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Abstract

We consider the Crouzeix–Raviart nonconforming finite element method for the Laplace equation. We present four

equilibrated flux reconstructions, by direct prescription or by mixed approximation of local Neumann problems,

either relying on the original simplicial mesh only or employing a dual mesh. We show that all these reconstructions

coincide provided the underlying system of linear algebraic equations is solved exactly. We finally consider an

inexact algebraic solve, adjust the flux reconstructions, and point out the differences. To cite this article: A. Ern,
M. Vohraĺık, C. R. Acad. Sci. Paris, Ser. I 340 (2012).

Résumé

Quatre reconstructions très proches de flux équilibrés pour les éléments finis non conformes. Nous

étudions la méthode des éléments finis non conformes de Crouzeix et Raviart pour l’équation de Laplace. Nous

introduisons quatre reconstructions équilibrées du flux, par prescription directe ou par une approximation mixte

de problèmes locaux de Neumann, soit sur le maillage simplectique de départ, soit sur un maillage dual. Nous

montrons que toutes ces reconstructions cöıncident si le système d’équations linéaires associé est résolu exactement.

Nous considérons enfin une solution algébrique inexacte, ajustons les reconstructions du flux et indiquons les

différences entre les reconstructions. Pour citer cet article : A. Ern, M. Vohraĺık, C. R. Acad. Sci. Paris, Ser. I
340 (2012).

1. Introduction

We consider the Poisson problem for the Laplace equation: find u : Ω → R such that

−∆u = f in Ω, (1a)

u = 0 on ∂Ω, (1b)

where Ω ⊂ R
d, d ≥ 2, is a polygonal domain (open, bounded, and connected set) and f is for simplicity

supposed piecewise constant on a matching simplicial mesh Th of Ω. We discretize (1) by means of the
Crouzeix–Raviart nonconforming finite element method. Let Eh denote the faces of Th; E

int
h ⊂ Eh stands

for interfaces and Eext
h ⊂ Eh for boundary faces. We associate with each e ∈ E int

h the basis function
ψe which is piecewise affine on Th and satisfies ψe(xe′ ) = δe,e′ , e

′ ∈ Eh, where xe is the barycenter of
the face e and δe,e′ the Kronecker symbol. The Crouzeix–Raviart nonconforming finite element space is
Vh := span{ψe; e ∈ E int

h } and the corresponding finite element method reads: find uh ∈ Vh such that

(∇uh,∇vh) = (f, vh) ∀vh ∈ Vh. (2)
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Here, ∇ stands for the broken (elementwise) gradient operator and (·, ·) for the L2(Ω) scalar product.
Notice that Vh 6⊂ H1

0 (Ω).
Following the early result of Prager and Synge and the concept of equilibrated fluxes, guaranteed and ef-

ficient a posteriori error estimates for conforming finite elements were obtained by Luce andWohlmuth [10]
and Braess and Schöberl [3], see also [5, 12, 7] and the references therein. In the context of nonconforming
finite elements, similar results were obtained by Destuynder and Métivet [4], Ainsworth [1], Kim [9], and
Braess [2]. An equilibrated flux reconstruction is a vector function σh belonging to H(div,Ω), typically
built in some finite-dimensional mixed finite element space, constructed locally, designed to approximate
σ := −∇u, and satisfying

∇·σh = f. (3)

In the context of the nonconforming finite element method (2), equilibrated flux reconstructions lead to
a guaranteed a posteriori error estimate of the form, see [9, 5],

‖∇(u− uh)‖
2 ≤ ‖∇uh + σh‖

2 + ‖∇(uh − sh)‖
2, (4)

where sh ∈ H1
0 (Ω) is an arbitrary potential reconstruction.

In this Note, we present four equilibrated flux reconstructions for nonconforming finite elements. The
first one is the construction used in the a posteriori context in [4], while the three other ones are extensions
of the constructions of [10, 3, 12] to the nonconforming setting. Then, a little surprisingly, we show that
these four constructions are all equivalent in the absence of algebraic errors, i.e., when the system of
linear algebraic equations resulting from (2) is solved exactly. Finally, in the presence of algebraic errors,
we show how to adjust the flux reconstructions and we indicate the differences among them.

2. Four equilibrated flux reconstructions

2.1. Direct prescription on the original mesh

Define fh(x)|K := f |K
d

(x− xK), with xK the barycenter of K ∈ Th. Following [4], set

σh := −∇uh + fh. (5)

It follows from the link of nonconforming to mixed finite elements by Marini [11] that σh ∈ RTN0(Th),
where RTN0(Th) is the lowest-order Raviart–Thomas–Nédélec mixed finite element space of functions
vh ∈ H(div,Ω) such that vh|K ∈ [P0(K)]d + xP0(K) for all K ∈ Th. By construction, (3) holds.

2.2. Direct prescription on a dual mesh

Following an idea in [10], see also [12, 7] and the references therein, we now present a construction
relying on a dual mesh. For all e ∈ Eh and K ∈ Th with e ⊂ ∂K, let Ke be the sub-simplex of K given
by the face e and the barycenter xK of K. Let Sh be the mesh formed by the sub-simplices Ke and let
Dh be the dual mesh regrouping for each e ∈ Eh the two (or one for boundary faces) simplices Ke which
share e (denoted by De). It is easily verified that (2) is equivalent to looking for uh ∈ Vh such that

−〈∇uh·nDe
, 1〉∂De

= (f, 1)De
∀e ∈ E int

h , (6)

which corresponds to the face-centered finite volume method. Define σh ∈ RTN0(Sh) by

σh·nDe
|∂De\∂Ω := −∇uh·nDe

|∂De\∂Ω ∀e ∈ Eh, (7a)

σh·nKe
|e := |e|−1{(f, 1)Ke

− 〈σh·nKe
, 1〉∂Ke\e} ∀e ∈ Eh, Ke ⊂ De, (7b)

where nDe
and nKe

denote outward normals of De and Ke, respectively. Here, (7a) prescribes the normal
component of σh on all faces of the mesh Sh which lie on the boundary of some De ∈ Dh but not on ∂Ω
(and thus inside the elements of Th), whereas (7b) prescribes the normal component on those faces of the
mesh Sh which are faces of Th. It follows from (6) and (7a) that the definition (7b) is independent of the
choice of Ke ⊂ De; (7b) fixes the normal component of σh on the faces of Th so that (3) holds.

2.3. Mixed approximation of local Neumann problems with scheme-given normal flux on dual mesh

The next construction is tightly linked to the construction of §2.2, while adopting a different viewpoint
following [10, 5, 12, 7]. For a given dual volume De ∈ Dh, let SDe

stand for the submesh of the dual
volume De by the simplices of Sh. For all e ∈ Eh, define the space

RTNN
0 (SDe

) := {vh ∈ RTN0(SDe
); vh·nDe

|∂De\∂Ω = −∇uh·nDe
|∂De\∂Ω}, (8)

2

ha
l-0

07
50

77
7,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
2



spanned by Raviart–Thomas–Nédélec vector functions with normal component over ∂De \ ∂Ω given
by (7a). We construct σh ∈ RTN0(Sh), while fixing the remaining degrees of freedom by

σh|De
:= arg inf

vh∈RTNN

0
(SDe

),∇·vh=f
‖∇uh + vh‖De

∀e ∈ Eh, (9)

instead of (7b). Note that this complementary energy minimization problem locally minimizes the size

of the first estimator in (4). Let RTNN,0
0 (SDe

) be defined as (8), but with the normal flux condition
vh·nDe

|∂De\∂Ω = 0. Finally, let P∗
0(SDe

) be spanned by piecewise constants on SDe
with zero mean value

on the dual cell De when e ∈ E int
h and by constants when e ∈ Eext

h . Problem (9) is equivalent, cf. [5], to

finding σh|De
∈ RTNN

0 (SDe
) and qh|De

∈ P
∗
0(SDe

) such that

(σh,vh)De
− (qh,∇·vh)De

= −(∇uh,vh)De
∀vh ∈ RTNN,0

0 (SDe
), (10a)

(∇·σh, φh)De
= (f, φh)De

∀φh ∈ P
∗
0(SDe

). (10b)

(10) is the lowest-order Raviart–Thomas–Nédélec mixed finite element approximation of a local inhomo-
geneous Neumann problem on the dual volumes De, e ∈ E int

h . For e ∈ Eext
h , this is a local problem with

inhomogeneous Neumann boundary condition on that part of ∂De which lies inside Ω and homogeneous
Dirichlet boundary condition on ∂De ∩ ∂Ω. For e ∈ E int

h , the compatibility of the Neumann condition
with the source term f is nothing but (6). Thus, the well-posedness of (10) is standard.

2.4. Mixed approximation of homogeneous local Neumann problems and partition of unity

Finally, we rewrite differently and transfer to the nonconforming setting the construction of [3]. For all
e ∈ Eh, let Te collect the two (or one for boundary faces) mesh elements in Th of which e is a face. For

e ∈ Eh, denote RTNN,0
0 (Te) the subspace ofRTN0(Te) with zero normal flux through ∂Te for e ∈ E int

h and
through that part of ∂Te which lies inside Ω for e ∈ Eext

h . Let P∗
0(Te) be spanned by piecewise constants

on Te with zero mean on Te when e ∈ E int
h ; when e ∈ Eext

h , the mean value condition is not imposed.
Recall that ψe stands for the Crouzeix–Raviart basis function (we will use it now also for e ∈ Eext

h ). Define

σ
e
h ∈ RTNN,0

0 (Te) and q
e
h ∈ P

∗
0(Te) by

(σe
h,vh)Te

− (qeh,∇·vh)Te
= −(ψe∇uh,vh)Te

∀vh ∈ RTNN,0
0 (Te), (11a)

(∇·σe
h, φh)Te

= (fψe, φh)Te
− (∇uh·∇ψe, φh)Te

∀φh ∈ P
∗
0(Te). (11b)

Then, set σh :=
∑

e∈Eh
σ

e
h. Note that the problems (11) are well-posed. Indeed, they lead to square linear

systems such that setting their right-hand side to zero yields a zero solution. For interfaces e ∈ E int
h , they

represent a local homogeneous Neumann problem on Te, whereas for boundary faces e ∈ Eext
h , this is

a local homogeneous Neumann/Dirichlet (on ∂Ω) problem on Te. Moreover, on e ∈ E int
h , the Neumann

compatibility condition on the data is satisfied (set φh = 1 on Te in (11b) and use (2) with vh = ψe).

3. Equivalence of the four flux reconstructions

Theorem 3.1 (Equivalence of (5), (7), (9), and (11)) The constructions of Sections 2.1–2.4 yield
the same equilibrated flux reconstruction σh.

Proof: In view of the term (x − xK) in the definition of fh, fh·nDe
= 0 on ∂De, e ∈ E int

h . Hence, σh

of (5) satisfies (7a). Moreover, (5) immediately implies (3), whence (7b) follows by the Green theorem.
Thus, (5) and (7) are equivalent. Next, the normal boundary conditions on ∂De, e ∈ E int

h , in (7) and (10)
are the same. Both (7b) and (10b) then fix the remaining degrees of freedom (the fluxes over e ∈ Eh)
such that (3) holds. Hence, (7) and (10) are equivalent. Let finally e ∈ E int

h . Owing to the Neumann
compatibility condition, we can take φh = 1 on one simplex K of Te and φh = 0 on the other one as
the test function in (11b). Using that f |K is constant and the side quadrature formula for the first term
on the right-hand side of (11b) and the Green formula and some elementary calculus for the two other

terms, we arrive at 〈σe
h·nK , 1〉e = f |K

|K|
d+1 − 〈∇uh·nK , 1〉e, which fixes the flux of σh through e in the

same way as (5). For e ∈ Eext
h , we proceed similarly. Thus all the reconstructions are equivalent. ✷

Remark 1 (Local efficiency) For a suitable choice of the potential reconstruction sh, following [1, 9, 2],
local efficiency holds in the sense that there exists a constant C > 0 only depending on the space dimension
d and on the shape regularity of Th such that

(‖∇uh + σh‖
2
K + ‖∇(uh − sh)‖

2
K)

1

2 ≤ C‖∇(u− uh)‖TK

for all K ∈ Th, where TK stands for all the elements sharing a vertex with K.
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4. Taking into account the algebraic error

In practice, solving the linear system associated with (2) exactly (to computer working precision) is
quite demanding. Moreover, such an effort is unnecessary in view of the unavoidable presence of the
discretization error ‖∇(u − uh)‖. Guaranteed a posteriori error estimates not requiring (2) or (3) and
distinguishing the discretization and algebraic errors are now available, see [8, 6] and the references
therein, and we present them here in the Crouzeix–Raviart context.
Consider ψe, e ∈ E int

h , as test function in (2). Applying an iterative solver to the resulting system of
linear algebraic equations, we obtain on step i ≥ 0 of this solver a discrete potential uih ∈ Vh such that

(∇uih,∇ψe) = (f, ψe)−Ri
e ∀e ∈ E int

h , (12)

where Ri = {Ri
e}e∈E int

h

is the algebraic residual vector. For convenience, we set Ri
e := 0 for all e ∈ Eext

h .

In order to extend the results of Section 2 to this context, a key idea is to relax (3) into a quasi-
equilibrated flux reconstruction such that, at step i ≥ 0,

∇·σi
h = f − ρih, (13)

with the algebraic remainder function ρih linked to the algebraic residual vector Ri. In extension of the
approach of §2.1, we set

σ
i
h|K := (−∇uih + fh)|K −

∑

e∈EK

|Te|
−1R

i
e

d
(x− aK,e) ∀K ∈ Th, (14)

where EK regroups the faces of K and aK,e is the vertex of K opposite to e. In particular, there still holds
σ

i
h ∈ RTN0(Th) and ρ

i
h in (13) is piecewise constant on Th with ρih|K =

∑
e∈EK

|Te|
−1Ri

e. Equivalently,

(14) also results from extending the approach of §2.4 by subtracting |Te|
−1(Ri

e, φh)Te
to the right-hand

side of (11b). Replacing in (14) (x − aK,e) by (x − xK)|K∩De
and |Te|

−1 by |De|
−1 leads instead to

a construction extending those of §2.2 and §2.3. Specifically, |e|−1|De|
−1(Ri

e, 1)Ke
is subtracted to the

right-hand side of (7b), and the constraint in (9) is replaced by ∇·vh = f − |De|
−1Ri

e. Such a σ
i
h now

belongs to RTN0(Sh), but not to RTN0(Th), and localizes more precisely the algebraic error around the
interfaces since ρih in (13) is now piecewise constant on Dh with ρih|De

= |De|
−1Ri

e. More details can be
found in [6].
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[3] Dietrich Braess and Joachim Schöberl. Equilibrated residual error estimator for edge elements. Math.

Comp., 77(262):651–672, 2008.
[4] Philippe Destuynder and Brigitte Métivet. Explicit error bounds for a nonconforming finite element

method. SIAM J. Numer. Anal., 35(5):2099–2115, 1998.
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