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OF CONVECTION–DIFFUSION–REACTION EQUATIONS ∗, ∗∗

Martin Vohraĺık
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Abstract. We present in this paper a unified framework for a posteriori error estimation in the finite
volume and lowest-order Raviart–Thomas mixed finite element methods. We consider convection–
diffusion–reaction equations on simplicial meshes in two or three space dimensions and pay a partic-
ular attention to inhomogeneous and anisotropic diffusion–dispersion tensors and to convection domi-
nance, in which case upwind-weighted schemes are considered. Our estimates are derived in the energy
(semi-)norm for a locally postprocessed approximate solution preserving the finite volume/mixed finite
element fluxes and are of residual type. They give a global upper bound on the error and are fully
computable in the sense that all occurring constants are evaluated explicitly, so that they can serve
both as indicators for adaptive refinement or for the actual control of the error. Local efficiency and
semi-robustness in the sense that the local efficiency constant only depends on local variations in the
inhomogeneities and anisotropies and becomes optimal as the local Péclet number gets sufficiently small
can also be shown. Moreover, passing from their local to global computation, our estimates become
asymptotically exact and asymptotically fully robust with respect to inhomogeneities and anisotropies.
We finally present numerical experiments confirming their accuracy and briefly compare the results for
the two methods.

Résumé. Nous présentons dans ce papier un cadre unifié pour des estimations a posteriori dans
les méthodes des volumes finis et des éléments finis mixtes de Raviart–Thomas de plus bas degré.
Nous considérons des équations de convection–diffusion–réaction sur de maillages de triangles ou de
tétraèdres et nous nous concentrons en particulier sur des tenseurs de diffusion–dispersion inhomogènes
et anisotropes et sur des problèmes dominés par la convection. Dans ce dernier cas, la pondération
amont est supposée. Nos estimations sont de type résiduel, obtenues dans la (semi-)norme de l’énergie
pour une approximation post-traitée localement et conservant les flux de la méthode des volumes finis
ou celle des éléments finis mixtes, et elles représentent une borne supérieure globale de l’erreur. Nous
avons évalué précisément toutes les constantes figurant dans nos estimations de telle sorte qu’elles soient
utilisables non seulement comme des indicateurs de raffinement, mais aussi pour un véritable contrôle
de l’erreur dans la solution numérique. On peut aussi montrer l’efficacité locale semi-robuste dans le
sens que la constante d’efficacité locale ne dépend que des variations locales dans les inhomogénéités
et anisotropies et devient optimale lorsque le nombre de Péclet local devient petit. De plus, passant de
leur évaluation locale à leur évaluation globale, nos estimations sont asymptotiquement exactes et, vis-
à-vis des inhomogénéités et des anisotropies, asymptotiquement robustes. Finalement, nous validons
la précision de nos estimations par des essais numériques et comparons brièvement les deux méthodes
considérées.
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1. Introduction

We consider in this paper the convection–diffusion–reaction problem

−∇ · (S∇p) + ∇ · (pw) + rp = f in Ω , (1.1a)
p = g on ΓD , (1.1b)

−S∇p · n = u on ΓN , (1.1c)

where S is (an inhomogeneous and anisotropic) diffusion–dispersion tensor, w is a (dominating with respect to
S) velocity field, r is a reaction function, f is a source term, and g and u prescribe the Dirichlet and Neumann
boundary conditions, respectively. We suppose that Ω ⊂ R

d, d = 2, 3, is a polygonal (polyhedral) domain,
that ΓD ∩ ΓN = ∅, ΓD ∪ ΓN = Γ := ∂Ω, that |ΓD| �= 0, where |ΓD| is the measure of the set ΓD, and that
Γin := {x ∈ ∂Ω;w · n < 0} ⊂ ΓD. Finally, n stands for the unit normal vector of ∂Ω, outward to Ω.

A posteriori error estimates are nowadays well established for discretizations of the pure diffusion form
of (1.1a)–(1.1c) by the finite element, finite volume, and mixed finite element methods, cf. respectively e.g.
Verfürth [19], Nicaise [13], and Carstensen [6]. In most cases, however, the analysis is only given for S being
an identity matrix; an in-depth analysis for the general inhomogeneous (and anisotropic) diffusion tensor was
presented by Bernardi and Verfürth [5] or by Petzoldt [17] in the framework of the finite element method. In
recent years a posteriori error estimates have been extended to convection–diffusion problems as well. We cite in
particular Verfürth [20] who derived reliable, locally efficient, and semi-robust estimates in the energy norm for
the finite element method and its stabilized SUPG version. However, only a few works have addressed this issue
for the finite volume method—we cite in particular Ohlberger [15] and Nicaise [14]—and, to our knowledge, no
results are known up to now for the mixed finite element one.

The purpose of this paper is to present a unified framework for a posteriori error estimation in the finite
volume and mixed finite element discretizations of the problem (1.1a)–(1.1c). The basis of our approach is to
exploit the particular feature of these methods, which is the conservativity of the discrete fluxes across the sides
(edges if d = 2, faces if d = 3) of the mesh. We first build in Section 3, after collecting notation, assumptions, and
details on the continuous problem in Section 2, a postprocessed approximate solution p̃h which preserves exactly
these fluxes and whose point or mean value is in each cell fixed by the original constant approximation. By
such a construction, the diffusion–dispersion tensor times the negative of the gradient of p̃h lies in the H(div, Ω)
space. This crucial advantage is however compensated by the fact that p̃h is nonconforming in the sense that
p̃h �∈ H1(Ω). The Oswald interpolation operator is then employed to construct a conforming interpolate, which
will be used in the a posteriori analysis.

We then in Section 4 present our a posteriori error estimates as well as a sketch of their proof. The derived
estimators are associated with the mesh cells, are easily and locally computable, and they are also fully com-
putable in the sense that all occurring constants are evaluated explicitly. They are valid for any cell-centered
finite volume scheme, cf. Eymard et al. [10] and [1,7,12], and for the lowest-order Raviart–Thomas mixed finite
element scheme and its upwind variant, cf. [9, 18] and [8], respectively.

We finally give in Section 5 several remarks and we show there in particular that in the pure diffusion
case, passing from their local to global computation, our estimates become globally asymptotically exact and
globally asymptotically fully robust with respect to inhomogeneities and anisotropies, i.e. that the ratio of the
estimated and actual error goes to one, and this independently of inhomogeneities and anisotropies. Almost
optimal efficiency is observed in numerical experiments in Section 6 also in the convection–diffusion–reaction
case. Complete proofs of the presented results, several extensions and namely a slightly different form of the
estimator in the mixed finite element case, using a modification of the Oswald interpolation operator, detailed
discussions, and further numerical experiments are presented in [24, 23].

2. Preliminaries

We start in this section by some preliminaries.
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2.1. Partitions of the domain

We suppose that for all h > 0, Th consists of closed simplices such that Ω =
⋃

K∈Th
K and such that if

K, L ∈ Th, K �= L, then K ∩ L is either an empty set or a common face, edge, or vertex of K and L. Let hK

denote the diameter of K and let h := maxK∈Th
hK . We make the following shape regularity assumption on

the family of triangulations {Th}h, denoting κK := |K|/hd
K :

Assumption (A) (Shape regularity of the meshes)

There exists a constant κT > 0 such that minK∈Th
κK ≥ κT for all h > 0.

We next denote by Eh the set of all sides of Th, by E int
h the set of interior sides, by Eext

h the set of exterior
sides, and by EK the set of all the sides of an element K ∈ Th. Finally, EN

h denotes the sides contained in ΓN

and ED
h those contained in ΓD and hσ stands for the diameter of σ ∈ Eh.

2.2. Poincaré, Friedrichs, and trace inequalities

Let K be a simplex, σ its side, and ϕ ∈ H1(K). Three inequalities play an essential role in the derivation of
our a posteriori error estimates. First, the Poincaré inequality states that

‖ϕ − ϕK‖2
K ≤ CPh2

K‖∇ϕ‖2
K , (2.1)

where ϕK := (ϕ, 1)K/|K| and where the constant CP can be evaluated as 1/π2, cf. [16,4]. Second, the following
generalized Friedrichs inequality has been proved in [21, Lemma 4.1]:

‖ϕ − ϕσ‖2
K ≤ CF,dh

2
K‖∇ϕ‖2

K , (2.2)

where ϕσ := 〈ϕ, 1〉σ/|σ| and where CF,d = 3d. Finally, the trace inequality states that

‖ϕ − ϕσ‖2
σ ≤ Ct,K,σhK‖∇ϕ‖2

K . (2.3)

It has been shown in [13, Lemma 3.5] that Ct,K,σ = Ct,dhK/hσ, where Ct,d ≈ 1.55416 if d = 2 and Ct,d ≈
11.53557 if d = 3.

2.3. Assumptions on the data

We suppose that there exists a basic partition T̃h of Ω such that the data of the problem (1.1a)–(1.1c) are
related to T̃h in the following way:

Assumption (B) (Data)
(B1) SK := S|K is a constant, symmetric, bounded, and uniformly positive definite tensor such that cS,K v ·

v ≤ SKv · v ≤ CS,K v · v, cS,K > 0, CS,K > 0, for all v ∈ R
d and all K ∈ T̃h;

(B2) w ∈ RT(T̃h) satisfies
∣∣w|K

∣∣ ≤ Cw,K , Cw,K ≥ 0, for all K ∈ T̃h;
(B3) r is a polynomial of degree at most k on each K ∈ T̃h;
(B4) 1

2∇ · w|K + r|K ≥ cw,r,K and
∣∣∇ · w|K + r|K

∣∣ ≤ Cw,r,K , cw,r,K ≥ 0, Cw,r,K ≥ 0, for all K ∈ T̃h;
(B5) f is a polynomial of degree at most k on each K ∈ T̃h;
(B6) g ∈ H1/2(ΓD);
(B7) u ∈ L2(ΓN);
(B8) if cw,r,K = 0, then Cw,r,K = 0.

The assumptions on S, r, f , and w (cf. Section 3.2 below for the definition of the space RT(T̃h)) are made
for the sake of simplicity and are usually satisfied in practice. If the functions at hand do not fulfill the given
requirements, interpolation can be used. Also, note that Assumption (B8) allows cw,r,K = 0 but w|K �= 0.
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2.4. Continuous problem

Let Th be, as throughout the whole paper, a refinement of T̃h. We define a bilinear form B by

B(p, ϕ) :=
∑

K∈Th

{
(S∇p,∇ϕ)K + (∇ · (pw), ϕ)K + (rp, ϕ)K

}
p, ϕ ∈ H1(Th) , (2.4)

where H1(Th) is the “broken Sobolev space”, H1(Th) := {ϕ ∈ L2(Ω); ϕ|K ∈ H1(K) ∀K ∈ Th}, and the corre-
sponding energy (semi-)norm by

|||ϕ|||2Ω :=
∑

K∈Th

|||ϕ|||2K , |||ϕ|||2K := ‖S 1
2∇ϕ‖2

K +

∥∥∥∥∥
(

1
2
∇ · w + r

) 1
2

ϕ

∥∥∥∥∥
2

K

ϕ ∈ H1(Th) . (2.5)

In this way B(·, ·) and ||| · |||Ω are well-defined for p, ϕ ∈ H1(Ω) as well as for p, ϕ that are only piecewise regular.
We remark that ||| · |||Ω is always a norm on H1

D(Ω), the subspace of H1(Ω) of functions with traces vanishing
on ΓD, whereas it is a norm on H1(Th) only when cw,r,K > 0 for all K ∈ Th. The weak formulation of the
problem (1.1a)–(1.1c) is then to find p ∈ H1(Ω) with p|ΓD = g in the sense of traces such that

B(p, ϕ) = (f, ϕ)Ω − 〈u, ϕ〉ΓN ∀ϕ ∈ H1
D(Ω). (2.6)

Problem (2.6) under Assumption (B) in particular admits a unique solution.

3. Finite volume and mixed finite element schemes and postprocessing

We first introduce here the finite volume and mixed finite element methods for the problem (1.1a)–(1.1c).
Since the original approximations in these methods are only piecewise constant and thus lack regularity so as
to be directly used in an a posteriori error estimate, we next construct a locally postprocessed approximation
p̃h, also based on the known fluxes. Finally, since p̃h will be nonconforming, we will need its Oswald interpolate
later.

3.1. The finite volume method

A general cell-centered finite volume scheme for the problem (1.1a)–(1.1c) can be written in the following
form: find pK , K ∈ Th, the approximations to p such that∑

σ∈EK

SK,σ +
∑

σ∈EK

WK,σ + rKpK |K| = fK |K| ∀K ∈ Th , (3.1)

where fK := (f, 1)/|K|, rK := (r, 1)/|K|, and where SK,σ and WK,σ are, respectively, the diffusive and convec-
tive fluxes through the sides σ of an element K, functions of pK , K ∈ Th, of the mesh, and of the data. For
the a posteriori error estimates presented in this paper, we do not need the specific form of the diffusive and
convective fluxes; our analysis however relies on the finite volume concept of their continuity, imposing that
SK,σK,L = −SL,σK,L and WK,σK,L = −WL,σK,L for all σK,L ∈ E int

h . To fix ideas, we give an example.
When Th is admissible in the sense of [10, Definition 9.1] (when there exist points xK in the interior of each

K ∈ Th such that the straight lines connecting xK and xL for two neighboring elements K and L are orthogonal
to σK,L and when an analogous orthogonality condition holds on the Dirichlet part of the boundary), and under
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the additional assumption that SK = sKId for all K ∈ Th, the following choices for SK,σ and WK,σ are possible:

SK,σ = −sK,L
|σK,L|
dK,L

(pL − pK) σ = σK,L ∈ E int
h , (3.2)

SK,σ = −sK
|σ|

dK,σ
(gσ − pK) σ ∈ EK ∩ ED

h , (3.3)

SK,σ = uσ|σ| σ ∈ EK ∩ EN
h , (3.4)

WK,σ = pσwK,σ σ ∈ EK . (3.5)

Here dK,L = |xK − xL|, the Euclidean distance of xK and xL, dK,σ is the Euclidean distance of xK and
σ ∈ EK ∩ ED

h , and

gσ :=
〈g, 1〉σ
|σ| , uσ :=

〈u, 1〉σ
|σ| , wK,σ := 〈w · n, 1〉σ . (3.6)

For the value sK,L, we can choose either an arithmetic or a harmonic averaging in the diffusion–dispersion
tensor—sK,L := (sK + sL)/2 or sK,L := 2sKsL/(sK + sL). Finally, pσ can be e.g. a weighted upwind value,
comprised between pK and pL for σK,L ∈ E int

h , see [24, 23] for details. For other schemes, including those
enabling to take into account a general S, cf. [1, 7, 12].

3.2. The lowest-order Raviart–Thomas mixed finite element method

Let us denote by RT(Th) the space of elementwise linear vector functions uh such that, on each K ∈ Th,
uh|K = (aK + dKx, bK + dKy) if d = 2 and uh|K = (aK + dKx, bK + dKy, cK + dKz) if d = 3, with the normal
component continuous over the interior sides. Let RTN(Th) be its subspace of functions satisfying (uh ·n)|σ = uσ

for all σ ∈ EN
h . Here uσ is given by (3.6) (recall that the normal components of uh ∈ RT(Th) are constant on

each σ ∈ Eh and that they represent the degrees of freedom of RT(Th)). Let finally RT0,N(Th) be such that
(uh · n)|σ = 0 for all σ ∈ EN

h .
Under the above definitions, the centered mixed finite element scheme (cf. [9,18]) reads: find uh ∈ RTN(Th)

and ph given by pK on each K ∈ Th such that

(S−1uh,vh)Ω − (ph,∇ · vh)Ω = −〈vh · n, g〉ΓD ∀vh ∈ RT0,N(Th) , (3.7a)

(∇ · uh, 1)K − (S−1uh · w, 1)K + ((r + ∇ ·w)pK , 1)K = (f, 1)K ∀K ∈ Th , (3.7b)

whereas the upwind-weighted mixed finite element scheme (cf. [8]) reads: find uh ∈ RTN(Th) and pK given by
pK on each K ∈ Th such that (with WK,σ given by (3.5)–(3.6))

(S−1uh,vh)Ω − (ph,∇ · vh)Ω = −〈vh · n, g〉ΓD ∀vh ∈ RT0,N(Th) , (3.8a)

(∇ · uh, 1)K +
∑

σ∈EK

WK,σ + (rpK , 1)K = (f, 1)K ∀K ∈ Th . (3.8b)

3.3. Postprocessing

Let uh ∈ RTN(Th) be given by (3.7a)–(3.7b) or (3.8a)–(3.8b) in the mixed finite element method. Similarly,
let uh ∈ RTN(Th) be prescribed by the finite volume fluxes SK,σ (3.2)–(3.4), i.e. on each K ∈ Th, let uh|K be
such that (uh · n)|σ = SK,σ/|σ|, cf. [11]. We then define a postprocessed approximation p̃h on each simplex in
the following way:

− SK∇p̃h|K = uh|K ∀K ∈ Th , (3.9a)

(1 − μK)
(p̃h, 1)K

|K| + μK p̃h(xK) = pK ∀K ∈ Th . (3.9b)
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Here μK = 0 for mixed finite elements and μK = 0 or 1 for finite volumes, in the dependence on whether
the particular scheme (3.1) represents by pK the approximate mean or point value (we for simplicity assume
that xK ∈ K). It is immediate to show that such p̃h exists, is unique, writes as a second-order polynomial on
each K ∈ Th, but is nonconforming (not included in H1(Ω)). However, for mixed finite elements, it is shown
in [24] that at least the means of traces over interior sides are continuous. Also, convergence and a priori error
estimates for p̃h in the finite volume case, under the condition that the original finite volume scheme satisfies
some necessary properties, are proved in [23]. Note finally that the proposed postprocessing is local on each
element and that one only has to build a second-order polynomial on each K ∈ Th from the prescribed degrees
of freedom, so that its cost is negligible.

3.4. Oswald interpolation operator

Let Pl(Th) denote the space of polynomials of total degree at most l on each simplex. The Oswald interpolation
operator IOs : Pl(Th) → Pl(Th)∩H1(Ω) is defined as follows: given a function ϕh ∈ Pl(Th), the value of IOs(ϕh)
is prescribed at the Lagrangian nodes of Pl(Th) ∩ H1(Ω) by the average of the values of ϕh at this node. We
finally define IΓ

Os(p̃h) ∈ H1(Ω), differing from IOs(p̃h) only on such K ∈ Th that contain a boundary side, by

IΓ
Os(p̃h)|ΓD = g in the sense of traces , (3.10a)

〈IΓ
Os(p̃h)w · n, 1〉σ = WK,σ ∀σ ∈ EN

h , (3.10b)

where we put WK,σ = 〈p̃hw · n, 1〉σ for the centered mixed finite element scheme (3.7a)–(3.7b). Note that if
w · n is constant but nonzero on a given σ ∈ EN

h , then (3.10b) prescribes the mean value of IΓ
Os(p̃h) on this side

by WK,σ/〈w · n, 1〉σ, i.e. by pσ for the scheme (3.5)–(3.6).

4. A posteriori error estimate

We give in this section our a posteriori estimate as well as a sketch of its proof.

4.1. A posteriori error estimate

Let us first put

m2
K := min

{
CP

h2
K

cS,K
,

1
cw,r,K

}
for all K ∈ Th, where CP is the constant from the Poincaré inequality (2.1). We define the residual estimator
ηR,K by

ηR,K := mK‖f + ∇ · (S∇p̃h) −∇ · (p̃hw) − rp̃h‖K . (4.1)
Let IΓ

Os(p̃h) be the modification of the Oswald interpolate IOs(p̃h) at the boundary given by (3.10a)–(3.10b).
Denote v := p̃h − IΓ

Os(p̃h). Then the nonconformity estimator ηNC,K is given by

ηNC,K := |||v|||K (4.2)

and the convection estimator ηC,K by

ηC,K := min
{‖∇ · (vw) − 1

2v∇ · w‖K + ‖∇ · (vw)‖K√
cw,r,K

,

(
CPh2

K‖∇v ·w‖2
K

cS,K
+

9‖v∇ ·w‖2
K

4cw,r,K

) 1
2
}

. (4.3)

Next, let

m2
σ := min

{
max

K; σ∈EK

{
CF,d

|σ|h2
K

|K|cS,K

}
, max
K; σ∈EK

{
|σ|

|K|cw,r,K

}}
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for interior or Dirichlet boundary sides. Here CF,d is the constant from the generalized Friedrichs inequality (2.2).
The upwinding estimator ηU,K is given by

ηU,K :=
∑

σ∈EK\EN
h

mσ‖(WK,σ − 〈IΓ
Os(p̃h)w · n, 1〉σ)|σ|−1‖σ .

Finally, the reaction quadrature estimator ηRQ,K is given by

ηRQ,K :=
1

√
cw,r,K

‖rKpK − (rp̃h, 1)K |K|−1‖K

and the Neumann boundary estimator ηΓN,K by

ηΓN,K := 0 +
1

√
cS,K

∑
σ∈EK∩EN

h

√
Ct,K,σ

√
hK‖uσ − u‖σ ,

where Ct,K,σ is the constant from the trace inequality (2.3). We then have the following estimate:

Theorem 4.1 (A posteriori error estimate). Let p be the weak solution of the problem (1.1a)–(1.1c) given
by (2.6). Let a finite volume scheme of the form (3.1), with the diffusive fluxes through Neumann boundary
sides prescribed by (3.4), (3.6), or a mixed finite element scheme (3.7a)–(3.7b) or (3.8a)–(3.8b), be given. Let
p̃h be the postprocessed solution given by (3.9a)–(3.9b). Then

|||p − p̃h|||Ω ≤
{ ∑

K∈Th

η2
NC,K

}1/2

+

{ ∑
K∈Th

(ηR,K + ηC,K + ηU,K + ηRQ,K + ηΓN,K)2
}1/2

.

4.2. Sketch of the proof of the estimate

We first remark that using the triangle inequality and the coercivity of the form B(·, ·) given by |||ϕ|||2Ω ≤
B(ϕ, ϕ) for all ϕ ∈ H1

D(Ω), we have, for p, s ∈ H1(Ω) such that p − s ∈ H1
D(Ω) and an arbitrary p̃ ∈ H1(Th) (to

simplify notation, we use the convention 0/0 = 0),

|||p − p̃|||Ω ≤ |||p̃ − s|||Ω + |||p − s|||Ω ≤ |||p̃ − s|||Ω +
B(p − s, p − s)

|||p − s|||Ω

= |||p̃ − s|||Ω + B
(

p − p̃,
p − s

|||p − s|||Ω

)
+ B

(
p̃ − s,

p − s

|||p − s|||Ω

)
.

The following lemma, whose proof can be found in [24], gives an important improvement of the above bound,
allowing in particular for the asymptotic exactness of Section 5.2 below:

Lemma 4.2 (Abstract framework). Let p, s ∈ H1(Ω), p − s ∈ H1
D(Ω), and let p̃ ∈ H1(Th). Then

|||p − p̃|||Ω ≤ |||p̃ − s|||Ω +
∣∣∣∣B(

p − p̃,
p − s

|||p − s|||Ω

)
+

∑
K∈Th

(
∇ · ((p̃ − s)w) − 1

2
(p̃ − s)∇ · w,

p − s

|||p − s|||Ω

)
K

∣∣∣∣ .

Consequently, the following bound for the error |||p − p̃h|||Ω holds:
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Lemma 4.3 (Abstract error estimate). Let the assumptions of Theorem 4.1 be verified and let s ∈ H1(Ω) such
that s|ΓD = g in the sense of traces be arbitrary. Then

|||p − p̃h|||Ω ≤ |||p̃h − s|||Ω + sup
ϕ∈H1

D(Ω), |||ϕ|||Ω=1

{
TR(ϕ) + TC(ϕ) + TU(ϕ) + TRQ(ϕ) + TΓN(ϕ)

}
,

where, putting ϕK := (ϕ, 1)K/|K| and ϕσ := 〈ϕ, 1〉σ/|σ|,

TR(ϕ) :=
∑

K∈Th

(
f + ∇ · (S∇p̃h) −∇ · (p̃hw) − rp̃h, ϕ − ϕK

)
K

,

TC(ϕ) :=
∑

K∈Th

{(
∇ · ((p̃h − s)w) − 1

2
(p̃h − s)∇ ·w, ϕ

)
K

+ 〈(s − p̃h)w · n, ϕK〉∂K

}
,

TU(ϕ) :=
∑

K∈Th

∑
σ∈EK

〈(WK,σ − 〈sw · n, 1〉σ)|σ|−1, ϕK〉σ ,

TRQ(ϕ) :=
∑

K∈Th

(rKpK − (rp̃h, 1)K |K|−1, ϕK)K ,

TΓN(ϕ) :=
∑

σ∈EN
h

〈uσ − u, ϕ − ϕσ〉σ .

Proof. Let us consider an arbitrary ϕ ∈ H1
D(Ω). We have, using the bilinearity of B(·, ·), the definition (2.6) of

the weak solution p, and the Green theorem in each K ∈ Th,

B(p − p̃h, ϕ) = (f, ϕ)Ω − 〈u, ϕ〉ΓN −
∑

K∈Th

{
(S∇p̃h,∇ϕ)K +

(
∇ · (p̃hw), ϕ

)
K

+ (rp̃h, ϕ)K

}
=

∑
K∈Th

(
f + ∇ · (S∇p̃h) −∇ · (p̃hw) − rp̃h, ϕ

)
K
−

∑
K∈Th

〈S∇p̃h · n, ϕ〉∂K − 〈u, ϕ〉ΓN

=
∑

K∈Th

{(
f + ∇ · (S∇p̃h) −∇ · (p̃hw) − rp̃h, ϕ

)
K

+
∑

σ∈EK∩ΓN

〈uσ − u, ϕ〉σ
}

. (4.4)

Note that we have in particular used the continuity of the normal trace of S∇p̃h across interior sides following
from finite volume or mixed finite element fluxes continuity, i.e.

〈(S∇p̃h · n)|K + (S∇p̃h · n)|L, ϕ〉σK,L = 〈0, ϕ〉σK,L = 0 ∀σK,L ∈ E int
h ,

the fact that 〈S∇p̃h · n, ϕ〉σ = 0 for σ ∈ ED
h following by ϕ ∈ H1

D(Ω), and finally (3.4) for Neumann boundary
sides. If σ ∈ EN

h , notice moreover that 〈uσ − u, ϕ〉σ = 〈uσ − u, ϕ−ϕσ〉σ, since 〈uσ − u, ϕσ〉σ = 0 by (3.6) (recall
that ϕσ is a constant).

Now by the definition (3.1) of the finite volume scheme, or by (3.7b) or (3.8b) in the mixed finite element
case, it follows that(

f + ∇ · (S∇p̃h) −∇ · (p̃hw) − rp̃h, ϕK

)
K

+ 〈p̃hw · n, ϕK〉∂K − ϕK

∑
σ∈EK

WK,σ (4.5)

+(rp̃h, ϕK)K − ϕKrKpK |K| ± 〈sw · n, ϕK〉∂K = 0 ∀K ∈ Th .

To see this, recall that ϕK is the constant mean of ϕ over K, that (∇ · (S∇p̃h), 1)K = 〈S∇p̃h · n, 1〉∂K =
−

∑
σ∈EK

SK,σ by the Green theorem in the finite volume case, and that

−(S−1
K uh · w, 1)K + (pK∇ · w, 1)K = (∇p̃h ·w, 1)K + (p̃h∇ ·w, 1)K = 〈p̃hw · n, 1〉∂K ,
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using that w ∈ RT(Th) by Assumption (B2) in the centered mixed finite element one. Hence we can subtract
this term from each summand in (4.4). To conclude the proof, if now suffices to use Lemma 4.2. � �

Theorem 4.1 can now be proved by estimating the terms TR, TC, TU, TRQ, and TΓN separately, putting
s = IΓ

Os(p̃h) in Lemma 4.3 and using the Schwarz and Cauchy–Schwarz inequalities, the Poincaré inequality (2.1),
the generalized Friedrichs inequality (2.2), the trace inequality (2.3), (3.10b), the Green theorem, and the
definition of ||| · |||K by (2.5). It is detailed in [24, 23].

5. Various remarks

We give several remarks in this section.

5.1. Nature of the estimates and some comments on the proof

The basis for our a posteriori error estimates is the construction of the postprocessed approximation p̃h, which
is then compared to the primal weak solution (2.6) in (4.4), as in the finite element method, cf. [20]. The finite
element Galerkin orthogonality is replaced by the element conservativity equations (3.1) and (3.7b) or (3.8b),
respectively, which yields (4.5). Consequently, residual estimators similar to those in the finite element case
are obtained. However, whereas in the lowest-order Galerkin finite element method, ∇ · (SK∇ph)|K is always
equal to zero on all K ∈ Th, our element residuals ηR,K (4.1) are relevant even if the original finite volume or
mixed finite element solution is elementwise constant. The crucial point is however that in contrast to Galerkin
finite element approximations, the normal traces of −S∇p̃h = uh are continuous across interior sides in finite
volume or mixed finite element schemes. Hence the side error estimators penalizing the mass balance common
in Galerkin finite element methods (cf. [20]) do not appear here at all. However, p̃h is nonconforming in the
sense that it is not included in H1(Ω), so that the estimator ηNC,K (4.2) comes in place.

5.2. Asymptotic exactness and asymptotic robustness with respect to inhomogeneities
and anisotropies

For pure diffusion problems (i.e. w = r = 0 in (1.1a)–(1.1c)), using the fact that s ∈ H1(Ω) such that
s|ΓD = g in Lemma 4.3 was chosen arbitrarily, it shows that we in fact have

|||p − p̃h|||Ω ≤ inf
s∈H1(Ω), s|ΓD=g

|||p̃h − s|||Ω +

{ ∑
K∈Th

(ηR,K + ηΓN,K)2
}1/2

.

Moreover, in this case, −∇ · (SK∇p̃h) = fK for all K ∈ Th using (3.9a) and (3.1) or (3.7b) or (3.8b). This by
virtue of

inf
s∈H1(Ω), s|ΓD=g

|||p̃h − s|||Ω ≤ |||p̃h − p|||Ω (5.1)

shows that such an estimate is asymptotically exact (asymptotically equal to the error) and asymptotically fully
robust with respect to inhomogeneities and anisotropies (asymptotically with respect to the approximation of
p̃h by some s ∈ H1(Ω) such that s|ΓD = g on a fixed grid Th) in the case where ηR,K = ηΓN,K = 0, i.e. when f
is piecewise constant and ΓN = ∅ or when u is piecewise constant on EN

h . In the general case, if f and u have
sufficient regularity, the asymptotic exactness and asymptotic robustness still hold true (this time asymptotic
also with respect to h → 0). Although we only use the Oswald interpolate of p̃h instead of evaluating or
approximating the infimum in (5.1), the numerical experiments in the next section show that the estimators
of Section 4.1 are almost asymptotically exact, and this also in the convection–diffusion–reaction case. More
comments on this point are given in [24, 23]. Finally, local efficiency (semi-robust in the sense that the local
efficiency constant only depends on local variations in the coefficients and becomes optimal as the local Péclet
number gets sufficiently small) of our estimators is proved in these references.
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Figure 1. Estimated and actual error and the different estimators (left) and overall efficiency
(right) against the number of elements, ε = 1, a = 0.5. Finite volumes (top), mixed finite
elements (bottom)

5.3. Relations between finite volumes and mixed finite elements

It is shown in [22] that in the lowest-order mixed finite element schemes, there exist local flux expressions.
These schemes are thus equivalent to particular finite volume schemes, can be implemented with only one
unknown (pK) per element, and their computational cost can be considerably reduced. This result complements
the previously know fact that the finite volume method and the mixed finite element one only differ by numerical
integration (see e.g. [2,3]). The proximity of the two schemes is also confirmed numerically in the next section.

6. Numerical experiments

We illustrate here the behavior of our estimates on a model convection–diffusion–reaction problem. We use
the finite volume scheme (3.1)–(3.6) with the local Péclet upstream weighting described in [23, Remark 3.1],
which we extend to strictly Delaunay triangular meshes, cf. [10, Example 9.1]. For mixed finite elements, we
use a scheme representing a smooth transition from the upwind-weighted scheme (3.8a)–(3.8b) to the centered
scheme (3.7a)–(3.7b), see [24, Section 5.5]. These conceptions are important since they imply a second-order
discretization of the convection term in the diffusion-dominated case.

We put Ω = (0, 1) × (0, 1), w = (0, 1), and r = 1 in (1.1a) and consider three cases with S = ε Id and
ε equal to, respectively, 1, 10−2, and 10−4. The right-hand side term f , Neumann boundary conditions on
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Figure 2. Estimated (left) and actual (right) error distribution, ε = 10−2, a = 0.05, finite volumes

the upper side, and Dirichlet boundary conditions elsewhere are chosen so that the solution was p(x, y) =
0.5(1 − tanh((0.5 − x)/a). This solution is in fact one-dimensional and possesses an internal layer of width a
which we set, respectively, equal to 0.5, 0.05, and 0.02. We start the computations from an unstructured grid
of Ω consisting of 46 triangles and refine it either uniformly (up to 5 refinements) or adaptively.

For ε = 1 and a = 0.5 (diffusion-dominated regime), estimated and actual errors in the energy norm (2.5)
and the different estimators for both finite volumes and mixed finite elements on uniformly refined grids are
reported in the left part of Figure 1. First of all, the two schemes give very close approximate solutions. Next,
since r is a constant, it follows from (3.9b) that the reaction quadrature estimator is zero in the mixed finite
element method, and this is the only remarkable difference between the estimators of the two schemes (μK = 1
in the finite volume case). Since the residual, convection, and upwinding estimators all represent higher-order
terms (the Neumann boundary one is zero), in both cases the only important estimator is the nonconformity
one. Overall efficiency, giving the ratio of the estimated ||| · |||Ω-error to the actual ||| · |||Ω-error, is then plotted
in the right part of Figure 1. This quantity simply expresses how many times we have overestimated the actual
error—recall that there are no undetermined multiplicative constants in our estimates. These plots extend
the asymptotic exactness of our estimators discussed in Section 5.2. Finally, the estimators reproduced very
precisely the distribution of the error in this case.

For ε = 10−2 and a = 0.05 (convection-dominated regime on coarse meshes and diffusion-dominated regime
with progressive refinement), still the distribution of the error in the finite volume case is predicted very well,
cf. Figure 2. Note in particular the correct localization of the error away from the center of the shock, as well as
the sensitivity of our estimator to the shape of the elements. The results for mixed finite elements on uniformly
refined grids are almost identical. Next, the estimated and actual errors for ε = 10−2 and a = 0.05 and ε = 10−4

and a = 0.02 are plotted against the number of elements in uniformly/adaptively refined meshes in Figure 3.
One can see that for both schemes, we can substantially reduce the number of unknowns necessary to attain
the prescribed precision using the derived a posteriori error estimates and adaptively refined grids. Concerning
efficiency, it is similar for both methods and close to two for finest grids in the first case, whereas in the second
one, not even the elements in the refined shock region start to leave the convection-dominated regime, so that
the efficiency if far from optimal values.

Let us conclude by some additional comments. First of all, the above results show that there are no essential
differences in the precision between the considered finite volume and mixed finite element schemes, confirm-
ing thus the remarks of Section 5.3. However, recall that the mixed finite element schemes (3.7a)–(3.7b) or
(3.8a)–(3.8b) can be defined on any simplicial mesh and easily take into account general data (in particular
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Figure 3. Estimated and actual error against the number of elements in uniformly/adaptively
refined meshes for ε = 10−2, a = 0.05 (left) and ε = 10−4, a = 0.02 (right). Finite volumes
(top), mixed finite elements (bottom)

inhomogeneous and anisotropic diffusion–dispersion tensors). With the techniques from [22], one can also sig-
nificantly reduce their computational cost. Considering the finite volume scheme (3.1)–(3.6), it has first of all
quite severe mesh constrains. In particular, in the above simulations, an important effort had to be made in
order to keep the adaptively refined mesh uniformly strictly Delaunay, since the usual “longest edge” refinement
or its variants cannot be used, see [23] for details. Also, its quadrature-like behavior while taking into account
the data is well represented in our simulations by the nonzero reaction estimator. However, this scheme is easier
to implement and the arising linear systems are still less expensive to solve. Most importantly, concerning a
posteriori error estimation and adaptivity, we come to basically same results. Finally, similar conclusions can be
drawn from the numerical results on a model problem with strongly inhomogeneous diffusion–dispersion tensor,
which in particular confirm the excellent efficiency and robustness of our estimators in this case, see [24, 23].
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