues

- coupled system
- unsteady, nonlinear
- elliptic–parabolic degenerate type
- odominant advection

Brooks–Corey model, $s_e := \frac{s_w - s_{rw}}{1 - s_{rw} - s_{rm}}$

• relative permeabilities

$$k_{r,w}(s_w) = s_e^4, \quad k_{r,n}(s_w) = (1 - s_e)^2(1 - s_e^2)$$

capillary pressure

 $\pi(s_{\mathrm{w}}) = p_{\mathrm{d}}s_{\mathrm{e}}^{-}$

A posteriori control and stopping criteria

Two-phase flow

Horizontal two-phase flow in porous media

$$egin{aligned} \partial_t(\phi oldsymbol{s}_lpha) -
abla \cdot \left(rac{k_{\mathrm{r},lpha}(oldsymbol{s}_\mathrm{w})}{\mu_lpha} oldsymbol{\mathrm{K}}
abla oldsymbol{p}_lpha
ight) = oldsymbol{0}, \ oldsymbol{s}_\mathrm{n} + oldsymbol{s}_\mathrm{w} = oldsymbol{1}, \ oldsymbol{p}_\mathrm{n} - oldsymbol{p}_\mathrm{w} = \pi(oldsymbol{s}_\mathrm{w}) \end{aligned}$$

Mathematical issues

- coupled system
- unsteady, nonlinear
- elliptic-parabolic degenerate type
- o dominant advection

Brooks–Corey model, $s_e := \frac{s_w - s_{rw}}{1 - s_{rw} - s_{rm}}$

• relative permeabilities

$$k_{r,w}(s_w) = s_e^4, \quad k_{r,n}(s_w) = (1 - s_e)^2(1 - s_e^2)$$

capillary pressure

Martin Vohralík

A posteriori control and stopping criteria

Two-phase flow

Horizontal two-phase flow in porous media

$$\partial_t(\phi s_lpha) -
abla \cdot \left(rac{k_{\mathrm{r},lpha}(s_\mathrm{w})}{\mu_lpha}\underline{\mathbf{K}}
abla p_lpha
ight) = \mathbf{0}, \ s_\mathrm{n} + s_\mathrm{w} = \mathbf{1}, \ p_\mathrm{n} - p_\mathrm{w} = \pi(s_\mathrm{w})$$

Mathematical issues

- coupled system
- unsteady, nonlinear
- elliptic-parabolic degenerate type
- o dominant advection

Brooks–Corey model,
$$s_{e} := \frac{s_{w} - s_{rw}}{1 - s_{rw} - s_{rn}}$$

relative permeabilities

$$k_{r,w}(s_w) = s_e^4, \quad k_{r,n}(s_w) = (1 - s_e)^2(1 - s_e^2)^2$$

capillary pressure

$$\pi(\boldsymbol{s}_{\mathrm{w}}) = \boldsymbol{p}_{\mathrm{d}}\boldsymbol{s}_{\mathrm{e}}^{-\frac{1}{2}}$$

Outline

Introduction

2 Adaptive inexact Newton method

- A guaranteed a posteriori error estimate
- Stopping criteria and efficiency
- Numerical results

3 Application to two-phase flow in porous media

- A guaranteed a posteriori error estimate
- Fully implicit cell-centered finite volumes
- Iteratively coupled implicit pressure—explicit saturation vertex-centered finite volumes
- 4 Conclusions and future directions

Two-phase flow in porous media

Theorem (A posteriori error estimate distinguishing the error components)

Let

- n be the time step,
- k be the linearization step,
- i be the algebraic solver step,

with the approximations $(s_{w,h_{\tau}}^{n,k,i}, p_{w,h_{\tau}}^{n,k,i})$. Then

$$||(\boldsymbol{s}_{\mathrm{w}}-\boldsymbol{s}_{\mathrm{w},h\tau}^{n,k,i},\boldsymbol{\rho}_{\mathrm{w}}-\boldsymbol{\rho}_{\mathrm{w},h\tau}^{n,k,i})|||_{I_n}\leq \eta_{\mathrm{sp}}^{n,k,i}+\eta_{\mathrm{tm}}^{n,k,i}+\eta_{\mathrm{lin}}^{n,k,i}+\eta_{\mathrm{alg}}^{n,k,i}.$$

- $\eta_{sp}^{n,k,i}$: spatial discretization
- $\eta_{tm}^{n,k,i}$: temporal discretization
- $\eta_{\text{lin}}^{n,k,i}$: linearization
- $\eta_{alg}^{n,k,i}$: algebraic solver

Two-phase flow in porous media

Theorem (A posteriori error estimate distinguishing the error components)

Let

- n be the time step,
- k be the linearization step,
- i be the algebraic solver step,

with the approximations $(s_{w,h_{\tau}}^{n,k,i}, p_{w,h_{\tau}}^{n,k,i})$. Then

$$||(\boldsymbol{s}_{\mathrm{w}}-\boldsymbol{s}_{\mathrm{w},h\tau}^{n,k,i},\boldsymbol{\rho}_{\mathrm{w}}-\boldsymbol{\rho}_{\mathrm{w},h\tau}^{n,k,i})|||_{I_n}\leq \eta_{\mathrm{sp}}^{n,k,i}+\eta_{\mathrm{tm}}^{n,k,i}+\eta_{\mathrm{lin}}^{n,k,i}+\eta_{\mathrm{alg}}^{n,k,i}.$$

Error components

- $\eta_{sp}^{n,k,i}$: spatial discretization
- $\eta_{tm}^{n,k,i}$: temporal discretization
- $\eta_{\text{lin}}^{n,k,i}$: linearization $\eta_{\text{alg}}^{n,k,i}$: algebraic solver

informatics mathematics

Local estimators

• spatial estimators

$$\eta_{\mathrm{sp},K}^{n,k,i}(t) := \left\{ \sum_{\alpha \in \{n,w\}} (\|\mathbf{d}_{\alpha,h}^{n,k,i} - \mathbf{v}_{\alpha}(\boldsymbol{p}_{w,h}^{n,k,i}, \boldsymbol{s}_{w,h}^{n,k,i})\|_{K} + h_{K}/\pi \|\boldsymbol{q}_{\alpha}^{n} - \partial_{t}^{n}(\phi \boldsymbol{s}_{\alpha,h\tau}^{n,k,i}) - \nabla \cdot \mathbf{u}_{\alpha,h}^{n,k,i}\|_{K})^{2} + (\|\underline{\mathbf{K}}(\lambda_{w}(\boldsymbol{s}_{w,h\tau}^{n,k,i}) + \lambda_{n}(\boldsymbol{s}_{w,h\tau}^{n,k,i}))\nabla(\mathfrak{p}(\boldsymbol{p}_{w,h\tau}^{n,k,i}, \boldsymbol{s}_{w,h\tau}^{n,k,i}) - \bar{\mathfrak{p}}_{h\tau}^{n,k,i})\|_{K}(t))^{2} + (\|\underline{\mathbf{K}}\nabla(\mathfrak{q}(\boldsymbol{s}_{w,h\tau}^{n,k,i}) - \bar{\mathfrak{q}}_{h\tau}^{n,k,i})\|_{K}(t))^{2} \right\}^{\frac{1}{2}}$$

- temporal estimators
- $\eta_{\text{tm},K,\alpha}^{n,k,i}(t) := \|\mathbf{v}_{\alpha}(\boldsymbol{p}_{\text{w},h\tau}^{n,k,i},\boldsymbol{s}_{\text{w},h\tau}^{n,k,i})(t) \mathbf{v}_{\alpha}(\boldsymbol{p}_{\text{w},h\tau}^{n,k,i},\boldsymbol{s}_{\text{w},h\tau}^{n,k,i})(t^{n})\|_{\mathcal{K}} \quad \alpha \in \{n, w\}$
- Inearization estimators

$$\eta_{\mathrm{lin},K,\boldsymbol{\alpha}}^{n,k,i} := \|\mathbf{I}_{\boldsymbol{\alpha},\boldsymbol{h}}^{n,k,i}\|_{K} \qquad \boldsymbol{\alpha} \in \{\mathrm{n},\mathrm{w}\}$$

algebraic estimators

$$\eta^{n,k,i}_{\mathrm{alg},K,lpha} := \|\mathbf{a}^{n,k,i}_{lpha,h}\|_{\mathcal{K}} \qquad lpha \in \{\mathrm{n},\mathrm{w}\}$$

Global estimators

Global estimators

$$\begin{split} \eta_{\mathrm{sp}}^{n,k,i} &:= \left\{ \mathbf{3} \int_{I_n} \sum_{K \in \mathcal{T}_h^n} (\eta_{\mathrm{sp},K}^{n,k,i}(t))^2 \, \mathrm{d}t \right\}^{\frac{1}{2}}, \\ \eta_{\mathrm{tm}}^{n,k,i} &:= \left\{ \sum_{\alpha \in \{\mathrm{n},\mathrm{w}\}} \int_{I_n} \sum_{K \in \mathcal{T}_h^n} (\eta_{\mathrm{tm},K,\alpha}^{n,k,i}(t))^2 \, \mathrm{d}t \right\}^{\frac{1}{2}}, \\ \eta_{\mathrm{lin}}^{n,k,i} &:= \left\{ \sum_{\alpha \in \{\mathrm{n},\mathrm{w}\}} \tau^n \sum_{K \in \mathcal{T}_h^n} (\eta_{\mathrm{lin},K,\alpha}^{n,k,i})^2 \right\}^{\frac{1}{2}}, \\ \eta_{\mathrm{alg}}^{n,k,i} &:= \left\{ \sum_{\alpha \in \{\mathrm{n},\mathrm{w}\}} \tau^n \sum_{K \in \mathcal{T}_h^n} (\eta_{\mathrm{alg},K,\alpha}^{n,k,i})^2 \right\}^{\frac{1}{2}} \end{split}$$

I Adaptive inexact Newton method Two-phase flow C Est. Fully implicit CCFV Iteratively coupled IMPES VCFV

Quarter five spot test problem

$$\begin{split} \textbf{Data from Klieber \& Rivière (2006)} \\ \Omega &= (0, 300) \texttt{m} \times (0, 300) \texttt{m}, \quad T = 4 \cdot 10^6 \texttt{s}, \\ \phi &= 0.2, \quad \underline{\textbf{K}} = 10^{-11} \underline{\textbf{I}} \texttt{m}^2, \\ \mu_{w} &= 5 \cdot 10^{-4} \texttt{kg} \, \texttt{m}^{-1} \texttt{s}^{-1}, \quad \mu_{n} = 2 \cdot 10^{-3} \texttt{kg} \, \texttt{m}^{-1} \texttt{s}^{-1}, \\ s_{rw} &= s_{rn} = 0, \quad p_{d} = 5 \cdot 10^3 \texttt{kg} \, \texttt{m}^{-1} \texttt{s}^{-2} \end{split}$$

Initial condition (\overline{K} 18m × 18m lower left corner block)

$$egin{aligned} &s_{ ext{w}}^{ ext{0}} = 0.2 ext{ on } K \in \mathcal{T}_h, \, K
ot\in \widetilde{K}, \ &s_{ ext{w}}^{ ext{0}} = 0.95 ext{ on } K \in \mathcal{T}_h, \, K \in \widetilde{K} \end{aligned}$$

Boundary conditions (\hat{K} 18m × 18m upper right corner block)

- no flow Neumann boundary conditions everywhere except of $\partial \widetilde{K} \cap \partial \Omega$ and $\partial \widehat{K} \cap \partial \Omega$
- \widetilde{K} injection well: $s_w = 0.95$, $p_w = 3.45 \cdot 10^6$ kg m⁻¹s⁻²
- \hat{K} production well: $s_{\rm w} = 0.2$, $p_{\rm w} = 2.41 \cdot 10^6 \, {\rm kg} \, {\rm m}^{-1}$

I Adaptive inexact Newton method Two-phase flow C Est. Fully implicit CCFV Iteratively coupled IMPES VCFV

Quarter five spot test problem

 $\begin{aligned} \text{Data from Klieber \& Rivière (2006)} \\ \Omega &= (0, 300) \text{m} \times (0, 300) \text{m}, \quad T = 4 \cdot 10^6 \text{s}, \\ \phi &= 0.2, \quad \underline{K} = 10^{-11} \underline{I} \text{m}^2, \\ \mu_{\text{w}} &= 5 \cdot 10^{-4} \text{kg m}^{-1} \text{s}^{-1}, \quad \mu_{\text{n}} = 2 \cdot 10^{-3} \text{kg m}^{-1} \text{s}^{-1}, \\ s_{\text{rw}} &= s_{\text{rn}} = 0, \quad p_{\text{d}} = 5 \cdot 10^3 \text{kg m}^{-1} \text{s}^{-2} \end{aligned}$ Initial condition (\widetilde{K} 18m × 18m lower left corner block) $s_{\text{w}}^0 = 0.2 \text{ on } K \in \mathcal{T}_h, \ K \notin \widetilde{K}, \end{aligned}$

$$s_{ ext{w}}^{0}=$$
 0.95 on $extsf{K}\in\mathcal{T}_{h},\, extsf{K}\in\widetilde{ extsf{K}}$

Boundary conditions (\hat{K} 18m × 18m upper right corner block)

- no flow Neumann boundary conditions everywhere except of $\partial \widetilde{K} \cap \partial \Omega$ and $\partial \widehat{K} \cap \partial \Omega$
- \widetilde{K} injection well: $s_w = 0.95$, $p_w = 3.45 \cdot 10^6$ kg m⁻¹s⁻²
- \hat{K} production well: $s_{\rm w} = 0.2$, $p_{\rm w} = 2.41 \cdot 10^6 \, {\rm kg} \, {\rm m}^{-1}$

Adaptive inexact Newton method Two-phase flow C Est. Fully implicit CCFV Iteratively coupled IMPES VCFV

Quarter five spot test problem

Г

Data from Klieber & Rivière (2006)

$$\Omega = (0, 300) \text{m} \times (0, 300) \text{m}, \quad T = 4.10^6 \text{s},$$

 $\phi = 0.2, \quad \underline{\mathbf{K}} = 10^{-11} \underline{\mathbf{I}} \text{m}^2,$
 $\mu_{\text{w}} = 5.10^{-4} \text{kg m}^{-1} \text{s}^{-1}, \quad \mu_{\text{n}} = 2.10^{-3} \text{kg m}^{-1} \text{s}^{-1},$
 $s_{\text{rw}} = s_{\text{rn}} = 0, \quad p_{\text{d}} = 5.10^3 \text{kg m}^{-1} \text{s}^{-2}$

Initial condition (\tilde{K} 18m × 18m lower left corner block)

$$egin{aligned} egin{scret} m{s}_{\mathrm{w}}^{\mathrm{0}} &= 0.2 \text{ on } K \in \mathcal{T}_h, \, K
otin \widetilde{K}, \ m{s}_{\mathrm{w}}^{\mathrm{0}} &= 0.95 \text{ on } K \in \mathcal{T}_h, \, K \in \widetilde{K} \end{aligned}$$

Boundary conditions (\hat{K} 18m × 18m upper right corner block)

- no flow Neumann boundary conditions everywhere except of ∂K̃ ∩ ∂Ω and ∂K̂ ∩ ∂Ω
- \tilde{K} injection well: $s_{\rm w} = 0.95$, $p_{\rm w} = 3.45 \cdot 10^6$ kg m⁻¹s⁻²
- \hat{K} production well: $s_{\rm w} = 0.2$, $p_{\rm w} = 2.41 \cdot 10^6 \, {\rm kg \, m^{-1} s^{-2}}$
Outline

Introduction

2 Adaptive inexact Newton method

- A guaranteed a posteriori error estimate
- Stopping criteria and efficiency
- Numerical results

3 Application to two-phase flow in porous media

- A guaranteed a posteriori error estimate
- Fully implicit cell-centered finite volumes
- Iteratively coupled implicit pressure—explicit saturation vertex-centered finite volumes
- 4 Conclusions and future directions

I Adaptive inexact Newton method Two-phase flow C Est. Fully implicit CCFV Iteratively coupled IMPES VCFV

Cell-centered finite volume scheme

Cell-centered finite volume scheme

 n_{-1}

For all $1 \le n \le N$, look for $s^n_{w,h}, \bar{p}^n_{w,h}$ such that

$$\phi \frac{\mathbf{s}_{\mathbf{w},K}^{n} - \mathbf{s}_{\mathbf{w},K}^{n}}{\tau^{n}} |K| + \sum_{\sigma_{KL} \in \mathcal{E}_{K}^{\text{int}}} F_{\mathbf{w},\sigma_{KL}}(\mathbf{s}_{\mathbf{w},h}^{n}, \bar{p}_{\mathbf{w},h}^{n}) = \mathbf{0},$$
$$-\phi \frac{\mathbf{s}_{\mathbf{w},K}^{n} - \mathbf{s}_{\mathbf{w},K}^{n-1}}{\tau^{n}} |K| + \sum_{\sigma_{KL} \in \mathcal{E}_{K}^{\text{int}}} F_{\mathbf{n},\sigma_{KL}}(\mathbf{s}_{\mathbf{w},h}^{n}, \bar{p}_{\mathbf{w},h}^{n}) = \mathbf{0},$$

where the fluxes are given by

$$\begin{split} F_{w,\sigma_{KL}}(s_{w,h}^{n},\bar{p}_{w,h}^{n}) &:= -\frac{\eta_{\mathrm{r},w}(s_{w,K}^{n}) + \eta_{\mathrm{r},w}(s_{w,L}^{n})}{2} |\underline{\mathbf{K}}| \frac{\bar{p}_{w,L}^{n} - \bar{p}_{w,K}^{n}}{|\mathbf{x}_{K} - \mathbf{x}_{L}|} |\sigma_{KL}|, \\ F_{\mathrm{n},\sigma_{KL}}(s_{w,h}^{n},\bar{p}_{w,h}^{n}) &:= -\frac{\eta_{\mathrm{r},n}(s_{w,K}^{n}) + \eta_{\mathrm{r},n}(s_{w,L}^{n})}{2} |\underline{\mathbf{K}}| \\ \times \frac{\bar{p}_{w,L}^{n} + \pi(s_{w,L}^{n}) - (\bar{p}_{w,K}^{n} + \pi(s_{w,K}^{n}))}{|\mathbf{x}_{K} - \mathbf{x}_{L}|} \int_{\mathbf{K}}^{\mathbf{K}|w| \mathrm{restormed}} \mathbf{K} + \mathbf{K}$$

Martin Vohralík

A posteriori control and stopping criteria

I Adaptive inexact Newton method Two-phase flow C Est. Fully implicit CCFV Iteratively coupled IMPES VCFV

Cell-centered finite volume scheme

Cell-centered finite volume scheme

For all $1 \le n \le N$, look for $s^n_{w,h}, \bar{p}^n_{w,h}$ such that

$$\phi \frac{\boldsymbol{s}_{\mathrm{w},K}^{n} - \boldsymbol{s}_{\mathrm{w},K}^{n-1}}{\tau^{n}} |\boldsymbol{K}| + \sum_{\sigma_{\boldsymbol{K}\boldsymbol{L}} \in \mathcal{E}_{K}^{\mathrm{int}}} F_{\mathrm{w},\sigma_{\boldsymbol{K}\boldsymbol{L}}}(\boldsymbol{s}_{\mathrm{w},h}^{n}, \bar{\boldsymbol{p}}_{\mathrm{w},h}^{n}) = \boldsymbol{0},$$

$$-\phi \frac{\boldsymbol{s}_{\mathrm{w},K}^{n} - \boldsymbol{s}_{\mathrm{w},K}^{n-1}}{\tau^{n}} |\boldsymbol{K}| + \sum_{\sigma_{\boldsymbol{K}\boldsymbol{L}} \in \mathcal{E}_{K}^{\mathrm{int}}} \boldsymbol{F}_{\mathrm{n},\sigma_{\boldsymbol{K}\boldsymbol{L}}}(\boldsymbol{s}_{\mathrm{w},h}^{n},\bar{\boldsymbol{p}}_{\mathrm{w},h}^{n}) = \boldsymbol{0},$$

where the fluxes are given by

$$egin{aligned} & F_{ ext{w},\sigma_{ extsf{KL}}}(m{s}^n_{ ext{w},h},ar{p}^n_{ ext{w},h}) & \coloneqq & -rac{\eta_{ ext{r,w}}(m{s}^n_{ ext{w},K})+\eta_{ ext{r,w}}(m{s}^n_{ ext{w},L})}{2}|\mathbf{K}|rac{ar{p}^n_{ ext{w},K}-ar{p}^n_{ ext{w},K}}{|\mathbf{x}_{ extsf{K}}-\mathbf{x}_{L}|}|\sigma_{ ext{KL}}|, \ & F_{ ext{n},\sigma_{ ext{KL}}}(m{s}^n_{ ext{w},h},ar{p}^n_{ ext{w},h}) & \coloneqq & -rac{\eta_{ ext{r,n}}(m{s}^n_{ ext{w},K})+\eta_{ ext{r,n}}(m{s}^n_{ ext{w},L})}{2}|\mathbf{K}| \ & imes rac{ar{p}^n_{ ext{w},L}+\pi(m{s}^n_{ ext{w},L})-(ar{p}^n_{ ext{w},K}+\pi(m{s}^n_{ ext{w},K}))}{|\mathbf{x}_{ extsf{K}}-\mathbf{x}_{ ext{L}}|}| egin{aligned} & \mathcal{K}_{ ext{L}} & \mathcal{K}_{ ext{w}} \end{aligned}$$

Martin Vohralík A posteriori control and stopping criteria

Adaptive inexact Newton method Two-phase flow C

Est. Fully implicit CCFV Iteratively coupled IMPES VCFV

Linearization and algebraic solution

Linearization step k and algebraic step i Couple $s_{w,h}^{n,k,i}, \bar{p}_{w,h}^{n,k,i}$ such that $\phi \frac{s_{w,K}^{n,k,i} - s_{w,K}^{n-1}}{-n} |K| + \sum F_{w,\sigma_{KL}}^{k-1}(s_{w,h}^{n,k,i}, \bar{p}_{w,h}^{n,k,i}) = -R_{w,K}^{n,k,i},$ $\sigma_{KI} \in \mathcal{E}_{K}^{int}$ $-\phi \frac{s_{w,K}^{n,\kappa,i} - s_{w,K}^{n-1}}{\tau^n} |K| + \sum F_{n,\sigma_{KL}}^{k-1}(s_{w,h}^{n,k,i}, \bar{p}_{w,h}^{n,k,i}) = -R_{n,K}^{n,k,i},$ $\sigma_{\kappa} \in \mathcal{E}_{\kappa}^{int}$ $+ \sum_{M \in \mathcal{IK}} \frac{\partial \mathcal{F}_{\alpha,\sigma_{KL}}}{\partial s_{\mathrm{w},M}} (s_{\mathrm{w},h}^{n,k-1}, \bar{p}_{\mathrm{w},h}^{n,k-1}) \cdot (s_{\mathrm{w},M}^{n,k,i} - s_{\mathrm{w},M}^{n,k-1})$ $+\sum_{\substack{M \in \mathcal{I}K, I, \mathcal{I}}} \frac{\partial \mathcal{F}_{\alpha, \sigma_{KL}}}{\partial \bar{p}_{w, M}} (s_{w, h}^{n, k-1}, \bar{p}_{w, h}^{n, k-1}) \cdot (\bar{p}_{w, M}^{n, k, i} - \bar{p}_{w, M}^{n, k-1}).$

Martin Vohralík

A posteriori control and stopping criteria

Adaptive inexact Newton method Two-phase flow C

Est. Fully implicit CCFV Iteratively coupled IMPES VCFV

Linearization and algebraic solution

Linearization step *k* and algebraic step *i* Couple $s_{w,h}^{n,k,i}, \bar{p}_{w,h}^{n,k,i}$ such that $\phi \frac{s_{w,K}^{n,k,i} - s_{w,K}^{n-1}}{\tau^n} |K| + \sum_{\sigma_{KL} \in \mathcal{E}_{K}^{int}} F_{w,\sigma_{KL}}^{k-1}(s_{w,h}^{n,k,i}, \bar{p}_{w,h}^{n,k,i}) = -R_{w,K}^{n,k,i},$ $-\phi \frac{s_{w,K}^{n,k,i} - s_{w,K}^{n-1}}{\tau^n} |K| + \sum_{\sigma_{KL} \in \mathcal{E}_{K}^{int}} F_{n,\sigma_{KL}}^{k-1}(s_{w,h}^{n,k,i}, \bar{p}_{w,h}^{n,k,i}) = -R_{n,K}^{n,k,i},$

where the linearized fluxes are given by

$$\begin{split} F_{\alpha,\sigma_{KL}}^{k-1}(s_{w,h}^{n,k,i},\bar{p}_{w,h}^{n,k,i}) &:= F_{\alpha,\sigma_{KL}}(s_{w,h}^{n,k-1},\bar{p}_{w,h}^{n,k-1}) \\ &+ \sum_{M \in \{K,L\}} \frac{\partial F_{\alpha,\sigma_{KL}}}{\partial s_{w,M}}(s_{w,h}^{n,k-1},\bar{p}_{w,h}^{n,k-1}) \cdot (s_{w,M}^{n,k,i} - s_{w,M}^{n,k-1}) \\ &+ \sum_{M \in \{K,L\}} \frac{\partial F_{\alpha,\sigma_{KL}}}{\partial \bar{p}_{w,M}}(s_{w,h}^{n,k-1},\bar{p}_{w,h}^{n,k-1}) \cdot (\bar{p}_{w,M}^{n,k,i} - \bar{p}_{w,M}^{n,k-1}) \cdot (\bar{p}_{w,M}^{n,k-1} - \bar{p}_{w,M}^{n,k-1} - \bar{p}_{w,M}^{n,k-1}) \cdot (\bar{p}_{w,M}^{n,k-1} - \bar{p}_{w,$$

Martin Vohralík A posteriori control and stopping criteria

Fluxes reconstructions and pressure postprocessing

Fluxes reconstructions

$$(\mathbf{d}_{\alpha,h}^{n,k,i} \cdot \mathbf{n}_{K}, 1)_{\sigma_{KL}} := F_{\alpha,\sigma_{KL}}(\mathbf{s}_{w,h}^{n,k,i}, \bar{p}_{w,h}^{n,k,i}),$$

$$((\mathbf{d}_{\alpha,h}^{n,k,i} + \mathbf{I}_{\alpha,h}^{n,k,i}) \cdot \mathbf{n}_{K}, 1)_{\sigma_{KL}} := F_{\alpha,\sigma_{KL}}^{k-1}(\mathbf{s}_{w,h}^{n,k,i}, \bar{p}_{w,h}^{n,k,i}),$$

$$\mathbf{a}_{\alpha,h}^{n,k,i} := \mathbf{d}_{\alpha,h}^{n,k,i+\nu} + \mathbf{I}_{\alpha,h}^{n,k,i+\nu} - (\mathbf{d}_{\alpha,h}^{n,k,i} + \mathbf{I}_{\alpha,h}^{n,k,i})$$

• Piecewise constant $\bar{p}_{\alpha,h}^{n,k,i}$ postprocessed to piecewise

$$-\eta_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w,K}}^{n,k,i})\underline{\mathbf{K}}\nabla(\boldsymbol{p}_{\mathrm{w,h}}^{n,k,i}|_{K}) = \mathbf{d}_{\mathrm{w,h}}^{n,k,i}|_{K},$$
$$\boldsymbol{p}_{\mathrm{w,h}}^{n,k,i}(\mathbf{x}_{K}) = \bar{\boldsymbol{p}}_{\mathrm{w,K}}^{n,k,i},$$

$$-\eta_{\mathrm{r},\mathrm{n}}(\boldsymbol{s}_{\mathrm{w},K}^{n,k,i})\underline{\mathbf{K}}\nabla(\boldsymbol{p}_{\mathrm{n},h}^{n,k,i}|_{K}) = \mathbf{d}_{\mathrm{n},h}^{n,k,i}|_{K}$$

 $p_{\mathrm{n},h}^{n,k,i}(\mathbf{x}_{K})=\pi(s_{\mathrm{w},K}^{n,k,i})+ar{p}_{\mathrm{w},K}^{n,k,i}$ interaction mathematics

Fluxes reconstructions and pressure postprocessing

Fluxes reconstructions

$$(\mathbf{d}_{\alpha,h}^{n,k,i} \cdot \mathbf{n}_{K}, 1)_{\sigma_{KL}} := F_{\alpha,\sigma_{KL}}(\mathbf{s}_{w,h}^{n,k,i}, \bar{p}_{w,h}^{n,k,i}),$$

$$((\mathbf{d}_{\alpha,h}^{n,k,i} + \mathbf{I}_{\alpha,h}^{n,k,i}) \cdot \mathbf{n}_{K}, 1)_{\sigma_{KL}} := F_{\alpha,\sigma_{KL}}^{k-1}(\mathbf{s}_{w,h}^{n,k,i}, \bar{p}_{w,h}^{n,k,i}),$$

$$\mathbf{a}_{\alpha,h}^{n,k,i} := \mathbf{d}_{\alpha,h}^{n,k,i+\nu} + \mathbf{I}_{\alpha,h}^{n,k,i+\nu} - (\mathbf{d}_{\alpha,h}^{n,k,i} + \mathbf{I}_{\alpha,h}^{n,k,i})$$

Phase pressures postprocessing

• Piecewise constant $\bar{p}_{\alpha,h}^{n,k,i}$ postprocessed to piecewise quadratic $p_{\alpha b}^{n,k,i}$:

$$-\eta_{\mathbf{r},\mathbf{w}}(\boldsymbol{s}_{\mathbf{w},K}^{n,k,i})\underline{\mathbf{K}}\nabla(\boldsymbol{p}_{\mathbf{w},h}^{n,k,i}|_{K}) = \mathbf{d}_{\mathbf{w},h}^{n,k,i}|_{K},$$
$$\boldsymbol{p}_{\mathbf{w},h}^{n,k,i}(\mathbf{x}_{K}) = \bar{\boldsymbol{p}}_{\mathbf{w},K}^{n,k,i},$$

$$-\eta_{\mathrm{r},\mathrm{n}}(\boldsymbol{s}_{\mathrm{w},K}^{n,k,i})\underline{\mathsf{K}}\nabla(\boldsymbol{p}_{\mathrm{n},h}^{n,k,i}|_{K}) = \mathbf{d}_{\mathrm{n},h}^{n,k,i}|_{K},$$
$$\boldsymbol{p}_{\mathrm{n},h}^{n,k,i}(\mathbf{x}_{K}) = \pi(\boldsymbol{s}_{\mathrm{w},K}^{n,k,i}) + \bar{\boldsymbol{p}}_{\mathrm{w},K}^{n,k,i}$$

Global pressure and Kirchhoff transform

Global pressure and Kirchhoff transform postprocessing

• Piecewise quadratic global pressure and Kirchhoff transform used in the estimators:

$$-(\eta_{w}(\boldsymbol{s}_{w,K}^{n,k,i}) + \eta_{n}(\boldsymbol{s}_{w,K}^{n,k,i}))\underline{\mathbf{K}}\nabla(\boldsymbol{\mathfrak{p}}_{h}^{n,k,i}|_{K}) = (\mathbf{d}_{w,h}^{n,k,i} + \mathbf{d}_{n,h}^{n,k,i})|_{K},$$
$$\boldsymbol{\mathfrak{p}}_{h}^{n,k,i}(\mathbf{x}_{K}) = P(\bar{p}_{w,K}^{n,k,i}, \boldsymbol{s}_{w,K}^{n,k,i}),$$
$$\underline{\mathbf{K}}\nabla(\boldsymbol{\mathfrak{q}}_{h}^{n,k,i}|_{K}) = \eta_{n}(\boldsymbol{s}_{w,K}^{n,k,i})\underline{\mathbf{K}}\nabla(\boldsymbol{\mathfrak{p}}_{h}^{n,k,i}|_{K}) + \mathbf{d}_{n,h}^{n,k,i}|_{K},$$
$$\boldsymbol{\mathfrak{q}}_{h}^{n,k,i}(\mathbf{x}_{K}) = \varphi(\boldsymbol{\mathfrak{s}}_{w,K}^{n,k,i})$$

I Adaptive inexact Newton method Two-phase flow C Est. Fully implicit CCFV Iteratively coupled IMPES VCFV

Water saturation/estimators evolution

Martin Vohralík A posteriori control and stopping criteria Adaptive inexact Newton method Two-phase flow C Est. Fully implicit CCFV Iteratively coupled IMPES VCFV

Estimators and stopping criteria

Adaptive inexact Newton method Two-phase flow C

Est. Fully implicit CCFV Iteratively coupled IMPES VCFV

GMRes relative residual/Newton iterations

Martin Vohralík A posteriori control and stopping criteria

GMRes iterations

Martin Vohralík A posteriori control and stopping criteria

Outline

Introduction

2 Adaptive inexact Newton method

- A guaranteed a posteriori error estimate
- Stopping criteria and efficiency
- Numerical results

3 Application to two-phase flow in porous media

- A guaranteed a posteriori error estimate
- Fully implicit cell-centered finite volumes
- Iteratively coupled implicit pressure—explicit saturation vertex-centered finite volumes
- 4 Conclusions and future directions

Vertex-centered finite volumes

Implicit pressure equation on step k

$$- \left(\left(\eta_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \right) \underline{\mathbf{K}} \nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k} \cdot \mathbf{n}_{D} \\ + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \underline{\mathbf{K}} \nabla \overline{\pi}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \cdot \mathbf{n}_{D}, \mathbf{1} \right)_{\partial D \setminus \partial \Omega} = \mathbf{0} \quad \forall D \in \mathcal{D}_{h}^{\mathrm{int},n}$$

Explicit saturation equation on step *k*

$$\boldsymbol{s}_{\mathrm{w},D}^{n,k} := \frac{\tau^n}{\phi|D|} \big(\eta_{\mathrm{r},\mathrm{w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \underline{\mathbf{K}} \nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k} \cdot \mathbf{n}_D, 1 \big)_{\partial D \setminus \partial \Omega} + \boldsymbol{s}_{\mathrm{w},D}^{n-1} \quad \forall D \in \mathcal{D}_h^{\mathrm{int},n}$$

Vertex-centered finite volumes

Implicit pressure equation on step k

$$- \left(\left(\eta_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \right) \underline{\mathbf{K}} \nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k} \cdot \mathbf{n}_{D} \\ + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \underline{\mathbf{K}} \nabla \overline{\pi}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \cdot \mathbf{n}_{D}, \mathbf{1} \right)_{\partial D \setminus \partial \Omega} = \mathbf{0} \quad \forall D \in \mathcal{D}_{h}^{\mathrm{int},n}$$

Explicit saturation equation on step k

$$\boldsymbol{s}_{\mathrm{w},D}^{n,k} := \frac{\tau^n}{\phi|\boldsymbol{D}|} \big(\eta_{\mathrm{r},\mathrm{w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \underline{\mathbf{K}} \nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k} \cdot \mathbf{n}_D, \mathbf{1} \big)_{\partial D \setminus \partial \Omega} + \boldsymbol{s}_{\mathrm{w},D}^{n-1} \quad \forall \boldsymbol{D} \in \mathcal{D}_h^{\mathrm{int},n}$$

Linearization and algebraic solution

Iterative coupling step k and algebraic step i

$$-((\eta_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}))\underline{\mathbf{K}}\nabla\boldsymbol{p}_{\mathrm{w},h}^{n,k,i}\cdot\mathbf{n}_{D} +\eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\underline{\mathbf{K}}\nabla\overline{\pi}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\cdot\mathbf{n}_{D},1)_{\partial D\setminus\partial\Omega} = -\boldsymbol{R}_{\mathrm{t,D}}^{n,k,i} \quad \forall D \in \mathcal{D}_{h}^{\mathrm{int},n}$$

$$\boldsymbol{s}_{\mathrm{w},D}^{n,k,i} := \frac{\tau^n}{\phi|D|} \big(\eta_{\mathrm{r},\mathrm{w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \underline{\mathbf{K}} \nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k,i} \cdot \mathbf{n}_D, 1\big)_{\partial D \setminus \partial \Omega} + \boldsymbol{s}_{\mathrm{w},D}^{n-1}$$

Linearization and algebraic solution

Iterative coupling step k and algebraic step i

$$-((\eta_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}))\underline{\mathbf{K}}\nabla\boldsymbol{p}_{\mathrm{w},h}^{n,k,i}\cdot\mathbf{n}_{D} \\ + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\underline{\mathbf{K}}\nabla\overline{\pi}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\cdot\mathbf{n}_{D}, 1)_{\partial D\setminus\partial\Omega} = -\boldsymbol{R}_{\mathrm{t,D}}^{n,k,i} \quad \forall D \in \mathcal{D}_{h}^{\mathrm{int},n}$$

$$\boldsymbol{s}_{\mathrm{w},D}^{n,k,i} := \frac{\tau^n}{\phi |D|} \big(\eta_{\mathrm{r},\mathrm{w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \underline{\mathbf{K}} \nabla \boldsymbol{\rho}_{\mathrm{w},h}^{n,k,i} \cdot \mathbf{n}_D, 1 \big)_{\partial D \setminus \partial \Omega} + \boldsymbol{s}_{\mathrm{w},D}^{n-1}$$

Fluxes reconstructions

Total fluxes

$$\begin{aligned} (\mathbf{d}_{t,h}^{n,k,i} \cdot \mathbf{n}_{D}, \mathbf{1})_{\sigma} &:= -\left(\left(\eta_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k,i}) + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k,i})\right)\underline{\mathbf{K}}\nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k,i} \cdot \mathbf{n}_{D} \right. \\ &+ \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k,i})\underline{\mathbf{K}}\nabla \overline{\pi}(\boldsymbol{s}_{\mathrm{w},h}^{n,k,i}) \cdot \mathbf{n}_{D}, \mathbf{1})_{\sigma}, \\ ((\mathbf{d}_{t,h}^{n,k,i} + \mathbf{I}_{t,h}^{n,k,i}) \cdot \mathbf{n}_{D}, \mathbf{1})_{\sigma} &:= -\left(\left(\eta_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\right)\underline{\mathbf{K}}\nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k,i} \cdot \mathbf{n}_{D} \right. \\ &+ \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\underline{\mathbf{K}}\nabla \overline{\pi}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \cdot \mathbf{n}_{D}, \mathbf{1})_{\sigma}, \\ &+ \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\underline{\mathbf{K}}\nabla \overline{\pi}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \cdot \mathbf{n}_{D}, \mathbf{1})_{\sigma}, \\ \mathbf{a}_{\mathrm{t},h}^{n,k,i} &:= \mathbf{d}_{\mathrm{t},h}^{n,k,i+\nu} + \mathbf{I}_{\mathrm{t},h}^{n,k,i+\nu} - \left(\mathbf{d}_{\mathrm{t},h}^{n,k,i} + \mathbf{I}_{\mathrm{t},h}^{n,k,i}\right) \end{aligned}$$

Wetting fluxes

$$\begin{aligned} (\mathbf{d}_{\mathbf{w},h}^{n,k,i} \cdot \mathbf{n}_{D}, 1)_{\sigma} &:= -\left(\eta_{\mathbf{r},\mathbf{w}}(\boldsymbol{s}_{\mathbf{w},h}^{n,k,i})\underline{\mathbf{K}}\nabla\boldsymbol{p}_{\mathbf{w},h}^{n,k,i} \cdot \mathbf{n}_{D}, 1\right)_{\sigma}, \\ ((\mathbf{d}_{\mathbf{w},h}^{n,k,i} + \mathbf{I}_{\mathbf{w},h}^{n,k,i}) \cdot \mathbf{n}_{D}, 1)_{\sigma} &:= -\left(\eta_{\mathbf{r},\mathbf{w}}(\boldsymbol{s}_{\mathbf{w},h}^{n,k-1})\underline{\mathbf{K}}\nabla\boldsymbol{p}_{\mathbf{w},h}^{n,k,i} \cdot \mathbf{n}_{D}, 1\right)_{\sigma}, \\ \mathbf{a}_{\mathbf{w},h}^{n,k,i} &:= 0 \end{aligned}$$

Fluxes reconstructions

Total fluxes

$$\begin{aligned} (\mathbf{d}_{t,h}^{n,k,i} \cdot \mathbf{n}_{D}, \mathbf{1})_{\sigma} &:= -\left(\left(\eta_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k,i}) + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k,i})\right)\underline{\mathbf{K}}\nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k,i} \cdot \mathbf{n}_{D} \right. \\ &+ \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k,i})\underline{\mathbf{K}}\nabla\overline{\pi}(\boldsymbol{s}_{\mathrm{w},h}^{n,k,i}) \cdot \mathbf{n}_{D}, \mathbf{1}\right)_{\sigma}, \\ ((\mathbf{d}_{t,h}^{n,k,i} + \mathbf{l}_{t,h}^{n,k,i}) \cdot \mathbf{n}_{D}, \mathbf{1})_{\sigma} &:= -\left(\left(\eta_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\right)\underline{\mathbf{K}}\nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k,i} \cdot \mathbf{n}_{D} \right. \\ &+ \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \underline{\mathbf{K}}\nabla\overline{\pi}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \cdot \mathbf{n}_{D}, \mathbf{1}\right)_{\sigma}, \\ &+ \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \underline{\mathbf{K}}\nabla\overline{\pi}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \cdot \mathbf{n}_{D}, \mathbf{1}\right)_{\sigma}, \\ \mathbf{a}_{t,h}^{n,k,i} &:= \mathbf{d}_{t,h}^{n,k,i+\nu} + \mathbf{l}_{t,h}^{n,k,i+\nu} - \left(\mathbf{d}_{t,h}^{n,k,i} + \mathbf{l}_{t,h}^{n,k,i}\right) \end{aligned}$$

Wetting fluxes

$$\begin{aligned} (\mathbf{d}_{\mathbf{w},h}^{n,k,i} \cdot \mathbf{n}_{D}, 1)_{\sigma} &:= -\left(\eta_{\mathbf{r},\mathbf{w}}(\boldsymbol{s}_{\mathbf{w},h}^{n,k,i})\underline{\mathbf{K}}\nabla\boldsymbol{p}_{\mathbf{w},h}^{n,k,i} \cdot \mathbf{n}_{D}, 1\right)_{\sigma}, \\ ((\mathbf{d}_{\mathbf{w},h}^{n,k,i} + \mathbf{I}_{\mathbf{w},h}^{n,k,i}) \cdot \mathbf{n}_{D}, 1)_{\sigma} &:= -\left(\eta_{\mathbf{r},\mathbf{w}}(\boldsymbol{s}_{\mathbf{w},h}^{n,k-1})\underline{\mathbf{K}}\nabla\boldsymbol{p}_{\mathbf{w},h}^{n,k,i} \cdot \mathbf{n}_{D}, 1\right)_{\sigma}, \\ \mathbf{a}_{\mathbf{w},h}^{n,k,i} &:= 0 \end{aligned}$$

Estimators and stopping criteria

I Adaptive inexact Newton method Two-phase flow C Est. Fully implicit CCFV Iteratively coupled IMPES VCFV

GMRes relative residual/iterative coupling iterations

Martin Vohralík A posteriori control and stopping criteria

GMRes iterations

Outline

Introduction

2 Adaptive inexact Newton method

- A guaranteed a posteriori error estimate
- Stopping criteria and efficiency
- Numerical results
- 3 Application to two-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Fully implicit cell-centered finite volumes
 - Iteratively coupled implicit pressure—explicit saturation vertex-centered finite volumes

4 Conclusions and future directions

Conclusions

Entire adaptivity

- only a necessary number of algebraic solver iterations on each linearization step
- only a necessary number of linearization iterations
- "smart online decisions": algebraic step / linearization step / space mesh refinement / time step modification
- important computational savings
- guaranteed and robust error upper bound via a posteriori estimates

Future directions

- other coupled nonlinear systems
- convergence and optimality

Conclusions

Entire adaptivity

- only a necessary number of algebraic solver iterations on each linearization step
- only a necessary number of linearization iterations
- "smart online decisions": algebraic step / linearization step / space mesh refinement / time step modification
- important computational savings
- guaranteed and robust error upper bound via a posteriori estimates

Future directions

- other coupled nonlinear systems
- convergence and optimality

Bibliography

- ERN A., VOHRALÍK M., Adaptive inexact Newton methods: a posteriori error control and speed-up of calculations, *SIAM News 46*, 1 (2013), 1,4.
- ERN A., VOHRALÍK M., Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, *SIAM J. Sci. Comput.*, accepted for publication.
- VOHRALÍK M., WHEELER M. F., A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows, HAL Preprint 00633594v2.

Thank you for your attention!

