Adaptive discretization, regularization, linearization, and algebraic solution in unsteady nonlinear problems

Daniele A. Di Pietro, Eric Flauraud, <u>Martin Vohralík</u>, and Soleiman Yousef

INRIA Paris-Rocquencourt

Barcelona, July 21, 2014

Outline

- Introduction
- The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results
- Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments
- Conclusions and future directions

Outline

- Introduction
- 2 The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results
- Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments
- 4 Conclusions and future directions

The Stefan problem

The Stefan problem

$$\partial_t u - \Delta \beta(u) = f$$
 in $\Omega \times (0, T)$,
 $u(\cdot, 0) = u_0$ in Ω ,
 $\beta(u) = 0$ on $\partial \Omega \times (0, T)$

Nomenclature

- u enthalpy, $\beta(u)$ temperature
- β : L_{β} -Lipschitz continuous, $\beta(s) = 0$ in (0, 1), strictly increasing otherwise
- phase change, degenerate parabolic problem
- $u_0 \in L^2(\Omega), f \in L^2(0, T; L^2(\Omega))$

Context

- Ph.D. thesis of Soleiman Yousef
- collaboration with IFP Energies Nouvelles

The Stefan problem

The Stefan problem

$$\partial_t u - \Delta \beta(u) = f$$
 in $\Omega \times (0, T)$,
 $u(\cdot, 0) = u_0$ in Ω ,
 $\beta(u) = 0$ on $\partial \Omega \times (0, T)$

Nomenclature

- u enthalpy, $\beta(u)$ temperature
- β : L_{β} -Lipschitz continuous, $\beta(s) = 0$ in (0, 1), strictly increasing otherwise
- phase change, degenerate parabolic problem
- $u_0 \in L^2(\Omega), f \in L^2(0, T; L^2(\Omega))$

Context

- Ph.D. thesis of Soleiman Yousef
- collaboration with IFP Energies Nouvelles

The Stefan problem

The Stefan problem

$$\partial_t u - \Delta \beta(u) = f$$
 in $\Omega \times (0, T)$,
 $u(\cdot, 0) = u_0$ in Ω ,
 $\beta(u) = 0$ on $\partial \Omega \times (0, T)$

Nomenclature

- u enthalpy, $\beta(u)$ temperature
- β : L_{β} -Lipschitz continuous, $\beta(s) = 0$ in (0, 1), strictly increasing otherwise
- phase change, degenerate parabolic problem
- $u_0 \in L^2(\Omega), f \in L^2(0, T; L^2(\Omega))$

Context

- Ph.D. thesis of Soleiman Yousef
- collaboration with IFP Energies Nouvelles

Numerical practice: regularization

Regularization of β , parameter ϵ

Discretization

Question (Stopping and balancing criteria)

- What is a good choice of the
 - regularization parameter ϵ ?
 - time step?
 - space mesh?
- What is a good stopping criterion for the
 - nonlinear solver?
 - linear solver?

Question (Error)

• How big is the error $\|u|_{I_n} - u_{h\tau}^{n,\epsilon,k,i}\|$ on time step n, space mesh \mathcal{K}^n , regularization parameter ϵ , linearization step k, and algebraic solver step i? How big are the individual components? How is error distributed in time and space?

Discretization

...

Question (Stopping and balancing criteria)

- What is a good choice of the
 - regularization parameter ∈?
 - time step?
 - space mesh?
- What is a good stopping criterion for the
 - nonlinear solver?
 - linear solver?

Question (Error)

• How big is the error $\|u|_{I_n} - u_{h\tau}^{n,\epsilon,k,i}\|$ on time step n, space mesh \mathcal{K}^n , regularization parameter ϵ , linearization step k, and algebraic solver step i? How big are the individual components? How is error distributed in time and space?

Discretization

...

Question (Stopping and balancing criteria)

- What is a good choice of the
 - regularization parameter ∈?
 - time step?
 - space mesh?
- What is a good stopping criterion for the
 - nonlinear solver?
 - linear solver?

Question (Error)

• How big is the error $\|u\|_{I_n} - u_{h\tau}^{n,\epsilon,k,i}\|$ on time step n, space mesh \mathcal{K}^n , regularization parameter ϵ , linearization step k, and algebraic solver step i? How big are the individual components? How is error distributed in time and space?

Discretization

...

Question (Stopping and balancing criteria)

- What is a good choice of the
 - regularization parameter €?
 - time step?
 - space mesh?
- What is a good stopping criterion for the
 - nonlinear solver?
 - linear solver?

Question (Error)

• How big is the error $\|u\|_{l_n} - u_{h\tau}^{n,\epsilon,k,i}\|$ on time step n, space mesh \mathcal{K}^n , regularization parameter ϵ , linearization step k, and algebraic solver step i? How big are the individual components? How is error distributed in time and space?

Nonlinear steady problems

- Ladevèze (since 1990's), guaranteed upper bound
- Verfürth (1994), residual estimates
- Carstensen and Klose (2003), p-Laplacian
- Chaillou and Suri (2006, 2007), linearization errors
- Kim (2007), guaranteed estimates, loc. cons. methods

Linear unsteady problems

- Bieterman and Babuška (1982), introduction
- Verfürth (2003), efficiency, robustness wrt the final time

Nonlinear unsteady problems

- Verfürth (1998), framework for energy norm control
- Ohlberger (2001), non energy-norm estimates

- Nochetto, Schmidt, Verdi (2000), Stefan problem
- Dolejší, Ern, Vohralík (2013), ADR, Richards, robustness in a space–time dual mesh-dependent norm

Nonlinear steady problems

- Ladevèze (since 1990's), guaranteed upper bound
- Verfürth (1994), residual estimates
- Carstensen and Klose (2003), p-Laplacian
- Chaillou and Suri (2006, 2007), linearization errors
- Kim (2007), guaranteed estimates, loc. cons. methods

Linear unsteady problems

- Bieterman and Babuška (1982), introduction
- Verfürth (2003), efficiency, robustness wrt the final time

Nonlinear unsteady problems

- Verfürth (1998), framework for energy norm control
- Ohlberger (2001), non energy-norm estimates

- Nochetto, Schmidt, Verdi (2000), Stefan problem
- Dolejší, Ern, Vohralík (2013), ADR, Richards, robustness in a space—time dual mesh-dependent norm

Nonlinear steady problems

- Ladevèze (since 1990's), guaranteed upper bound
- Verfürth (1994), residual estimates
- Carstensen and Klose (2003), p-Laplacian
- Chaillou and Suri (2006, 2007), linearization errors
- Kim (2007), guaranteed estimates, loc. cons. methods

Linear unsteady problems

- Bieterman and Babuška (1982), introduction
- Verfürth (2003), efficiency, robustness wrt the final time

Nonlinear unsteady problems

- Verfürth (1998), framework for energy norm control
- Ohlberger (2001), non energy-norm estimates

- Nochetto, Schmidt, Verdi (2000), Stefan problem
- Dolejší, Ern, Vohralík (2013), ADR, Richards, robustness in a space–time dual mesh-dependent norm

Nonlinear steady problems

- Ladevèze (since 1990's), guaranteed upper bound
- Verfürth (1994), residual estimates
- Carstensen and Klose (2003), p-Laplacian
- Chaillou and Suri (2006, 2007), linearization errors
- Kim (2007), guaranteed estimates, loc. cons. methods

Linear unsteady problems

- Bieterman and Babuška (1982), introduction
- Verfürth (2003), efficiency, robustness wrt the final time

Nonlinear unsteady problems

- Verfürth (1998), framework for energy norm control
- Ohlberger (2001), non energy-norm estimates

- Nochetto, Schmidt, Verdi (2000), Stefan problem
- Dolejší, Ern, Vohralík (2013), ADR, Richards, robustness in a space–time dual mesh-dependent norm

Previous results – adaptive strategies

Stopping criteria for algebraic solvers

- engineering literature, since 1950's
- Becker, Johnson, and Rannacher (1995), multigrid stopping criterion
- Arioli (2000's), comparison of the algebraic and discretization errors by a priori arguments

Adaptive inexact Newton method

- Bank and Rose (1982), combination with multigrid
- Hackbusch and Reusken (1989), damping and multigrid
- Deuflhard (1990's, 2004 book), adaptive damping and multigrid

Model errors

- Ladevèze (since 1990's), guaranteed upper bound
- Bernardi (2000's), estimation of model errors
- Babuška, Oden (2000's), verification and validation

. . .

Previous results – adaptive strategies

Stopping criteria for algebraic solvers

- engineering literature, since 1950's
- Becker, Johnson, and Rannacher (1995), multigrid stopping criterion
- Arioli (2000's), comparison of the algebraic and discretization errors by a priori arguments

Adaptive inexact Newton method

- Bank and Rose (1982), combination with multigrid
- Hackbusch and Reusken (1989), damping and multigrid
- Deuflhard (1990's, 2004 book), adaptive damping and multigrid

Model errors

- Ladevèze (since 1990's), guaranteed upper bound
- Bernardi (2000's), estimation of model errors
- Babuška, Oden (2000's), verification and validation

. . . .

Previous results – adaptive strategies

Stopping criteria for algebraic solvers

- engineering literature, since 1950's
- Becker, Johnson, and Rannacher (1995), multigrid stopping criterion
- Arioli (2000's), comparison of the algebraic and discretization errors by a priori arguments

Adaptive inexact Newton method

- Bank and Rose (1982), combination with multigrid
- Hackbusch and Reusken (1989), damping and multigrid
- Deuflhard (1990's, 2004 book), adaptive damping and multigrid

Model errors

- Ladevèze (since 1990's), guaranteed upper bound
- Bernardi (2000's), estimation of model errors
- Babuška, Oden (2000's), verification and validation
-

The Stefan problem Multiphase flow in porous media C Est. Err. comp. Efficiency En. est. Num. res.

Outline

- 1 Introduction
- 2 The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results
- Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments
- 4 Conclusions and future directions

Weak formulation

Functional spaces

$$X := L^2(0, T; H_0^1(\Omega)), \qquad Z := H^1(0, T; H^{-1}(\Omega))$$

Weak formulation

$$u \in Z$$
 with $\beta(u) \in X$
$$u(\cdot,0) = u_0 \quad \text{in } \Omega$$

$$\langle \partial_t u, \varphi \rangle(s) + (\nabla \beta(u), \nabla \varphi)(s) = (f, \varphi)(s) \quad \forall \varphi \in H_0^1(\Omega)$$
 a.e. $s \in (0,T)$

Weak formulation

Functional spaces

$$X := L^2(0, T; H_0^1(\Omega)), \qquad Z := H^1(0, T; H^{-1}(\Omega))$$

Weak formulation

$$u \in Z$$
 with $\beta(u) \in X$
$$u(\cdot,0) = u_0 \quad \text{in } \Omega$$

$$\langle \partial_t u, \varphi \rangle(s) + (\nabla \beta(u), \nabla \varphi)(s) = (f, \varphi)(s) \quad \forall \varphi \in H_0^1(\Omega)$$
 a.e. $s \in (0,T)$

Outline

- 1 Introduction
- The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results
- Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments
- Conclusions and future directions

Assumptions

Assumption A (Approximate solution)

The function up is such that

$$u_{h\tau} \in Z$$
, $\partial_t u_{h\tau} \in L^2(0, T; L^2(\Omega))$, $\beta(u_{h\tau}) \in X$, $u_{h\tau}|_{I_n}$ is affine in time on I_n $\forall 1 \leq n \leq N$.

Assumption B (Equilibrated flux reconstruction)

For all $1 \le n \le N$, there exists a vector field $\mathbf{t}_h^n \in \mathbf{H}(\operatorname{div};\Omega)$ such that

$$(\nabla \cdot \mathbf{t}_h^n, 1)_K = (f^n, 1)_K - (\partial_t u_{h\tau}^n, 1)_K \qquad \forall K \in \mathcal{K}^n$$

We denote by $\mathbf{t}_{h\tau}$ the space–time function such that $\mathbf{t}_{h\tau}|_{I_0} := \mathbf{t}_h^n$.

Assumptions

Assumption A (Approximate solution)

The function up is such that

$$u_{h\tau} \in Z$$
, $\partial_t u_{h\tau} \in L^2(0, T; L^2(\Omega))$, $\beta(u_{h\tau}) \in X$, $u_{h\tau}|_{I_n}$ is affine in time on I_n $\forall 1 \leq n \leq N$.

Assumption B (Equilibrated flux reconstruction)

For all $1 \le n \le N$, there exists a vector field $\mathbf{t}_h^n \in \mathbf{H}(\operatorname{div};\Omega)$ such that

$$(\nabla \cdot \mathbf{t}_h^n, 1)_K = (f^n, 1)_K - (\partial_t u_{h\tau}^n, 1)_K \qquad \forall K \in \mathcal{K}^n.$$

We denote by $\mathbf{t}_{h\tau}$ the space–time function such that $\mathbf{t}_{h\tau}|_{I_n} := \mathbf{t}_h^n$.

A posteriori error estimate

Theorem (A posteriori error estimate)

Let Assumptions A and B hold. Then

$$\begin{split} &\|\mathcal{R}(u_{h\tau})\|_{X'} + \|u_0 - u_{h\tau}(\cdot,0)\|_{H^{-1}(\Omega)_{\frac{1}{2}}} \\ &\leq \left\{ \sum_{n=1}^N \int_{I_n} \sum_{K \in \mathcal{K}^n} \left(\eta_{R,K}^n + \eta_{F,K}^n(t) \right)^2 \, \mathrm{d}t \right\}^{\frac{1}{2}} + \eta_{\mathrm{IC}}, \end{split}$$

$$\eta_{R,K}^{n} := C_{P,K} h_{K} \| f^{n} - \partial_{t} u_{h\tau}^{n} - \nabla \cdot \mathbf{t}_{h}^{n} \|_{K},
\eta_{F,K}^{n}(t) := \| \nabla \beta(u_{h\tau}(t)) + \mathbf{t}_{h}^{n} \|_{K},
\eta_{IC} := \| u_{0} - u_{h\tau}(\cdot, 0) \|_{H^{-1}(\Omega)}.$$

$$\langle \mathcal{R}(\mathbf{u}_{h\tau}), \varphi \rangle_{X',X} = \int_0^T \{ \langle \partial_t(\mathbf{u} - \mathbf{u}_{h\tau}), \varphi \rangle + (\nabla \beta(\mathbf{u}) - \nabla \beta(\mathbf{u}_{h\tau}), \nabla \varphi) \} (s) \, ds$$

$$\|\mathcal{R}(u_{h au})\|_{X'}:=\sup_{arphi\in X,\,\|arphi\|_{X}=1}\langle\mathcal{R}(u_{h au}),arphi
angle_{X',X}$$
 In the interestic furthermatics

A posteriori error estimate

Theorem (A posteriori error estimate)

Let Assumptions A and B hold. Then

$$\begin{split} &\|\mathcal{R}(u_{h\tau})\|_{X'} + \|u_0 - u_{h\tau}(\cdot,0)\|_{H^{-1}(\Omega)_{\frac{1}{2}}} \\ &\leq \left\{ \sum_{n=1}^N \int_{I_n} \sum_{K \in \mathcal{K}^n} \left(\eta_{R,K}^n + \eta_{F,K}^n(t) \right)^2 \, \mathrm{d}t \right\}^{\frac{1}{2}} + \eta_{\mathrm{IC}}, \end{split}$$

with

$$\begin{split} \eta_{\mathrm{R},K}^n &:= C_{\mathrm{P},K} h_K \| f^n - \partial_t u_{h\tau}^n - \nabla \cdot \mathbf{t}_h^n \|_K, \\ \eta_{\mathrm{F},K}^n(t) &:= \| \nabla \beta(u_{h\tau}(t)) + \mathbf{t}_h^n \|_K, \\ \eta_{\mathrm{IC}} &:= \| u_0 - u_{h\tau}(\cdot,0) \|_{H^{-1}(\Omega)}. \end{split}$$

Residual $\mathcal{R}(u_{h\tau}) \in X'$, defined for $\varphi \in X$, and its dual norm

$$\langle \mathcal{R}(\mathbf{u}_{h\tau}), \varphi \rangle_{X',X} = \int_0^T \{ \langle \partial_t(\mathbf{u} - \mathbf{u}_{h\tau}), \varphi \rangle + (\nabla \beta(\mathbf{u}) - \nabla \beta(\mathbf{u}_{h\tau}), \nabla \varphi) \} (s) \, \mathrm{d}s$$

$$\|\mathcal{R}(u_{h au})\|_{X'}:=\sup_{arphi\in X,\,\|arphi\|_{X}=1}\langle\mathcal{R}(u_{h au}),arphi
angle_{X',X}$$
 infinitely authentics

A posteriori error estimate

Theorem (A posteriori error estimate)

Let Assumptions A and B hold. Then

$$\begin{split} &\|\mathcal{R}(u_{h\tau})\|_{X'} + \|u_0 - u_{h\tau}(\cdot,0)\|_{H^{-1}(\Omega)_{\frac{1}{2}}} \\ &\leq \left\{ \sum_{n=1}^{N} \int_{I_n} \sum_{K \in \mathcal{K}^n} \left(\eta_{R,K}^n + \eta_{F,K}^n(t) \right)^2 \, \mathrm{d}t \right\}^{\frac{1}{2}} + \eta_{\mathrm{IC}}, \\ &\eta_{R,K}^n := C_{P,K} h_K \|f^n - \partial_t u_{h\tau}^n - \nabla \cdot \mathbf{t}_h^n\|_K, \\ &\eta_{F,K}^n(t) := \|\nabla \beta(u_{h\tau}(t)) + \mathbf{t}_h^n\|_K, \end{split}$$

with

Residual $\mathcal{R}(u_{h\tau}) \in X'$, defined for $\varphi \in X$, and its dual norm

 $\eta_{\rm IC} := \|u_0 - u_{h\tau}(\cdot, 0)\|_{H^{-1}(\Omega)}.$

Outline

- The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity

 - Energy error a posteriori estimate
 - Numerical results
- - Weak solution & estimates
 - Numerical experiments

Distinguishing different error components

Theorem (An estimate distinguishing the error components)

For time n, linearization k, and regularization ϵ , there holds

$$\|\mathcal{R}(u_{h\tau}^{n,\epsilon,k})\|_{X_n'} \leq \eta_{\mathrm{sp}}^{n,\epsilon,k} + \eta_{\mathrm{tm}}^{n,\epsilon,k} + \eta_{\mathrm{reg}}^{n,\epsilon,k} + \eta_{\mathrm{lin}}^{n,\epsilon,k}.$$

• $\mathbf{I}_h^{n,\epsilon,k}$ a scheme linearized flux (not $\mathbf{H}(\operatorname{div},\Omega)$), $\mathbf{t}_h^{n,\epsilon,k}$ reconstructed $\mathbf{H}(\operatorname{div},\Omega)$ flux, Π^n interpolation op.

$$(\eta_{\text{sp}}^{n,\epsilon,k})^{2} := \tau^{n} \sum_{K \in \mathcal{K}^{n}} \left(\eta_{\text{R},K}^{n,\epsilon,k} + \| \mathbf{I}_{h}^{n,\epsilon,k} + \mathbf{t}_{h}^{n,\epsilon,k} \|_{K} \right)^{2},$$

$$(\eta_{\text{tm}}^{n,\epsilon,k})^{2} := \int_{I_{n}} \sum_{K \in \mathcal{K}^{n}} \| \nabla \Pi^{n} \beta(u_{h\tau}^{n,\epsilon,k})(t) - \nabla \Pi^{n} \beta(u_{h\tau}^{n,\epsilon,k})(t^{n}) \|_{K}^{2} dt,$$

$$(\eta_{\text{reg}}^{n,\epsilon,k})^{2} := \tau^{n} \sum_{K \in \mathcal{K}^{n}} \| \nabla \Pi^{n} \beta(u_{h\tau}^{n,\epsilon,k})(t^{n}) - \nabla \Pi^{n} \beta_{\epsilon}(u_{h\tau}^{n,\epsilon,k})(t^{n}) \|_{K}^{2},$$

$$(\eta_{\text{lin}}^{n,\epsilon,k})^{2} := \tau^{n} \sum_{K \in \mathcal{K}^{n}} \| \nabla \Pi^{n} \beta_{\epsilon}(u_{h\tau}^{n,\epsilon,k})(t^{n}) - \mathbf{I}_{h}^{n,\epsilon,k} \|_{K}^{2}$$

Distinguishing different error components

Theorem (An estimate distinguishing the error components)

For time n, linearization k, and regularization ϵ , there holds

$$\|\mathcal{R}(u_{h\tau}^{n,\epsilon,k})\|_{X_n'} \leq \eta_{\mathrm{sp}}^{n,\epsilon,k} + \eta_{\mathrm{tm}}^{n,\epsilon,k} + \eta_{\mathrm{reg}}^{n,\epsilon,k} + \eta_{\mathrm{lin}}^{n,\epsilon,k}.$$

• $\mathbf{I}_h^{n,\epsilon,k}$ a scheme linearized flux (not $\mathbf{H}(\operatorname{div},\Omega)$), $\mathbf{t}_h^{n,\epsilon,k}$ reconstructed $\mathbf{H}(\operatorname{div},\Omega)$ flux, Π^n interpolation op.

$$\begin{split} &(\eta_{\mathrm{sp}}^{n,\epsilon,k})^2 := \tau^n \sum_{K \in \mathcal{K}^n} \left(\eta_{\mathrm{R},K}^{n,\epsilon,k} + \| \mathbf{I}_{h}^{n,\epsilon,k} + \mathbf{t}_{h}^{n,\epsilon,k} \|_{K} \right)^2, \\ &(\eta_{\mathrm{tm}}^{n,\epsilon,k})^2 := \int_{I_n} \sum_{K \in \mathcal{K}^n} \| \nabla \Pi^n \beta(u_{h\tau}^{n,\epsilon,k})(t) - \nabla \Pi^n \beta(u_{h\tau}^{n,\epsilon,k})(t^n) \|_{K}^2 \, \mathrm{d}t, \\ &(\eta_{\mathrm{reg}}^{n,\epsilon,k})^2 := \tau^n \sum_{K \in \mathcal{K}^n} \| \nabla \Pi^n \beta(u_{h\tau}^{n,\epsilon,k})(t^n) - \nabla \Pi^n \beta_{\epsilon}(u_{h\tau}^{n,\epsilon,k})(t^n) \|_{K}^2, \\ &(\eta_{\mathrm{lin}}^{n,\epsilon,k})^2 := \tau^n \sum_{K \in \mathcal{K}^n} \| \nabla \Pi^n \beta_{\epsilon}(u_{h\tau}^{n,\epsilon,k})(t^n) - \mathbf{I}_{h}^{n,\epsilon,k} \|_{K}^2 \end{split}$$

The Stefan problem Multiphase flow in porous media C Est. Err. comp. Efficiency En. est. Num. res.

Outline

- 1 Introduction
- 2 The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results
- Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments
- 4 Conclusions and future directions

Assumption C (Technicalities)

All the meshes are shape-regular and all the approximations are piecewise polynomial.

Residual estimators

$$\begin{split} \left(\eta_{\mathrm{res},1}^{n,\epsilon_{n},k_{n}}\right)^{2} &:= \tau^{n} \sum_{K \in \mathcal{K}^{n-1,n}} h_{K}^{2} \|f^{n} - \partial_{t} u_{h\tau}^{n,\epsilon_{n},k_{n}} + \nabla \cdot \mathbf{I}_{h}^{n,\epsilon_{n},k_{n}} \|_{K}^{2}, \\ \left(\eta_{\mathrm{res},2}^{n,\epsilon_{n},k_{n}}\right)^{2} &:= \tau^{n} \sum_{F \in \mathcal{F}^{1,n-1,n}} h_{F} \|\mathbf{I}_{h}^{n,\epsilon_{n},k_{n}}\| \cdot \mathbf{n}_{F} \|_{F}^{2} \end{split}$$

Assumption D (Approximation property)

For all $1 \le n \le N$, there holds

$$\tau^n \sum_{\mathbf{l} \in \mathcal{I}} \|\mathbf{l}_h^{n,\epsilon_n,k_n} + \mathbf{t}_h^{n,\epsilon_n,k_n}\|_K^2 \leq C \left(\left(\eta_{\mathrm{res},1}^{n,\epsilon_n,k_n} \right)^2 + \left(\eta_{\mathrm{res},2}^{n,\epsilon_n,k_n} \right)^2 \right).$$

Assumption C (Technicalities)

All the meshes are shape-regular and all the approximations are piecewise polynomial.

Residual estimators

$$\begin{split} \left(\eta_{\mathrm{res},1}^{n,\epsilon_n,k_n}\right)^2 &:= \tau^n \sum_{K \in \mathcal{K}^{n-1,n}} h_K^2 \|f^n - \partial_t u_{h\tau}^{n,\epsilon_n,k_n} + \nabla \cdot \mathbf{I}_h^{n,\epsilon_n,k_n} \|_K^2, \\ \left(\eta_{\mathrm{res},2}^{n,\epsilon_n,k_n}\right)^2 &:= \tau^n \sum_{F \in \mathcal{F}^{\mathrm{i},n-1,n}} h_F \| [\![\mathbf{I}_h^{n,\epsilon_n,k_n}]\!] \cdot \mathbf{n}_F \|_F^2 \end{split}$$

Assumption D (Approximation property)

For all $1 \le n \le N$, there holds

$$\tau^n \sum_{K \in \mathbb{R}^{n-1}} \|\mathbf{I}_h^{n,\epsilon_n,k_n} + \mathbf{t}_h^{n,\epsilon_n,k_n}\|_K^2 \leq C \left(\left(\eta_{\mathrm{res},1}^{n,\epsilon_n,k_n} \right)^2 + \left(\eta_{\mathrm{res},2}^{n,\epsilon_n,k_n} \right)^2 \right).$$

Assumption C (Technicalities)

All the meshes are shape-regular and all the approximations are piecewise polynomial.

Residual estimators

$$\begin{split} \left(\eta_{\mathrm{res},1}^{n,\epsilon_n,k_n}\right)^2 &:= \tau^n \sum_{K \in \mathcal{K}^{n-1,n}} h_K^2 \|f^n - \partial_t u_{h\tau}^{n,\epsilon_n,k_n} + \nabla \cdot \mathbf{I}_h^{n,\epsilon_n,k_n} \|_K^2, \\ \left(\eta_{\mathrm{res},2}^{n,\epsilon_n,k_n}\right)^2 &:= \tau^n \sum_{F \in \mathcal{F}^{\mathrm{i},n-1,n}} h_F \| [\![\mathbf{I}_h^{n,\epsilon_n,k_n}]\!] \cdot \mathbf{n}_F \|_F^2 \end{split}$$

Assumption D (Approximation property)

For all $1 \le n \le N$, there holds

$$\tau^{n} \sum_{K \in \mathcal{K}^{n-1,n}} \|\mathbf{I}_{h}^{n,\epsilon_{n},k_{n}} + \mathbf{t}_{h}^{n,\epsilon_{n},k_{n}}\|_{K}^{2} \leq C \left(\left(\eta_{\mathrm{res},1}^{n,\epsilon_{n},k_{n}} \right)^{2} + \left(\eta_{\mathrm{res},2}^{n,\epsilon_{n},k_{n}} \right)^{2} \right).$$

Theorem (Efficiency)

Let, for all $1 \le n \le N$, the stopping and balancing criteria be satisfied with the parameters Γ_{lin} , Γ_{reg} , and Γ_{tm} small enough. Let Assumptions C and D hold. Then

$$\eta_{\mathrm{sp}}^{n,\epsilon_n,k_n} + \eta_{\mathrm{tm}}^{n,\epsilon_n,k_n} + \eta_{\mathrm{reg}}^{n,\epsilon_n,k_n} + \eta_{\mathrm{lin}}^{n,\epsilon_n,k_n} \lesssim \|\mathcal{R}(u_{h\tau}^{n,\epsilon_n,k_n})\|_{X_h'}.$$

The Stefan problem Multiphase flow in porous media C Est. Err. comp. Efficiency En. est. Num. res.

Outline

- Introduction
- 2 The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results
- Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments
- 4 Conclusions and future directions

Relation residual—energy norm

Energy estimate (by the Gronwall lemma)

$$\begin{split} &\frac{L_{\beta}}{2}\|u-u_{h\tau}\|_{X'}^{2}+\frac{L_{\beta}}{2}\|(u-u_{h\tau})(\cdot,T)\|_{H^{-1}(\Omega)}^{2}+\|\beta(u)-\beta(u_{h\tau})\|_{Q_{T}}^{2}\\ \leq &\frac{L_{\beta}}{2}(2e^{T}-1)\left(\|\mathcal{R}(u_{h\tau})\|_{X'}^{2}+\|(u-u_{h\tau})(\cdot,0)\|_{H^{-1}(\Omega)}^{2}\right) \end{split}$$

Theorem (Temperature and enthalpy errors, tight Gronwall)

Relation residual—energy norm

Energy estimate (by the Gronwall lemma)

$$\frac{L_{\beta}}{2} \|u - u_{h\tau}\|_{X'}^{2} + \frac{L_{\beta}}{2} \|(u - u_{h\tau})(\cdot, T)\|_{H^{-1}(\Omega)}^{2} + \|\beta(u) - \beta(u_{h\tau})\|_{Q_{T}}^{2} \\
\leq \frac{L_{\beta}}{2} (2e^{T} - 1) \left(\|\mathcal{R}(u_{h\tau})\|_{X'}^{2} + \|(u - u_{h\tau})(\cdot, 0)\|_{H^{-1}(\Omega)}^{2} \right)$$

Theorem (Temperature and enthalpy errors, tight Gronwall)

Let
$$u_{h\tau} \in Z$$
 such that $\beta(u_{h\tau}) \in X$ be arbitrary. There holds
$$\frac{L_{\beta}}{2} \|u - u_{h\tau}\|_{X'}^2 + \frac{L_{\beta}}{2} \|(u - u_{h\tau})(\cdot, T)\|_{H^{-1}(\Omega)}^2 + \|\beta(u) - \beta(u_{h\tau})\|_{Q_T}^2 + 2 \int_0^T \left(\|\beta(u) - \beta(u_{h\tau})\|_{Q_t}^2 + \int_0^t \|\beta(u) - \beta(u_{h\tau})\|_{Q_s}^2 e^{t-s} \, \mathrm{d}s \right) \mathrm{d}t$$

$$\leq \frac{L_{\beta}}{2} \left\{ (2e^T - 1) \|(u - u_{h\tau})(\cdot, 0)\|_{H^{-1}(\Omega)}^2 + \|\mathcal{R}(u_{h\tau})\|_{X'}^2 + 2 \int_0^T \left(\|\mathcal{R}(u_{h\tau})\|_{X'_t}^2 + \int_0^t \|\mathcal{R}(u_{h\tau})\|_{X'_s}^2 e^{t-s} \, \mathrm{d}s \right) \, \mathrm{d}t \right\}.$$

The Stefan problem Multiphase flow in porous media C Est. Err. comp. Efficiency En. est. Num. res

Outline

- 1 Introduction
- 2 The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results
- Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments
- Conclusions and future directions

Linearization stopping criterion

Linearization stopping criterion

Regularization stopping criterion

Regularization stopping criterion

 10^{-5}

10¹

$$\eta_{\mathrm{reg}}^{n,\epsilon,k_n} \leq \Gamma_{\mathrm{reg}} \big(\eta_{\mathrm{sp}}^{n,\epsilon,k_n} + \eta_{\mathrm{tm}}^{n,\epsilon,k_n} \big)$$

 10^{3}

 10^{4}

 10^{2}

Equilibrating time and space errors

Equilibrating time and space errors

Error and estimate (dual norm of the residual)

Effectivity indices (dual norm of the residual)

Error and estimate (energy norm)

Effectivity indices (energy norm)

Actual and estimated error distribution

Outline

- Introduction
- 2 The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results
- Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments
- 4 Conclusions and future directions

Multiphase compositional flows

Governing partial differential equations

conservation of mass for components

$$\partial_t I_c + \nabla \cdot \Phi_c = q_c, \quad \forall c \in C$$

• + boundary & initial conditions

Constitutive laws

phase pressures – reference pressure – capillary pressure

$$P_{p}:=P+P_{c_{p}}(\boldsymbol{S})$$

Darcy's law

$$v_p(P_p, \mathbf{C}_p) := -\Lambda \left(\nabla P_p - \rho_p(P_p, \mathbf{C}_p) \mathbf{g} \right)$$

component fluxes

$$\boldsymbol{\Phi}_{\mathcal{C}} := \sum_{\boldsymbol{\rho} \in \mathcal{P}_{\mathcal{C}}} \boldsymbol{\Phi}_{\boldsymbol{\rho},\mathcal{C}}, \quad \boldsymbol{\Phi}_{\boldsymbol{\rho},\mathcal{C}} := \nu_{\boldsymbol{\rho}}(P_{\boldsymbol{\rho}},\boldsymbol{S},\boldsymbol{C}_{\boldsymbol{\rho}}) C_{\boldsymbol{\rho},\mathcal{C}} v_{\boldsymbol{\rho}}(P_{\boldsymbol{\rho}},\boldsymbol{C}_{\boldsymbol{\rho}})$$

• amount of moles of component c per unit volume

$$J_c := \phi \sum_{p \in \mathcal{P}_c} \zeta_p(P_p, oldsymbol{\mathcal{C}}_p) S_p C_{p,c}$$

Multiphase compositional flows

Governing partial differential equations

conservation of mass for components

$$\partial_t I_c + \nabla \cdot \Phi_c = q_c, \quad \forall c \in C$$

+ boundary & initial conditions

Constitutive laws

• phase pressures - reference pressure - capillary pressure

$$P_{p}:=P+P_{c_{p}}(\boldsymbol{S})$$

Darcy's law

$$oldsymbol{v}_{oldsymbol{
ho}}(P_{oldsymbol{
ho}}, oldsymbol{C}_{oldsymbol{
ho}}) := - oldsymbol{\Lambda} \left(
abla P_{oldsymbol{
ho}} -
ho_{oldsymbol{
ho}}(P_{oldsymbol{
ho}}, oldsymbol{C}_{oldsymbol{
ho}}) oldsymbol{g}
ight)$$

component fluxes

$$\Phi_{\mathcal{C}} := \sum_{\mathcal{p} \in \mathcal{P}_{\mathcal{C}}} \Phi_{\mathcal{p},\mathcal{C}}, \quad \Phi_{\mathcal{p},\mathcal{C}} := \nu_{\mathcal{p}}(P_{\mathcal{p}}, \mathcal{S}, \mathcal{C}_{\mathcal{p}}) C_{\mathcal{p},\mathcal{C}} \nu_{\mathcal{p}}(P_{\mathcal{p}}, \mathcal{C}_{\mathcal{p}})$$

• amount of moles of component c per unit volume

$$I_c := \phi \sum_{p \in \mathcal{P}_c} \zeta_p(P_p, \boldsymbol{C}_p) S_p C_{p,c}$$

Multiphase compositional flows

Closure algebraic equations

- conservation of pore volume: $\sum_{p \in \mathcal{P}} S_p = 1$
- conservation of the quantity of the matter: $\sum_{c \in C_p} C_{p,c} = 1$ for all $p \in \mathcal{P}$
- thermodynamic equilibrium

- coupled system
- elliptic—parabolic degenerate type
- dominant advection

Closure algebraic equations

- conservation of pore volume: $\sum_{p \in \mathcal{P}} S_p = 1$
- conservation of the quantity of the matter: $\sum_{c \in C_p} C_{p,c} = 1$ for all $p \in \mathcal{P}$
- thermodynamic equilibrium

Mathematical issues

- coupled system
- unsteady, nonlinear
- elliptic-parabolic degenerate type
- dominant advection

Outline

- Introduction
- The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results
- Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments
- Conclusions and future directions

Weak solution

Energy spaces

$$X := L^2((0, t_F); H^1(\Omega)),$$

 $Y := H^1((0, t_F); L^2(\Omega))$

Definition (Weak solution)

Find
$$(P,(S_p)_{p\in\mathcal{P}},(C_{p,c})_{p\in\mathcal{P},c\in\mathcal{C}_p})$$
 such that $I_c\in Y \quad \forall c\in\mathcal{C},$ $P_p(P,\mathbf{S})\in X \quad \forall p\in\mathcal{P},$
$$\Phi_c\in [L^2((0,t_{\mathbb{F}});L^2(\Omega))]^d \quad \forall c\in\mathcal{C},$$

$$\int_0^{t_{\mathbb{F}}} \{(\partial_t I_c,\varphi)(t)-(\Phi_c,\nabla\varphi)(t)\}\,\mathrm{d}t=\int_0^{t_{\mathbb{F}}} (q_c,\varphi)(t)\mathrm{d}t \quad \forall \varphi\in X,\,\forall c\in\mathcal{C},$$

the initial condition holds,

the algebraic closure equations hold.

Energy spaces

$$X := L^2((0, t_F); H^1(\Omega)),$$

 $Y := H^1((0, t_F); L^2(\Omega))$

Definition (Weak solution)

Find
$$(P,(S_p)_{p\in\mathcal{P}},(C_{p,c})_{p\in\mathcal{P},c\in\mathcal{C}_p})$$
 such that $I_c\in Y \quad \forall c\in\mathcal{C},$ $P_p(P,\mathbf{S})\in X \quad \forall p\in\mathcal{P},$ $\Phi_c\in [L^2((0,t_{\rm F});L^2(\Omega))]^d \quad \forall c\in\mathcal{C},$ $\int_0^{t_{\rm F}}\{(\partial_t I_c,\varphi)(t)-(\Phi_c,\nabla\varphi)(t)\}\,\mathrm{d}t=\int_0^{t_{\rm F}}(q_c,\varphi)(t)\mathrm{d}t \quad \forall \varphi\in X,\,\forall c\in\mathcal{C},$ the initial condition holds.

the algebraic closure equations hold.

Estimate distinguishing different error components

Theorem (Estimate distinguishing different error components)

Consider

- time step n,
- linearization step k,
- iterative algebraic solver step i,

and the corresponding approximations. Then

$$(\textit{dual error} + \textit{nonconformity})_{I_n} \leq \eta_{\text{sp},\alpha}^{\textit{n},\textit{k},\textit{i}} + \eta_{\text{tm},\alpha}^{\textit{n},\textit{k},\textit{i}} + \eta_{\text{lin},\alpha}^{\textit{n},\textit{k},\textit{i}} + \eta_{\text{alg},\alpha}^{\textit{n},\textit{k},\textit{i}}.$$

Error components

- $\eta_{{\rm sp},\alpha}^{n,k,i}$: spatial discretization
- $\eta_{\text{tm},\alpha}^{n,k,i}$: temporal discretization
- $\eta_{\text{lin},\alpha}^{n,k,i}$: linearization
- $\eta_{\text{alg},\alpha}^{n,k,i}$: algebraic solver

Estimate distinguishing different error components

Theorem (Estimate distinguishing different error components)

Consider

- time step n,
- linearization step k,
- iterative algebraic solver step i,

and the corresponding approximations. Then

$$(\textit{dual error} + \textit{nonconformity})_{I_n} \leq \eta_{\text{sp},\alpha}^{\textit{n},\textit{k},\textit{i}} + \eta_{\text{tm},\alpha}^{\textit{n},\textit{k},\textit{i}} + \eta_{\text{lin},\alpha}^{\textit{n},\textit{k},\textit{i}} + \eta_{\text{alg},\alpha}^{\textit{n},\textit{k},\textit{i}}.$$

Error components

- $\eta_{\text{sp},\alpha}^{n,k,i}$: spatial discretization
- $\eta_{\text{tm},\alpha}^{n,k,i}$: temporal discretization
- $\eta_{\lim,\alpha}^{n,k,i}$: linearization
- $\eta_{\text{alo} \alpha}^{n,k,i}$: algebraic solver

Outline

- Introduction
- 2 The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results
- Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments
- 4 Conclusions and future directions

Test case and numerical setting

Test case

- two-spot setting
- two phases and three components
- homogeneous/heterogeneous permeability distribution

Discretization and resolution

- fully implicit cell-centered finite volumes
- Newton linearization
- GMRes with ILU0 preconditioning algebraic solver

Test case and numerical setting

Test case

- two-spot setting
- two phases and three components
- homogeneous/heterogeneous permeability distribution

Discretization and resolution

- fully implicit cell-centered finite volumes
- Newton linearization
- GMRes with ILU0 preconditioning algebraic solver

Estimators and stopping criteria

Newton iterations

GMRes iterations

Per time and Newton step

Outline

- Introduction
- The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results
- Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments
- Conclusions and future directions

Conclusions

Complete adaptivity

- only a necessary number of algebraic solver / linearization iterations, optimal choice of the regularization parameter
- "smart online decisions": algebraic solver step / linearization step / regularization / time step refinement / space mesh refinement
- important computational savings
- guaranteed upper bound via a posteriori error estimates

Future directions

- other coupled nonlinear systems
- convergence and optimality

Conclusions

Complete adaptivity

- only a necessary number of algebraic solver / linearization iterations, optimal choice of the regularization parameter
- "smart online decisions": algebraic solver step / linearization step / regularization / time step refinement / space mesh refinement
- important computational savings
- guaranteed upper bound via a posteriori error estimates

Future directions

- other coupled nonlinear systems
- convergence and optimality

Bibliography

- DI PIETRO D. A., VOHRALÍK M., YOUSEF S., Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem, *Math. Comp.* (2014), DOI 10.1090/S0025-5718-2014-02854-8.
- DI PIETRO D. A., FLAURAUD E., VOHRALÍK M., AND YOUSEF S., A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media, *J. Comput. Phys.* (2014), DOI 10.1016/j.jcp.2014.06.061.

Thank you for your attention!

