
HAL Id: hal-04843665
https://inria.hal.science/hal-04843665v2

Preprint submitted on 13 Jun 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A posteriori algebraic error estimates and
nonoverlapping domain decomposition in mixed

formulations: energy coarse grid balancing, local mass
conservation on each step, and line search

Manuela Bastidas Olivares, Akram Beni Hamad, Martin Vohralík, Ivan Yotov

To cite this version:
Manuela Bastidas Olivares, Akram Beni Hamad, Martin Vohralík, Ivan Yotov. A posteriori algebraic
error estimates and nonoverlapping domain decomposition in mixed formulations: energy coarse grid
balancing, local mass conservation on each step, and line search. 2025. �hal-04843665v2�

https://inria.hal.science/hal-04843665v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A posteriori algebraic error estimates and nonoverlapping domain

decomposition in mixed formulations: energy coarse grid

balancing, local mass conservation on each step, and line search

Manuela Bastidas Olivares�� Akram Beni Hamad�� Martin Vohraĺık��

Ivan Yotov §

June 13, 2025

Abstract

We consider iterative algebraic solvers for saddle-point mixed finite element discretizations
of the model Darcy flow problem. We propose a posteriori error estimators of the algebraic
error as well as a nonoverlapping domain decomposition algorithm. The estimators control
the algebraic error from above and from below in a guaranteed and fully computable way.
The distinctive feature of the domain decomposition algorithm is that it produces a locally
mass conservative approximation on each iteration. Both the estimate and the algorithm
rely on a coarse grid solver, a subdomain Neumann solver, and a subdomain Dirichlet solver.
The algorithm also employs a line search to determine the optimal step size, leading to
a Pythagoras formula for the algebraic error decrease in each iteration. We suppose that
the fine mesh is a refinement of a coarse mesh, where both meshes need to be formed by
simplices or rectangular parallelepipeds. Numerical experiments illustrate the theoretical
developments and confirm the efficiency of the algebraic error estimates and of the domain
decomposition algorithm.

Keywords: mixed finite elements, saddle-point system, iterative algebraic solver, algebraic
error, a posteriori estimate, domain decomposition method, coarse grid solver, subdomain Neu-
mann solver, subdomain Dirichlet solver, balancing, local mass conservation, line search.

1 Introduction

Saddle-point systems arise in many scientific and technical applications, such as fluid mechanics,
structural mechanics, and electromagnetism. One typically seeks to find algebraic vectors U and
P that satisfy the following system of linear algebraic equations:(

A Bt

B 0

)(
U
P

)
=

(
0
F

)
. (1.1)

Here, the matrix A is symmetric and positive definite and B has a full (row) rank, whereas F
is a right-hand side vector. The overall system matrix is indefinite, of saddle-point type, posing
difficulties for numerical solvers, cf. the overview paper Benzi, Golub, and Liesen [6].

Domain decomposition solvers allow for iterative algebraic approximation of the solution
to (1.1) where smaller systems are solved on each iteration in parallel on smaller subdomains.

�Inria, 48 rue Barrault, 75647 Paris, France
(manuela.bastidas-olivares@inria.fr, akram.beni-hamad@inria.fr, martin.vohralik@inria.fr).

�CERMICS, Ecole nationale des ponts et chaussées, IP Paris, 77455 Marne la Vallée, France.
§Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA (yotov@math.pitt.edu).

Partially supported by Inria Paris Visiting Professorship and NSF grants DMS 2111129 and DMS 2410686.

1

mailto:manuela.bastidas-olivares@inria.fr, akram.beni-hamad@inria.fr, martin.vohralik@inria.fr
mailto:yotov@math.pitt.edu

In the context of saddle-point systems arising from mixed finite elements, the early works of
Glowinski and Wheeler [19], Ewing and Wang [17], Mandel [22], Mathew [23], and Cowsar,
Mandel, and Wheeler [11] laid important grounds. Since then, numerous related approaches
appeared, see, e.g., Toselli [36], Arbogast et al. [4], Tu [37], Ganis and Yotov [18], Soused́ık [35],
Š́ıstek, Březina, and Soused́ık [33], Ciarlet, Jamelot, and Kpadonou [10], Oh et al. [27], Dobrev et
al. [13], Solovský, Fuč́ık, and Š́ıstek [34], Boon et al. [8], and the references therein. However,
to our knowledge, no available nonoverlapping domain decomposition solver preserves on each
iteration the basic physical property behind (1.1): the local mass conservation expressed by
BU = F.

Whenever one considers (an iterative) approximate solution (Uj ,Pj)t to the exact solution
(U,P)t, there arises the misfit between them, the algebraic error. Algebraic error is a central
notion in numerical linear algebra but, somehow surprisingly, computable and guaranteed a
posteriori error estimates on it are seldom available, namely for bounding the error from above
(bounds from below are typically easier); we refer to the discussion and references in Rey,
Gosselet, and Rey [32] and Papež et al. [29, 28]. In the context of saddle-point systems and
domain decomposition methods, this question was partly treated in Ali Hassan et al. [1], where
an a posteriori error estimate on the overall error (distance between the piecewise polynomial
uj
h associated with Uj and the exact solution u of the underlying partial differential equation)

has been derived, with a component associated with the algebraic error.
In our first main result, Theorem 7.1, we derive a guaranteed upper bound on the algebraic

error
(U−Uj)tA(U−Uj) = |||uh − uj

h|||
2 ≤

(
ηj
)2
, (1.2)

where ηj is an a posteriori error estimate fully computable from (Uj ,Pj)t (or, equivalently, the
associated piecewise polynomials (uj

h, p
j
h)). This result is complemented in Theorem 8.3, where

we also present a lower bound on the algebraic error of the form(
ηj
)2 ≤ (U−Uj)tA(U−Uj) = |||uh − uj

h|||
2. (1.3)

In our second main result, Algorithm 8.1, we design a nonoverlapping domain decomposition
solver with the following properties: 1) on each iteration j, upon using Construction 5.1 in (8.2),
we obtain an approximate solution satisfying the local mass conservation BUj = F, or, more
precisely,

uj
h ∈ V gN

h,k ⊂HgN(div,Ω), ∇·uj
h = f, (1.4)

on each iteration j ≥ 1. 2) As per the Theorem 8.3, we have the guaranteed a posteriori algebraic
error estimates (1.2)–(1.3) on each iteration j ≥ 1. This in particular makes it suitable for use
in mesh adaptive methods with inexact algebraic solvers, see, e.g., [15, 20] and the references
therein. 3) The line search (8.3) gives the error decrease formula of Theorem 8.2 on each iteration
j ≥ 1. 4) Algorithm 8.1 essentially employs a coarse-grid solver in combination with subdomain
Neumann and Dirichlet solvers in an additive Schwarz manner. All are formulated as quadratic
constrained energy minimizations associated with the current residual, which is natural both
from mathematical and physical perspective. 5) The built-in coarse-grid solver of step 2 of
Construction 5.1 is a solution to the “balancing” problem for domain decomposition in mixed
formulations [11]. It is closely related to the equilibration technique used in a posteriori analysis
for numerical discretizations of partial differential equations [16, 28]. This also prevents the
appearance of other issues such as “interior node compatibility” linked to Neumann conditions,
nonconforming discretizations, or non-nested spaces. 6) Algorithm 8.1 uses functional writing
by relying directly on the piecewise polynomial spaces and functions therein and is thus basis-
independent, in contrast to a writing like (1.1), where the bases of the piecewise polynomial
spaces need to be chosen first and potentially influence the solver behavior and properties.
Congruently, we develop a basis-independent analysis where we exploit information and tools
from function spaces, in contrast to being confined to linear algebraic information and tools.

2

This contribution is organized as follows. In Section 2, we introduce the model Darcy flow
problem, the function spaces on the continuous level, and the weak formulation. Section 3 then
settles the discrete level. Section 4 then presents the nonoverlapping domain decomposition
configuration. Our key technical tool, the equilibrated flux of Construction 5.1 (yielding the
local mass conservation), is presented in Section 5. The reconstruction of the scalar variable
(potential) is then based on trace lifting of Construction 6.1 and elementwise postprocessing of
Construction 6.2 of Section 6. Theorem 7.1 yielding the guaranteed upper bound on the algebraic
error (1.2) is presented in Section 7, and our nonoverlapping domain decomposition solver of
Algorithm 8.1 is detailed in Section 8. These theoretical results are numerically illustrated
in Section 9. Finally, some technical details of elementwise postprocessing are collected in
Appendix A.

2 Continuous setting

We introduce here the model Darcy flow problem, the function spaces on the continuous level,
and the weak formulation.

2.1 Problem

Let Ω ⊂ Rd, 1 ≤ d ≤ 3, be an open bounded connected domain (interval for d = 1, polygon for
d = 2, polyhedron for d = 3), with Lipschitz boundary ∂Ω such that ∂Ω = ΓD∪ΓN. We suppose
that ΓD and ΓN are also Lipschitz, relatively open, and correspond to a set of mesh boundary
faces as defined below. We denote by nΩ the outward unit normal vector to ∂Ω and consider
the following diffusion problem: find p : Ω → R such that

−∇· (S∇p) = f in Ω, (2.1a)

p = 0 on ΓD, (2.1b)

−S∇p·nΩ = gN on ΓN. (2.1c)

In (2.1), the primal unknown p is called the potential, whereas the dual variable

u := −S∇p (2.2)

is called the flux. This is a basic model in countless applications, namely thermo-diffusion
processes and groundwater flow.

2.2 Assumptions on the data

For the sake of simplicity, with respect to the mesh Th of Section 3.1 and with reference to the
piecewise polynomial spaces from (3.3), (3.4) and (3.5a) below, we assume for the data in (2.1):

Assumption 2.1 (Piecewise polynomial data). The data S, f , and gN are such that:

Ass1 The diffusion tensor S is bounded and symmetric positive definite. It is constant elemen-
twise on simplices and constant elementwise and diagonal on rectangular parallelepipeds.

Ass2 The source term f satisfies f |K ∈Wh,k(K) for all K ∈ Th.

Ass3 The Neumann boundary condition gN satisfies gN ∈
(
Vh,k

)
·nΩ|ΓN

.

3

2.3 Domain and spaces

For a general open bounded connected domain D ⊂ Rd, we denote by |D| its Lebesgue measure
and by L2(D) the space of scalar-valued and square-integrable functions. We let (·, ·)D represent
the inner product on L2(D) and ∥·∥D the corresponding norm; we set L2(D) := [L2(D)]d, where
we use the same notation for the inner product and norm as in the scalar case. When D = Ω,
we drop the subscripts. We let ⟨·, ·⟩γ be the scalar product for L2(γ), where γ = ∂D or a subset
of it.

Let H1(D) be the Sobolev space of L2(D) functions whose weak derivatives are square
integrable, H1(D) := {v ∈ L2(D) : ∇v ∈ L2(D)}. Further, let H(div,D) be the space of
vector-valued functions in L2(D) whose weak divergences are square integrable, H(div,D) :=
{v ∈ L2(D) : ∇· v ∈ L2(D)}. We also use H1

0,D(Ω), the subspace of H1(Ω) formed by the
functions vanishing on ΓD in the sense of traces. Similarly, define the set

HgN(div,Ω) := {v ∈H(div,Ω) : v·nΩ = gN on ΓN}, (2.3)

where v·nΩ = gN on ΓN means that (v,∇ϕ)+ (∇·v, ϕ) = ⟨gN, ϕ⟩∂Ω = ⟨gN, ϕ⟩ΓN
for all functions

ϕ ∈ H1
0,D(Ω). Similarly, the space H0(div,Ω) is defined as HgN(div,Ω) in (2.3) but with gN

replaced by 0. We define the energy norm of a function ψ ∈ L2(D) by

|||ψ|||D := ∥S− 1
2ψ∥D.

We suppose
(f, 1) = ⟨gN, 1⟩∂Ω (2.4)

when ΓN = ∂Ω. Congruently, L2
∗(Ω) := L2(Ω) when ΓN ̸= ∂Ω; when ΓN = ∂Ω, L2

∗(Ω) stands for
those L2(Ω) functions whose mean value vanishes.

2.4 Weak formulation

In mixed form, problem (2.1) is equivalent to the following quadratic constrained minimization
problem: seek for a function u such that

u = argmin
v∈HgN

(div,Ω)
∇·v=f

|||v|||2, (2.5)

cf., e.g., [7]. The Euler–Lagrange optimality conditions for (2.5) read: find u ∈ HgN(div,Ω)
with ∇·u = f in Ω satisfying

(S−1u,v) = 0 ∀v ∈H0(div,Ω) with ∇·v = 0 in Ω.

If we introduce a Lagrange multiplier associated with the constraint ∇·u = f in Ω, we can
equivalently seek for the pair (u, p) ∈HgN(div,Ω)× L2

∗(Ω) such that

(S−1u,v)− (p,∇·v) = 0 ∀v ∈H0(div,Ω),

(∇·u, q) = (f, q) ∀q ∈ L2
∗(Ω).

When ΓN = ∂Ω, the Neumann compatibility condition (2.4) is important to guarantee the
existence and uniqueness of the solutions.

3 Discrete setting

This section lays down the discrete setting: meshes, discrete (piecewise polynomial) spaces, and
the mixed finite element discretization together with its equivalent hybridization.

4

3.1 Meshes

Let Th be a partition of the domain Ω into a finite number of nonoverlapping elements K. We
assume that the elements K ∈ Th are either simplices or rectangular parallelepipeds. Let |Th|
be the number of elements in Th and denote by hK the diameter of the element K ∈ Th. We
assume that adjacent elements completely share their common vertex, edge, or face, so we avoid
hanging nodes. Denote the set of all vertices (for d = 1), edges (for d = 2), or faces (for d = 3)
of Th by Fh := Fext

h ∪ F int
h , where Fext

h is the set of boundary vertices, edges, or faces lying on
∂Ω and F int

h is the set of interior vertices, edges, or faces. Henceforth we only speak of faces.
We assume that each boundary face is entirely contained either in ΓD or in ΓN. Consequently,
we denote FD

h and FN
h the sets of faces lying on ΓD and ΓN, respectively. Moreover, for each

K ∈ Th, we denote by FK the set of its faces. For each F ∈ Fh, nF is a fixed face normal,
coinciding with nΩ on ∂Ω and otherwise arbitrary but fixed. The shape-regularity parameter of
the mesh Th is the positive real number

κTh := max
K∈Th

hK
ρK

,

where ρK is the diameter of the largest ball contained in K.
For a sufficiently smooth function ψ that is not necessarily univalued on the faces F ∈ F int

h

with F ∈ FK ∩ FK′ and nF pointing from K to K ′, with K ∈ Th and K ′ ∈ Th, its jump and
average are defined as follows:

[[ψ]] := ψ|K|F − ψ|K′|F and {{ψ}} :=
1

2

(
ψ|K|F + ψ|K′|F

)
. (3.1)

To achieve robustness with respect to diffusion inhomogeneities, we consider diffusivity-dependent
weighted averages as in, e.g., [14]. For all F ∈ F int

h , we let

ω−
F :=

δK
δK + δK′

, ω+
F :=

δK′

δK + δK′
,

where δK := nF · S|KnF , and define

{{ψ}}w := ω−
Fψ|K|F + ω+

Fψ|K′|F . (3.2)

3.2 Piecewise polynomial spaces

For k ≥ 0, we define the piecewise polynomial pressure space

Wh,k :=
{
qh ∈ L2(Ω) : qh|K ∈Wk(K) for all K ∈ Th

}
,

W ∗
h,k := {qh ∈Wh,k : (qh, 1) = 0 when ΓN = ∂Ω} ,

where

Wk(K) :=

 Pk(K) K simplex,

Qk,...,k(K) K rectangular parallelepiped,
(3.3)

with Pk(K) being the space of polynomials of total degree at most k on K and Qk1,...,kd being
the space of polynomials of degree at most k1 in x1, . . . , kd in xd.

Similarly, for k ≥ 0, the piecewise polynomial velocity space is

V dc
h,k :=

{
vh ∈ L2(Ω) : vh|K ∈ RTNk(K) for all K ∈ Th

}
,

5

where the space RTNk(K) is the Raviart–Thomas–Nédélec mixed finite element space of order
k proposed in [31, 26] and defined on each element K ∈ Th as follows:

RTNk(K) :=


Pk(K) + xPk(K) K simplex,

Qk+1,k(K)×Qk,k+1(K) K rect. par., d = 2,

Qk+1,k,k(K)×Qk,k+1,k(K)×Qk,k,k+1(K) K rect. par., d = 3,

(3.4)

with Pk(K) := [Pk(K)]d. This defines the so-called broken Raviart–Thomas–Nédélec spaces,
without any normal continuity imposed.

The discrete subspaces/subsets of H(div,Ω), H0(div,Ω), and HgN(div,Ω) are then written
as

Vh,k := {vh ∈H(div,Ω) : vh|K ∈ RTNk(K) for all K ∈ Th} , (3.5a)

V 0
h,k := {vh ∈ Vh,k : vh·nΩ|ΓN

= 0} , (3.5b)

V gN
h,k := {vh ∈ Vh,k : vh·nΩ|ΓN

= gN} . (3.5c)

Finally, we define the pressure trace space

Ψh,k :=
∏

F∈Fh

Ψk(F), (3.6)

where for all faces F ∈ Fh, one has

Ψk(F) :=


Pk(F) K simplex ,

Pk(F) K rectangular parallelepiped, d = 2,

Qk,k(F) K rectangular parallelepiped, d = 3.

(3.7)

Similarly, we denote Ψdc
h,k the broken pressure trace space

Ψdc
h,k :=

∏
K∈Th

∏
F∈FK

Ψk(F). (3.8)

The above spaces are constructed in a way that ∇·RTNk(K) = Wk(K) together with
(RTNk(K)·nK)|F = Ψk(F) for all K ∈ Th and F ∈ FK . Later we will also use a postprocessing
pressure space Mh,k = ΠK∈ThMh,k(K) as defined in [3, 5, 9, 38].

3.3 S-weighted L2(K)-orthogonal projection

For every K ∈ Th and v ∈ L2(K), the S-weighted L2(K)-orthogonal projection onto the
Raviart–Thomas–Nédélec space RTNk(K) is a function ΠRTN

k v such that

(S−1(v −ΠRTN
k v),wh)K = 0 ∀wh ∈ RTNk(K). (3.9)

Below, we also apply it elementwise to v ∈ L2(Ω).

3.4 Mixed finite elements

The discrete counterpart of the minimization problem (2.5) is, cf., [7],

uh := argmin
vh∈V

gN
h,k

∇·vh=f

|||vh|||2. (3.10)

6

The Euler–Lagrange optimality conditions for (3.10) read: find uh ∈ V gN
h,k with ∇·uh = f in Ω

and satisfying
(S−1uh,vh) = 0 ∀vh ∈ V 0

h,k with ∇·vh = 0 in Ω. (3.11)

Problem (3.11) is equivalent to finding (uh, ph) ∈ V gN
h,k ×W ∗

h,k such that

(S−1uh,vh)− (ph,∇·vh) = 0 ∀vh ∈ V 0
h,k, (3.12a)

(∇·uh, qh) = (f, qh) ∀qh ∈W ∗
h,k. (3.12b)

The Lagrange multiplier ph approximates the potential p on the mesh elements.

3.5 Hybridization

Imposing indirectly the normal trace continuity and Neumann boundary conditions, prob-
lem (3.12) is further equivalent to finding (uh, ph, λh) ∈ V dc

h,k ×W ∗
h,k ×Ψh,k such that λh = 0 on

ΓD and

(S−1uh,vh)− (ph,∇·vh) +
∑
K∈Th

⟨λh,vh·nK⟩∂K = 0 ∀vh ∈ V dc
h,k, (3.13a)

(∇·uh, qh) = (f, qh) ∀qh ∈W ∗
h,k, (3.13b)∑

K∈Th

⟨uh·nK , µh⟩∂K = ⟨gN, µh⟩ΓN
∀µh ∈ Ψh,k and µh = 0 on ΓD.

(3.13c)

This is the so-called hybridized version of (3.12). The Lagrange multiplier λh approximates the
potential p on the mesh faces.

4 Nonoverlapping domain decomposition configuration

Our results on a posteriori algebraic error estimation are generic but fit best the domain decom-
position framework that we anyhow adopt for our iterative solver below.

4.1 Meshes

We henceforth suppose that the domain Ω is decomposed into N nonoverlapping subdomains
Ωi, i = 1, . . .N . Here, the subdomains Ωi are simplices or rectangular parallelepipeds forming
a mesh of Ω in the sense of Section 3.1; we will call it a coarse mesh. We request that the
subdomains Ωi match with the mesh Th and we denote the mesh of each subdomain Ωi as
Thi

:= Th|Ωi . For all i = 1, . . .N , let ni be the unit normal pointing outward ∂Ωi, and denote
the interface between two adjacent subdomains Ωi and Ωj by Γi,j . We also denote the set of all

faces of Thi
by Fhi

, and in FΓi,j

h we collect the faces that belong to the interface Γi,j . By FH ,
we denote the set of all faces of TH . All Th, Thi

, and TH are matching meshes without hanging
nodes, and we interpret Th and Thi

as a refinement of the coarse mesh TH , where h, hi, and H
are the largest diameters of the elements in the meshes Th, Thi

, and TH respectively.

4.2 Piecewise polynomial spaces

We define the local spaces

Wi,h,k :=
{
qh ∈ L2(Ωi) : qh|K ∈Wk(K) for all K ∈ Thi

}
, W ∗

i,h,k :=Wi,h,k ∩ L2
∗(Ωi),

7

where L2
∗(Ωi) stands for those L

2(Ωi) functions whose mean value vanishes over Ωi when |∂Ωi ∩
ΓD| = 0 (“interior” and “Neumann” subdomains) and L2(Ωi) otherwise. Moreover, on the coarse
mesh TH , we will use the spaces

WH,0 :=
{
qH ∈ L2(Ω) : qH |Ωi ∈W0(Ωi) for all Ωi ∈ TH

}
, and W ∗

H,0 :=WH,0 ∩ L2
∗(Ω).

Note that these are the lowest-order spaces in which W0(Ωi) denotes constant functions in Ωi.
We let ΠH denote the L2-orthogonal projection onto W ∗

H,0. We will also use

Vi,h,k := {vh ∈H(div,Ωi) : vh|K ∈ RTNk(K) for all K ∈ Thi
} ,

V 0
i,h,k := {vh ∈H(div,Ωi) : vh|K ∈ RTNk(K) for all K ∈ Thi

and vh·ni = 0 on ∂Ωi \ ΓD} ,
V 0
H,0 := {vH ∈H(div,Ω) : vH |Ωi ∈ RTN0(Ωi) for all Ωi ∈ TH and vH ·ni = 0 on ΓN} .

5 Equilibrated (balanced) flux reconstruction

Let (uj
h, p

j
h) ∈ V dc

h,k × Wh,k be an arbitrary approximation to the solution of (3.12). Note

that it does not have to be included in the approximation space V gN
h,k × W ∗

h,k; in particular,

uj
h can be normal-trace discontinuous and pjh does not have to satisfy the zero-mean value

constraint (pjh, 1) = 0 when ΓN = ∂Ω. By the superscript j ≥ 0, we precede that later on, in
Section 8 below, these approximations will be obtained by an iterative domain decomposition
algorithm with iteration index j. As the domain decomposition is nonoverlapping, normal-trace
discontinuous iterates indeed naturally arise. In this section, we present our central tool, an
equilibrated flux reconstruction and the corresponding potential reconstruction, formalizing the
approach of [1, Section 5.3]. This yields RF(u

j
h, p

j
h) ∈ V gN

h,k with ∇·
(
RF(u

j
h, p

j
h)
)
= f and

RP(u
j
h, p

j
h) ∈W ∗

h,k, i.e., in particular a flux which is conforming (normal-trace continuous) and
equilibrated (balanced, locally mass conservative).

5.1 Coarse–fine mesh construction of an equilibrated (balanced) flux and of
a corresponding potential

Recall the definition of the average (3.1). The heart of our approach is the following construction:

Construction 5.1 (Equilibrated (balanced) flux and the corresponding potential). Let (uj
h, p

j
h)

∈ V dc
h,k ×Wh,k be arbitrary. Proceed in four steps:

1. Averaging on mesh faces.

From uj
h ∈ V dc

h,k, create an auxiliary function uj,1
h ∈ V gN

h,k such that for each K ∈ Th, uj,1
h

satisfies

uj,1
h ·nF =


{{uj

h·nF }} F ∈ F int
h ,

uj
h·nF F ∈ FD

h ,

gN F ∈ FN
h

(5.1a)

for all faces F ∈ FK and, if the polynomial degree k ≥ 1,

(S−1uj,1
h ,vh)K = (S−1uj

h,vh)K ∀vh ∈ Pk−1(K). (5.1b)

The flux uj,1
h is normal-component continuous, belongs to the set V gN

h,k , but a priori does

not have the correct divergence,∇·uj,1
h ̸= f in Ω. If ΓN = ∂Ω, set pj,1h := pjh −

(pjh, 1)

|Ω|
, so

that pj,1h ∈W ∗
h,k. Otherwise, set pj,1h := pjh.

8

2. Coarse grid solver.

Solve the coarse grid residual problem: Seek for (δj,2H , rj,2H) ∈ V 0
H,0 ×W ∗

H,0 such that

(S−1δj,2H ,vH)− (rj,2H ,∇·vH) = (pj,1h ,∇·vH)− (S−1uj,1
h ,vH) ∀vH ∈ V 0

H,0,

(∇· δj,2H , qH) = (f −∇·uj,1
h , qH) ∀qH ∈W ∗

H,0.
(5.2)

We update

uj,2
h := uj,1

h + δj,2H ∈ V gN
h,k ,

pj,2h := pj,1h + rj,2H ∈W ∗
h,k.

(5.3a)

This update now fulfils

(∇·uj,2
h , qH) = (f, qH) ∀qH ∈WH,0, (5.3b)

which is a weak divergence constraint on the coarse mesh. Moreover, using Lemma 5.3
below, if additionally ∇·uj,1

h = f , we get

|||uh − uj,2
h |||2 = |||uh − uj,1

h |||2 − |||δj,2H |||2.

3. Subdomain Neumann solver

On each subdomain Ωi, we seek for (δj,3hi
, rj,3hi

) ∈ V 0
i,h,k ×W ∗

i,h,k, such that

(S−1δj,3hi
,vh)Ωi − (rj,3hi

,∇·vh)Ωi = (pj,2h ,∇·vh)Ωi − (S−1uj,2
h ,vh)Ωi ∀vh ∈ V 0

i,h,k,

(∇· δj,3hi
, qh)Ωi = (f −∇·uj,2

h , qh)Ωi ∀qh ∈W ∗
i,h,k.

(5.4)
Setting δj,3h |Ωi := δ

j,3
hi

and rj,3h |Ωi := rj,3hi
, we update

uj,3
h := uj,2

h + δj,3h ∈ V gN
h,k ,

pj,3h := pj,2h + rj,3h ∈W ∗
h,k

(5.5a)

and observe
∇·uj,3

h = f. (5.5b)

This flux update is thus normal-component continuous and satisfies the divergence con-
straint (is balanced). Moreover, using Lemma 5.4 below, if additionally ∇·uj,2

h = f , we
get

|||uh − uj,3
h |||2 = |||uh − uj,2

h |||2 − |||δj,3h |||2.

4. Coarse grid correction

Compute (δj,4H , rj,4H) ∈ V 0
H,0 ×W ∗

H,0 such that

(S−1δj,4H ,vH)− (rj,4H ,∇·vH) = (pj,3h ,∇·vH)− (S−1uj,3
h ,vH) ∀vH ∈ V 0

H,0,

(∇· δj,4H , qH) = 0 ∀qH ∈W ∗
H,0.

(5.6)

We finally update

RF(u
j
h, p

j
h) := u

j,3
h + δj,4H ∈ V gN

h,k ,

RP(u
j
h, p

j
h) := pj,3h + rj,4H ∈W ∗

h,k,
(5.7a)

where we also denote RFP(u
j
h, p

j
h) := (RF(u

j
h, p

j
h),RP(u

j
h, p

j
h)), and observe ∇· δj,4H = 0

and thus
∇·

(
RF(u

j
h, p

j
h)
)
= f. (5.7b)

The flux reconstruction is thus normal-component continuous and satisfies the divergence
constraint (is balanced). Moreover, using Lemma 5.3, we get

|||uh −RF(u
j
h, p

j
h)|||

2 = |||uh − uj,3
h |||2 − |||δj,4H |||2.

9

5.2 Correctness of Construction 5.1

Construction 5.1 is correct, as the following lemma establishes:

Lemma 5.2 (Construction 5.1). Prescription (5.1) is well defined and problems (5.2), (5.4),
and (5.6) are well-posed, satisfying (5.3), (5.5), and (5.7). In particular, the reconstructed flux
RF(u

j
h, p

j
h) belongs to the set V gN

h,k with ∇·RF(u
j
h, p

j
h) = f in Ω and the reconstructed potential

RP(u
j
h, p

j
h) belongs to the space W ∗

h,k.

Proof. 1) The formulas (5.1) are exactly the prescription of the degrees of freedom in the space
Vh,k from (3.5a), cf., e.g., [7], leading to uj,1

h ∈ V gN
h,k .

2) When ΓD ̸= ∅ the problem (5.2) is well posed, there is no condition to verify. When
ΓD = ∅, the Neumann compatibility condition

(f −∇·uj,1
h , 1) = (f, 1)− ⟨uj,1

h ·nΩ, 1⟩∂Ω
(5.1a)
= (f, 1)− ⟨gN, 1⟩∂Ω

(2.4)
= 0 (5.8)

holds, which guarantees the existence and uniqueness of the corrector δj,2H from (5.2). Moreover,
(5.8) together with the second equation in (5.2) yield

(∇· δj,2H , qH) = (f −∇·uj,1
h , qH) ∀qH ∈WH,0 (5.9)

in both cases ΓD ̸= ∅ and ΓD = ∅.
3) On each subdomain Ωi such that |∂Ω ∩ ΓD| = 0, problem (5.4) is a (homogeneous)

Neumann problem and one needs to ensure that it satisfies the Neumann compatibility condition,
i.e.,

(f −∇·uj,2
h , 1)Ωi = 0. (5.10)

This is immediate from (5.2)–(5.3) by construction: indeed, (5.9) ensures that, for each subdo-
main Ωi, we can take a test function qH which is one in Ωi and zero elsewhere. Consequently,
the solution δj,3hi

of (5.4) exists and is unique. The reconstructed flux uj,3
h given by (5.5) belongs

to RTNk(K) for all K ∈ Th and the normal fluxes are continuous for all F ∈ F int
h – here the

zero normal fluxes of δj,3hi
on ∂Ωi are crucial. Therefore, uj,3

h ∈ V gN
h,k . Moreover, the second

equation in (5.4) together with (5.10) yield

(∇· δj,3hi
, qh)Ωi = (f −∇·uj,2

h , qh)Ωi ∀qh ∈Wi,h,k. (5.11)

Thus, from (5.4)–(5.5a), there holds

(∇·uj,3
h , qh)Ωi = (f, qh)Ωi ∀qh ∈Wi,h,k

for all subdomains Ωi, i.e., (5.5b).
4) When ΓD ̸= ∅ the problem (5.6) is well posed, there is no condition to verify. When

ΓD = ∅, the problem (5.6) is a (homogeneous) Neumann problem, and the solution δj,4H exists
and is unique since both the divergence constraint and the normal trace value are 0. As above,
this allows to see that the second equation in (5.6) actually holds true for all qH ∈ WH,0 and

thus δj,4H is divergence-free.

5) Summarizing (5.1a), (5.3), (5.5), (5.7) leads to RF(u
j
h, p

j
h) ∈ V

gN
h,k with ∇·RF(u

j
h, p

j
h) = f

and RP(u
j
h, p

j
h) ∈W ∗

h,k, as stated in (5.7).

5.3 Error decrease formulas in Construction 5.1

We now show the boxed error decrease formulas in Construction 5.1. We use the equivalences
recalled in Section 3.4

10

Lemma 5.3 (Error decrease formula for the coarse solve). Let uh ∈ V gN
h,k be the solution of

problem (3.11), let uj,1
h ∈ V gN

h,k such that ∇·uj,1
h = f be arbitrary, and let δj,2H ∈ V 0

H,0 be given by

δj,2H := argmin
vH∈V 0

H,0

∇·vH=0

|||uj
h + vH |||2, (5.12)

or, equivalently, δj,2H ∈ V 0
H,0 such that ∇· δj,2H = 0 and

(S−1δj,2H ,vH) = −(S−1uj
h,vH) ∀vH ∈ V 0

H,0 such that ∇·vH = 0. (5.13)

Then, we have

|||uh − (uj,1
h + δj,2H)|||2 = |||uh − uj,1

h |||2 − |||δj,2H |||2. (5.14)

Proof. By choosing vH = δj,2H in (5.13), we obtain

|||δj,2H |||2 = −(S−1uj,1
h , δj,2H). (5.15)

Also, since δj,2H ∈ V 0
H,0 ⊂ V 0

h,k and ∇· δj,2H = 0, one gets from (3.11)

(S−1uh, δ
j,2
H) = 0. (5.16)

Therefore,

|||uh − (uj,1
h + δj,2H)|||2 = |||uh − uj,1

h |||2 − 2(S−1(uh − uj,1
h), δj,2H) + |||δj,2H |||2

(5.16)
= |||uh − uj,1

h |||2 + 2(S−1uj,1
h , δj,2H) + |||δj,2H |||2

(5.15)
= |||uh − uj,1

h |||2 − |||δj,2H |||2.

(5.17)

Lemma 5.4 (Error decrease formula for the subdomain Neumann solve). Let uh ∈ V gN
h,k be the

solution of problem (3.11), let uj,2
h ∈ V gN

h,k be such that ∇·uj,2
h = f , and let δj,3h ∈ V 0

h,k and

δj,3hi
∈ V 0

i,h,k for each subdomain Ωi be given by

δj,3h |Ωi := δ
j,3
hi

:= argmin
vh∈V 0

i,h,k

∇·vh=0

|||vh + uj,2
h |||2Ωi

(5.18)

or, equivalently, δj,3h |Ωi = δ
j,3
hi

∈ V 0
i,h,k such that ∇· δj,3hi

= 0 with

(S−1δj,3hi
,vh)Ωi = −(S−1uj,2

h ,vh)Ωi ∀vh ∈ V 0
i,h,k such that ∇·vh = 0. (5.19)

Then, we have

|||uh − (uj,2
h + δj,3hi

)|||2Ωi
= |||uh − uj,2

h |||2Ωi
− |||δj,3hi

|||2Ωi
, (5.20a)

|||uh − (uj,2
h + δj,3hi

)|||2 = |||uh − uj,2
h |||2 − |||δj,3hi

|||2. (5.20b)

Proof. On each subdomain Ωi, by taking vh = δj,3hi
in (5.19), we get

|||δj,3hi
|||2Ωi

= −(S−1uj,2
h , δj,3hi

)Ωi . (5.21)

In addition, since δj,3hi
∈ V 0

i,h,k and ∇· δj,3hi
= 0, which we extend by zero outside of Ωi, one gets

from (3.11)
(S−1uh, δ

j,3
hi

)Ωi = 0. (5.22)

11

Therefore,

|||uh − (uj,2
h + δj,3hi

)|||2Ωi
= |||uh − uj,2

h |||2Ωi
− 2(S−1(uh − uj,2

h), δj,3hi
)Ωi + |||δj,3hi

|||2Ωi

(5.22)
= |||uh − uj,2

h |||2Ωi
+ 2(S−1uj,2

h , δj,3hi
)Ωi + |||δj,3hi

|||2Ωi

(5.21)
= |||uh − uj,2

h |||2Ωi
− |||δj,3hi

|||2Ωi
.

(5.23)

This is (5.20a); the result (5.20b) is obtained by summing over all subdomains Ωi.

6 Trace lifting and elementwise postprocessing

Let (uj
h, p

j
h) ∈ V dc

h,k ×Wh,k be arbitrary, typically an approximation to the solution of (3.12)
obtained on step j of an iterative algebraic domain decomposition solver as that in Section 8
below to which Construction 5.1 has been applied. Trace lifting and elementwise postprocessing
will be based on the two following procedures.

6.1 Trace lifting

Recall the spaces Ψk(F) from (3.7) and Ψdc
h,k from (3.8). We first elementwise construct an

approximation to the face pressures in the discontinuous trace space Ψdc
h,k.

Construction 6.1 (Trace lifting). Let (uj
h, p

j
h) ∈ V dc

h,k ×Wh,k be arbitrary. For each element

K ∈ Th and each face F ∈ FK such that F ̸∈ FD
h , define (λjh|K)|F ∈ Ψk(F), and consequently

λjh ∈ Ψdc
h,k by

⟨λjh,vh·nK⟩F := −(S−1uj
h,vh)K + (pjh,∇·vh)K (6.1)

for all vh ∈ RTNk(K) with (vh·nK)|F ′ = 0 for all F ′ ∈ FK , F ̸= F ′, and (vh, rh)K = 0 for all
rh ∈ Pk−1(K) if k ≥ 1. On each F ∈ FD

h the function λjh is defined as zero, i.e., λjh|F := 0.

Note that λjh are a priori double valued on all subdomain inter(faces) F ∈ FΓi,j

h . When,

however, (uj
h, p

j
h) coincides with the solution of (3.12), then the definition of λjh in (6.1) is

univalued on each face F ∈ F int
h and coincides with λh from (3.13).

6.2 Elementwise postprocessing

In this section, we give a recipe for an elementwise postprocessing p̃jh that is a higher-order
piecewise polynomial on the mesh Th and that is weakly continuous over the mesh faces. We more
precisely construct p̃jh in some of the available spaces Mh,k = ΠK∈ThMh,k(K) from [3, 5, 9, 38],
recalled in Appendix A below. We highlight that this elementwise postprocessing is independent
of the algebraic method that produced (uj

h, p
j
h).

Recall the definition of the average (3.1). Then we define:

Construction 6.2 (Elementwise postprocessing). Let (uj
h, p

j
h) ∈ V

dc
h,k ×Wh,k be arbitrary, and

let λjh ∈ Ψdc
h,k be given by Construction 6.1. Then for each K ∈ Th, define p̃jh ∈ Mh,k by

prescribing p̃jh|K ∈ Mh,k(K) via

(p̃jh, qh)K = (pjh, qh)K ∀qh ∈Wk(K), (6.2a)

⟨p̃jh, µh⟩F =


⟨{{λjh}}, µh⟩F F ∈ F int

h ,

0 F ∈ FD
h ,

⟨λjh, µh⟩F F ∈ FN
h

∀µh ∈ Ψk(F) and F ∈ FK . (6.2b)

12

The reconstructed potential p̃jh in particular satisfies

⟨[[p̃jh]], µh⟩F = 0 for all F ∈ F int
h and µh ∈ Ψk(F), (6.3a)

⟨p̃jh, µh⟩F = 0 for all F ∈ FD
h and µh ∈ Ψk(F). (6.3b)

We define
R̃P(u

j
h, p

j
h) := p̃jh.

7 A posteriori estimate of the algebraic error

Let (uj
h, p

j
h) ∈ L

2(Ω)× L2(Ω) be arbitrary. Notice that here, the approximate solution uj
h does

not necessarily lie in the space V gN
h,k i.e. uj

h can be normal-trace discontinuous, but it can also not

be piecewise polynomial. Similarly, pjh does not need to satisfy the zero-mean value constraint

and be piecewise polynomial. Later in Section 8, though, (uj
h, p

j
h) is still obtained on step j of

a domain decomposition solver and belongs to V dc
h,k ×Wh,k.

Recall the S-weighted L2-orthogonal projection of Section 3.3. Our first main result states
a guaranteed and fully computable a posteriori estimate of the algebraic error in (uj

h, p
j
h) with

respect to (uh, ph):

Theorem 7.1 (A posteriori estimate of the algebraic error). Let (uh, ph) ∈ V gN
h,k × W ∗

h,k be

the solution of problem (3.12) and let (uj
h, p

j
h) ∈ L2(Ω) × L2(Ω) be arbitrary. Let σj

h ∈ V gN
h,k

with ∇·σj
h = f and p̃jh ∈ Mh,k satisfying (6.3) be arbitrary. Then, the following bound for the

algebraic error holds

|||uh − uj
h|||

2 ≤
(
ηj
)2

:=
(
ηjF

)2
+
(
ηjP

)2
, (7.1a)

where
ηjF := |||uj

h − σ
j
h||| and ηjP := |||uj

h +ΠRTN
k (S∇p̃jh)|||. (7.1b)

Proof. Since uj
h does not necessarily belong to the space V gN

h,k and does not necessarily satisfy
the divergence constraint, we construct, for the purpose of the proof, its orthogonal projection
to V gN

h,k , where divergence equal to f is imposed. This is realized by the solution of the following
quadratic constrained minimization problem

wh := argmin
vh∈V

gN
h,k

∇·vh=f

|||uj
h − vh|||

2. (7.2)

The minimization (7.2) is equivalent to finding wh ∈ V gN
h,k with ∇·wh = f in Ω that satisfies

(S−1(wh − uj
h),vh) = 0 ∀vh ∈ V 0

h,k with ∇·vh = 0 in Ω. (7.3)

The fact that (wh − uh) ∈ V 0
h,k with ∇· (wh − uh) = 0 together with (7.3) implies that

(S−1(wh − uj
h),wh − uh) = 0. Consequently, using wh from (7.2), we obtain the orthogonal

decomposition

|||uj
h − uh|||2 = |||uj

h −wh +wh − uh|||2

= |||uj
h −wh|||2 + |||wh − uh|||2 + 2(S−1(uj

h −wh),wh − uh)

= |||uj
h −wh|||2 + |||wh − uh|||2.

(7.4)

Now, we split the analysis into the two parts related to the two terms on the right-hand side
of (7.4).

13

1. Flux bound. (First term in (7.4)) Since wh is the solution to (7.2), for an arbitrary σj
h ∈

V gN
h,k with ∇·σj

h = f in Ω, there holds

|||uj
h −wh||| ≤ |||uj

h − σ
j
h||| = ηjF.

2. Potential bound. (Second term in (7.4)) Recall that (wh−uh) ∈ V 0
h,k with ∇· (wh−uh) =

0. Then, the formulations (3.11) and (7.3) lead to

|||wh − uh|||2 = (S−1(wh − uh),wh − uh)
(3.11)
= (S−1wh,wh − uh)

(7.3)
= (S−1uj

h,wh − uh).
(7.5)

For any function p̃jh ∈ Mh,k, using Green’s theorem separately on each mesh element
K ∈ Th, one has, for all vh ∈ V 0

h,k with ∇·vh = 0 in Ω,∑
K∈Th

(∇p̃jh,vh)K =
∑
K∈Th

(
⟨p̃jh,vh·nK⟩∂K − (p̃jh,∇·vh)K

)
=

∑
F∈F int

h

⟨[[p̃jh]],vh·nF ⟩F +
∑

F∈FD
h

⟨p̃jh,vh·nF ⟩F .

Moreover, if p̃jh satisfies (6.3) we obtain∑
K∈Th

(∇p̃jh,vh)K = 0 (7.6)

for all vh ∈ V 0
h,k with ∇·vh = 0 in Ω. In particular, (∇p̃jh,wh − uh) = 0. This, together

with (7.5) and the definition of the projector ΠRTN
k from (3.9) leads to

|||wh−uh|||2
(7.5),(7.6)

= (S−1uj
h+∇p̃jh,wh−uh) = (S−1(uj

h+ΠRTN
k (S∇p̃jh)),wh−uh). (7.7)

Applying the Cauchy–Schwarz inequality finally yields

|||wh − uh||| ≤ |||uj
h +ΠRTN

k (S∇p̃jh)||| = ηjP.

Remark 7.2 (Possible construction of σj
h and p̃jh). A possible construction, when (uj

h, p
j
h) ∈

V dc
h,k×Wh,k, is σ

j
h := RF(u

j
h, p

j
h) from Construction 5.1 and then p̃jh = R̃P(σ

j
h,RP(u

j
h, p

j
h)) from

Construction 6.2.

Remark 7.3 (Consistency check). Note that if uj
h = uh and pjh = ph, the estimator ηj = 0

for the choices σj
h = uj

h and p̃jh obtained from Construction 6.2. Indeed, on the one hand,

if uj
h ∈ V gN

h,k with ∇·uj
h = f in Ω, then we can choose σj

h = uj
h to obtain ηjF = 0. On the

other hand, when (uj
h, p

j
h) ∈ V

gN
h,k ×W ∗

h,k satisfies (3.12), the corresponding p̃jh ∈ Mh,k is such

that (6.3) holds. For this choice in (7.1), we conclude that ηjP = 0.

8 Nonoverlapping domain decomposition algorithm with local
mass conservation on each step

Recall the definition of the weighted average (3.2). We can now present our second main result,
a domain decomposition algorithm producing a physically correct (locally mass conservative)
approximation on each step:

14

Algorithm 8.1 (Nonoverlapping domain decomposition algorithm with local mass conserva-
tion on each step). Let ϵ > 0 be a user-specified tolerance. Let an arbitrary initial guess
(u0

h, p
0
h) ∈ V dc

h,k×Wh,k be given; recall that this means that the initial flux u0
h can be normal-trace

discontinuous with a wrong divergence and the initial potential p0h can be non mean value-free if
ΓN = ∂Ω. Proceed in initialization and four steps:

0. Initialization by flux equilibration.

Compute the reconstructed flux and potential using (u1
h, p

1
h) := RFP(u

0
h, p

0
h) from Con-

struction 5.1. This gives a starting flux u1
h which is normal-trace continuous and with the

correct divergence and a starting potential which is of mean value zero if ΓN = ∂Ω,

u1
h ∈ V gN

h,k , ∇·u1
h = f,

p1h ∈W ∗
h,k.

(8.1)

All the following iterations will retain these properties.

Set j = 1 and perform the following four steps:

1. Trace lifting.

From the solution (uj
h, p

j
h), compute the associated intermediate Lagrange multiplier λjh ∈

Ψdc
h,k by Construction 6.1.

2. Subdomain Dirichlet solver.

Construct the intermediate flux δjh ∈ V dc
h,k and the intermediate potential rjh ∈ Wh,k such

that δjh|Ωi := δjhi
and rjh|Ωi := rjhi

where for all subdomains Ωi, (δ
j
hi
, rjhi

) ∈ Vi,h,k ×Wi,h,k

is the solution of the subdomain Dirichlet problems

(S−1δjhi
,vh)Ωi − (rjhi

,∇·vh)Ωi = (pjh,∇·vh)Ωi − (S−1uj
h,vh)Ωi − ⟨{{λjh}}w,vh·n⟩∂Ωi\∂Ω

− ⟨λjh,vh·n⟩∂Ωi∩∂Ω ∀vh ∈ Vi,h,k,

(∇· δjhi
, qhi

)Ωi = 0 ∀qhi
∈Wi,h,k.

3. Flux equilibration and line search.

From Steps 1 and 2, uj
h + δ

j
h would not have continuous normal component on the subdo-

main interfaces, which we now correct by Construction 5.1. We in particular first define
the flux and potential as (ûj

h, p̂
j
h) := RFP(u

j
h + δjh, p

j
h + rjh) from Construction 5.1. Thus

ûj
h ∈ V gN

h,k with ∇· ûj
h = f and p̂jh ∈ W ∗

h,k and ûj
h − uj

h ∈ V gN
h,k with ∇· (ûj

h − uj
h) = 0 and

p̂jh − pjh ∈W ∗
h,k. We then finally update

uj+1
h := uj

h + αj(ûj
h − u

j
h),

pj+1
h := pjh + αj(p̂jh − pjh),

(8.2)

where

αj := −
(S−1uj

h, û
j
h − u

j
h)

|||ûj
h − u

j
h|||2

(8.3)

is the optimal step-length parameter obtained by line search. This in particular yields uj+1
h

which is normal-trace continuous and with the correct divergence (mass conservative) and
pj+1
h which is of zero-mean value when ΓN = ∂Ω,

uj+1
h ∈ V gN

h,k , ∇·uj+1
h = f,

pj+1
h ∈W ∗

h,k.
(8.4)

15

4. Algebraic error estimate and stopping criterion.

Estimate the algebraic error from below by

(ηj)2 :=
(S−1uj

h, û
j
h − u

j
h)

2

|||ûj
h − u

j
h|||2

= (αj)2|||ûj
h − u

j
h|||

2. (8.5)

If ηj < ϵ, then stop the solver. Otherwise go to Step 1.

Thanks to the line search giving the optimal step size (8.3), we have the following link of the
two consecutive errors:

Theorem 8.2 (Error decrease formula). There holds

|||uh − uj+1
h |||2 = |||uh − uj

h|||
2 −

(S−1uj
h, û

j
h − u

j
h)

2

|||ûj
h − u

j
h|||2

. (8.6)

Proof. This follows from the definition of αj in (8.3). Indeed, developing from the first equation
in (8.2),

|||uh − uj+1
h |||2 = |||uh − (uj

h + αj(ûj
h − u

j
h))|||

2

= |||uh − uj
h|||

2 − 2αj
(
S−1(uh − uj

h), û
j
h − u

j
h

)
+ (αj)2|||ûj

h − u
j
h|||

2

= |||uh − uj
h|||

2 + 2αj
(
S−1uj

h, û
j
h − u

j
h

)
+ (αj)2|||ûj

h − u
j
h|||

2,

(8.7)

where the last step follows since ûj
h − u

j
h ∈ V 0

h,k and ∇· (ûj
h − u

j
h) = 0, so that (3.11) gives

(S−1uh, û
j
h − u

j
h) = 0. (8.8)

Therefore, inserting formula (8.3) into (8.7), we get the error decrease (8.6). Actually, (8.7)
shows that αj given by formula (8.3) gives the largest error decrease between all real parameters
α: (8.7) is a quadratic function in this parameter, so that the optimal step-size αj is such that
the derivative of this quadratic function vanishes,

2
(
S−1uj

h, û
j
h − u

j
h

)
+ 2αj |||ûj

h − u
j
h|||

2 = 0. (8.9)

Combining Theorems 7.1 and 8.2, we also fully control the algebraic error by computable
quantities:

Theorem 8.3 (Guaranteed upper and lower bound on the algebraic error). Let ηj be given

by (8.5) and let ηj be given by ηj := |||uj
h+ΠRTN

k (S∇p̃j+1
h)||| with p̃j+1

h := R̃P(u
j+1
h , pj+1

h) from
Construction 6.2. Then, for j ≥ 1, there holds

ηj ≤ |||uh − uj
h||| ≤ ηj .

Moreover, the a posteriori error estimators admit the following elementwise structure:

(ηj)2 = (αj)2|||ûj
h − u

j
h|||

2 =
∑
K∈Th

(αj)2|||ûj
h − u

j
h|||

2
K , (8.10)

(ηj)2 = |||uj
h +ΠRTN

k (S∇p̃j+1
h)|||2 =

∑
K∈Th

|||uj
h +ΠRTN

k (S∇p̃j+1
h)|||2K . (8.11)

16

Proof. Using Theorem 7.1, where we choose σj
h = uj

h (this is possible since uj
h ∈ V gN

h,k with

∇·uj
h = f for j ≥ 1), we get the upper bound. Theorem 8.2, in turn, immediately gives the

lower bound employing the definition ηj by (8.5).

Finally, similarly to [24, Theorem 5.3], we have:

Theorem 8.4 (Equivalence of error contraction and efficiency of the lower a posteriori alge-
braic error estimate). For j ≥ 1, if (uj+1

h , pj+1
h) is constructed using one step of the iterative

Algorithm 8.1, then there holds

|||uh − uj+1
h ||| ≤ C|||uh − uj

h||| (8.12)

for some 0 ≤ C < 1 if and only if√
(1− C2)|||uh − uj

h||| ≤ (ηj). (8.13)

Proof. By Theorem 8.2, we have

|||uh − uj+1
h |||2 = |||uh − uj

h|||
2 − (ηj)2. (8.14)

Then

|||uh − uj+1
h |||2 ≤ C2|||uh − uj

h|||
2

(8.14)⇐⇒ |||uh − uj
h|||

2 − (ηj)2 ≤ C2|||uh − uj
h|||

2

⇐⇒ (1− C2)|||uh − uj
h|||

2 ≤ (ηj)2.

Remark 8.5 (Round-off errors). Above, we have assumed an idealistic exact arithmetics without
round-off errors. In practice, round-off errors, particularly when considering high ratio contrasts
in the coefficients, can have an (important) influence on computational accuracy. A full analysis
of this aspect is beyond the scope of the present study, and it is left as a consideration for future
work.

Remark 8.6 (Other models). The addition of a zero-th order term or the introduction of time
discretization in the Darcy flow problem (2.1) does not modify the structure of Algorithm 8.1.
Incorporating a zero-order term modifies the variational formulation, affecting the calculation of
a posteriori errors, the determination of the parameter αj in the line search, and the calculation
of the intermediate Lagrange multiplier λjh – the underlying scalar product needs to be changed.
However, the basic properties of the method remain unchanged. Similarly, introducing time
discretization allows the method to naturally extend to the time-dependent framework.

Remark 8.7 (Pressure estimates). Our theoretical results are limited to the velocities uj
h, and

we do not have corresponding theoretical results for the errors in the pressures pjh. These could
be obtained but would not be constant-free (the inf-sup condition comes into play).

9 Numerical experiments

In this section, we numerically illustrate our a posteriori error estimates on the algebraic error of
Theorem 8.3 and the nonoverlapping domain decomposition solver of Algorithm 8.1. We consider
problem (2.5) on the domain Ω being the unit square (0, 1)2 in two situations: S an identity
diffusion tensor and S a piecewise constant diffusion tensor with a varying contrast. We consider
d = 2, triangular meshes, and the mixed finite element discretization (3.12) with polynomial
degree k = 0. For the spacesMh,0(K), we use (A.14) from Appendix A.2.3 below. The numerical
experiments are performed with FreeFem++ https://freefem.org/, see Hecht [21].

17

https://freefem.org/

Figure 1: [Test 1] Left: the coarse mesh TH with 8 triangular subdomains Ωi. Right: the fine
mesh Th with 8192 triangles.

Vec Value
0
0.0131562
0.0263123
0.0394685
0.0526247
0.0657808
0.078937
0.0920932
0.105249
0.118405
0.131562
0.144718
0.157874
0.17103
0.184186
0.197342
0.210499
0.223655
0.236811
0.249967

IsoValue
-0.00326722
0.001664
0.00495148
0.00823896
0.0115264
0.0148139
0.0181014
0.0213889
0.0246764
0.0279638
0.0312513
0.0345388
0.0378263
0.0411138
0.0444013
0.0476887
0.0509762
0.0542637
0.0575512
0.0657699

Figure 2: [Test 1] Left: exact mixed finite element flux uh from (3.12). Right: exact mixed
finite element potential ph from (3.12).

9.1 Test 1: identity diffusion tensor

In this section, we suppose the diffusion tensor S = I and problem (2.5) with the exact solution
u(x, y) := ((1 − 2x)(y2 − y), (1 − 2y)(x2 − x)), corresponding to the source term f(x, y) =
−2(x2 + y2) + 2(x+ y) and ΓD = ∂Ω; the exact potential writes as p(x, y) = x(x− 1)y(y − 1).

To start with, we decompose Ω into 8 nonoverlapping triangular subdomains Ωi, i = 1, . . . , 8,
to create the coarse mesh TH . We then refine each subdomain Ωi individually. This gives the
refined mesh Th with Thi

= Th ∩ Ωi. These coarse and fine meshes are illustrated in Figure 1;
the number of unknowns in the liner system (3.12) is 20608. Later, we also refine TH . The
exact solution of the mixed finite element discretization (3.12) is illustrated in Figure 2 and we
consider Algorithm 8.1 with the initial guess (u0

h, p
0
h) = (0, 0) to approximate it.

9.1.1 The initialization step 0 of Algorithm 8.1

In the initialization step 0 of Algorithm 8.1, we apply Construction 5.1 to the potential p0h and
the flux u0

h in order to obtain a normal-trace continuous flux u1
h in Vh,k with divergence equal

to f and the corresponding potential p1h in Wh,k as per (5.7). In Figures 3, 4, and 5 we illustrate
the corrections made in Construction 5.1 by respectively the coarse-grid solver of step 2, the
subdomain Neumann solver of step 3, and the coarse grid correction of step 4. We observe a

18

Vec Value
0
0.012406
0.0248121
0.0372181
0.0496241
0.0620302
0.0744362
0.0868422
0.0992483
0.111654
0.12406
0.136466
0.148872
0.161278
0.173684
0.186091
0.198497
0.210903
0.223309
0.235715

Vec Value
0
0.0118114
0.0236227
0.0354341
0.0472455
0.0590568
0.0708682
0.0826796
0.094491
0.106302
0.118114
0.129925
0.141736
0.153548
0.165359
0.177171
0.188982
0.200793
0.212605
0.224416

Vec Value
0
7.26285e-11
1.45257e-10
2.17885e-10
2.90514e-10
3.63142e-10
4.35771e-10
5.08399e-10
5.81028e-10
6.53656e-10
7.26285e-10
7.98913e-10
8.71542e-10
9.4417e-10
1.0168e-09
1.08943e-09
1.16206e-09
1.23468e-09
1.30731e-09
1.37994e-09

Figure 3: [Test 1] Construction 5.1 in the initialization step 0 of Algorithm 8.1. Left: δ0,2H .

Center: δ0,3h . Right: δ0,4H .
Vec Value
0
0.012406
0.0248121
0.0372181
0.0496241
0.0620302
0.0744362
0.0868422
0.0992483
0.111654
0.12406
0.136466
0.148872
0.161278
0.173684
0.186091
0.198497
0.210903
0.223309
0.235715

Vec Value
0
0.0126026
0.0252051
0.0378077
0.0504102
0.0630128
0.0756154
0.0882179
0.10082
0.113423
0.126026
0.138628
0.151231
0.163833
0.176436
0.189038
0.201641
0.214243
0.226846
0.239449

Vec Value
0
0.0126026
0.0252051
0.0378077
0.0504102
0.0630128
0.0756154
0.0882179
0.10082
0.113423
0.126026
0.138628
0.151231
0.163833
0.176436
0.189038
0.201641
0.214243
0.226846
0.239449

Figure 4: [Test 1] Construction 5.1 in the initialization step 0 of Algorithm 8.1. Left: u0,2
h = δ0,2H .

Center: u0,3
h = u0,2

h + δ0,3h . Right: RF(u
0
h, p

0
h) = u

1
h = u0,3

h + δ0,4H .
IsoValue
0.0120614
0.0148026
0.0166301
0.0184576
0.0202851
0.0221126
0.0239401
0.0257675
0.027595
0.0294225
0.03125
0.0330775
0.034905
0.0367325
0.0385599
0.0403874
0.0422149
0.0440424
0.0458699
0.0504386

IsoValue
-0.00613566
0.00309904
0.0092555
0.015412
0.0215684
0.0277249
0.0338813
0.0400378
0.0461943
0.0523507
0.0585072
0.0646636
0.0708201
0.0769766
0.083133
0.0892895
0.095446
0.101602
0.107759
0.12315

IsoValue
-0.00324847
0.00165544
0.00492471
0.00819398
0.0114633
0.0147325
0.0180018
0.0212711
0.0245403
0.0278096
0.0310789
0.0343482
0.0376174
0.0408867
0.044156
0.0474252
0.0506945
0.0539638
0.057233
0.0654062

Figure 5: [Test 1] Construction 5.1 in the initialization step 0 of Algorithm 8.1. Left: p0,2h = r0,2H .

Center: p0,3h = p0,2h + r0,3h . Right: RP(u
0
h, p

0
h) = p1h = p0,3h + r0,4H .

nice progress from the initial zero guess to the target approximate solution of Figure 2 in all
steps; the coarse grid correction of step 4 seems to primarily affect the potential.

9.1.2 Convergence

In Figure 6, we trace the algebraic error ∥uh − uj
h∥ and the contraction factor defined as

∥uh − uj+1
h ∥

∥uh − uj
h∥

(9.1)

as a function of the iteration index j. We see a substantial reduction of the algebraic error
on each step of Algorithm 8.1 and a fast convergence, which validates the effectiveness of our
domain decomposition algorithm.

19

0 5 10 15

Iteration j

-15

-10

-5

0

E
rr

or

0

0.2

0.4

0.6

C
on

tr
ac

tio
n

fa
ct

or

Figure 6: [Test 1] Algebraic error ∥uh−uj
h∥ (blue solid line, left scale). Contraction factor given

by (9.1) (red dashed line, right scale).

9.1.3 A posteriori estimates of the algebraic error

We now investigate the quality of the a posteriori error estimates of Theorem 8.3. In Figure 7,
we report the lower bound error estimator ηj , the error ∥uh − uj

h∥, and the upper bound error
estimator ηj , again in function of the iteration index j. We observe a close match, especially for
the lower bound. The quality of our a posteriori error estimators is then more closely examined
in the subsequent Figure 8, where we report the lower bound and the upper bound effectivity
indices given respectively by

Ieff :=
∥uh − uj

h∥
ηj

≥ 1 and Ieff :=
ηj

∥uh − uj
h∥

≥ 1. (9.2)

Especially Ieff is very close to the optimal value of 1 and confirms the sharpness of the estimates.

0 5 10 15
Iteration	j

-14

-12

-10

-8

-6

-4

E
rr
or

Figure 7: [Test 1] Algebraic error ∥uh −uj
h∥ (blue solid line), upper bound ηj (red dotted line),

and lower bound ηj (green dashed line).

In Figure 9, we then plot the spatial distribution of the error ∥uh − u1
h∥, the algebraic

error lower estimators α1∥û1
h − u1

h∥K , and the elementwise algebraic error upper estimators
∥u1

h+ΠRTN
k (∇p̃2h)∥K on the 1st iteration, j = 1. We see a very close prediction of the distribution

of the algebraic error, namely for the lower estimators. In Figure 10, the same results are plotted
for iteration j = 14, again with a very close match. For illustration, we also plot the elementwise
errors ∥ph − p1h∥K and ∥ph − p14h ∥K in Figure 11.

20

0 5 10 15
Iteration	j

1

1.5

2

2.5

3

Ef
fe
ct
iv
ity
	in
de
x

Figure 8: [Test 1] Effectivity indices Ieff (green solid line) and Ieff (red dashed line) from (9.2).

IsoValue
-2.21021e-05
1.10511e-05
3.31532e-05
5.52553e-05
7.73574e-05
9.94596e-05
0.000121562
0.000143664
0.000165766
0.000187868
0.00020997
0.000232072
0.000254174
0.000276277
0.000298379
0.000320481
0.000342583
0.000364685
0.000386787
0.000442042

IsoValue
-4.66461e-05
2.3323e-05
6.99691e-05
0.000116615
0.000163261
0.000209907
0.000256553
0.000303199
0.000349845
0.000396492
0.000443138
0.000489784
0.00053643
0.000583076
0.000629722
0.000676368
0.000723014
0.00076966
0.000816306
0.000932921

IsoValue
-8.37005e-05
4.18502e-05
0.000125551
0.000209251
0.000292952
0.000376652
0.000460353
0.000544053
0.000627753
0.000711454
0.000795154
0.000878855
0.000962555
0.00104626
0.00112996
0.00121366
0.00129736
0.00138106
0.00146476
0.00167401

Figure 9: [Test 1] Left: elementwise 1st iteration flux errors ∥uh − u1
h∥K . Center: elementwise

1st iteration algebraic error lower estimators α1∥û1
h − u1

h∥K . Right: elementwise 1st iteration
algebraic error upper estimators ∥u1

h +ΠRTN
k (∇p̃2h)∥K .

IsoValue
-1.82232e-09
9.21584e-10
2.75085e-09
4.58012e-09
6.40939e-09
8.23866e-09
1.00679e-08
1.18972e-08
1.37265e-08
1.55557e-08
1.7385e-08
1.92143e-08
2.10435e-08
2.28728e-08
2.47021e-08
2.65313e-08
2.83606e-08
3.01899e-08
3.20191e-08
3.65923e-08

IsoValue
-2.27825e-09
1.15713e-09
3.44739e-09
5.73765e-09
8.0279e-09
1.03182e-08
1.26084e-08
1.48987e-08
1.71889e-08
1.94792e-08
2.17694e-08
2.40597e-08
2.635e-08
2.86402e-08
3.09305e-08
3.32207e-08
3.5511e-08
3.78012e-08
4.00915e-08
4.58171e-08

IsoValue
-1.47121e-08
7.3658e-09
2.20844e-08
3.6803e-08
5.15217e-08
6.62403e-08
8.09589e-08
9.56775e-08
1.10396e-07
1.25115e-07
1.39833e-07
1.54552e-07
1.69271e-07
1.83989e-07
1.98708e-07
2.13426e-07
2.28145e-07
2.42864e-07
2.57582e-07
2.94379e-07

Figure 10: [Test 1] Left: elementwise final flux errors ∥uh − u14
h ∥K . Center: elementwise final

algebraic error lower estimators α14∥û14
h −u14

h ∥K . Right: elementwise final algebraic error upper
estimators ∥u14

h +ΠRTN
k (∇p̃15h)∥K .

21

IsoValue
-0.000286492
0.000259893
0.000624149
0.000988406
0.00135266
0.00171692
0.00208117
0.00244543
0.00280969
0.00317394
0.0035382
0.00390246
0.00426671
0.00463097
0.00499523
0.00535948
0.00572374
0.00608799
0.00645225
0.00736289

IsoValue
-6.25603e-11
3.13118e-11
9.38932e-11
1.56475e-10
2.19056e-10
2.81638e-10
3.44219e-10
4.068e-10
4.69382e-10
5.31963e-10
5.94545e-10
6.57126e-10
7.19707e-10
7.82289e-10
8.4487e-10
9.07452e-10
9.70033e-10
1.03261e-09
1.0952e-09
1.25165e-09

Figure 11: [Test 1] Left: elementwise 1st iteration potential errors ∥ph − p1h∥K . Right: element-
wise final potential errors ∥ph − p14h ∥K .

9.1.4 Behavior of Algorithm 8.1 for refinements of the coarse mesh TH and of the
fine mesh Th

We now perform a (laptop) scalability test of Algorithm 8.1: we fix the coarse mesh TH and refine
the fine mesh Th, fix the fine mesh Th and refine the coarse mesh TH , and refine simultaneously
the coarse mesh TH and the fine mesh Th. In this section, we actually replace the calculation of
∥uh−uj

h∥ by ∥u−uj
h∥, so that we avoid the “exact” solution of (3.12) for the evaluation of the

algebraic error (the committed error is negligible).

Refining the fine mesh for a fixed coarse mesh

Here we fix the coarse mesh TH to 512 triangular subdomains and consider the fine meshes Th
with respectively 32768, 294912, and 819200 triangles (82176, 738048, and 2049280 unknowns).
We report the results in Figure 12. Similar convergence rates are achieved, though the contrac-
tion factor slightly increases with the fineness of the mesh Th.

0 5 10 15

Iteration j

-20

-15

-10

-5

0

E
rr

or

0 5 10 15

Iteration j

0

0.2

0.4

0.6

0.8

C
on

tr
ac

tio
n

fa
ct

or

Figure 12: [Test 1] Left: approximate algebraic error ∥u − uj
h∥. Right: the corresponding

contraction factor given by (9.1). Coarse mesh TH of 512 triangular subdomains fixed, fine
meshes Th with respectively 32768 (green dashed line), 294912 (blue solid line), and 819200 (red
dotted line) triangles (respectively 82176, 738048, and 2049280 unknowns).

22

Refining the coarse mesh for a fixed fine mesh

Now we fix the fine mesh Th to 819200 triangles (2049280 unknowns) and vary the coarse mesh
TH to respectively consist of 512, 2048, and 4608 triangular subdomains. In Figure 13, we
observe that as we increase the number of subdomains, the convergence rates get slightly better.

0 5 10 15

Iteration j

-12

-10

-8

-6

-4

-2

E
rr

or

0 5 10 15

Iteration j

0

0.2

0.4

0.6

0.8

C
on

tr
ac

tio
n

fa
ct

or

Figure 13: [Test 1] Left: approximate algebraic error ∥u − uj
h∥. Right: the corresponding

contraction factor given by (9.1). Fine mesh Th of 819200 triangles (2049280 unknowns) fixed,
coarse meshes TH with respectively 512 (green dashed line), 2048 (blue solid line), and 4608 (red
dotted line) triangular subdomains.

Refining simultaneously the fine and the coarse meshes

We suppose finally that we have three coarse meshes TH with respectively 648, 5832, and 10368
triangular subdomains and associated three fine meshes Th with respectively 209952, 472392,
and 839808 triangles (respectively 525528, 1181952, and 2100816 unknowns). In Figure 14, the
convergence rates (contraction factors) seem to be rather stable in this setting.

0 5 10 15

Iteration j

-15

-10

-5

0

E
rr

or

0 5 10 15

Iteration j

0

0.2

0.4

0.6

0.8

C
on

tr
ac

tio
n

fa
ct

or

Figure 14: [Test 1] Left: approximate algebraic error ∥u − uj
h∥. Right: the corresponding

contraction factor given by (9.1). Coarse meshes TH and fine meshes Th with respectively 648
triangular subdomains and 209952 triangles (green dashed line), 5832 triangular subdomains
and 472392 triangles (blue solid line), and 10368 triangular subdomains and 839808 triangles
(red dotted line) (respectively 525528, 1181952, and 2100816 unknowns).

23

9.1.5 Behavior of Algorithm 8.1 for non-Cartesian coarse and fine meshes

In this test, we use non-Cartesian coarse and fine meshes. We still use the same data as in
[Test 1]. The coarse and fine meshes are illustrated in Figure 15; the number of unknowns in
the liner system (3.12) is 37650.

Figure 15: [Test 1, unstructured meshes] Left: the coarse mesh TH with 6 triangular subdomains
Ωi. Right: the fine mesh Th with 15000 triangles.

Convergence

In Figure 16, we trace the algebraic error ∥uh − uj
h∥ and the contraction factor defined by

(9.1). A comparison between Figure 16 and Figure 6 shows a similar behavior. Although the
convergence is not as fast as in Figure 6, it remains uniform, confirming the effectiveness of our
domain decomposition algorithm.

0 5 10 15
Iteration j

-8

-6

-4

-2

E
rr

or

0

0.2

0.4

0.6

0.8

1

C
on

tr
ac

tio
n

fa
ct

or

Figure 16: [Test 1, unstructured meshes] Algebraic error ∥uh − uj
h∥ (blue solid line, left scale).

Contraction factor given by (9.1) (red dashed line, right scale).

A posteriori estimates of the algebraic error

Similarly to Figure 7, Figure 17 presents the lower bound error estimator ηj , the error ∥uh−uj
h∥,

and the upper bound error estimator ηj , all as functions of the iteration index j. We observe
a close correspondence, particularly for the lower bound. The quality of our a posteriori error

24

estimators is illustrated more closely in Figure 18, where we show the effectivity indices of both
the lower and upper bounds, as defined in (9.2). Here, we observe the influence of non-Cartesian
subdomains on the error and a posteriori error estimators. Although a close correspondence is
still observed, the Cartesian case, shown in Figures 7 and 8, yields better results.

0 5 10 15
Iteration j

-10

-8

-6

-4

-2

E
rr

or

Figure 17: [Test 1, unstructured meshes] Algebraic error ∥uh − uj
h∥ (blue solid line), upper

bound ηj (red dotted line), and lower bound ηj (green dashed line).

0 5 10 15
Iteration j

1

2

3

4

5

6

7

E
ffe

ct
iv

ity
 in

de
x

Figure 18: [Test 1, unstructured meshes] Effectivity indices Ieff (green solid line) and Ieff (red
dashed line) from (9.2).

9.2 Test 2: piecewise constant diffusion tensor aligned with the coarse mesh

We now consider a second test case with a piecewise constant diffusion tensor S = c(x, y)I,
where the variations of c(x, y) are illustrated in Figure 19. We first consider the values of c(x, y)
equal to 1 and 107 but later we let this contrast vary in a robustness study. A similar test case is
used in Anciaux-Sedrakian et al. [2, Section 5.3]. We set the source term f = 1 and the Dirichlet
boundary condition p(x, y) = 0 on ΓD = ∂Ω. The coarse mesh TH of 32 triangular subdomains
of Figure 19 together with a fine mesh of 12800 triangles (32160 unknowns) will be used for all
the numerical simulations below. The zero initial guess (u0

h, p
0
h) = (0, 0) will still be employed

in Algorithm 8.1.

25

Figure 19: [Test 2] Variations of the coefficient c(x, y) across the domain.

9.2.1 Convergence for a fixed diffusion contrast

Vec Value
0
0.114256
0.228513
0.342769
0.457026
0.571282
0.685539
0.799795
0.914052
1.02831
1.14256
1.25682
1.37108
1.48533
1.59959
1.71385
1.8281
1.94236
2.05662
2.17087

IsoValue
-0.000537452
0.000268726
0.000806178
0.00134363
0.00188108
0.00241853
0.00295599
0.00349344
0.00403089
0.00456834
0.0051058
0.00564325
0.0061807
0.00671815
0.0072556
0.00779306
0.00833051
0.00886796
0.00940541
0.010749

Figure 20: [Test 2] Left: exact mixed finite element flux uh from (3.12). Right: exact mixed
finite element potential ph from (3.12).

In Figure 20, we present the exact solution (uh, ph) of the mixed finite element discretiza-
tion (3.12). We observe a formation of very narrow and strong Darcy flow fields in the subdomain
tips caused by the huge contrast 1 : 107.

In the initialization step 0 of Algorithm 8.1, the use of Construction 5.1 yields a normal-trace
continuous flux u1

h lying in V gN
h,k , with divergence equal to f , together with the corresponding

potential p1h in W ∗
h,k. In Figures 21, 22, and 23, we illustrate the corrections made in Construc-

tion 5.1 by respectively the coarse-grid solver of step 2, the subdomain Neumann solver of step 3,
and the coarse grid correction of step 4. As in Section 9.1.1, we observe a nice progress from
the initial zero guess to the target approximate solution of Figure 20 in all steps.

In Figure 24, we trace the algebraic error |||uh − uj
h||| and the corresponding contraction

factor defined as in (9.1) (using the energy error). We see a substantial reduction of the algebraic
error on each step of Algorithm 8.1 (except for the initialization) and a fast convergence, which
validates the effectiveness of our algorithm.

In Figure 25, we report the lower bound error estimator ηj , the error |||uh − uj
h|||, and the

upper bound error estimator ηj of Theorem 8.3. In the consecutive Figure 26, we plot the lower
bound effectivity index Ieff as well as the upper bound effectivity index Ieff , defined as in (9.2).
We observe very good results, even for the huge diffusion contrast 1 : 107.

In Figure 27, we then plot the spatial distribution of the error |||uh − u1
h|||, the algebraic

error lower estimators α1|||û1
h − u1

h|||K , and the elementwise algebraic error upper estimators
|||u1

h+ΠRTN
k (S∇p̃2h)|||K on the 1st iteration, j = 1. We again observe a very close prediction of

the distribution of the algebraic error, even for the huge diffusion contrast 1 : 107. In Figure 28,

26

Vec Value
0
0.0241303
0.0482606
0.0723909
0.0965212
0.120652
0.144782
0.168912
0.193042
0.217173
0.241303
0.265433
0.289564
0.313694
0.337824
0.361955
0.386085
0.410215
0.434345
0.458476

Vec Value
0
0.017203
0.034406
0.051609
0.068812
0.086015
0.103218
0.120421
0.137624
0.154827
0.17203
0.189233
0.206436
0.223639
0.240842
0.258045
0.275248
0.292451
0.309654
0.326857

Vec Value
0
0.00288131
0.00576262
0.00864393
0.0115252
0.0144065
0.0172879
0.0201692
0.0230505
0.0259318
0.0288131
0.0316944
0.0345757
0.037457
0.0403383
0.0432196
0.0461009
0.0489822
0.0518636
0.0547449

Figure 21: [Test 2] Construction 5.1 in the initialization step 0 of Algorithm 8.1. Left: δ0,2H .

Center: δ0,3h . Right: δ0,4H .
Vec Value
0
0.0241303
0.0482606
0.0723909
0.0965212
0.120652
0.144782
0.168912
0.193042
0.217173
0.241303
0.265433
0.289564
0.313694
0.337824
0.361955
0.386085
0.410215
0.434345
0.458476

Vec Value
0
0.0292415
0.0584831
0.0877246
0.116966
0.146208
0.175449
0.204691
0.233932
0.263174
0.292415
0.321657
0.350899
0.38014
0.409382
0.438623
0.467865
0.497106
0.526348
0.555589

Vec Value
0
0.0296001
0.0592003
0.0888004
0.118401
0.148001
0.177601
0.207201
0.236801
0.266401
0.296001
0.325602
0.355202
0.384802
0.414402
0.444002
0.473602
0.503202
0.532802
0.562403

Figure 22: [Test 2] Construction 5.1 in the initialization step 0 of Algorithm 8.1. Left: u0,2
h =

δ0,2H . Center: u0,3
h = u0,2

h + δ0,3h . Right: RF(u
0
h, p

0
h) = u

1
h = u0,3

h + δ0,4H .
IsoValue
-0.00185033
0.000925165
0.00277549
0.00462582
0.00647615
0.00832648
0.0101768
0.0120271
0.0138775
0.0157278
0.0175781
0.0194285
0.0212788
0.0231291
0.0249794
0.0268298
0.0286801
0.0305304
0.0323808
0.0370066

IsoValue
-0.0237391
-0.0166852
-0.0119827
-0.00728009
-0.00257751
0.00212507
0.00682764
0.0115302
0.0162328
0.0209354
0.025638
0.0303405
0.0350431
0.0397457
0.0444483
0.0491509
0.0538534
0.058556
0.0632586
0.075015

IsoValue
-0.0341457
-0.0285381
-0.0247996
-0.0210612
-0.0173228
-0.0135844
-0.00984595
-0.00610752
-0.0023691
0.00136932
0.00510775
0.00884617
0.0125846
0.016323
0.0200614
0.0237999
0.0275383
0.0312767
0.0350151
0.0443612

Figure 23: [Test 2] Construction 5.1 in the initialization step 0 of Algorithm 8.1. Left: p0,2h = r0,2H .

Center: p0,3h = p0,2h + r0,3h . Right: RP(u
0
h, p

0
h) = p1h = p0,3h + r0,4H .

the same results are plotted for iteration j = 14, again with a very close match. For illustration,
we also plot the elementwise errors ∥ph − p1h∥K and ∥ph − p14h ∥K in Figure 29.

9.2.2 Robustness with respect to a varying diffusion contrast

We now let c(x, y) be still piecewise constant as in Figure 19, but we let the diffusion contrast
vary from 101 to 108. Table 1 shows the iteration numbers needed to reduce the initial algebraic
error estimator η1 by the factor 105, i.e., five orders of magnitude. The number of iterations
remains constant (or even decreases with increasing the diffusion contrast), clearly indicating
that Algorithm 8.1 is in this case robust with respect to the diffusion contrast. This is an
excellent property for a domain decomposition solver for applications in porous media.

27

0 5 10 15

Iteration j

-12

-10

-8

-6

-4

-2

E
rr

or

0

0.5

1

1.5

C
on

tr
ac

tio
n

fa
ct

or

Figure 24: [Test 2] Algebraic error |||uh − uj
h||| (blue solid line, left scale). Contraction factor

|||uh − uj+1
h |||/|||uh − uj

h||| (red dashed line, right scale).

0 5 10 15
Iteration	j

-12

-10

-8

-6

-4

-2

0

E
rr
or

Figure 25: [Test 2] Algebraic error |||uh − uj
h||| (blue solid line), upper bound ηj (red dotted

line), and lower bound ηj (green dashed line).

9.3 Test 3: piecewise constant diffusion tensor not aligned with the coarse
mesh

In this test, we continue similarly as in the above Test 2, inspired by [2, 25]. The aim is to
study two situations, the first where the discontinuities in c(x, y) do not correspond to the
coarse mesh, and the second where the interfaces of the coarse mesh cross the discontinuities.
Figure 30 illustrates these two settings; we let c(x, y) vary respectively in the range 1, . . . , 108

and 105, . . . , 108.
As in Figure 24, we plot in Figure 31 the algebraic error |||uh − uj

h||| and the corresponding
contraction factor for the two test cases. We again observe a substantial reduction in the
algebraic error at each step of Algorithm 8.1, and a fast convergence, confirming the efficiency
of our algorithm.

As in Figure 25, Figure 32 illustrates the lower-bound error estimator ηj , the error |||uh−uj
h|||,

and the upper-bound error estimator ηj for the two test cases. Finally, similarly, as in Figure 26,
Figure 33 represents the lower effectivity index Ieff and the upper effectivity index Ieff for both
test cases. Similar overall behavior is observed.

28

0 5 10 15
Iteration	j

1

2

3

4

Ef
fe
ct
iv
ity
	in
de
x

Figure 26: [Test 2] Effectivity indices Ieff = |||uh−uj
h|||/η

j (green solid line) and Ieff = ηj/|||uh−
uj
h||| (red dashed line).

IsoValue
-0.0004797
0.000239854
0.000719558
0.00119926
0.00167896
0.00215867
0.00263837
0.00311807
0.00359778
0.00407748
0.00455718
0.00503689
0.00551659
0.00599629
0.006476
0.0069557
0.0074354
0.00791511
0.00839481
0.00959407

IsoValue
-0.000486163
0.000243082
0.000729246
0.00121541
0.00170157
0.00218774
0.0026739
0.00316007
0.00364623
0.00413239
0.00461856
0.00510472
0.00559088
0.00607705
0.00656321
0.00704938
0.00753554
0.0080217
0.00850787
0.00972328

IsoValue
-0.00130277
0.000651384
0.00195415
0.00325692
0.00455968
0.00586245
0.00716522
0.00846798
0.00977075
0.0110735
0.0123763
0.013679
0.0149818
0.0162846
0.0175873
0.0188901
0.0201929
0.0214956
0.0227984
0.0260553

Figure 27: [Test 2] Left: elementwise 1st iteration flux errors |||uh−u1
h|||K . Center: elementwise

1st iteration algebraic error lower estimators α1|||û1
h − u1

h|||K . Right: elementwise 1st iteration
algebraic error upper estimators |||u1

h +ΠRTN
k (S∇p̃2h)|||K .

IsoValue
-6.23056e-08
3.11534e-08
9.34594e-08
1.55765e-07
2.18071e-07
2.80377e-07
3.42683e-07
4.04989e-07
4.67295e-07
5.29601e-07
5.91907e-07
6.54213e-07
7.16519e-07
7.78825e-07
8.41131e-07
9.03437e-07
9.65743e-07
1.02805e-06
1.09036e-06
1.24612e-06

IsoValue
-6.76413e-08
3.38208e-08
1.01462e-07
1.69104e-07
2.36745e-07
3.04387e-07
3.72028e-07
4.39669e-07
5.07311e-07
5.74952e-07
6.42594e-07
7.10235e-07
7.77877e-07
8.45518e-07
9.1316e-07
9.80801e-07
1.04844e-06
1.11608e-06
1.18373e-06
1.35283e-06

IsoValue
-4.95871e-07
2.47937e-07
7.43809e-07
1.23968e-06
1.73555e-06
2.23142e-06
2.7273e-06
3.22317e-06
3.71904e-06
4.21491e-06
4.71078e-06
5.20666e-06
5.70253e-06
6.1984e-06
6.69427e-06
7.19014e-06
7.68602e-06
8.18189e-06
8.67776e-06
9.91744e-06

Figure 28: [Test 2] Left: elementwise final flux errors |||uh − u14
h |||K . Center: elementwise final

algebraic error lower estimators α14|||û14
h − u14

h |||K . Right: elementwise final algebraic error
upper estimators |||u14

h +ΠRTN
k (S∇p̃15h)|||K .

29

IsoValue
-1.58786e-05
7.93928e-06
2.38178e-05
3.96964e-05
5.55749e-05
7.14535e-05
8.73321e-05
0.000103211
0.000119089
0.000134968
0.000150846
0.000166725
0.000182603
0.000198482
0.000214361
0.000230239
0.000246118
0.000261996
0.000277875
0.000317571

IsoValue
-3.7528e-09
1.8764e-09
5.6292e-09
9.38199e-09
1.31348e-08
1.68876e-08
2.06404e-08
2.43932e-08
2.8146e-08
3.18988e-08
3.56516e-08
3.94044e-08
4.31572e-08
4.691e-08
5.06628e-08
5.44156e-08
5.81684e-08
6.19211e-08
6.56739e-08
7.50559e-08

Figure 29: [Test 2] Left: elementwise 1st iteration potential errors ∥ph − p1h∥K . Right: element-
wise final potential errors ∥ph − p14h ∥K .

Diffusion contrast 101 102 103 104 105 106 107 108

Number of iterations 19 16 15 15 15 15 15 15

Table 1: [Test 2] Number of iterations needed to reduce the initial algebraic error estimator η1

by the factor 105, depending on the diffusion contrast.

9.4 Test 4: piecewise constant diffusion tensor not aligned with the coarse
mesh and with irregular interfaces

In this test, we still build upon the Test 2 above, using this time the coarse and fine meshes
shown in Figure 1 while varying the parameter c(x, y). The variations in c(x, y) are depicted
in Figure 34 – we consider values of c(x, y) equal to 1 and 107. The objective is to study a
situation where the interfaces of the coarse mesh cross the discontinuities of c(x, y) and where
the interfaces of the discontinuities are irregularly shaped.

As in Figure 24 and Figure 31, we plot in Figure 35 the algebraic error |||uh − uj
h||| and

the corresponding contraction factor. We again observe a substantial reduction in the algebraic
error at each step of Algorithm 8.1, and a fast convergence, though a less “smooth”.

As in Figures 25 and 32, Figure 36 illustrates on the left the lower-bound error estimator
ηj and the error |||uh − uj

h||| and on the right the lower effectivity index Ieff . Similar overall
behavior is observed. For the upper bound error estimator ηj , we were not able to obtain
pertinent results with our code due to difficulties in computing the gradient across irregularly
shaped discontinuity interfaces.

10 Conclusions and perspectives

In this paper, we have introduced a nonoverlapping domain decomposition algorithm for saddle-
point mixed finite element discretizations of the Darcy flow problem. We have also designed a
posteriori error estimators that control the algebraic error from above and from below in a fully
computable way (assuming round-off errors are neglected), and this for any iterative algebraic
solver. The contraction of the domain decomposition algorithm and the reliability and efficiency
of a the posteriori error estimates have been demonstrated on different 2D numerical examples.

This work can be extended in several directions. Firstly, a proof of contraction of the domain
decomposition algorithm and of the efficiency of the a posteriori error estimates is to be given.
Next, it would be interesting to extend the numerical validation to 3D cases in order to confirm
the theoretical results beyond the 2D examples presented in this work. Finally, it would be

30

Figure 30: [Test 3] Variations of the coefficient c(x, y) (in log10 scale) across the domain for the
Skyscraper test case: Left: the discontinuities do not correspond to the coarse mesh. Right: the
interfaces of the coarse mesh cross the discontinuities.

0 5 10 15
Iteration j

-10

-8

-6

-4

-2

E
rr

or

0

0.2

0.4

0.6

0.8
C

on
tr

ac
tio

n
fa

ct
or

0 5 10 15
Iteration j

-10

-8

-6

-4

-2

E
rr

or

0

0.2

0.4

0.6

0.8

C
on

tr
ac

tio
n

fa
ct

or

Figure 31: [Test 3] Algebraic error |||uh − uj
h||| (blue solid line, left scale). Contraction factor

|||uh − uj+1
h |||/|||uh − uj

h||| (red dashed line, right scale): Left: the discontinuities do not corre-
spond to the coarse mesh. Right: the interfaces cross the discontinuities.

0 5 10 15
Iteration j

-10

-8

-6

-4

-2

E
rr

or

0 5 10 15
Iteration j

-10

-8

-6

-4

-2

E
rr

or

Figure 32: [Test 3] Algebraic error |||uh − uj
h||| (blue solid line), upper bound ηj (red dotted

line), and lower bound ηj (green dashed line): Left: the discontinuities do not correspond to the
coarse mesh. Right: the interfaces cross the discontinuities.

interesting to investigate the use of a step in the proposed algorithm as a preconditioner for
Krylov subspace methods [30], which may accelerate their convergence.

31

0 5 10 15
Iteration j

1

1.5

2

2.5

3

3.5

E
ffe

ct
iv

ity
 in

de
x

0 5 10 15
Iteration j

1

1.5

2

2.5

E
ffe

ct
iv

ity
 in

de
x

Figure 33: [Test 3] Effectivity indices Ieff = |||uh−uj
h|||/η

j (green solid line) and Ieff = ηj/|||uh−
uj
h||| (red dashed line): Left: the discontinuities do not correspond to the coarse mesh. Right:

the interfaces cross the discontinuities.

Figure 34: [Test 4] Variations of the coefficient c(x, y) (in log10 scale) across the domain.

0 5 10 15
Iteration j

-12

-10

-8

-6

-4

-2

E
rr

or

0

0.2

0.4

0.6

0.8

C
on

tr
ac

tio
n

fa
ct

or

Figure 35: [Test 4] Algebraic error |||uh − uj
h||| (blue solid line, left scale). Contraction factor

|||uh − uj+1
h |||/|||uh − uj

h||| (red dashed line, right scale).

A The lowest-order space Mh,0 on simplices

In this appendix, we discuss several points related to the elementwise postprocessing space Mh,k

used Section 6.2; we focus on simplicial meshes. We consider

Mh,k := ΠK∈ThMh,k(K), (A.1)

32

0 5 10 15
Iteration j

-12

-10

-8

-6

-4

-2

E
rr

or

0 5 10 15
Iteration j

1

1.1

1.2

1.3

1.4

1.5

E
ffe

ct
iv

ity
 in

de
x

Figure 36: [Test 4] Left : Algebraic error |||uh−uj
h||| (blue solid line) and lower bound ηj (green

dashed line). Right: Effectivity index Ieff = |||uh − uj
h|||/η

j .

where Mh,k(K) is a polynomial space on each mesh element K ∈ Th such that a function
p̃h ∈ Mh,k(K) is uniquely prescribed by

(p̃h, qh)K = (ph, qh)K ∀qh ∈Wk(K), (A.2a)

⟨p̃h, µh⟩F = ⟨λh, µh⟩F ∀µh ∈ Ψk(F) and F ∈ FK (A.2b)

for some (ph, λh) ∈Wk(K)×
∏

F∈FK
Ψk(F). Suitable spaces Mh,k(K) are developed in [3, 5, 38];

we detail some prominent possibilities in the lowest-order case k = 0 in Section A.2. Before, in
Section A.1, we state an equivalence result for a general class elementwise postprocessings we
are interested in.

A.1 Equivalent postprocessing properties

Recall the S-weighted L2(K)-orthogonal projection of (3.9). The following equivalence holds
true for an arbitrary function p̃h in the Sobolev space H1(K) (unrelated to any polynomial space
Mh,k(K)).

Lemma A.1. (Equivalent postprocessing properties) Let a mesh element K ∈ Th be fixed and
let (uh, ph, λh) ∈ RTNk(K)×Wk(K)×

∏
F∈FK

Ψk(F) be such that

⟨λh,vh·nK⟩∂K = −(S−1uh,vh)K + (ph,∇·vh)K (A.3)

for all vh ∈ RTNk(K), as in (3.13a) or, when k = 0, in (6.1). Then, a function p̃h ∈ H1(K)
satisfies

(p̃h, qh)K = (ph, qh)K ∀qh ∈Wk(K), (A.4a)

⟨p̃h, µh⟩F = ⟨λh, µh⟩F ∀µh ∈ Ψk(F) and F ∈ FK (A.4b)

if and only if

(p̃h, qh)K = (ph, qh)K ∀qh ∈Wk(K), (A.5a)

−(S−1ΠRTN
k (S∇p̃h),vh)K = (S−1uh,vh)K ∀vh ∈ RTNk(K), (A.5b)

or, equivalently for (A.5b),
−ΠRTN

k (S∇p̃h) = uh. (A.6)

33

Proof. We follow [3, 5, 9, 38] and show two implications, using the definition of the projector
ΠRTN

k from (3.9) and Green’s theorem, leading to

−(S−1ΠRTN
k (S∇p̃h),vh)K

(3.9)
= −(∇p̃h,vh)K = (p̃h,∇·vh)K − ⟨p̃h,vh·nK⟩∂K (A.7)

for all vh ∈ RTNk(K). Recall also that ∇·RTNk(K) = Wk(K) and (RTNk(K)·nK)|F =
Ψk(F) for all F ∈ FK and that (A.4a) and (A.5a) coincide.

1. ⇒. ((A.4) implies (A.5)) Let vh ∈ RTNk(K) be arbitrary. We have

−(S−1ΠRTN
k (S∇p̃h),vh)K

(A.7)
= (p̃h,∇·vh)K − ⟨p̃h,vh·nK⟩∂K

(A.4)
= (ph,∇·vh)K − ⟨λh,vh·nK⟩∂K

(A.3)
= (S−1uh,vh)K ,

which is (A.5b).

2. ⇐. ((A.5) implies (A.4)) Let F ∈ FK and take vh ∈ RTNk(K) such that (vh·nK)|F ′ = 0
for all F ′ ∈ FK , F ̸= F ′. We have

⟨p̃h,vh·nK⟩F
(A.7)
= (S−1ΠRTN

k (S∇p̃h),vh)K + (p̃h,∇·vh)K
(A.5b)
= −(S−1uh,vh)K + (p̃h,∇·vh)K

(A.5a)
= −(S−1uh,vh)K + (ph,∇·vh)K

(A.3)
= ⟨λh,vh·nK⟩F

which is (A.4b).

A.2 Choices for the space Mh,0 in the lowest-order case

Let K ∈ Th be a simplex. From [3, 5, 9, 38], the following are prominent possibilities for the
polynomial space Mh,0(K):

A.2.1 Nonconforming P2-bubbles

From [3, 5] it is known that one choice for the lowest-order space Mh,0(K) is

Mh,0(K) := P1(K)⊕ B2(K).

Here, recall, P1(K) is the space of polynomials of total degree less than or equal to 1 defined
in the simplex K. For the basis, we choose the Crouzeix–Raviart functions ψF ∈ P1(K) [12]
satisfying

⟨ψF , 1⟩F
|F |

= 1 and
⟨ψF , 1⟩′F

|F ′|
= 0 for all F ′ ∈ FK , F ̸= F ′. (A.8)

The space B2(K) is then the span of the following nonconforming P2-bubble function (see [3,
Sections 4.1 and 10])

b2,K(x) =

 2− 3(ψ2
1(x) + ψ2

2(x) + ψ2
3(x)) if d = 2,

1− 2(ψ2
1(x) + ψ2

2(x) + ψ2
3(x) + ψ2

4(x)) if d = 3.

34

Here ψi are the hat functions, i.e., the affine functions that take value one at the vertex i and
zero at the other vertices of K. The functions b2,K vanish at the Gauss points of each F ∈ FK

and are of mean value 1 in K, or equivalently

⟨b2,K , 1⟩F
|F |

= 0 and
⟨b2,K , 1⟩K

|K|
= 1 for all F ∈ FK . (A.9)

From the above, we want to construct a function p̃h by using the definition (A.2) for k = 0.
This function is such that

p̃h =
∑

F∈FK

αFψF + βKb2,K (A.10)

for some constants αF and βK . To determine the constants αF and βK , we use (A.8) and (A.9)
and obtain

⟨p̃h, 1⟩F = αF ⟨ψF , 1⟩F + βK⟨b2,K , 1⟩F = αF |F | ∀F ∈ FK ,

(p̃h, 1)K =

 ∑
F∈FK

αFψF , 1


K

+ βK |K|.

This together with (A.2) yields

αF
(A.2b)
=

⟨λh, 1⟩F
|F |

and βK
(A.2a)
=

(ph, 1)K
|K|

−

 ∑
F∈FK

αFψF , 1


K

|K|
.

If (A.3) holds, we know from Lemma A.1 that the construction of p̃h is equivalent to finding
p̃h ∈ Mh,0(K) such that

(p̃h, 1)K = (ph, 1)K and −ΠRTN
k (S∇p̃h) = uh.

A.2.2 Potential space of S−1RTN0(K)

From [38], we know that we can define the space Mh,0(K) such that

S∇Mh,0(K) = RTN0(K). (A.12)

This is indeed possible from Assumption 2.1, item Ass1, and yields

Mh,0(K) ⊆ P2(K).

If (A.3) holds, we know from Lemma A.1 that the construction of p̃h ∈ Mh,0(K) using defini-
tion (A.2) is equivalent to finding p̃h ∈ Mh,0(K) such that

(p̃h, 1)K = (ph, 1)K and − S∇p̃h = uh, (A.13)

where we have crucially used (A.12) which gives −ΠRTN
k S∇p̃h = −S∇p̃h.

In detail (for d = 2), let uh = (α1 + βx, α2 + βy). In order to satisfy (A.13), the function
p̃h = p1x

2 + p2y
2 + p3xy + p4x+ p5y + p6 is such that

p1 = −βS22

2|S|
, p2 = −βS11

2|S|
, p3 =

βS12

|S|
, p4 =

α2S12 − α1S22

|S|
, p5 =

α1S12 − α2S11

|S|
,

and p6 is given so that (p̃h, 1)K = (ph, 1)K is satisfied. Here Sij and |S| denote the elements
and the determinant of S, respectively. Similar algebraic manipulations give a unique function
p̃h satisfying (A.13) also in the case d = 3.

35

A.2.3 P3-bubbles

For d = 2, another possible choice for the space Mh,0(K) is, following [3, 5],

Mh,0(K) := P1(K)⊕ B3(K). (A.14)

The space P1(K) is as defined in Section A.2.1 and B3(K) is the span of the following P3-bubble
function

b3,K(x) = ψ1(x)ψ2(x)ψ3(x).

Note that the bubble function b3,K vanishes on each edge of the triangle K. We can thus use
the same arguments as in Section A.2.1 to construct an appropriate p̃h ∈ Mh,0(K).

A.2.4 Remarks

We finish by two remarks.

Remark A.2 (Uniqueness). As it follows from the above, the choice of the space Mh,0(K) is
not unique. However, for each fixed space Mh,0(K), the construction of p̃h satisfying (A.2) is
unique.

Remark A.3 (Approaches of Sections A.2.1 and A.2.2). In the case of d = 2, S = αI with
α ∈ R, and for equilateral triangles, the spaces Mh,0(K) discussed in Sections A.2.1 and A.2.2
turn out to be equal, see [9, Lemma 4.2]. In general, though, approaches of Section A.2.1 and
Section A.2.2 generate different spaces Mh,0(K) and thus different functions p̃h.

References

[1] Ali Hassan, S., Japhet, C., Kern, M., and Vohraĺık, M. A posteriori stopping
criteria for optimized Schwarz domain decomposition algorithms in mixed formulations.
Comput. Methods Appl. Math. 18, 3 (2018), 495–519.

[2] Anciaux-Sedrakian, A., Grigori, L., Jorti, Z., Papež, J., and Yousef, S. Adaptive
solution of linear systems of equations based on a posteriori error estimators. Numer.
Algorithms 84, 1 (2020), 331–364.

[3] Arbogast, T., and Chen, Z. On the implementation of mixed methods as nonconforming
methods for second-order elliptic problems. Math. Comp. 64, 211 (1995), 943–972.

[4] Arbogast, T., Cowsar, L. C., Wheeler, M. F., and Yotov, I. Mixed finite element
methods on nonmatching multiblock grids. SIAM J. Numer. Anal. 37, 4 (2000), 1295–1315.

[5] Arnold, D. N., and Brezzi, F. Mixed and nonconforming finite element methods:
implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér.
19, 1 (1985), 7–32.

[6] Benzi, M., Golub, G. H., and Liesen, J. Numerical solution of saddle point problems.
Acta Numer. 14 (2005), 1–137.

[7] Boffi, D., Brezzi, F., and Fortin, M. Mixed finite element methods and applications,
vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2013.

[8] Boon, W. M., Gläser, D., Helmig, R., and Yotov, I. Flux-mortar mixed finite
element methods with multipoint flux approximation. Comput. Methods Appl. Mech. Engrg.
405 (2023), Paper No. 115870, 28.

36

[9] Chen, Z. Analysis of mixed methods using conforming and nonconforming finite element
methods. RAIRO Modél. Math. Anal. Numér. 27, 1 (1993), 9–34.

[10] Ciarlet, Jr., P., Jamelot, E., and Kpadonou, F. D. Domain decomposition methods
for the diffusion equation with low-regularity solution. Comput. Math. Appl. 74, 10 (2017),
2369–2384.

[11] Cowsar, L. C., Mandel, J., and Wheeler, M. F. Balancing domain decomposition
for mixed finite elements. Math. Comp. 64, 211 (1995), 989–1015.

[12] Crouzeix, M., and Raviart, P.-A. Conforming and nonconforming finite element meth-
ods for solving the stationary Stokes equations. I. Rev. Française Automat. Informat.
Recherche Opérationnelle Sér. Rouge 7, no. , no. R-3 (1973), 33–75.

[13] Dobrev, V., Kolev, T., Lee, C. S., Tomov, V., and Vassilevski, P. S. Algebraic
hybridization and static condensation with application to scalable H(div) preconditioning.
SIAM J. Sci. Comput. 41, 3 (2019), B425–B447.

[14] Ern, A., Stephansen, A. F., and Zunino, P. A discontinuous Galerkin method with
weighted averages for advection-diffusion equations with locally small and anisotropic dif-
fusivity. IMA J. Numer. Anal. 29, 2 (2009), 235–256.

[15] Ern, A., and Vohraĺık, M. Adaptive inexact Newton methods with a posteriori stopping
criteria for nonlinear diffusion PDEs. SIAM J. Sci. Comput. 35, 4 (2013), A1761–A1791.

[16] Ern, A., and Vohraĺık, M. Polynomial-degree-robust a posteriori estimates in a unified
setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations.
SIAM J. Numer. Anal. 53, 2 (2015), 1058–1081.

[17] Ewing, R. E., and Wang, J. Analysis of the Schwarz algorithm for mixed finite elements
methods. RAIRO Modél. Math. Anal. Numér. 26, 6 (1992), 739–756.

[18] Ganis, B., and Yotov, I. Implementation of a mortar mixed finite element method using
a multiscale flux basis. Comput. Methods Appl. Mech. Engrg. 198, 49-52 (2009), 3989–3998.

[19] Glowinski, R., and Wheeler, M. F. Domain decomposition and mixed finite element
methods for elliptic problems. In First International Symposium on Domain Decomposi-
tion Methods for Partial Differential Equations (Paris, 1987). SIAM, Philadelphia, 1988,
pp. 144–172.

[20] Haberl, A., Praetorius, D., Schimanko, S., and Vohraĺık, M. Convergence and
quasi-optimal cost of adaptive algorithms for nonlinear operators including iterative lin-
earization and algebraic solver. Numer. Math. 147, 3 (2021), 679–725.

[21] Hecht, F. New development in FreeFem++. J. Numer. Math. 20, 3-4 (2012), 251–265.

[22] Mandel, J. Balancing domain decomposition. Comm. Numer. Methods Engrg. 9, 3 (1993),
233–241.

[23] Mathew, T. P. Schwarz alternating and iterative refinement methods for mixed formula-
tions of elliptic problems. I. Algorithms and numerical results. Numer. Math. 65, 4 (1993),
445–468.

[24] Miraçi, A., Papež, J., and Vohraĺık, M. A multilevel algebraic error estimator and
the corresponding iterative solver with p-robust behavior. SIAM J. Numer. Anal. 58, 5
(2020), 2856–2884.

37

[25] Miraçi, A., Papež, J., and Vohraĺık, M. A-posteriori-steered p-robust multigrid with
optimal step-sizes and adaptive number of smoothing steps. SIAM J. Sci. Comput. 43, 5
(2021), S117–S145.

[26] Nédélec, J.-C. Mixed finite elements in R3. Numer. Math. 35, 3 (1980), 315–341.

[27] Oh, D.-S., Widlund, O. B., Zampini, S., and Dohrmann, C. R. BDDC algorithms
with deluxe scaling and adaptive selection of primal constraints for Raviart-Thomas vector
fields. Math. Comp. 87, 310 (2018), 659–692.

[28] Papež, J., Rüde, U., Vohraĺık, M., and Wohlmuth, B. Sharp algebraic and total
a posteriori error bounds for h and p finite elements via a multilevel approach. Recovering
mass balance in any situation. Comput. Methods Appl. Mech. Engrg. 371 (2020), 113243.

[29] Papež, J., Strakoš, Z., and Vohraĺık, M. Estimating and localizing the algebraic and
total numerical errors using flux reconstructions. Numer. Math. 138, 3 (2018), 681–721.

[30] Pearson, J. W., and Pestana, J. Preconditioners for Krylov subspace methods: an
overview. GAMM-Mitt. 43, 4 (2020), e202000015, 35.

[31] Raviart, P.-A., and Thomas, J.-M. A mixed finite element method for 2nd order elliptic
problems. In Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz.
delle Ricerche (C.N.R.), Rome, 1975). Springer, Berlin, 1977, pp. 292–315. Lecture Notes
in Math., Vol. 606.

[32] Rey, V., Gosselet, P., and Rey, C. Strict lower bounds with separation of sources
of error in non-overlapping domain decomposition methods. Internat. J. Numer. Methods
Engrg. 108, 9 (2016), 1007–1029.

[33] Š́ıstek, J., Březina, J., and Soused́ık, B. BDDC for mixed-hybrid formulation of
flow in porous media with combined mesh dimensions. Numer. Linear Algebra Appl. 22, 6
(2015), 903–929.

[34] Solovský, J., Fuč́ık, R., and Š́ıstek, J. BDDC for MHFEM discretization of unsteady
two-phase flow in porous media. Comput. Phys. Commun. 271 (2022), Paper No. 108199,
14.

[35] Soused́ık, B. Nested BDDC for a saddle-point problem. Numer. Math. 125, 4 (2013),
761–783.

[36] Toselli, A. Neumann-Neumann methods for vector field problems. Electron. Trans.
Numer. Anal. 11 (2000), 1–24.

[37] Tu, X. A BDDC algorithm for a mixed formulation of flow in porous media. Electron.
Trans. Numer. Anal. 20 (2005), 164–179.

[38] Vohraĺık, M. A posteriori error estimates for lowest-order mixed finite element dis-
cretizations of convection-diffusion-reaction equations. SIAM J. Numer. Anal. 45, 4 (2007),
1570–1599.

38

