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Abstract

We consider the lowest-order Raviart–Thomas mixed finite element method for elliptic problems on simplicial

meshes in two or three space dimensions. This method produces saddle-point type problems for scalar and flux

unknowns. We show how to easily eliminate the flux unknowns, which implies an equivalence between this method

and a particular multi-point finite volume scheme, without any approximate numerical integration. We describe

the stencil of the final matrix and give sufficient conditions for its symmetry and positive definiteness. We present

a numerical example illustrating the performance of the proposed method. To cite this article: M. Vohraĺık, C.
R. Math. Acad. Sci. Paris (2004).

Résumé

Equivalence entre les méthodes des éléments finis mixtes et des volumes finis à plusieurs points

Nous considérons la méthode des éléments finis mixtes de Raviart–Thomas de plus bas degré pour des problèmes

elliptiques sur les maillages composés de triangles en dimension deux d’espace et de tétraèdres en dimension trois

d’espace. Cette méthode aboutit à des problèmes de type point-selle pour les inconnues scalaires et les flux. Nous

montrons comment facilement éliminer les flux, ce qui implique l’équivalence entre cette méthode et une méthode

de type volumes finis à plusieurs points et ceci sans aucune intégration numérique approchée. Nous décrivons le

nombre maximal des éléments non nuls sur chaque ligne de la matrice finale et présentons les conditions suffisantes

pour qu’elle soit symétrique et définie positive. Nous présentons un essai numérique montrant la performance de

la méthode proposée. Pour citer cet article : M. Vohraĺık, C. R. Math. Acad. Sci. Paris (2004).

Let us consider the elliptic problem

u =−D∇p in Ω , (1a)

∇ · u = q in Ω , (1b)

p = pD on ∂Ω , (1c)
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where Ω ⊂ Rd, d = 2, 3, is a polygonal domain (open, bounded, and connected set), D is a bounded and

uniformly positive definite tensor, pD ∈ H
1

2 (∂Ω), and the source term q fulfills q ∈ L2(Ω). Inhomogeneous
Neumann or Robin boundary conditions can also be considered.

Let Th be a simplicial triangulation of Ω (consisting of triangles if d = 2 and of tetrahedra if d = 3).
The approximation of the problem (1a)–(1c) by means of the mixed finite element method consists in
finding uh ∈ Vh and ph ∈ Φh such that (see [3])

(D−1uh,vh)Ω − (∇ · vh, ph)Ω =−〈vh · n, pD〉∂Ω ∀vh ∈ Vh , (2a)

−(∇ · uh, φh)Ω =−(q, φh)Ω ∀φh ∈ Φh . (2b)

Here, Vh and Φh are suitable finite-dimensional spaces defined on Th. The associated matrix problem is
saddle-point when D is symmetric. It can be written in the form

(

A B
t

B 0

)(

U

P

)

=

(

F

G

)

. (3)

In the lowest-order Raviart–Thomas method [5] and its three-dimensional Nédélec variant [4], the scalar
unknowns P are associated with the elements of Th and U are the fluxes through the sides (edges if d = 2,
faces if d = 3) of Th. Using the hybridization technique, one can decrease the number of unknowns to
Lagrange multipliers associated with the sides and obtain a symmetric (when D is) and positive definite
matrix, cf. [1]. The use of approximate numerical integration allows for the elimination of the fluxes, cf.
e.g. [2]. Finally, the lowest-order Raviart–Thomas method can be in two space dimensions rewritten with
one (new) unknown per element, see [7].

We show in this paper a new method which permits to efficiently reduce the system (3) onto a system
for the (original) scalar unknowns P only. It shows that in the lowest-order Raviart–Thomas mixed finite
element method, one can express, solving only local problems, the flux through each side using the scalar
unknowns, sources, and possibly boundary conditions associated with the elements in a neighborhood of
this side. This method is thus equivalent to a particular multi-point finite volume scheme, and this without
any numerical integration. We describe the stencil of the final matrix and give sufficient conditions for its
symmetry and positive definiteness. The numerical example at the end of this paper confirms considerable
computational savings while using the proposed method. Finally, this approach seems to easily extend to
nonlinear parabolic convection–reaction–diffusion problems and to higher-order schemes.

1. The elimination process

Let us denote the set of sides by Eh. Let us consider simplices K, L ∈ Th sharing an interior side σ. Let
VK be the vertex of K opposite to σ and VL the vertex of L opposite to σ. A basis function vσ ∈ Vh

associated with the side σ can be written in the form vσ(x) = 1

d|K|(x−VK), x ∈ K, vσ(x) = 1

d|L|(VL−x),

x ∈ L, vσ(x) = [0]d otherwise. Here |K| is the volume of the element K. We fix its orientation, i.e. the
order of K and L. For a boundary side σ, the support of vσ only consists of K ∈ Th such that σ ⊂ ∂K.
A basis function φK ∈ Φh associated with an element K ∈ Th is equal to 1 on K and to 0 otherwise.

Let us denote by Vh the set of all vertices and consider V ∈ Vh. We call the set of all elements of Th

sharing this vertex a cluster associated with V and denote it by CV . Let us denote by EV the set of all
sides of CV , by FV the set of all the sides sharing V , and by GV the set of the other sides of CV . We have
EV = FV ∪ GV , FV ∩ GV = ∅. Let us now consider the equations (2a) for the basis functions vγ , γ ∈ FV .
We remark that the support of all vγ , γ ∈ FV , is included in CV and that uh|CV

=
∑

σ∈EV
Uσvσ . This

leads, using also that ph|K = PK and denoting D−t = (D−1)t,
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∑

σ∈EV

Uσ(vσ ,D−tvγ)CV
−
∑

K∈CV

PK(∇ · vγ , 1)K = −〈vγ · n, pD〉∂Ω ∀ γ ∈ FV , (4)

i.e. |FV | = card(FV ) equations. We now notice that the cluster is constructed so that |CV | = |GV |, and
hence we can consider the equations (2b) for all φK , K ∈ CV , which gives

−
∑

σ∈EK

Uσ(∇ · vσ , 1)K = −(q, 1)K ∀K ∈ CV , (5)

where EK stands for the sides of the element K. The matrix problem associated with (4)–(5) reads
(

AV CV

DV IV

)(

UF
V

UG
V

)

=

(

−B
t
V PV + FV

GV

)

, (6)

where UF
V = {Uσ}σ∈FV

, UG
V = {Uσ}σ∈GV

, and PV = {PK}K∈CV
. The identity matrix IV comes from the

fact that, for σ ∈ GV , there is only one K ∈ CV such that σ ∈ EK , and using that (∇ · vσ , 1)K = ±1. We
have multiplied the equation for K ∈ CV by −1 whenever it was necessary.

Considering the second equation of (6), we have

(AV − CV DV )UF
V = −B

t
V PV + FV − CV GV (7)

for each vertex V ∈ Vh. Let us call the matrix MV = AV −CV DV a local condensation matrix associated
with V . It is clear that it now suffices to invert MV for each V ∈ Vh to obtain the flux unknowns as
functions of the scalar unknowns, sources, and boundary conditions and to insert this expression into the
second equation of (3) to obtain a system for the scalar unknowns only. It appears that in some particular
cases, the matrix MV is not invertible. The approaches how to modify the proposed technique in order
to overcome this difficulty, which resembles the presence of “singular” triangles in the method of [7], are

studied in [6]. If all MV are invertible, we can associate weights αi
σ , 1 ≤ i ≤ d,

∑d
i=1

αi
σ = 1, with each

σ ∈ Eh and multiply the expression for Uσ from CVi
by αi

σ for the d clusters CVi
such that σ ∈ FVi

. We
finally obtain

U = Ã
−1(−B

tP + F ) + JG

and
−BÃ

−1
B

tP = G − BÃ
−1F − BJG .

We have the following results. We refer to [6] for the proofs.
Theorem 1.1 Let MV be invertible for all V ∈ Vh. Then on a row of the final matrix BÃ−1Bt corre-

sponding to an element K ∈ Th, the only possible nonzero entries are on columns corresponding to L ∈ Th

such that K and L share a common vertex.

The assertion of this theorem follows from the fact that by (7), the flux across a side σ is expressed
only using the scalar unknowns of the elements K ∈ Th such that K and σ share a common vertex.
Theorem 1.2 Let MV be positive definite for all V ∈ Vh. Then with the choice of the weights αi

σ = 1/d,
1 ≤ i ≤ d, σ ∈ Eh, the final matrix BÃ−1Bt is also positive definite.

A simple sufficient condition for MV for all V ∈ Vh to be positive definite, for d = 2, is that

2(v1 − v3,D
−tv1)K > |(v2 − v3,D

−tv1)K + (v1 − v3,D
−tv2)K |

for all possible ordering of basis functions vi associated with the edges of K and oriented outward from
K, for all K ∈ Th. The right hand side of this inequality equals to zero when D|K is constant and scalar
and when K is equilateral and grows with deforming K. Other (less restrictive) conditions for d = 2, 3
are given in [6]. The condition for the positive definiteness may allow angles much greater than π/2.
Theorem 1.3 Let M

−1

V be symmetric for all V ∈ Vh. Then with the choice of the weights αi
σ = 1/d,

1 ≤ i ≤ d, σ ∈ Eh, the final matrix BÃ−1Bt is also symmetric.

One can check that M
−1

V are symmetric for equilateral simplices and D piecewise constant and scalar.
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2. Numerical example

Let us consider Ω = (0, 1) × (0, 1), D = Id, q = −2exey, and pD given by the solution p(x, y) = exey.
We perform the computations, using a notebook with Intel Pentium 4-M 1.8 GHz processor, on an
unstructured triangular mesh of Ω which we refine regularly. We consider the method proposed in this
paper and the hybridization onto Lagrange multipliers. In both cases the system matrices are positive
definite but they are symmetric only in the latter case. We compare the number of unknowns, the system
matrices condition number, and the CPU time and the number of iterations of the Bi-CGStab method
to solve the associated matrix problems. For the hybridization, we consider also the CG method.

Refinements Unknowns Cond. no. Bi-CGStab (sec.) No. iter.

3 1024 721 0.20 76.5

4 4096 2882 1.43 147.5

5 16384 11523 12.55 295.5

6 65536 46093 117.58 555.5

Table 1
Elimination onto scalar unknowns associated with triangles
Elimination sur les inconnues scalaires associées aux triangles

Refinements Unknowns Cond. no. Bi-CGStab (sec.) No. iter. CG (sec.) No. iter.

3 1504 1397 0.31 118.0 0.22 157

4 6080 5616 2.43 230.5 1.75 316

5 24448 22499 23.40 449.5 16.87 623

6 98048 89995 227.04 864.0 162.09 1226

Table 2
Hybridization onto Lagrange multipliers associated with edges
Hybridisation sur les multiplicateurs de Lagrange associés aux arêtes
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