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June 15, 2018

Abstract

We consider the a posteriori error analysis of fully discrete approximations of
parabolic problems based on conforming hp-finite element methods in space and an
arbitrary order discontinuous Galerkin method in time. Using an equilibrated flux
reconstruction, we present a posteriori error estimates yielding guaranteed upper
bounds on the L2(H1)-norm of the error, without unknown constants and without
restrictions on the spatial and temporal meshes. It is known from the literature that
the analysis of the efficiency of the estimators represents a significant challenge for
L2(H1)-norm estimates. Here we show that the estimator is bounded by the L2(H1)-
norm of the error plus the temporal jumps under the one-sided parabolic condition
h2 . τ . This result improves on earlier works that required stronger two-sided
hypotheses such as h ' τ or h2 ' τ ; instead our result now encompasses practically
relevant cases for computations and allows for locally refined spatial meshes. The
constants in our bounds are robust with respect to the mesh and time-step sizes,
the spatial polynomial degrees, and also with respect to refinement and coarsening
between time-steps, thereby removing any transition condition.

Key words: Parabolic partial differential equations, a posteriori error estimates,
guaranteed upper bound, polynomial-degree robustness, high-order methods

1 Introduction

We consider the heat equation

∂tu−∆u = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(0) = u0 in Ω,

(1.1)
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where Ω ⊂ Rd, 1 ≤ d ≤ 3, is a bounded, connected, polytopal open set with Lips-
chitz boundary, and T > 0 is the final time. We assume that f ∈ L2(0, T ;L2(Ω)),
and that u0 ∈ L2(Ω). We are interested here in the a posteriori error analysis in the
L2(H1)-norm of fully discrete numerical methods for (1.1). In particular, we consider
an arbitrary-order discontinuous Galerkin finite element method (DGFEM) in time,
coupled with a conforming hp-FEM in space. A posteriori error estimates should ide-
ally provide guaranteed upper bounds on the error, without unknown constants. Oth-
erwise, if the estimators constitute an upper bound on the error up to an unknown
constant, then we say instead that the estimators are reliable. Furthermore, the es-
timators should be locally efficient, meaning that the local estimators should lie be-
low the error measured in a local space-time neighbourhood, up to a generic constant.
Finally, the estimators should ideally be robust, with all constants in the bounds be-
ing independent of all discretization parameters. Furthermore, on a practical side it
is highly desirable that the estimators be locally computable. We refer the reader
to [Verfürth(2013)] for an introduction to these concepts. Our motivation for considering
the heat equation (1.1) as a model problem is that the a posteriori error estimates devel-
oped in this context serve as a starting point for extensions to diverse applications,
for example nonlinear problems (see [Amrein & Wihler(2016), Di Pietro et al.(2015),
Doleǰśı et al.(2013), Kreuzer(2013)]), as well as playing a central role in adaptive algo-
rithms (see [Chen & Feng(2004), Gaspoz et al.(2016), Kreuzer et al.(2012)]). For non-
conforming discretization methods in space, we refer to [Ern & Vohraĺık(2010)] as well
as [Georgoulis et al.(2011), Nicaise & Soualem(2005)].

The literature shows that the structure of parabolic problems leads to several out-
standing challenges facing the central goals in a posteriori error estimation. In particular,
several difficulties arise in the analysis of the efficiency and robustness of the estima-
tors. To explain some of the challenges, first recall that the a posteriori error analysis of
parabolic problems admits a range of norms in which to measure the error: for instance,
these include the L2(H1)-norm (see [Picasso(1998), Verfürth(1998)]), L2(L2)-norm (see
[Verfürth(1998)]), L∞(L2)-norms and L∞(L∞)-norms (see [Eriksson & Johnson(1995)]),
L∞(L2)∩L2(H1)-norms (see [Lakkis & Makridakis(2006), Makridakis & Nochetto(2003),
Schötzau & Wihler(2010)] and more recently [Georgoulis et al.(2017)]), and L2(H1) ∩
H1(H−1)-norms (see [Bergam et al.(2005), Ern & Vohraĺık(2010), Gaspoz et al.(2016),
Nicaise & Soualem(2005), Repin(2002), Verfürth(2003)]). To our knowledge, efficiency
results have so far only been proved in the case of the L2(H1) norm and of the L2(H1)∩
H1(H−1) norm. Although no analysis of efficiency is yet available in the setting of other
norms, the optimal order of convergence of the estimators has nonetheless been ob-
served in [Lakkis & Makridakis(2006), Makridakis & Nochetto(2003)] for instance. The
efficiency results in the L2(H1) norm have been attained under restrictions linking mesh
and time-step sizes, whereas in the L2(H1)∩H1(H−1) norm, such restrictions have been
removed. It is important to observe that these two functional settings admit an inf-sup
theory for the continuous problem that establishes an equivalence between appropriate
norms of the error and of the residual. However, a difference between these two settings
is that for L2(H1)∩H1(H−1)-estimates, the dual norm on the residual localizes straight-
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forwardly with respect to time, whereas this is not the case for the L2(H1)-estimates.
A posteriori error estimators in the L2(H1)-norm for a class of nonlinear parabolic

problem have been studied in [Verfürth(1998)]. In particular, [Verfürth(1998)] found
that the ratio between the constants in the upper and lower bounds for the error by
the estimators depends on 1 + τh−2 + τ−1h2 + |log h|, see [Verfürth(1998), Prop. 4.1],
where h denotes the spatial mesh size and τ denotes the time-step size, and thus the
efficiency of the estimators is subject to the assumption that τ ' h2. [Picasso(1998)]
studied implicit Euler discretizations of the heat equation: under the assumption that
τ ' h, he showed that the spatial estimator can be bounded from above by the L2(H1)-
norm of the error plus the temporal jump estimator; in particular, the temporal jump
estimator, denoted by εnK in [Picasso(1998), eq. (2.11)], appears on the right-hand side of
the lower bound in [Picasso(1998), eq. (2.24)]. In both [Picasso(1998), Verfürth(1998)],
the two-sided restrictions between the time-step and mesh sizes have the disadvantage
of necessarily requiring that the meshes must be quasi-uniform, and thus theoretically
prohibiting adaptive refinement.

Starting with [Verfürth(2003)], one approach to removing these two-sided restrictions
has been to consider a different functional framework for the a posteriori error analysis,
namely by estimating the L2(H1)∩H1(H−1)-norm of the error. Part of the justification
of this approach is to be found in the observation in [Verfürth(2003), p. 198, Par. (5)],
showing that the estimators of [Picasso(1998), Verfürth(1998)] are upper bounds to not
only the L2(H1)-norm of the error, but also the L2(H1) ∩H1(H−1)-norm of the error,
up to data oscillation. It was then shown in [Verfürth(2003)] that these estimators
are efficient, locally-in-time yet only globally-in-space, with respect to the L2(H1) ∩
H1(H−1)-norm of the error, without requiring conditions between mesh and time-step
sizes; see also [Bergam et al.(2005)]. Given that the estimators used in both frameworks
are the same up to data oscillation, it is of course natural that more general efficiency
results are obtainable when including the H1(H−1) part of the norm, since it allows for
the appearance of additional terms on the right-hand side in the efficiency bounds.

Recently, we developed in [Ern et al.(2017b)] a posteriori error estimators, based on
equilibrated fluxes, for arbitrary order discretizations of parabolic problems within the
L2(H1) ∩H1(H−1)-norm setting, that are guaranteed, locally efficient, and robust. In
particular, the analysis does not require any coupling between mesh and time-step sizes,
and overcomes the problem of obtaining local-in-space and local-in-time efficiency by con-
sidering a natural extension of the L2(H1)∩H1(H−1)-norm to the time-nonconforming
approximation space. The estimators are robust not only with respect to the mesh and
time-step sizes, but also with respect to the polynomial degrees in space and time, and
also with respect to mesh coarsening and refinement, thereby removing the so-called
transition conditions previously encountered in [Verfürth(2003)]. These results are built
upon the analysis for elliptic problems in [Braess et al.(2009), Ern & Vohraĺık(2010),
Ern & Vohraĺık(2015), Ern & Vohraĺık(2016)]. We refer to [Doleǰśı et al.(2016)] for nu-
merical experiments showing the performance of these estimators in practice.

In this work, we present a posteriori error estimates for the L2(H1)-norm of the error,
which are based on the same locally computable equilibrated flux as in [Ern et al.(2017b)],
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thereby showing that the same methodology can be used in the L2(H1)-norm estimates
as for the L2(H1) ∩H1(H−1)-norm. Our main contributions, presented in Theorem 5.1
in section 5 below, include guaranteed upper bounds for the L2(H1)-norm of the error,
and local-in-space-and-time lower bounds for the spatial estimator under the one-sided
condition h2 . τ . We therefore remove the need for the two-sided conditions encoun-
tered previously, and we note that the assumptions in [Picasso(1998), Verfürth(1998)]
were stronger than our assumption. We emphasize that the regime where h2 . τ is of
practical interest in computations, since implicit methods offer the possibility for large
time-steps. This condition connecting spatial and temporal resolutions is apparently
related to the localisation of the dual norm: the error in the L2(H1)-norm is connected
to the dual norm of the residual for a space of test functions in L2(H1) ∩ H1(H−1)
featuring regularity across both time and space, as shown in Theorem 2.1 below. There-
fore the dual norm of the residual is not trivially localized in time. In comparison, for
estimates of the error in the L2(H1) ∩ H1(H−1)-norm, the corresponding dual norm
of the residual does localize in time because the test space there is L2(H1), see, e.g.,
[Ern et al.(2017b), Theorem 2.1]. It is still unclear whether the condition h2 . τ is
really necessary or just technical. It is, however, worth noting that the recent adaptive
algorithm from [Gaspoz et al.(2016)] guarantees a uniform lower-bound for the time-step
sizes and subordinates the spatial approximation to the temporal indicators; therefore
our assumption is not necessarily restrictive in an adaptive context. Our lower bound is
similar to [Picasso(1998)] in at least one respect, namely that the right-hand side of our
lower bound includes the temporal jump estimator, since it does not appear possible to
show in general that this estimator is locally bounded from above by the L2(H1)-norm
of the error. Furthermore, we show that the constant of the lower bound is robust with
respect to the spatial polynomial degree, and is also robust with respect to refinement
and coarsening of the meshes, thereby allowing us to remove the so-called transition
conditions. We also show that our results imply local-in-space and local-in-time effi-
ciency when considered in the framework of the augmented norms that were proposed
in [Akrivis et al.(2009), Makridakis & Nochetto(2006), Schötzau & Wihler(2010)].

Our analysis rests upon the following key ingredients. First, in section 2, we present
the inf-sup identity which relates the L2(H1)-norm of the error to an appropriate dual
norm of the residual on test functions in a subspace of L2(H1)∩H1(H−1). After setting
the notation for the class of finite element methods in section 3, we recall the construc-
tion of the equilibrated flux from [Ern et al.(2017b)] in section 4. We state the main
results in section 5. In section 6 we use the inf-sup framework to prove the guaran-
teed upper bounds and the proof of the lower bounds is the subject of section 7. It is
based on the combination of two key ideas. The first is to take advantage of the semi-
discreteness in time of the test functions appearing in the fundamental efficiency result
of [Ern et al.(2017b), Lemma 8.2] in order to gain control over a negative norm on the
time derivatives of the test functions; see Lemma 7.2 below. The second idea is to ap-
peal to a specific pointwise-in-time identity for the discontinuous Galerkin time-stepping
method, see Lemma 7.3 below. Thus, we employ the definition of the numerical scheme
for proving the lower bounds, which is somewhat unusual for a posteriori error analysis.
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The combination of these two ideas then yields the lower bounds stated in section 5
under the relaxed hypothesis that h2 . τ only.

Throughout this paper, the notation a . b means that a ≤ Cb, with a generic
constant C that depends possibly on the shape-regularity of the spatial meshes and the
space dimension d, but is otherwise independent of the mesh-size, time-step size, as
well as the spatial and temporal polynomial degrees, or on refinement and coarsening
between time-steps.

2 Inf-sup theory

Recall that Ω ⊂ Rd, 1 ≤ d ≤ 3 is a bounded, connected, polyhedral open set with
Lipschitz boundary. For an arbitrary open subset ω ⊂ Ω, we use (·, ·)ω to denote the
L2-inner product for scalar- or vector-valued functions on ω, with associated norm ‖·‖ω.
In the special case where ω = Ω, we drop the subscript notation, i.e. ‖·‖ := ‖·‖Ω.

The starting point of the analysis is the weak formulation of problem (1.1) where the
time derivative has been cast onto a test function, using integration by parts in time. In
particular, the solution space X and test space YT are defined by

X := L2(0, T ;H1
0 (Ω)),

YT := {ϕ ∈ L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)), ϕ(T ) = 0}.

(2.1)

The spaces X and YT are equipped with the norms

‖v‖2X :=

∫ T

0
‖∇v‖2 dt ∀ v ∈ X,

‖ϕ‖2YT :=

∫ T

0
‖∂tϕ‖2H−1(Ω) + ‖∇ϕ‖2 dt+ ‖ϕ(0)‖2 ∀ϕ ∈ YT .

(2.2)

Let the bilinear form BX : X × YT → R be defined by

BX(v, ϕ) :=

∫ T

0
−〈∂tϕ, v〉+ (∇v,∇ϕ) dt ∀ v ∈ X, ϕ ∈ YT , (2.3)

where 〈·, ·〉 denotes the duality pairing between H−1(Ω) and H1
0 (Ω). Then, problem (1.1)

admits the following weak formulation: find u ∈ X such that

BX(u, ϕ) =

∫ T

0
(f, ϕ) dt+ (u0, ϕ(0)) ∀ϕ ∈ YT . (2.4)

The well-posedness of (2.4) is well-known and can be shown by Galerkin’s method, see
for instance the textbook by [Wloka(1987)]. Note that in this weak formulation, the
initial condition u(0) = u0 is expressed as a natural condition, appearing in (2.4), rather
than as an essential condition imposed by the choice of solution space.

The following result states an inf–sup stability result for the bilinear form BX . This
inf–sup stability result has the interesting and important property of taking the form of
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an identity, which is advantageous for the sharpness of a posteriori error analysis, and
shows that the choice of norms for the spaces X and YT in (2.2) above are optimal. We
refer the reader to [Tantardini & Veeser(2016)] for further results on the inf-sup theory
of parabolic problems.

Theorem 2.1 (Inf–sup identity). For every v ∈ X, we have

‖v‖X = sup
ϕ∈YT \{0}

BX(v, ϕ)

‖ϕ‖YT
. (2.5)

Proof. The arguments in the proof of [Ern et al.(2017b), Theorem 2.1] can be used to
show the following inf-sup identity: for any ϕ ∈ YT , we have

‖ϕ‖YT = sup
v∈X\{0}

BX(v, ϕ)

‖v‖X
. (2.6)

So, (2.6) immediately implies the lower bound ‖v‖X ≥ supϕ∈YT \{0} BX(v, ϕ)/‖ϕ‖YT for
any fixed v ∈ X. To obtain the converse bound, let ϕ∗ ∈ YT denote the solution of
BX(w,ϕ∗) =

∫ T
0 (∇w,∇v) dt for all w ∈ X. This problem can simply be seen as a

backward-in-time parabolic problem with final time condition ϕ∗(T ) = 0. Hence, we
have ‖v‖2X = BX(v, ϕ∗) and (2.6) implies that ‖ϕ∗‖YT = ‖v‖X . This immediately shows
that ‖v‖X ≤ supϕ∈YT \{0} BX(v, ϕ)/‖ϕ‖YT , and completes the proof of (2.5).

In order to estimate the error between the solution u of (1.1) and its approximation,
we define the residual functional RX : X → [YT ]′ by

〈RX(v), ϕ〉[YT ]′×YT := BX(u− v, ϕ) =

∫ T

0
(f, ϕ) + 〈∂tϕ, v〉 − (∇v,∇ϕ) dt+ (u0, ϕ(0)),

(2.7)
where v ∈ X and ϕ ∈ YT , and where the equality follows simply from (2.4). The dual
norm of the residual ‖RX(v)‖[YT ]′ is naturally defined by

‖RX(v)‖[YT ]′ := sup
ϕ∈YT \{0}

〈RX(v), ϕ〉
‖ϕ‖YT

. (2.8)

Theorem 2.1 implies the following equivalence between the error and dual norm of the
residual:

‖u− v‖X = ‖RX(v)‖[YT ]′ ∀ v ∈ X. (2.9)

Remark 2.1. Problem (1.1) admits an alternative weak formulation where the test space
is X and the trial space is L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;H−1(Ω)). We refer the reader to
[Ern et al.(2017b)] and the references therein for further details. The solution of the
problem remains the same for the two weak formulations, although each weak formula-
tion is tied to a different inf-sup condition that relates the norm of the error and of the
residual, exactly in the way (2.5) and (2.6) interplay.

6



3 Finite element approximation

The time interval (0, T ) is partitioned into sub-intervals In := (tn−1, tn), with 1 ≤ n ≤ N ,
where it is assumed that [0, T ] =

⋃N
n=1 In, and that {tn}Nn=0 is strictly increasing with

t0 = 0 and tN = T . For each interval In, we let τn := tn− tn−1 denote the local time-step
size. No special assumptions are made about the relative sizes of the time-steps to each
other. A temporal polynomial degree qn ≥ 0 is associated with each time-step In, and we
gather all the polynomial degrees in the vector q = (qn)Nn=1. For a general vector space
V , we shall write Qqn (In;V ) to denote the space of V -valued univariate polynomials of
degree at most qn over the time-step interval In.

3.1 Meshes

For each 0 ≤ n ≤ N , let T n denote a matching simplicial mesh of the domain Ω, where we
assume shape-regularity of the meshes uniformly with respect to n. We consider here only
matching simplicial meshes for simplicity, although we indicate that mixed simplicial–
parallelepipedal meshes, possibly containing hanging nodes, can also be treated: see
[Doleǰśı et al.(2016)] for instance. The mesh T 0 will be used to approximate the initial
datum u0. For each element K ∈ T n, let hK := diamK denote the diameter of K. We
associate a local spatial polynomial degree pK ≥ 1 with each K ∈ T n, and we gather all
spatial polynomial degrees in the vector pn = (pK)K∈T n . In order to keep our notation
sufficiently simple, the dependence of the local spatial polynomial degrees pK on the
time-step is kept implicit, although we bear in mind that the polynomial degrees may
change between time-steps.

3.2 Approximation spaces

Given a general matching simplicial mesh T and given a vector of polynomial degrees
p = (pK)K∈T , pK ≥ 1 for all K ∈ T , we define the H1

0 (Ω)-conforming hp-finite element
space Vh(T ,p) by

Vh(T ,p) :=
{
vh ∈ H1

0 (Ω), vh|K ∈ PpK (K) ∀K ∈ T
}
, (3.1)

where PpK (K) denotes the space of polynomials of total degree at most pK on K. To
shorten the notation, let V n := Vh(T n,pn) for each 0 ≤ n ≤ N . Let Πhu0 ∈ V 0 denote
an approximation to the initial datum u0, a typical choice being the L2-orthogonal
projection of u0 onto V 0. Given the collection of time intervals {In}Nn=1, the vector q
of temporal polynomial degrees, and the hp-finite element spaces {V n}Nn=0, the finite
element space Vhτ is defined by

Vhτ :=
{
vhτ |(0,T ) ∈ X, vhτ |In ∈ Qqn(In;V n) ∀n = 1, . . . , N, vhτ (0) ∈ V 0

}
. (3.2)

Functions in Vhτ are generally discontinuous with respect to the time-variable at the
temporal partition points. We take them to be left-continuous: for all 1 ≤ n ≤ N , we
define vhτ (tn) as the trace at tn of the restriction vhτ |In . Moreover, functions in Vhτ
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also have a well-defined value at t0 = 0. For all 0 ≤ n < N , we denote the right-limit of
vhτ ∈ Vhτ at tn by vhτ (t+n ). Then, the temporal jump operators L·Mn are defined by

Lvhτ Mn := vhτ (tn)− vhτ (t+n ), 0 ≤ n ≤ N − 1. (3.3)

3.3 Refinement and coarsening

Similarly to other works, e.g., [Verfürth(2003), p. 196], we assume that we have at our

disposal a common refinement mesh T̃ n of T n−1 and T n for each 1 ≤ n ≤ N , as
well as associated polynomial degrees p̃n = (p

K̃
)
K̃∈T̃ n , such that V n−1 + V n ⊂ Ṽ n :=

Vh(T̃ n, p̃n). For a function vhτ ∈ Vhτ , we observe that Lvhτ Mn−1 ∈ Ṽ n for each 1 ≤ n ≤ N
since vhτ (tn−1) ∈ V n−1, vhτ (t+n−1) ∈ V n, and V n−1 + V n ⊂ Ṽ n. It is assumed that the

shape-regularity of T̃ n is equivalent up to uniform constants to those of T n−1 and T n,
and that every element K̃ ∈ T̃ n is wholly contained in a single element K ′ ∈ T n−1 and a
single element K ′′ ∈ T n. We emphasize that we do not require any assumptions on the
relative coarsening or refinement between successive spaces V n−1 and V n. In particular,
we do not need the transition condition from [Verfürth(2003), p. 196, 201], which requires

a uniform bound on the ratio of element sizes between T̃ n and T n. In practice, we expect
that most adaptive algorithms will obtain each mesh T n from an initial coarse mesh,
with coarsening/refinements between two successive meshes, using a standard algorithm
such as newest vertex bisection. We refer the reader to [Nochetto et al.(2009)] for a
discussion in this context. To derive our results, we note that we do not need to restrict
ourselves to any particular refinement algorithm.

3.4 Numerical method

The numerical scheme consists of finding uhτ ∈ Vhτ such that uhτ (0) = Πhu0, and such
that ∫

In

(∂tuhτ , vhτ ) + (∇uhτ ,∇vhτ ) dt−
(
Luhτ Mn−1, vhτ (t+n−1)

)
=

∫
In

(f, vhτ ) dt (3.4)

for all test functions vhτ ∈ Qqn(In;V n) and for each time-step interval In, n = 1, . . . , N .
Here the time derivative ∂tuhτ is understood as the piecewise time-derivative on each
time-step interval In. The numerical solution uhτ ∈ Vhτ can thus be obtained by solving
the fully discrete problem (3.4) on each successive time-step. At each time-step, this
requires solving a linear system that is symmetric only in the case qn = 0; this can
be performed efficiently in practice for arbitrary orders following [Smears(2017)]. Note
further that the initial condition uhτ (0) = Πhu0 does not guarantee that the right-limit
uhτ (0+) should equal Πhu0.

3.5 Reconstruction operator

For each time-step interval In and each nonnegative integer q, let Lnq denote the polyno-
mial on In obtained by mapping the q-th Legendre polynomial under an affine transfor-
mation of (−1, 1) to In. It follows that Lnq (tn) = 1 for all q ≥ 0, and Lnq (tn−1) = (−1)q,
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and that the mapped Legendre polynomials {Lnq }q≥0 are L2-orthogonal on In, and satisfy∫
In
|Lnq |2 dt = τn

2q+1 for all q ≥ 0, see for instance [Schwab(1998), Appendix C]. Following
[Makridakis & Nochetto(2006)] (see also [Smears(2017), Remark 2.3]), we introduce the
reconstruction operator I defined on Vhτ by

(Ivhτ )|In := vhτ |In +
(−1)qn

2

(
Lnqn − L

n
qn+1

)
Lvhτ Mn−1 ∀ vhτ ∈ Vhτ . (3.5)

It is clear that I is a linear operator on Vhτ . Furthermore, the definition ensures that
Ivhτ |In (tn) = vhτ (tn), and that Ivhτ |In (t+n−1) = vhτ (tn−1) for all 1 ≤ n ≤ N . This
implies that Ivhτ is continuous with respect to the temporal variable at the interval
partition points {tn}N−1

n=0 and hence Ivhτ ∈ H1(0, T ;H1
0 (Ω)). Furthermore, Ivhτ |In ∈

Qqn+1

(
In; Ṽ n

)
for any vhτ ∈ Vhτ , where we recall that V n−1 + V n ⊂ Ṽ n. It is well-

known from [Ern & Schieweck(2016), Makridakis & Nochetto(2006), Smears(2017)] that
we may rewrite the numerical scheme (3.4) as∫

In

(∂tIuhτ , vhτ ) + (∇uhτ ,∇vhτ ) dt =

∫
In

(f, vhτ ) dt ∀ vhτ ∈ Qqn(In;V n). (3.6)

Note also that Iuhτ (0) = Πhu0.

4 Construction of the equilibrated flux

The a posteriori error estimates presented in this paper are based on a discrete and locally
computable H(div)-conforming flux σhτ that satisfies the key equilibration property

∂tIuhτ +∇·σhτ = fhτ in Ω× (0, T ), (4.1)

where Iuhτ is defined in section 3.5, and fhτ ≈ f is an approximation of the data that
is defined in (4.4) below. We call σhτ an equilibrated flux. The construction of σhτ
given here is exactly the same as in [Ern et al.(2017b)]. This has the practical benefit
that a single construction of the equilibrated flux can be used for both a posteriori error
estimates in the L2(H1) ∩H1(H−1)-norm and also in the L2(H1)-norm.

4.1 Local mixed finite element spaces

For each 1 ≤ n ≤ N , let Vn denote the set of vertices of the mesh T n, where we
distinguish the set of interior vertices Vnint and the set of boundary vertices Vnext. For
each a ∈ Vn, let ψa denote the hat function associated with a, and let ωa denote the
interior of the support of ψa, with associated diameter hωa . Furthermore, let T̃ a denote

the restriction of the mesh T̃ n to ωa. Recalling that the common refinement spaces Ṽ n

were obtained with a vector of polynomial degrees p̃n = (p
K̃

)
K̃∈T̃ n , we associate with

each a ∈ Vn the fixed polynomial degree

pa := max
K̃∈T̃ a

(p
K̃

+ 1). (4.2)
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For a polynomial degree p ≥ 0, let the piecewise polynomial (discontinuous) spaces

Pp(T̃ a) and RTNp(T̃ a) be defined by

Pp(T̃ a) := {qh ∈ L2(ωa), qh|K̃ ∈ Pp(K̃) ∀ K̃ ∈ T̃ a},

RTNp(T̃ a) := {vh ∈ L2(ωa), vh|K̃ ∈ RTNp(K̃) ∀K̃ ∈ T̃ a},

where RTNp(K̃) := Pp(K̃) + Pp(K̃)x denotes the Raviart–Thomas–Nédélec space of

order p on the simplex K̃. It is important to notice that whereas the patch ωa is
subordinate to the elements of the mesh T n around the vertex a ∈ Vn, the spaces
Pp(T̃ a) and RTNp(T̃ a) are subordinate to the submesh elements in T̃ a; of course, in
the absence of coarsening, this distinction vanishes. We now introduce the local spatial
mixed finite element space V a

h , defined by

V a
h :=


{
vh ∈H(div, ωa) ∩RTNpa(T̃ a), vh · n = 0 on ∂ωa

}
if a ∈ Vnint,{

vh ∈H(div, ωa) ∩RTNpa(T̃ a), vh · n = 0 on ∂ωa \ ∂Ω
}

if a ∈ Vnext.

We then define the space-time mixed finite element space

V a,n
hτ := Qqn(In;V a

h ), (4.3)

where we recall that Qqn (In;V a
h ) denotes the space of V a

h -valued univariate polynomials
of degree at most qn over the time-step interval In.

4.2 Data approximation

Our a posteriori error estimates given in section 5 involve certain approximations of
the source term f appearing in (1.1). It is helpful to define these approximations
here. For each 1 ≤ n ≤ N and for each a ∈ Vn, let Πa,n

hτ be the L2
ψa

-orthogonal

projection from L2(In;L2
ψa

(ωa)) onto Qqn(In;Ppa−1(T̃ a)), where L2
ψa

(ωa) is the space

of measurable functions v on ωa such that
∫
ωa
ψa|v|2 dx < ∞. In other words, the

projection operator Πa,n
hτ is defined by

∫
In

(ψaΠa,n
hτ v, qhτ )ωa dt =

∫
In

(ψav, qhτ )ωa dt for

all qhτ ∈ Qqn(In;Ppa−1(T̃ a)). We adopt the convention that Πa,n
hτ v is extended by zero

from ωa × In to Ω× (0, T ) for all v ∈ L2(In;L2
ψa

(ωa)). Then, we define fhτ by

fhτ :=
N∑
n=1

∑
a∈Vn

ψa Πa,n
hτ f. (4.4)

See [Ern et al.(2017b)] for further remarks concerning the approximation properties of
fhτ . In particular, it is shown there that fhτ is a data approximation that is at least of
the same order as the one used in the numerical scheme (3.4).
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4.3 Flux reconstruction

For each 1 ≤ n ≤ N and each a ∈ Vn, let the scalar function ga,nhτ ∈ Qqn(In;Ppa(T̃ a))

and vector field τa,n
hτ ∈ Qqn(In;RTNpa(T̃ a)) be defined by

τa,n
hτ := ψa∇uhτ |ωa×In , (4.5a)

ga,nhτ := ψa

(
Πa,n
hτ f − ∂tIuhτ

)
|ωa×In −∇ψa · ∇uhτ |ωa×In . (4.5b)

For interior vertices, the numerical scheme (3.6) implies that

(ga,nhτ (t), 1)ωa = 0 ∀ t ∈ In. (4.6)

Definition 4.1 (Flux reconstruction). Let uhτ ∈ Vhτ be the numerical solution of (3.4).
For each time-step interval In and for each vertex a ∈ V, let the space V a,n

hτ be defined
by (4.3). Let ga,nhτ and τa,n

hτ be defined by (4.5). Let σa,n
hτ ∈ V

a,n
hτ be defined by

σa,n
hτ := argmin

vhτ∈V a,n
hτ

∇·vhτ=ga,nhτ

∫
In

‖vhτ + τa,n
hτ ‖

2
ωa

dt. (4.7)

Then, after extending σa,n
hτ by zero from ωa × In to Ω × (0, T ) for each a ∈ V and for

each 1 ≤ n ≤ N , we define

σhτ :=
N∑
n=1

∑
a∈Vn

σa,n
hτ . (4.8)

Note that σa,n
hτ ∈ V

a,n
hτ is well-defined for all a ∈ Vn: in particular, for interior

vertices a ∈ Vnint, we use (4.6) to guarantee the compatibility of the datum ga,nhτ with the
constraint ∇·σa,n

hτ = ga,nhτ . The following key result is quoted from [Ern et al.(2017b)].

Theorem 4.2 (Equilibration). Let the flux reconstruction σhτ be given by Definition 4.1,
and let fhτ be defined in (4.4). Then σhτ ∈ L2(0, T ;H(div)) and the equilibration
identity (4.1) holds.

Moreover, for the purpose of implementation, it is known that on each patch of the
mesh and at each time-step, the solution of the minimization problem (4.7) decouples
into qn+1 independent spatial mixed finite element linear systems, which helps to reduce
the cost of computing the flux σhτ .
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5 Main results

We introduce the following a posteriori error estimators and data oscillation terms:

[ηnF,K ]2 :=

∫
In

‖σhτ +∇uhτ‖2K dt, (5.1a)

[ηnJ,K ]2 :=

∫
In

‖∇(uhτ − Iuhτ )‖2K dt, (5.1b)

[ηnosc,hτ ]2 :=
1 +
√

2

2

∫
In

∑
K̃∈T̃ n

[
τn
π

+
h2
K̃

π2

]
‖f − fhτ‖2K̃ dt, (5.1c)

ηosc,init := ‖u0 −Πhu0‖, (5.1d)

where, K ∈ T n, 1 ≤ n ≤ N , the equilibrated flux σhτ is prescribed in Definition 4.1,
and where the data approximation fhτ is defined in section 4.2. The total estimator for
the error is defined by

[ηX ]2 :=
N∑
n=1


[ ∑
K∈T n

{
[ηnF,K ]2 + [ηnJ,K ]2

}] 1
2

+ ηnosc,hτ


2

+ [ηosc,init]
2. (5.2)

The flux estimator ηnF,K and the temporal jump estimator ηnJ,K are the two main esti-
mators. In particular, the flux estimator ηnF,K measures the lack of H(div)-conformity
of ∇uhτ , and the temporal jump estimator ηnJ,K measures the lack of temporal con-
formity of uhτ . Indeed, ηnJ,K is related to the jump Luhτ Mn−1, since it was shown
in [Schötzau & Wihler(2010), Ern et al.(2017b)] that ηnJ,K can be equivalently rewrit-
ten as

ηnJ,K =
√

τn(qn+1)
(2qn+1)(2qn+3) ‖∇Luhτ Mn−1‖K . (5.3)

Given that ηnF,K and ηnJ,K respectively measure the lack of spatial and temporal confor-
mity of the approximate solution, it is common in the literature to call ηnF,K the spatial
estimator and ηnJ,K the temporal estimator. However, such terminology must not be
interpreted as stating that these estimators bound the errors due respectively to the
spatial and temporal discretization. In practice, these estimators can be computed by
quadrature on the common refinement mesh T̃ n. Note that it is possible to split ηnJ,K
into further components, for instance to quantify the effect of coarsening, although this
is not strictly necessary for the purposes of the upper and lower bounds on the error to
be given below, which is why ηnJ,K is given in its current form.

Theorem 5.1 (X-norm a posteriori error estimate). Let u ∈ X be the weak solution of
(1.1), and let uhτ ∈ Vhτ denote the solution of the numerical scheme (3.4). Let ηX be
defined by (5.2). Then, we have the following X-norm a posteriori error estimate:

‖u− uhτ‖X ≤ ηX . (5.4)
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If K ∈ T n, 1 ≤ n ≤ N , is an element such that h2
ωa
≤ γa τn for each a ∈ VK , with VK

the set of vertices of the element K, with some constant γa > 0, where hωa denotes the
diameter of the patch ωa, then we have the local lower bound for the flux estimator ηnF,K

[ηnF,K ]2 ≤
∑
a∈VK

C2
γa,qn

{∫
In

‖∇(u− uhτ )‖2ωa
+ ‖∇(uhτ − Iuhτ )‖2ωa

dt+ [ηa,nosc ]2
}
, (5.5)

where the local data ocillation ηa,nosc is defined by

[ηa,nosc ]2 :=

∫
In

‖f −Πa,n
hτ f‖

2
H−1(ωa)dt. (5.6)

Furthermore, under the hypothesis that there exists γ > 0 such that h2
ωa
≤ γ τn for every

a ∈ Vn and every 1 ≤ n ≤ N , then we have the global lower bound

N∑
n=1

∑
K∈T n

[ηnF,K ]2 ≤ C2
γ,qn

{
‖u− uhτ‖2X + ‖uhτ − Iuhτ‖2X +

N∑
n=1

∑
a∈Vn

[ηa,nosc ]2

}
. (5.7)

The constants Cγa,qn in (5.5) and Cγ,qn in (5.7) satisfy Cγ,qn . (qn + 1)
1
2 + γ(qn + 1)

5
2 ,

and may depend on the shape regularity of T n and T̃ n and on the dimension d, but
otherwise do not depend on the mesh-size, time-step size, spatial polynomial degrees, or
on refinement and coarsening between time-steps.

The proof of Theorem 5.1 is given in several stages throughout the following sections.
In the first stage, we give the proof of the upper bound (5.4) immediately after the helpful
data oscillation estimate of Lemma 6.2 below in section 6. In the second stage, we show
the lower bounds (5.5) and (5.7) in section 7.

Remark 5.1 (Bounds for the jump estimator). In the local lower bound (5.5), we have∫
In
‖∇(uhτ − Iuhτ )‖2ωa

dt =
∑

K⊂ωa
[ηnJ,K ]2, see also (5.3), where the sum is over all

elements K of T n contained in ωa. Similarly, in the global lower bound (5.7), the term
‖uhτ − Iuhτ‖2X =

∑N
n=1

∑
K∈T n [ηnJ,K ]2 appears. Thus our result here is comparable to

those in [Picasso(1998)] where the jump estimator also appears on the right-hand side
of the local lower bounds. The reason for the appearance of this term can be essentially
traced back to the lack of Galerkin orthogonality for the temporal reconstruction Iuhτ ,
see (3.6). Though a priori error analysis shows that ‖uhτ − Iuhτ‖X converges with
the same order as ‖u − uhτ‖X if u is assumed to have some smoothness, a difficulty is
that if the jump estimator ‖uhτ − Iuhτ‖X becomes too large compared to ‖u− uhτ‖X ,
then the meaning of the lower bound (5.7) becomes less clear, and similarly for (5.5).
However, we note that [Ern et al.(2017b), Theorem 5.1] have shown that the (time-local
but space-global) jump estimators are bounded from above by the (time-local space-
global) L2(H1) ∩ H1(H−1)-norm of the error in Iuhτ , i.e.,

∫
In
‖∇(uhτ − Iuhτ )‖2dt ≤

8
∫
In
‖∇(u− Iuhτ )‖2 + ‖∂t(u− Iuhτ )‖2H−1(Ω) dt, up to possible data oscillation.
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Remark 5.2 (Comparison with L2(H1)∩H1(H−1)-norm estimators). As pointed out by
the remark in [Verfürth(2003), p. 198, Par. (5)] concerning the equivalence of residual-
based estimators for both L2(H1) and L2(H1) ∩ H1(H−1) norms, it is important to
observe that in the absence of data oscillation, the estimator ηX defined above in (5.2) is

equivalent (up to the factor

√
3+
√

5
2 ≤

√
3) to the augmented L2(H1) ∩H1(H−1)-norm

estimator ηEY defined in [Ern et al.(2017b), Eq. (5.10b)]. However, an important differ-
ence between these estimators concerns the data oscillation. Indeed, it is known since
[Verfürth(2003)] that L2(H1)∩H1(H−1) estimators generally contain a data oscillation
term that can be of same temporal order as the error. By comparison, the data oscil-
lation term (5.1c) features an additional half-order with respect to the time-step size.
Therefore we expect that the X-norm estimator given above may be of special use in
situations with significant data oscillation in time.

Theorem 5.1 is our main result on a posteriori error estimation of ‖u− uhτ‖X . Due
to the challenge of bounding ‖uhτ−Iuhτ‖X , several authors have also considered various
augmented norms and error measures. We refer in particular to [Akrivis et al.(2009),
Makridakis & Nochetto(2006), Schötzau & Wihler(2010)] where the norm of the error
includes simultaneously norms for u − uhτ and u − Iuhτ . This can be motivated by a
priori error analysis, where it can be shown that ‖uhτ − Iuhτ‖X converges with same
order as ‖u−uhτ‖X when u is sufficiently smooth. For instance, we can define the error
measure

EX := max {‖u− uhτ‖X , ‖u− Iuhτ‖X} , (5.8)

in an analoguous manner to the norms in, for instance, [Makridakis & Nochetto(2006),
eq. (34)] and [Schötzau & Wihler(2010), eq. (28)] without the L∞(L2)-norm terms. The
choice in (5.8) is only one of many possibilities; for instance we could equally well consider
‖u−uhτ‖X+‖uhτ−Iuhτ‖X . The interest of this approach is that the bounds (5.4), (5.5)
and (5.7) immediately yield a global upper bound and local-in-time and local-in-space
efficiency with respect to this error measure, see Corollary 5.2 below. However, it is
important to note that it does not appear possible to show in general an equivalence
between EX and ‖u− uhτ‖X , see Remark 5.1.

Corollary 5.2. Let EX be defined by (5.8). Then, we have the guaranteed upper bound

EX ≤ 2 ηX , (5.9)

If K ∈ T n, 1 ≤ n ≤ N , is an element such that h2
ωa
≤ γa τn for each a ∈ VK with some

constant γa > 0, where hωa denotes the diameter of the patch ωa, then we have the local
efficiency bound

[ηnF,K ]2 + [ηnJ,K ]2 ≤
∑
a∈VK

C2
γa,qn

{
[Ea,nX ]2 + [ηa,nosc ]2

}
. (5.10)

where the local error measures Ea,nX , a ∈ Vn, are defined by

[Ea,nX ]2 := max

{∫
In

‖∇(u− uhτ )‖2ωa
dt,

∫
In

‖∇(u− Iuhτ )‖2ωa
dt

}
. (5.11)
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Furthermore, under the hypothesis that there exists γ > 0 such that h2
ωa
≤ γ τn for every

a ∈ Vn and every 1 ≤ n ≤ N , then we have the global efficiency bound

N∑
n=1

∑
K∈T n

[ηnF,K ]2 + [ηnJ,K ]2 ≤ C2
γ,qn

{
[EX ]2 +

N∑
n=1

∑
a∈Vn

[ηa,nosc ]2

}
. (5.12)

6 Proof of the guaranteed upper bound (5.4)

We will make use of the following preparatory lemmas.

Lemma 6.1. Let In be a given time interval, and let ϕ ∈ L2(In;H1
0 (Ω))∩H1(In;H−1(Ω))

be an arbitrary function. Let ϕn ∈ H1
0 (Ω), the time-mean value of ϕ over In, be defined

by ϕn := 1
τn

∫
In
ϕdt. Then∫
In

‖∇ϕn‖2 dt ≤
∫
In

‖∇ϕ‖2 dt, (6.1a)∫
In

‖ϕ− ϕn‖2 dt ≤ τn
π

(∫
In

‖∂tϕ‖2H−1(Ω) dt

) 1
2
(∫

In

‖∇ϕ‖2 dt

) 1
2

. (6.1b)

Proof. The bound (6.1a) is simply the stability of the L2-projection with respect to
time; thus it remains only to show (6.1b). It is well-known that there exists a maximal
sequence {ψk}∞k=1 that is orthonormal in the L2(Ω)-inner product and orthogonal in the
H1

0 (Ω) inner product: i.e. (ψk, ψj) = δkj and (∇ψk,∇ψj) = λkδkj , with {λk}∞k=1 ⊂ R>0.
Then, we have ϕ =

∑∞
k=1 αkψk and ϕn =

∑∞
k=1 α

n
kψk, with real-valued αk ∈ H1(In) and

αnk = 1
τn

∫
In
αkdt. Thus we may use the Poincaré inequality for real-valued functions to

obtain ∫
In

‖ϕ− ϕn‖2dt =

∞∑
k=1

‖αk − αnk‖2L2(In) ≤
τn
π

∞∑
k=1

|αk|H1(In)‖αk‖L2(In)

≤ τn
π

( ∞∑
k=1

1

λk
|αk|2H1(In)

) 1
2
( ∞∑
k=1

λk‖αk‖2L2(In)

) 1
2

.

We then deduce (6.1b) from the identities
∫
In
‖∂tϕ‖2H−1(Ω)dt =

∑∞
k=1

1
λk
|αk|2H1(In) and∫

In
‖∇ϕ‖2dt =

∑∞
k=1 λk‖αk‖2L2(In).

Lemma 6.2. Let f ∈ L2(0, T ;L2(Ω)), let fhτ be defined by (4.4), and let ϕ ∈ L2(0, T ;H1
0 (Ω))∩

H1(0, T ;H−1(Ω)) be an arbitrary function. Then, for each 1 ≤ n ≤ N ,∣∣∣∣∫
In

(f − fhτ , ϕ) dt

∣∣∣∣ ≤ ηnosc,hτ

(∫
In

‖∂tϕ‖2H−1(Ω) + ‖∇ϕ‖2 dt

) 1
2

. (6.2)

Proof. For a given function ϕ ∈ L2(0, T ;H1
0 (Ω))∩H1(0, T ;H−1(Ω)), we define the time-

mean value of ϕ over In as ϕn := 1
τn

∫
In
ϕdt ∈ H1

0 (Ω), and we define the space-mean
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value of ϕn over K̃ as ϕn
K̃
|
K̃

:= 1

|K̃|

∫
K̃
ϕndx, where 1 ≤ n ≤ N and K̃ ∈ T̃ n. Now, we

note that the definition of fhτ in (4.4) implies that f − fhτ has zero mean value over
each space-time element K̃ × In. Therefore, we obtain∫

In

(f − fhτ , ϕ) dt =

∫
In

(f − fhτ , ϕ− ϕn) +
∑
K̃∈T̃ n

(f − fhτ , ϕn − ϕnK̃)
K̃

dt =: A+B.

Then, we apply the bounds (6.1a), (6.1b), and the Cauchy–Schwarz inequality ‖ϕn −
ϕn
K̃
‖
K̃
≤ h

K̃
π ‖∇ϕ

n‖
K̃

to obtain

|A| ≤

∫
In

∑
K̃∈T̃ n

τn
π
‖f − fhτ‖2K̃ dt

 1
2 (∫

In

‖∂tϕ‖2H−1(Ω) dt

) 1
4
(∫

In

‖∇ϕ‖2 dt

) 1
4

,

|B| ≤

∫
In

∑
K̃∈T̃ n

h2
K̃

π2
‖f − fhτ‖2K̃ dt

 1
2 (∫

In

‖∇ϕ‖2 dt

) 1
2

.

Then, the Cauchy–Schwarz inequality and the Young inequality ab+ b2 ≤ 1+
√

2
2 (a2 + b2)

for all a, b ∈ R, imply that the bound (6.2) holds.

Proof of the upper bound (5.4). Recall from (2.9) on the equivalence of norms
and residuals that ‖u − uhτ‖X = ‖RX(uhτ )‖[YT ]′ , so we turn our attention to bound-
ing 〈RX(uhτ ), ϕ〉 for an arbitrary test function ϕ ∈ YT . By adding and subtracting∫ T

0 (∂tIuhτ +∇ · σhτ , ϕ) dt and recalling the flux equilibration identity (4.1), we get

〈RX(uhτ ), ϕ〉 =

∫ T

0
(f − fhτ , ϕ) + 〈∂tϕ, uhτ − Iuhτ 〉 − (σhτ +∇uhτ ,∇ϕ) dt

+ (u0 −Πhu0, ϕ(0)), (6.3)

where we have used integration by parts with respect to time for the time derivative
∂tIuhτ , noting that Iuhτ (0) = Πhu0 and that ϕ(T ) = 0, and also where we have used
integration by parts over Ω for the flux σhτ ∈ L2(0, T ;H(div,Ω)). Employing the
shorthand notation ‖ϕ‖2Y (In)

:=
∫
In
‖∂tϕ‖2H−1(Ω) +‖∇ϕ‖2 dt, we then use Lemma 6.2 and

the Cauchy–Schwarz inequality to bound∫ T

0
(f − fhτ , ϕ) + 〈∂tϕ, uhτ − Iuhτ 〉 − (σhτ +∇uhτ ,∇ϕ) dt

≤
N∑
n=1

{[∫
In

‖σhτ +∇uhτ‖2 + ‖∇(uhτ − Iuhτ )‖2 dt

] 1
2

+ ηnosc,hτ

}
‖ϕ‖Y (In)

=
N∑
n=1


[ ∑
K∈T n

{
[ηnF,K ]2 + [ηnJ,K ]2

}] 1
2

+ ηnosc,hτ

 ‖ϕ‖Y (In).

(6.4)
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We then combine (6.3) and (6.4) with the Cauchy–Schwarz inequality to find that
〈RX(uhτ ), ϕ〉 ≤ ηX‖ϕ‖YT ; since ϕ ∈ YT was arbitrary, we obtain ‖u − uhτ‖X ≤ ηX
as a result of (2.9), thereby completing the proof of (5.4).

7 Proof of the bounds (5.5) and (5.7)

We start by observing that σhτ |K×In =
∑

a∈VK σ
a,n
hτ |K×In , and thus∫

In

[ηnF,K ]2 dt =

∫
In

‖
∑

a∈VK (σa,n
hτ +ψa∇uhτ )‖2K dt ≤ |VK |

∑
a∈VK

∫
In

‖σa,n
hτ +ψa∇uhτ‖2K dt,

(7.1)
where we recall that VK stands for the vertices of the element K and |VK | stands for
its cardinality. We shall now bound the right-hand side of (7.1). For each 1 ≤ n ≤ N
and each a ∈ Vn, we introduce the patch residual functional Ra,n

hτ : L2(In, H
1
0 (ωa))→ R

defined by

〈Ra,n
hτ , ϕ〉 =

∫
In

(
Πa,n
hτ f − ∂tIuhτ , ϕ

)
ωa
−
(
∇uhτ ,∇ϕ

)
ωa

dt ∀ϕ ∈ L2(In;H1
0 (ωa)).

(7.2)
The essential result that forms the starting point for our analysis is the following

abstract efficiency result first shown in [Ern et al.(2017b), Lemma 8.2], which is an
application of a more general underlying key result in [Ern et al(2017a), Theorem 1.2]
concerning the existence of polynomial-degree robust liftings of piecewise polynomial
data into discrete subspaces of H(div), which itself is based on the fundamental results
of [Costabel & McIntosh(2010), Braess et al.(2009)].

Lemma 7.1 (Space-time stability bound). Let σa,n
hτ denote the patch-wise flux recon-

structions of Definition 4.1, and let Ra,n
hτ denote the local patch residual defined by (7.2).

Then, we have(∫
In

‖σa,n
hτ + ψa∇uhτ‖2ωa

dt

) 1
2

. sup
ϕ∈Qqn (In;H1

0 (ωa))\{0}

〈Ra,n
hτ , ϕ〉(∫

In
‖∇ϕ‖2ωa

dt
) 1

2

, (7.3)

where Qqn(In;H1
0 (ωa)) denotes the space of H1

0 (ωa)-valued univariate polynomials of
degree at most qn on In. In particular, the constant in (7.3) does not depend on the
mesh-size, time-step size, spatial and temporal polynomial degrees, or on refinement and
coarsening between time-steps.

As explained above in the introduction, our analysis of the efficiency of the equi-
librated flux estimator ηnF,K relies on two original ideas. We now detail the first one,
which is based on the key observation that the set of test functions appearing in (7.3)
are polynomials with respect to the time variable. Hence, in order to obtain estimates
on the efficiency of the estimators with respect to the X-norm of the error, we shall show
that the set of test functions appearing in (7.3) can be restricted to functions vanishing
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at the end-points of the time interval and thereby lying in the test space YT through a
bubble-in-time argument, provided that h2

ωa
. τn.

We start by defining the space H1
† (ωa) through

H1
† (ωa) :=

{
{v ∈ H1(ωa), (v, ψa)ωa = 0} if a ∈ Vnint,

{v ∈ H1(ωa), v|∂ωa∩∂Ω = 0} if a ∈ Vnext.
(7.4)

Recall that the dual norm ‖·‖[H1
† (ωa)]′ of H1

† (ωa) is defined by ‖Φ‖[H1
† (ωa)]′ = sup〈Φ, v〉,

where the supremum is taken among all test functions v ∈ H1
† (ωa) such that ‖∇v‖ωa = 1.

The motivation for working with the space H1
† (ωa) is that the ψa-weighted mean value

of the function u−Iuhτ possesses special properties derived from the numerical scheme;
in particular, see Lemma 7.3 and the discussion surrounding (7.13) below.

Lemma 7.2 (Stability with test functions vanishing at both endpoints of In). Let a ∈
Vn, 1 ≤ n ≤ N , and suppose that there exists a constant γa > 0 such that the patch
diameter hωa and τn satisfy h2

ωa
≤ γaτn. Then,

(∫
In

‖σa,n
hτ + ψa∇uhτ‖2ωa

dt

) 1
2

≤ Cγa,qn sup
ϕ∈Qqn+2(In;H1

0 (ωa))

∩H1
0 (In;H1

0 (ωa))

〈Ra,n
hτ , ϕ〉(∫

In
‖∂tϕ‖2[H1

† (ωa)]′
+ ‖∇ϕ‖2ωa

dt

) 1
2

, (7.5)

where H1
0 (In;H1

0 (ωa)) denotes the space of functions in H1(In;H1
0 (ωa)) that vanish at

both endpoints tn−1 and tn of the time interval In. In particular, the constant Cγa,qn
in (7.5) satisfies Cγa,qn . (qn+1)

1
2 +γa(qn+1)

5
2 , and may depend on the shape regularity

of T n and T̃ n and on the space dimension d, but otherwise does not depend on the mesh-
size, time-step size, spatial polynomial degrees, or on refinement and coarsening between
time-steps.

Proof. The starting point for the proof is Lemma 7.1. Keeping in mind the right-
hand side of (7.3), for each ϕ ∈ Qqn(In;H1

0 (ωa)), we shall construct a new function
ϕ∗ ∈ Qqn+2(In;H1

0 (ωa)) defined by

ϕ∗ := ϕ− ϕ(t+n−1)
(−1)qn+1

2
(Lnqn+1 − Lnqn+2)− ϕ(tn)

1

2
(Lnqn+1 + Lnqn+2).

It follows from the fact that Lnq (tn−1) = (−1)q and that Lnq (tn) = 1 for all q ≥ 0 that

ϕ∗(t
+
n−1) = ϕ∗(tn) = 0 and hence ϕ∗ ∈ H1

0 (In;H1
0 (ωa)). Recalling that the functions

Πa,n
hτ f , ∂tIuhτ , and ∇uhτ appearing in (7.2) are polynomials of degree at most qn in

time, it also follows from the orthogonality of the Legendre polynomials that

〈Ra,n
hτ , ϕ∗〉 = 〈Ra,n

hτ , ϕ〉.
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It is then seen that we shall obtain (7.5) as a result of (7.3) provided that we can bound∫
In
‖∂tϕ∗‖2[H1

† (ωa)]′
+ ‖∇ϕ∗‖2ωa

dt in terms of
∫
In
‖∇ϕ‖2ωa

dt. First, the triangle inequality

and the properties of the Legendre polynomials imply that∫
In

‖∇ϕ∗‖2ωa
dt .

∫
In

‖∇ϕ‖2ωa
dt+ τn

qn+1

(
‖∇ϕ(tn−1)‖2ωa

+ ‖∇ϕ(tn)‖2ωa

)
, (7.6)

where the constant is independent of all other quantities. Now, the key point is that we
have the inverse inequality

max
t∈In
‖∇ϕ(t)‖2ωa

. (qn+1)2

τn

∫
In

‖∇ϕ‖2ωa
dt, (7.7)

where the constant is independent of all other quantities since ϕ ∈ Qqn(In;H1
0 (ωa)) is

discrete with respect to time. Note in particular that the inverse inequality is valid even
though Qqn(In;H1

0 (ωa)) is itself an infinite dimensional space, see Remark 7.1 below.
Therefore, we find from (7.6) and (7.7) that∫

In

‖∇ϕ∗‖2ωa
dt . (qn + 1)

∫
In

‖∇ϕ‖2ωa
dt. (7.8)

To bound
∫
In
‖∂tϕ∗‖2[H1

† (ωa)]′
dt, we recall that ϕ∗(t) ∈ H1

0 (ωa) for all t ∈ In, and

therefore satisfies the Poincaré inequality ‖ϕ∗(t)‖ωa . hωa‖∇ϕ∗(t)‖ωa for all t ∈ In.
Furthermore, we also have a similar Poincaré inequality for all test functions v ∈ H1

† (ωa).

Therefore, we find that ‖ϕ∗(t)‖[H1
† (ωa)]′ . h2

ωa
‖∇ϕ∗(t)‖ωa , for all t ∈ In. Thus, we obtain,

using an inverse inequality in time (see Remark 7.1 below for details),∫
In

‖∂tϕ∗‖2[H1
† (ωa)]′ dt .

(qn+1)4

τ2n

∫
In

‖ϕ∗‖2[H1
† (ωa)]′ dt

.
(qn+1)4h4ωa

τ2n

∫
In

‖∇ϕ∗‖2ωa
dt . γ2

a(qn + 1)5

∫
In

‖∇ϕ‖2ωa
dt,

where we have used the hypothesis that h2
ωa
/τn ≤ γa in the last inequality. Hence, we

have shown that∫
In

‖∂tϕ∗‖2[H1
† (ωa)]′ + ‖∇ϕ∗‖

2
ωa

dt ≤ C2
γa,qn

∫
In

‖∇ϕ‖2ωa
dt, (7.9)

where the constant Cγa,qn . (qn + 1)
1
2 +γa(qn + 1)

5
2 . The bound (7.5) then follows from

(7.9) and the identity 〈Ra,n
hτ , ϕ〉 = 〈Ra,n

hτ , ϕ∗〉 given above.

Remark 7.1 (Inverse inequality). The proof of the inverse inequalities appearing above in
(7.7) can be found simply by expanding the function ϕ in any orthogonal basis {ψk}∞k=1

of H1
0 (ωa) as ϕ(t) =

∑∞
k=1 ck(t)ψk, where the coefficient functions ck are real-valued

polynomials of degree at most qn, for all k ≥ 1, and then by applying coefficient-wise
well known inverse inequalities for real-valued functions, see [Schwab(1998), p. 148].
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Lemma 7.2 constitutes the first step towards the local lower bound (5.5). In partic-
ular, we see that the test functions in (7.5) are bounded in the H1(In; [H1

† (ωa)]′) norm.
In order to exploit this property, we use a second key idea for our analysis, which is to
employ the following special property of the time-discretization scheme. Together, these
two ingredients allow us to obtain the lower bounds assuming only that h2 . τ , rather
than the stronger requirements used in [Picasso(1998), Verfürth(1998)].

Lemma 7.3 (Pointwise identity). For each 1 ≤ n ≤ N and each interior vertex a ∈ Vnint,
the functions Iuhτ and uhτ satisfy

〈∂tIuhτ , ψa〉+ (∇uhτ ,∇ψa) = (Πa,n
hτ f, ψa) pointwise in In, (7.10)

where Πa,n
hτ f was defined in section 4.2.

Proof. Since a ∈ Vnint, it follows that φψa ∈ Qqn(In;V n) for any polynomial φ in time of
degree at most qn over In. Therefore, the numerical scheme (3.6) implies that, for any
real-valued polynomial φ in time of degree at most qn,∫

In

φ [(f, ψa)− (∂tIuhτ , ψa)− (∇uhτ ,∇ψa)] dt = 0.

Furthermore, the definition of Πa,n
hτ implies that

∫
In
φ(f, ψa)dt =

∫
In
φ(Πa,n

hτ f, ψa)dt
for any real-valued polynomial φ in time of degree at most qn. Since the function
t 7→ (∂tIuhτ (t), ψa) + (∇uhτ (t),∇ψa) − (Πa,n

hτ f(t), ψa) is a real-valued polynomial of
degree at most qn over In, it follows that it vanishes everywhere in In. We therefore
obtain (7.10).

We now give the proof of the bounds (5.5) and (5.7) under the hypothesis stated in
Theorem 5.1.

Proof of the bounds (5.5) and (5.7) The proof consists in bounding the right-hand
side of (7.5) so as to show that, for each a ∈ Vn, we have the bound∫

In

‖σa,n
hτ + ψa∇uhτ‖2ωa

dt ≤ C2
γa,qn

{∫
In

‖∇(u− Iuhτ )‖2ωa
+ ‖∇(u− uhτ )‖2ωa

dt

+

∫
In

‖f −Πa,n
hτ f‖

2
H−1(ωa) dt

}
, (7.11)

where Cγa,qn . (qn + 1)
1
2 + γa(qn + 1)

5
2 . Then, once (7.11) is known, it is then straight-

forward to show (5.5) and (5.7) from (7.1).
To show (7.11), we will treat first the more difficult case where a ∈ Vnint is an

interior node. It will be convenient to denote ψa := ψa/‖ψa‖L1(ωa) the renormalized
hat function associated with a. Let ϕ ∈ Qqn+2(In;H1

0 (ωa))∩H1
0 (In;H1

0 (ωa)) be a fixed
but arbitrary test function, such that

∫
In
‖∂tϕ‖2[H1

† (ωa)]′
+ ‖∇ϕ‖2ωa

dt = 1. It follows that
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the zero-extension of ϕ to Ω× (0, T ) belongs to YT , and therefore, we may use the weak
formulation (2.4) in the definition of Ra,n

hτ from (7.2) to find that

〈Ra,n
hτ , ϕ〉 =

∫
In

−(u−Iuhτ , ∂tϕ)ωa + (∇(u− uhτ ),∇ϕ)ωa + (Πa,n
hτ f − f, ϕ)ωa dt. (7.12)

Note that, in general, u − Iuhτ fails to belong to H1
† (ωa) when a ∈ Vnint is an interior

node because we can not generally guarantee that (u − Iuhτ , ψa)ωa = 0 a.e. in time;
thus, |(u− Iuhτ , ∂tϕ)ωa | 6≤ ‖∇(u− Iuhτ )‖ωa‖∂tϕ‖[H1

† (ωa)]′ in general. To overcome this

obstacle, we introduce the auxiliary function

ea := u− Iuhτ − (u− Iuhτ , ψa)ωa , (7.13)

that is, we subtract the ψa-weighted average of u − Iuhτ from u − Iuhτ . It follows
from the definition that ea(t) ∈ H1

† (ωa) and that ‖∇ea(t)‖ωa = ‖∇(u− Iuhτ )(t)‖ωa for

almost all t ∈ In. We now show how to reformulate the patch residual 〈Ra,n
hτ , ϕ〉 in terms

of the auxiliary function ea. First, we may choose the test function ψa(ϕ, 1)ωa ∈ YT in
(2.4), and use Fubini’s theorem and linearity of integration to find that∫

In

−((u, ψa)ωa , ∂tϕ)ωadt =

∫
In

−〈u, ∂t(ψa(ϕ, 1)ωa)〉dt

=

∫
In

(f, ψa)ωa(ϕ, 1)ωa − (∇u,∇ψa)ωa(ϕ, 1)ωadt.

(7.14)

Next, we multiply (7.10) by (ϕ, 1)ωa and integrate by parts over In and obtain∫
In

−((Iuhτ , ψa)ωa , ∂tϕ)ωadt =

∫
In

(Πa,n
hτ f, ψa)ωa(ϕ, 1)ωa − (∇uhτ ,∇ψa)ωa(ϕ, 1)ωadt.

(7.15)
The combination of (7.12) with (7.14) and (7.15) shows that 〈Ra,n

hτ , ϕ〉 =
∑5

i=1Ri, where
the quantities Ri, 1 ≤ i ≤ 5, are defined by

R1 :=

∫
In

−(ea, ∂tϕ)ωa dt,

R2 :=

∫
In

(∇(u− uhτ ),∇ϕ)ωa dt, R3 := −
∫
In

(∇(u− uhτ ),∇ψa)ωa(ϕ, 1)ωa dt,

R4 :=

∫
In

(f −Πa,n
hτ f, ψa)ωa(ϕ, 1)ωa dt, R5 := −

∫
In

(f −Πa,n
hτ f, ϕ)ωa dt.

Using the fact that
∫
In
‖∂tϕ‖2[H1

† (ωa)]′
dt ≤ 1, where we recall that H1

† (ωa) is defined

in (7.4), and that ‖∇ea‖ωa = ‖∇(u − Iuhτ )‖ωa , we find that |R1|2 ≤
∫
In
‖∇(u −

Iuhτ )‖2ωa
dt. Next, we find that |R2|2 ≤

∫
In
‖∇(u − uhτ )‖2ωa

dt. To bound R3 and

R4, we apply the Cauchy–Schwarz inequality and use the Poincaré inequality on H1
0 (ωa)

to obtain

|R3|2 + |R4|2 .
∫
In

h2
ωa
|ωa|‖∇ψa‖2ωa

‖ψa‖2L1(ωa)

[
‖∇(u− uhτ )‖2ωa

+ ‖f −Πa,n
hτ f‖

2
H−1(ωa)

]
dt,
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where |ωa| denotes the measure of ωa. Since there is a constant depending only on
the shape-regularity of the elements of the patch ωa such that hωa |ωa|1/2‖∇ψa‖ωa .
‖ψa‖L1(ωa), we find that |R3|2 + |R4|2 .

∫
In
‖∇(u − uhτ )‖2ωa

+ ‖f − Πa,n
hτ f‖

2
H−1(ωa)dt.

Finally, it is straightforward to show that |R5|2 ≤
∫
In
‖f −Πa,n

hτ f‖
2
H−1(ωa) dt. Therefore,

the above bounds on the quantities Ri imply (7.11) for the case where a ∈ Vnint is an
interior vertex.

The analogous result for the case where a ∈ Vnext is a boundary vertex poses fewer
difficulties than the case of interior vertices, owing to the fact that u − Iuhτ ∈ H1

† (ωa)
for a.e. t ∈ In, since u and Iuhτ are both in X and therefore have vanishing trace on
∂ωa ∩ ∂Ω.

Using the triangle inequality ‖∇(u−Iuhτ )‖ωa ≤ ‖∇(u−uhτ )‖ωa+‖∇(uhτ−Iuhτ )‖ωa ,
it is then straightforward to obtain (5.5) and (5.7) from (7.1) and (7.11).

References

[Akrivis et al.(2009)] Akrivis, G., Makridakis, C. & Nochetto, R. H. (2009) Op-
timal order a posteriori error estimates for a class of Runge-Kutta and Galerkin meth-
ods. Numer. Math., 114, 133–160.

[Amrein & Wihler(2016)] Amrein, M. & Wihler, T. P. (2016) An adaptive space-
time Newton–Galerkin approach for semilinear singularly perturbed parabolic evolu-
tion equations. IMA J. Numer. Anal., 37, 2004–2019.

[Bergam et al.(2005)] Bergam, A., Bernardi, C. & Mghazli, Z. (2005) A posteriori
analysis of the finite element discretization of some parabolic equations. Math. Comp.,
74, 1117–1138.

[Braess et al.(2009)] Braess, D., Pillwein, V. & Schöberl, J. (2009) Equilibrated
residual error estimates are p-robust. Comput. Methods Appl. Mech. Engrg., 198,
1189–1197.

[Chen & Feng(2004)] Chen, Z. & Feng, J. (2004) An adaptive finite element algorithm
with reliable and efficient error control for linear parabolic problems. Math. Comp.,
73, 1167–1193.

[Costabel & McIntosh(2010)] Costabel, M. & McIntosh, A. (2010) On Bogovskĭı
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[Schötzau & Wihler(2010)] Schötzau, D. & Wihler, T. P. (2010) A posteriori er-
ror estimation for hp-version time-stepping methods for parabolic partial differential
equations. Numer. Math., 115, 475–509.

[Schwab(1998)] Schwab, C. (1998) p- and hp-finite element methods. Numerical Math-
ematics and Scientific Computation. New York: The Clarendon Press Oxford Univer-
sity Press, pp. xii+374.

[Smears(2017)] Smears, I. (2017) Robust and efficient preconditioners for the dis-
continuous Galerkin time-stepping method. IMA J. Numer. Anal., 37, 1961–1985,
doi:10.1093/imanum/drw050.

[Tantardini & Veeser(2016)] Tantardini, F. & Veeser, A. (2016) The L2-projection
and quasi-optimality of Galerkin methods for parabolic equations. SIAM J. Numer.
Anal., 54, 317–340.

24

https://dx.doi.org/10.1093/imanum/drw050


[Verfürth(1998)] Verfürth, R. (1998) A posteriori error estimates for nonlinear prob-
lems. Lr(0, T ;Lρ(Ω))-error estimates for finite element discretizations of parabolic
equations. Math. Comp., 67, 1335–1360.

[Verfürth(1998)] Verfürth, R. (1998) A posteriori error estimates for nonlinear prob-
lems: Lr(0, T ;W 1,ρ(Ω))-error estimates for finite element discretizations of parabolic
equations. Numer. Methods Partial Differential Equations, 14, 487–518.

[Verfürth(2003)] Verfürth, R. (2003) A posteriori error estimates for finite element
discretizations of the heat equation. Calcolo, 40, 195–212.

[Verfürth(2013)] Verfürth, R. (2013) A posteriori error estimation techniques for
finite element methods. Numerical Mathematics and Scientific Computation. Oxford
University Press, Oxford, pp. xx+393.

[Wloka(1987)] Wloka, J. (1987) Partial differential equations. Cambridge: Cambridge
University Press, pp. xii+518.

25


	Introduction
	Inf-sup theory
	Finite element approximation
	Meshes
	Approximation spaces
	Refinement and coarsening
	Numerical method
	Reconstruction operator

	Construction of the equilibrated flux
	Local mixed finite element spaces
	Data approximation
	Flux reconstruction

	Main results
	Proof of the guaranteed upper bound (5.4)
	Proof of the bounds (5.5) and (5.7)

