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Abstract.

We introduce a discrete fracture network model of stationary Darcy flow in
fractured rocks. We approximate the fractures by a network of planar circle disks,
which is generated on the basis of statistical data obtained from field measurements.
We then discretize this network into a mesh consisting of triangular elements placed
in three-dimensional space. We use geometrical approximations in fracture planes,
which allow for a significant simplification of the final triangular meshes. We con-
sider two-dimensional Darcy flow in each fracture. In order to accurately simulate
the channeling effect, we assign to each triangle an aperture defining its hydraulic
permeability. For the discretization we use the lowest order Raviart–Thomas mixed
finite element method. This method gives quite an accurate velocity field, which is
computed directly and which satisfies the mass balance on each triangular element.
We demonstrate the use of this method on a model problem with a known analytical
solution and describe the generation and triangulation of the fracture network and
the computation of fracture flow for a particular real situation.

Keywords: fractured medium, Darcy flow, stochastic discrete fracture network
model, channeling effect, mixed-hybrid finite element method

1. Introduction

Underground granitoid massifs are proposed as nuclear waste repos-
itories. However, they are always disrupted by a system of geological
faults, fractures. We study in this paper the percolation of groundwater
in such massifs, called fracture flow.

According to [4] or [21], there are three main approaches to modeling
fracture flow. When only a large-scale model is required and there
is no need to know the detailed flow behavior in any site subarea,
it is possible to use equivalent porous medium models. More complex
are dual porosity models with two distinct interacting subsystems—
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fractures and porous blocks. Finally, we can approximate the original
three-dimensional fractures by planar elliptic or polygonal disks whose
frequency, size, assigned aperture, and orientation are statistically de-
rived from field measurements and consider two-dimensional Darcy flow
in such a network. However, because of the high computer requirements,
it is only possible to solve local problems by using stochastic discrete
fracture network models. We refer to [1] for more details.

In [12, 7, 8] the networks of polygonal disks are replaced by net-
works of one-dimensional pipes. This allows for fast calculations with
large networks, but the precision is compromised. The models proposed
in [9, 2, 10, 17, 3] discretize the polygonal networks into triangular or
quadrilateral meshes. The numbers of mesh elements are often sizably
increased. Finite difference, finite volume, finite element, or boundary
element methods are used for the discretization. We refer, for instance,
to [5] for a more detailed survey of the stochastic discrete fracture
network models proposed in the literature. The intention of this pa-
per is twofold. First, we describe how to construct a very accurate
approximation of the fracture network, which has at the same time as
few elements as possible. This allows us to represent realistic fractured
media while simultaneously decreasing the time of calculations. Second,
we propose to use a mixed finite element method for the discretization
of the fracture flow problem.

We generate the fracture network on the basis of statistical data
obtained from field measurements. We enable the definition of hy-
draulically important fractures, zones with an increased density of
fractures, and the insertion of deterministic fractures. The original
three-dimensional fractures are approximated by planar circle disks and
each disk is subsequently discretized into a triangular mesh respecting
the intersections with its neighbors. In order to simplify the geometrical
situation in fracture planes, the computed intersections are slightly
moved and stretched. In this way, one obtains a higher-quality mesh;
however, the three-dimensional geometrical correspondence vanishes
and has to be replaced with an element edges correspondence. Finally,
we assign an aperture to each element. Based on this aperture, the
hydraulic permeability of the element is set, considering also fracture
wall roughness and filling. The classical parallel plate model is thus
avoided and the channeling effect is simulated. We can see an example
of a simple triangular mesh in Figure 1.

Mixed finite element methods are known to accurately approximate
the velocity field and to locally conserve the mass on each element. We
have thus decided to use the lowest order Raviart–Thomas mixed finite
element method (see [6] or [16]) in order to find an approximate solution
of the locally second-order elliptic problem with a discontinuous perme-
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Figure 1. Fracture network made of 3 polygons, discretized into a triangular mesh

ability tensor. We can easily note an essential property of the fracture
networks: there exist inter-element edges which belong to three or more
triangular elements, see Figure 1. The parallel article [20] (cf. also [19])
is devoted to the problem of the definition of mixed methods for fracture
networks. The existence and uniqueness of weak and discrete solutions
to our problem, as well as error estimates, follow from this article.

The outline of the paper is as follows. We give the formulation of
the problem of stationary Darcy flow in a fracture network in the next
section. In Section 3 we define function spaces and the weak and discrete
solutions and give error estimates. We sketch the implementation of the
lowest order Raviart–Thomas mixed finite element method in the form
of the Fracture Flow Solver in Section 4. Section 5 is devoted to a
numerical experiment with a model problem with a known analytical
solution. We describe the generation of fracture networks and their
subsequent discretization into triangular meshes by the Fracture Net-
work Generator in Sections 6 and 7, respectively. An example of the
computation of fracture flow for a real problem is given in Section 8.
Finally, in Section 9 we make some concluding remarks.

2. Stationary Darcy flow in a fracture network

We define the fracture network S by

S ≡
{

⋃

`∈L

α` \ ∂S
}

, (1)

where α` is an open two-dimensional polygon placed in three-dimen-
sional space. We call α`, the closure of α`, a fracture. L is the index
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set of fractures and ∂S is the boundary of S. For the purpose of
the mathematical description, we suppose that the fractures are only
connected through their boundary edges. We suppose that there is a
two-dimensional orthogonal coordinate system given in each fracture.
The system S of the model problem in Figure 2 may serve as an exam-
ple. In this case S consists of four fractures α1–α4 and ∂S consists of
twelve edges Λ1–Λ12.

We seek the fracture flow velocity u (a two-dimensional vector in
each α`), which is the solution of the problem

u = −K
(

∇p + ∇z
)

in S , (2a)

∇ · u = q in S , (2b)

p = pD on ΛD , u · n = uN on ΛN , (2c)

where all the variables are expressed in the local coordinates of ap-
propriate α` and also the differentiation is always done with respect
to these local coordinates. The equation (2a) is Darcy’s law, (2b) is
the mass balance equation, and (2c) prescribes Dirichlet and Neumann
boundary conditions. The variable p denotes the piezometric head,

p =
p̃

%g
, where p̃ is the fluid pressure, g is the gravitational accel-

eration constant, and % is the fluid density, q represents stationary
sources or sinks density, and z is the elevation, i.e. the upward vertical
three-dimensional coordinate. The second-rank tensor K of hydraulic
conductivity is a function of the original three-dimensional fracture
aperture, wall roughness, and filling. We suppose that K is symmetric
and uniformly positive definite on each α`. We finally require that
ΛD ∩ ΛN = ∅, ΛD ∪ ΛN = ∂S, and ΛD 6= ∅.

3. Mixed-hybrid finite element method

We give in this section the definitions of continuous and discrete func-
tion spaces on the system of fractures S. We then state the weak mixed
solution, mixed-hybrid approximation, and give error estimates.

3.1. Function spaces

We use the product of L2 spaces on individual fractures in order to
define the L2(S) and L2(S) spaces on the system S,

L2(S) ≡
∏

`∈L

L2(α`) , L2(S) ≡ L2(S) × L2(S) . (3)
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For each fracture α`, we denote by H1(α`) the Sobolev space of
scalar functions with square-integrable weak derivatives, H 1(α`) =
{ϕ ∈ L2(α`) ; ∇ϕ ∈ L2(α`)}. We define H1(S) as the space of functions
whose restrictions on each α` are from H1(α`) and which coincide on
inter-fracture boundaries in the sense of traces,

H1(S) ≡
{

v ∈ L2(S) ; v|α`
∈ H1(α`) ∀` ∈ L , (4)

(v|αi
)|f = (v|αj

)|f ∀f = αi

⋂

αj , i, j ∈ L
}

.

We then have the spaces H
1
2 (∂S), H− 1

2 (∂S), and the space H1
D(S) of

the functions from H1(S) vanishing on ΛD as in the standard planar
case.

For each fracture α`, we denote by H(div, α`) the space of vector
functions with square-integrable weak divergences, H(div, α`) = {v ∈
L2(α`) ; ∇ ·v ∈ L2(α`)}. We define H(div,S) as the space of functions
whose restrictions on each α` are from H(div, α`) and whose sum of
normal traces over all fractures sharing the given interior edge f is zero
in the appropriate sense,

H(div,S) ≡
{

v ∈ L2(S) ; v|α`
∈ H(div, α`) ∀` ∈ L ,

∑

i∈If

〈v|αi
· n∂αi

, ϕi〉∂αi
= 0 , ∀f such that |If | ≥ 2 , (5)

∀ϕi ∈ H1
∂αi\f

(αi) , If = {i ∈ L ; f ⊂ ∂αi}
}

.

Finally, we denote

H0,N (div,S) ≡
{

v ∈ H(div,S) ; 〈v · n, ϕ〉∂S = 0 ∀ϕ ∈ H1
D(S)

}

as the space of functions from H(div,S) such that their normal trace
on ΛN is equal to zero in the appropriate sense.

We use (·, ·)0,α`
to denote the L2 scalar product, ‖ · ‖0,α`

to denote
the associated L2 norm, ‖ · ‖1,α`

to denote the H1(α`) norm, and
‖ · ‖H(div,α`) to denote the H(div, α`) norm given by ‖v‖2

H(div,α`)
=

‖v‖2
0,α`

+ ‖∇ · v‖2
0,α`

. The bracket 〈v ·n, ϕ〉∂S denotes the duality pair-

ing between H− 1
2 (∂S) and H

1
2 (∂S) and may be written formally as

∫

∂S v · nϕds. The norms on the spaces defined by (3), (4), (5) are
given by

‖ · ‖2
·,S =

∑

`∈L

‖ · ‖2
·,α`

.

Remark. The definitions (4) and (5) coincide with the characteriza-
tions of the spaces H1(S) and H(div,S) for the standard planar case,
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see [16, Theorem 1.3]. Note that (4) ensures the appropriate continuity
of a scalar function also for fracture networks. Similarly, (5) ensures
the continuity of the normal trace of a vector function, i.e. the mass
balance condition, even if the interior edge is shared by three or more
fractures. Simply, what is the outflow from one fracture has to be the
inflow into the neighboring ones.

We now introduce the discrete spaces. Let us suppose a triangulation
Th of the system S. For a given triangular element e, we define RT0(e)
as the space of linear vector functions with the basis ve

i , i ∈ {1, 2, 3},

ve
i =

1

2|e|

(

x − xi

y − yi

)

,

where |e| is the area of the element e and [xi, yi] are the coordinates of
its i-th vertex. The Raviart–Thomas space RT0

−1(Th) of elementwise
linear vector functions without any continuity requirement is defined
by

RT0
−1(Th) ≡ {v ∈ L2(S) ; v|e ∈ RT0(e) ∀e ∈ Th } . (6)

The space M 0
−1(Th) of elementwise constant scalar functions is defined

by
M0

−1(Th) ≡ {φ ∈ L2(S) ; φ|e is constant ∀e ∈ Th } . (7)

We denote the set of all edges by Λh and the set of all edges except
those from ΛD by Λh,D, Λh,D = Λh \ ΛD. On Λh,D we set

M0
−1(Λh,D) ≡ {µ : Λh → IR ; µ|f is constant ∀f ∈ Λh ,

µ|f = 0 ∀f ∈ ΛD } . (8)

3.2. Weak mixed solution

We now define the weak mixed solution of the problem (2a)–(2c). We
denote A = K−1 on each α`, characterizing the medium resistance.
Let us consider ũ ∈ H(div,S) such that ũ · n = uN on ΛN in the
appropriate sense.

DEFINITION 1. As the weak mixed solution of the steady saturated
fracture flow problem (2a)–(2c), we understand functions u = u0 + ũ,
u0 ∈ H0,N (div,S), and p ∈ L2(S) satisfying

(Au0,v)0,S − (∇ · v, p)0,S = −〈v · n, pD〉∂S + (∇ · v, z)0,S (9a)

−〈v · n, z〉∂S − (Aũ,v)0,S ∀v ∈ H0,N (div,S) ,

−(∇ · u0, φ)0,S = −(q, φ)0,S + (∇ · ũ, φ)0,S ∀φ ∈ L2(S) . (9b)
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We require Aij ∈ L∞(S), q ∈ L2(S), pD ∈ H
1
2 (ΛD), and uN ∈

H− 1
2 (ΛN ).

The existence and uniqueness of the solution of (9a)–(9b) is shown
in [20].

3.3. Mixed-hybrid approximation

We now introduce the mixed-hybrid finite element approximation of
(9a)–(9b).

DEFINITION 2. As the hybridization of the lowest order Raviart–
Thomas mixed finite element approximation of the problem (9a)–(9b),
we understand functions uh = u0,h + ũ, u0,h ∈ RT0

−1(Th), ph ∈
M0

−1(Th), and λh ∈ M0
−1(Λh,D) satisfying

∑

e∈Th

{

(Au0,h,vh)0,e − (∇ · vh, ph)0,e + 〈vh · n, λh〉∂e∩Λh,D

}

=
∑

e∈Th

{

−〈vh · n, pD〉∂e∩ΛD
+ (∇ · vh, z)0,e − 〈vh · n, z〉∂e∩∂S(10a)

−(Aũ,vh)0,e

}

∀vh ∈ RT0
−1(Th) ,

−
∑

e∈Th

(∇ · u0,h, φh)0,e = −
∑

e∈Th

{

(q, φh)0,e − (∇ · ũ, φh)0,e

}

∀φh ∈ M0
−1(Th) , (10b)

∑

e∈Th

〈u0,h · n, µh〉∂e∩Λh,D
= 0 ∀µh ∈ M0

−1(Λh,D) . (10c)

It is immediate that if vh ∈ RT0
−1(Th), then vh ∈ H0,N (div,S) if

and only if
∑

e∈Th

〈vh · n, λh〉∂e∩Λh,D
= 0 ∀λh ∈ M0

−1(Λh,D) .

Equation (10c) thus ensures the continuity of the normal trace of the
velocity field (mass balance condition) even for fracture networks. The
demonstration of the existence and uniqueness of the solution of the
problem (10a)–(10c) is given in [20].
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3.4. Error estimates

We now give two error estimates. If the solution (u, p) of (9a)–(9b)
is smooth enough and if (uh, ph, λh) is the solution of (10a)–(10c), we
have

‖u − uh‖H(div,S) + ‖p − ph‖0,S ≤ Ch(‖p‖1,S + ‖u‖1,S + ‖q‖1,S) ,

where the constant C does not depend on h (see [6, Proposition IV.1.2]).
Using the piecewise linear but nonconforming approximation p∗

h

given by the values of the Lagrange multiplier λh in the midpoints
of the edges, we have (see [6, Theorem V.3.1])

‖p − p∗h‖0,S ≤ Ch2(‖p‖1,S + ‖u‖1,S + ‖q‖1,S) .

4. Implementation

Original software called Fracture Flow Solver was developed as the
implementation of the introduced mixed-hybrid model. It works with
fracture networks discretized into triangular meshes, where the inter-
element edges are possibly shared by more than two elements. It also
works with meshes with no real geometrical correspondence, i.e. when
the triangulations of two intersecting fractures do not match along the
intersection line. This is necessary for the use of geometrical simplifi-
cations in fracture planes, see Figures 4 and 5 and the description in
Section 7.

The resulting matrix problem has the form

AU + BP + CΛ = q1

B
TU = q2 .

C
TU = q3

There can be more than two 1’s in one column of the submatrix C,
unlike in the classical planar case. This represents an interior edge
shared by more than two elements. We have used the solver GI8 of
the Institute of Computer Science, Academy of Sciences of the Czech
Republic, see [14] or [15] for its description. This solver is based on the
sequential elimination onto a system with Schur’s complement and sub-
sequent solution of this system by a preconditioned conjugate gradients
method.
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Figure 2. Fracture network of the model problem

5. Model problem

In this section we consider a simple model problem of the form

S = α1

⋃

α2

⋃

α3

⋃

α4 \ ∂S ,

u = −
(

∇p + ∇z
)

in S ,

∇ · u = 0 in S ,

p = 0 on Λ1 , p = 0 on Λ2 ,

u · n = 0 on Λ3 , u · n = 0 on Λ4 ,

p = sin
(πx1

2X

)

sinh
(π(A + B)

2X

)

+ S A on Λ5 , p = S y1 on Λ6 ,

p = 0 on Λ7 , p = 0 on Λ8 ,

u · n = 0 on Λ9 , u · n = 0 on Λ10 ,

p = sin
(πx4

2X

)

sinh
(π(B + B)

2X

)

on Λ11 , p = 0 on Λ12 ,
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where A = |Λ4| =

√
5

4
, X = |Λ2| = 1, B = |Λ3| = |Λ9| = |Λ10| =

√
13

4
,

and S =
∂z

∂y2
− ∂z

∂y1
. The fracture network is viewed in Figure 2. The

exact solution can be found as

p|α1 = sin
(πx1

2X

)

sinh
(π(y1 + B)

2X

)

+ S y1 ,

u|α1 =

(

− π

2X
cos

(πx1

2X

)

sinh
(π(y1 + B)

2X

)

,

− π

2X
sin

(πx1

2X

)

cosh
(π(y1 + B)

2X

)

− S − ∂z

∂y1

)

,

p|α2 = sin
(πx2

2X

)

sinh
(πy2

2X

)

,

u|α2 =

(

− π

2X
cos

(πx2

2X

)

sinh
(πy2

2X

)

,

− π

2X
sin

(πx2

2X

)

cosh
(πy2

2X

)

− ∂z

∂y2

)

,

p|α3 = sin
(πx3

2X

)

sinh
(πy3

2X

)

,

u|α3 =

(

− π

2X
cos

(πx3

2X

)

sinh
(πy3

2X

)

,

− π

2X
sin

(πx3

2X

)

cosh
(πy3

2X

)

− ∂z

∂y3

)

,

p|α4 = sin
(πx4

2X

)

sinh
(π(y4 + B)

2X

)

,

u|α4 =

(

− π

2X
cos

(πx4

2X

)

sinh
(π(y4 + B)

2X

)

,

− π

2X
sin

(πx4

2X

)

cosh
(π(y4 + B)

2X

)

− ∂z

∂y4

)

.

Note the occurrence of the term S ensuring the continuity of the normal
trace of the velocity field; the gradients of z in α1 and α2 are different.

The following table gives approximation errors in the first fracture
α1. The fracture network is discretized into 4 × 2N 2 regular trian-

gular elements, h ≈ 1

N
. There is the expected O(h) convergence of

the velocity, O(h) convergence of the original elementwise constant
piezometric head, and O(h2) convergence of the elementwise linear but
discontinuous piezometric head. We refer to [20] for a comparison of
the mixed-hybrid finite element method on standard two-dimensional
domains and on fracture networks with multiply shared inter-element
edges.
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Table I. Piezometric head and velocity errors in α1

N # triangles ‖p − ph‖0,S ‖p − p
∗
h‖0,S ‖u − uh‖H(div,Th)

2 8×4 0.4445 0.1481 1.2247

4 32×4 0.2212 0.0389 0.6263

8 128×4 0.1102 0.0098 0.3150

16 512×4 0.0550 0.0025 0.1577

32 2048×4 0.0275 6.18·10−4 0.0789

64 8192×4 0.0138 1.54·10−4 0.0394

128 32768×4 0.0069 3.87·10−5 0.0197

256 131072×4 0.0034 9.73·10−6 0.0099

6. Fracture networks generation

In order to generate fracture networks, original software called Fracture
Network Generator was developed. Each fracture (originally a three-
dimensional object) is approximated by a flat circle disk characterized
by its middle coordinates, radius, orientation, hydraulic permeability or
aperture distribution, and wall roughness. Fractures are divided into
four sets: fractures in fracture zones, deterministically measured sin-
gle fractures, hydraulically important fractures, and common fractures.
Fractures are further supposed to be divided into three types according
to their mean orientation in the three-dimensional cartesian coordi-
nates: [0,0,1], [0,1,0], or [1,0,0]. Each combination of set and type,
except for deterministically measured single fractures, is treated as an
independent statistical population. The fracture frequency is defined as
the number of fractures per one depth unit in each part of the simulated
domain. Fracture lengths are supposed to be lognormally distributed
(cf. [7]), i.e. with the probability density function

f(x) =
1

σ
√

2πx
exp

(

−1

2

( lnx − µ

σ

)2
)

.

Here, µ is the mean of the logarithm and σ is the standard devia-
tion of the logarithm of fracture lengths. Fractures are supposed to
have the Fisher-von-Mises distribution of orientations around the mean
orientations. The probability density function is given by

f(α) =
k

exp(k)
exp(k cos α) sin α ,

where α is the angle between the fracture normal vector and the vector
of its mean orientation and k is a parameter.
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12 Maryška, Severýn, Vohraĺık

Figure 3. Generated fracture network in a 5 × 5 × 8 m domain

The user has to specify the domain, deterministic single fractures,
position of fracture zones, and all statistical parameters. The generator
first generates fractures into the fracture zones and then common frac-
tures into the remaining part of the domain. Finally, a network of hy-
draulically important fractures is generated into the whole domain. One
can later add fractures or change the parameters of already generated
fractures. For an example of a generated network see Figure 3.

In order to validate the methods used for the statistical description
and generation algorithms, χ2 tests were carried out. One has to strictly
distinguish between the statistical distributions and in ’exploration
boreholes’ measured distributions. The latter are affected by a selective
effect. Indeed, while ’drilling a borehole’, the probability of intersecting
a larger fracture is higher than that of intersecting a smaller one.
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7. Final triangular meshes construction

The discretization of fracture networks into triangular meshes has pre-
sented a crucial problem. First, each fracture has to be discretized into
a triangular mesh respecting the intersections with other fractures. In
order to decrease the number of elements and to avoid ill-conditioned
matrices resulting from the cases where there exist elements with very
small angles, the algorithm should in addition simplify the geometri-
cal situation. In the Fracture Network Generator, originally developed
discretization algorithm is implemented. It consists of a preliminary
phase and of an Algorithm for Triangulation of a Polygonal Domain
with Pre-defined Interface Lines (triangulation algorithm).

Figure 4. Geometrical simplifications—moving and stretching intersections in the
fracture planes

4

3

2

1

Figure 5. Three-dimensional consequences of geometrical simplifications in the
fracture planes
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Figure 6. Final discretization of a random fracture

In the preliminary phase identification, intersections computation,
and various geometrical simplifications are made. Close, almost parallel
fractures are removed or equivalently replaced. In each fracture the
computed intersections are moved and stretched in order to simplify
the two-dimensional geometrical situation. We can see an example of
these simplifications in Figure 4. If the simplifications are used, then the
three-dimensional geometrical correspondence vanishes, see Figure 5. It
is then replaced with an element edges correspondence stating which
triangular element through which edge ensures the communication of
its fracture with another fracture, more specifically with which element
of this fracture and through which edge. The edges of neighboring
elements are then not geometrically identical; the only condition is that
the outflow from one triangle has to be the inflow into the connected
ones.

The triangulation algorithm is based on combining the Domain De-
composition Conception expressing that the domain is split into two
parts along an intersection whenever possible and the Advancing Front
Method. Many user settings influencing the ratio between the precision
and the complexity of final triangulations are possible. For an example
of the final triangulation of a random circle disk see Figure 6.

vohralik_CG.tex; 28/02/2004; 23:44; p.14



MH FEM stochastic discrete fracture network model 15

Figure 7. Triangulation of the network from Figure 3

Natural three-dimensional fractures have varying apertures. Con-
sequently, flow is not evenly distributed within the fracture planes.
So-called channels of flow occur. In order to simulate this channeling
effect, an on-element aperture distribution function is used after the
discretization. It assigns to each triangular element an aperture. Based
on this aperture, the hydraulic permeability of the element is set, also
taking into account the fracture wall roughness and filling. The final tri-
angular mesh of the network from Figure 3 can be seen in Figure 7. The
colours represent various values of the hydraulic permeability assigned
to individual elements.

8. An example of a real problem

In this section we give an example of fracture flow around the explo-
rational drill hole Ptp-3 in the granitoid massif of Pot̊učky, Western
Bohemia. An almost complete set of input data for the Fracture Net-
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Table II. Statistical characteristics of fractures with the mean orientation
[0,0,1]

Depth Mean Std. dev. Mean of the Std. dev. of the Fish.

number of the ln of length ln of length distr.

(m) number (m) (m) par.

0–60 64.5 13 0.3 0.5 13.7

60–120 28.5 5 0.7 0.3 13.7

120–180 27 8 0.3 0.7 13.7

180–240 36 7.5 0.5 0.2 13.7

Table III. Statistical characteristics of fractures with the mean orientation
[0,1,0]

Depth Mean Std. dev. Mean of the Std. dev. of the Fish.

number of the ln of length ln of length distr.

(m) number (m) (m) par.

0–60 51 8 0.1 0.4 21

60–120 27 6.5 0.5 0.6 21

120–180 76.5 22.5 0.2 0.4 21

180–240 36 10 0.7 0.2 21

work Generator was available from the results of field measurements
(core-log evaluation, acoustic camera scanning, . . . ) given in [13]. The
only missing characteristic was the distribution of fracture lengths,
which has been adapted from [18]. The statistical characteristics of
separate types according to their mean orientation are given in Ta-
bles II–IV. The fracture network covered a domain of 5x5x3 meters
and consisted of 206 fractures, which were discretized into approx. 4000
triangular elements. The intention was to simulate fracture flow in the
immediate vicinity of the borehole as precisely as possible; we also
wanted to have a very small number of elements to make many tests
easily possible.

8.1. Problem setting and boundary conditions

We have solved the problem with various boundary conditions, sources
distribution, and prescribed material properties in order to check the
performance of the model. We have used the testing setting, where the
hydraulic conductivity of the elements is given in the magnitude of 1
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Table IV. Statistical characteristics of fractures with the mean orientation
[1,0,0]

Depth Mean Std. dev. Mean of the Std. dev. of the Fish.

number of the ln of length ln of length distr.

(m) number (m) (m) par.

0–60 21 4 0.3 0.3 11.5

60–120 24 7.5 0.7 0.2 11.5

120–180 28.5 7 0.5 0.2 11.5

180–240 26.4 11.5 0.5 0.5 11.5

to 0.1 m/day and the differences between piezometric heads prescribed
for the sides with Dirichlet boundary condititions are in the magnitude
of the geometrical distances of these sides, and the real setting, where
these quantities were set, respectively, to 10−4–10−7 m/day and 10−3 m.

8.2. Adjustment of the mesh

Obviously, one can only simulate a connected fracture system. On the
other hand, the existence of fractures or sets of fractures which are
not connected to the rest of the network is a natural characteristic of
rock massifs, hence their existence in the generated network. As we
are only interested in flow in the whole massif, exclusion of uncon-
nected subsystems was used. The final mesh had 166 fractures and
3368 elements.

8.3. Results

The results of the problems with the testing setting have the same
nature as the results of the same problems with the real setting, which
shows the linearity of the model. The difference between these re-
sults is proportional to the difference of the boundary conditions and
permeability. This makes it possible to use the scaling of real problems.

Next, the hypothesis that the majority of flow is only conducted
by a small number of fractures was confirmed. These fractures create
several channels of flow in the massif, and the flux through the other
fractures is negligible. The results are documented in Tables V and VI,
where the distribution of the average velocity of flow over fractures,
mesh elements respectively for the testing setting is shown. The average
velocity of flow in the whole mesh was 0.032 m/day.

The same distribution of flow as in the whole mesh can be observed
in particular fractures. In each fracture there exist one or two channels
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Table V. Average velocity in fractures

Velocity [m/day] Number of fractures

> 10−1 13

10−2 – 10−1 56

10−3 – 10−2 32

10−4 – 10−3 12

< 10−4 53

Table VI. Average velocity in elements

Velocity [m/day] Number of elements

> 10−1 297

10−2 – 10−1 1048

10−3 – 10−2 794

10−4 – 10−3 323

< 10−4 906

of flow and the flux through the rest of the fracture is almost equal
to zero. This situation is shown in Figure 8. Inter-element fluxes are
viewed as two parallel lines and the distribution of the piezometric head
is interpolated and viewed with the help of the GWS viewer system.
The intersections with neighboring fractures are depicted as thick red
lines. Finally, Figure 9 shows the distribution of the piezometric head
in the whole simulated fracture network, for the case of the testing
setting and for flow from the upper left to the lower right corner of the
simulated domain.

9. Conclusions

In the present paper we have used a mixed-type finite element method
to solve a locally second-order elliptic problem on a fracture network
with a discontinuous permeability tensor. This ensures good accuracy
of the velocity field and the fact that the mass balance is satisfied on
each element. The hybrid version of the mixed finite element method of
Raviart and Thomas produces symmetric and positive definite matri-
ces. It applies directly to an arbitrary number of fractures intersecting
through one edge. This is another advantage in comparison with the
original mixed formulation for fracture networks, where the velocity
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Figure 8. Flow in one fracture

basis functions for multiply shared edges are quite complicated, see [20].
The presented model problem demonstrates the validity of classical
error estimates even on fracture networks.

The performed simulations of the real situation have proved good
correspondence between observed phenomena and numerical approx-
imations. The model gives an accurate velocity field within fracture
planes and thus in the whole simulated network. Namely, the channeling
effect was observed both in fracture planes and in the entire network. In
order to obtain good-quality meshes, the use of the proposed geometri-
cal simplifications seems essential. The three-dimensional geometrical
correspondence vanishes, but the mesh is much simpler and still approx-
imates the simulated fracture network accurately. For the mixed-hybrid
finite element method, the element edges correspondence is sufficient.
However, only the simulation of small domains is possible with the
introduced model. To simulate large scale domains, we plan to use an
equivalent porous-block approach as in [11]. In this approach one uses
an equivalent porous medium model, where the permeability tensors
of the elements of the partition are set up based on local stochastic
discrete fracture network models.
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Figure 9. Distribution of the piezometric head in the fracture network

In the near future, our main interest is the simulation of contaminant
transport in fracture networks. We plan to consider a nonlinear convec-
tion–reaction–diffusion equation to simulate miscible displacements.
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MS Geological Institute of Hungary, Budapest, (2001).
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19. M. Vohraĺık, Existence- and error- analysis of the mixed-hybrid model of the
fracture flow, Technical Report MATH-NM-06-2001, Dresden University of
Technology, Dresden, (2001).
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